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ABSTRACT

Energy-Based Models (EBMs) allow for extremely flexible specifications of proba-
bility distributions. However, they do not provide a mechanism for obtaining exact
samples from these distributions. Monte Carlo techniques can aid us in obtaining
samples if some proposal distribution that we can easily sample from is available.
For instance, rejection sampling can provide exact samples but is often difficult
or impossible to apply due to the need to find a proposal distribution that upper-
bounds the target distribution everywhere. Approximate Markov chain Monte
Carlo sampling techniques like Metropolis-Hastings are usually easier to design,
exploiting a local proposal distribution that performs local edits on an evolving
sample. However, these techniques can be inefficient due to the local nature of
the proposal distribution and do not provide an estimate of the quality of their
samples. In this work, we propose a new approximate sampling technique, Quasi
Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency
and sampling quality, while providing explicit convergence bounds and diagnostics.
QRS capitalizes on the availability of high-quality global proposal distributions
obtained from deep learning models. We demonstrate the effectiveness of QRS
sampling for discrete EBMs over text for the tasks of controlled text generation
with distributional constraints and paraphrase generation. We show that we can
sample from such EBMs with arbitrary precision at the cost of sampling efficiency.

1 INTRODUCTION
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Figure 1: QRS. β is a scalar parameter that
controls the quality/efficiency trade-off. The
blue shaded area depicts the truncated distri-
bution that QRS samples from.

Obtaining samples from a probability distribution is use-
ful in many natural language processing applications, e.g.
generating diverse outputs from a language model (Holtz-
man et al., 2020), producing debiased sentences from a
pretrained model (Khalifa et al., 2021), or proposing a set
of choices to some decision rule (Eikema & Aziz, 2021).
In many cases, when the probability distribution is con-
veniently factorized and normalized (e.g., autoregressive
sequence models), this can be done easily. However, this
simplicity in sampling often comes at the cost of expres-
sivity. Energy-based models (EBMs) (LeCun et al., 2006)
enjoy a greater representational freedom by mapping elements into arbitrary unnormalized non-
negative scores. In particular, discrete EBMs have been leveraged by prior studies to tackle a
number of different tasks, including data-efficient learning (Parshakova et al., 2019a), language
modelling (Deng et al., 2020), machine translation (Naskar et al., 2020), natural language under-
standing (He et al., 2021), and controlled text generation (Khalifa et al., 2021). However, it is not
immediately clear how to obtain samples from such EBMs.

In this work we investigate the usage of Monte Carlo (MC) sampling techniques (Robert & Casella,
2004) to approximate the target distribution. MC techniques allow to estimate expectations and to
sample from unnormalized distributions, of which discrete EBMs are a subclass, as long as a proposal
distribution from which it is possible to obtain samples is available. One can distinguish between
two kinds of proposal distributions: local ones, that is, conditional distributions approximating
the normalized target distribution around a given point (for instance, by focusing on a set of local
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edits), and global unconditional ones that approximate the target distribution over the full sampling
space. Because local proposals are generally easier to design, Markov chain Monte Carlo (MCMC)
techniques that exploit these, such as Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970),
are quite popular. The convergence theorem for Metropolis-Hastings Markov chains (see Fig. 7 in
the Appendix) guarantees that i) the expectation estimate converges to the true value over a single
chain of increasing length, and ii) the distribution obtained by repeatedly running a chain of length n
and outputting the n-th element converges to the target distribution for increasing values of n. These
important theoretical results, unfortunately, do not come with concrete convergence diagnostics,
which presents serious risks in practice, such as believing that the chain has explored the most relevant
parts of the space when it has not (Cowles & Carlin, 1996; Roy, 2020).

Fortunately, there are cases where a reasonable global proposal is available. While such cases were the
exception in the traditional MC literature, the situation is changing with the advent of powerful neural
network training techniques allowing for flexible approximations to a wide class of distributions. We
will later show three different instances of global proposal distributions obtained in this way. When a
global proposal is available, Metropolis-Hastings reduces to independent Metropolis-Hastings (IMH)
(Robert & Casella, 2004, §7.4), where proposed moves do not depend on the current point. While
this brings some simplifications in the analysis of the chain, by and large, practical convergence
diagnostics remain difficult. If the goal is to compute expectations, the much simpler importance
sampling algorithm, which often leads to concrete convergence diagnostics (Owen, 2013), is more
appropriate and we will heavily use it in the sequel at points where we need to estimate expectations.
If the goal is to produce samples, IMH does not produce i.i.d samples and can suffer from high
auto-correlation between samples. Appendix E discusses IMH in detail and provides a theoretical
and experimental comparison with our proposed algorithm, QRS, which we introduce next.

With a global proposal, if we can find some constant with which we can bound the importance
ratio between the target and proposal distributions, we can use rejection sampling to obtain exact
samples (Von Neumann, 1951; Martino et al., 2018). However, it is often hard or impossible to find
such a bound. Moreover, if the bound is too large, then the method can be extremely inefficient
(Andrieu et al., 2003). In this paper we introduce quasi rejection sampling (QRS), extending rejection
sampling by providing the possibility to approximately sample from the target distribution without
requiring to know a bound on the importance ratio or even that such a bound exists at all. QRS
produces i.i.d samples and allows controlling the trade-off between the approximation quality of the
sampler and its efficiency. Furthermore, QRS does provide explicit convergence diagnostics, while
also supplying precise estimates of the sampling quality (i.e., the distance of the sampling distribution
to the target distribution) and efficiency (i.e., the sampler’s acceptance rate).

We demonstrate the effectiveness of QRS on controlled text generation following the setting of
Khalifa et al. (2021) and paraphrase generation inspired by the work of Miao et al. (2019). We
sample from EBMs that i) restrict a GPT-2 small (Radford et al., 2019) model to generate sequences
containing the term “Wikileaks”, ii) debias GPT-2 fine-tuned on biographies to produce 50% female
biographies while exclusively generating biographies about scientists, and iii) generate paraphrases
that maintain the fluency of GPT-2 while being similar to the input sequence under a sentence
embedding model. In order to apply QRS we explore a variety of ways to construct proposal
distributions by either i) prompting a pre-trained language model, ii) training an auto-regressive
sequence model to approximate the EBM (Khalifa et al., 2021), or iii) making use of off-the-shelf
machine translation models to specify conditional proposal distributions. The results show that we
are able to approximate the target distributions to arbitrary precision at the cost of sampling efficiency.
The trade-off between these two conflicting objectives can be computed explicitly within QRS,
allowing user-defined choices depending on the intended application. In short, our contributions are:

• We introduce QRS, a variant of rejection sampling that does not require global upper-bounds on
importance ratios, and uses a scalable parameter β to trade-off sampling quality with efficiency.

• To support this trade-off, we provide explicit estimates and bounds on discrepancy measures (total
variation distance and KL-divergence) between the distribution of QRS samples and the EBM.

• We show how QRS can exploit high quality global proposals readily available today thanks to deep
learning. We present experimental results based on three sorts of such proposals, originating from
i) the use of prompts in pre-trained language models, ii) a fine-tuning technique for approximating
EBMs, and iii) the use of round-trip translation in the context of a paraphrasing EBM.
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2 FORMAL APPROACH

Our general problem is the following. We consider a discrete (i.e. countable) sample space X .1
We are given a nonnegative real function — aka EBM — P (x) over X , such that the partition
function Z .

=
∑
x∈X P (x) is strictly positive and finite. We can then associate with P a normalized

probability distribution p(x)
.
= Z−1P (x). Our goal is to define a “sampler” ω, that is a generator

of elements from X , such that ω produces a sample x with a probability ω(x) as close as possible
to our target p(x), in terms of discrepancy measures such as KL-divergence DKL(p, ω) and total
variation distance TVD(p, ω), to be detailed later. To help us solve that problem, we assume that we
have at our disposal a global proposal distribution q(x) such that i) we can effectively compute q(x)
(i.e. score x) for any x ∈ X , ii) we can effectively generate samples from q, and iii) the support of q
includes the support of p, i.e. p(x) > 0→ q(x) > 0 (but see footnote 3 for a generalization).

Additionally, and crucially for the tractability of the techniques, the proposal q should be chosen in
such a way that it provides a “reasonable” starting point towards our target p, in terms of TVD or
DKL. One important methodological contribution of our approach will be to stress the role of deep
learning in producing good proposals in a way that is not typical of classical MCMC approaches.

2.1 QUASI REJECTION SAMPLING (QRS)

Our proposed approach, QRS, is based on Algorithm 1.

Algorithm 1 QRS [rejection sampling (RS)]

Require: P , q, β . 0 < β <∞
1: while True do
2: x ∼ q
3: rx ← min(1, P (x)/βq(x)) [vs. rx ← P (x)/βq(x)] . Acceptance prob.
4: u ∼ U[0,1] . U[0,1] : unif. dist. over [0, 1]
5: if u ≤ rx then
6: output x

In addition to P and q, QRS requires the input of a finite positive number β. QRS differs from
standard rejection sampling in two aspects: i) contrary to rejection sampling it does not require β to
be a “global” upper-bound, that is, to have P (x)/q(x) ≤ β for all x’s in X , and (2), as shown on
line 3, the “acceptance probability” rx is a generalization of the one used with rejection sampling,
for cases where P (x)/βq(x) > 1. In case β happens to be a global upper-bound, QRS simplifies to
standard rejection sampling. See Fig. 1 for an illustration of QRS.

Both rejection sampling and QRS produce an i.i.d sequence of x’s (line 6), where each x is generated
with a probability that we will denote as pβ(x). As is well-known (Robert & Casella, 2004), in the
case of rejection sampling, we actually have pβ = p. In other words, rejection sampling is a perfect
sampler for p. This is of course a major advantage, however it comes with serious theoretical and
practical limits: i) rejection sampling requires the existence of a finite upper-bound β, ii) this β needs
to be known beforehand. These conditions often do not hold for the proposals q that we will consider,
typically autoregressive models whose statistics are not known in closed form. Even if such a bound
could be found, the resulting sampler could be extremely inefficient: as we will see (Equation 2), the
“acceptance rate” of rejection sampling is proportional to 1/β, which can be extremely small.

By relaxing the requirement that β be a global upper-bound, QRS loses the identity between pβ
and p. However, QRS becomes much more generally applicable, and crucially, allows an explicit
trade-off between the sampling efficiency of pβ and its sampling quality, as measured by distributional
discrepancy between pβ and p.2 Let’s now look at this in more detail.

1In our experiments X will mostly be a set of finite sequences over linguistic tokens, but here we consider an
arbitrary discrete space.

2We note that for off-the-shelf usage, we provide in Appendix D a specific variant of the algorithm that
automatically estimates the best possible β given some efficiency constraints.
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2.2 FORMAL PROPERTIES OF QRS

We will keep the notation from above, and will also be using two standard discrepancy measures
between distributions p1, p2 over X: the KL-divergence DKL(p1, p2)

.
= Ex∼p1 log[p1(x)/p2(x)],

and the total variation distance TVD(p1, p2)
.
= 1/2

∑
x |p1(x) − p2(x)| (see e.g. Chafaı̈ (2010)).

Both measures are null iff p1 = p2, with TVD (resp. KL) ranging between 0 and 1 (resp. 0 and∞).

The following facts are proven in Appendix A:

• Define Pβ(x)
.
= min(P (x), βq(x)), and let Zβ

.
=
∑
x∈X Pβ(x) be the partition function of Pβ(x).

Then pβ is the normalized distribution associated with Pβ , with:
pβ(x) = 1/Zβ Pβ(x). (1)

• By definition, the acceptance rate ARβ of the QRS sampler pβ is the proportion of samples from q,
in line 2 of the algorithm, that produce an output on line 6. ARβ is a decreasing function of β, and:

ARβ = Ex∼q min(1, P (x)/βq(x)) = Zβ/β. (2)

• Let Aβ
.
= {x ∈ X : P (x)/q(x) ≤ β}. Then:

TVD(p, pβ) ≤ 1− p(Aβ), (3)
lim
β→∞

(1− p(Aβ)) = 0. (4)

In other words, 1−p(Aβ) (which can be understood as the probability of violating P (x)/q(x) ≤ β)
bounds the TVD between pβ and p, and pβ converges to p for β →∞.3

2.3 PRACTICAL IMPLICATIONS: ESTIMATES

The previous facts have important practical implications, in particular concerning the production of
explicit estimates for different quantities of interest. The general recipe for producing such estimates
will be to use importance sampling (Owen, 2013), using once again q as the proposal distribution.
We base all estimates on a sample {x1, . . . , xN} of i.i.d draws from q; if f is a real-valued function
on X , we then rewrite

∑
x∈X f(x) = Ex∼q f(x)

q(x) ' N
−1
∑
i∈[1,N ]

f(xi)
q(xi)

. In particular, we have:

Z ' N−1
∑

i∈[1,N ]

P (xi)

q(xi)
, (5)

Zβ ' N−1
∑

i∈[1,N ]

Pβ(x)

q(xi)
, (6)

p(Aβ) ' N−1
∑

i∈[1,N ]

P (xi)

Zq(xi)
1[xi ∈ Aβ ], (7)

Ex∼pβf(x) ' N−1
∑

i∈[1,N ]

Pβ(xi)

Zβq(xi)
f(xi), (8)

where we note that explicit values for Pβ(x) and 1[xi ∈ Aβ ] are available, namely:
Pβ(x)

.
= min(P (x), βq(x)) and 1[xi ∈ Aβ ] = 1 iff P (x) ≤ βq(x).

We can use these estimates to obtain estimates of the discrepancies between p and pβ , again by
importance sampling with q. We have (see Appendix B):

TVD(p, pβ) ' 1/2 N−1
∑

i∈[1,N ]

∣∣∣∣ P (xi)

Zq(xi)
− Pβ(xi)

Zβq(xi)

∣∣∣∣ , (9)

DKL(p, pβ) ' log
Zβ
Z

+N−1
∑

i∈[1,N ]

P (xi)

Zq(xi)
log

P (xi)

Pβ(xi)
. (10)

3 EXPERIMENTS

3.1 TWO POISSONS

To demonstrate how we can use the QRS algorithm to obtain samples from a distribution p(x) using
a proposal distribution q(x) we start with a toy setting using two Poissons. The goal is to sample

3In all this discussion, we have kept the standard assumption about supports of p and q, namely that
Supp(p) ⊆ Supp(q). Interestingly, when this assumption is not true, all the previous properties of QRS still
hold, apart from (4), which generalizes to limβ→∞(1− p(Aβ)) = 1− p(Supp(q)) (see Eq. (18) in App. A).
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Figure 2: Estimation of sampling quality (TVD(p, pβ) and DKL(p, pβ)), efficiency (acceptance rate),
and the trade-off between them for a QRS sampler when using a proposal q = Poisson(λ = 10) to
approximate p = Poisson(λ = 11) over five independent experiments with 10M samples.

from a target Poisson distribution p with rate λp = 11 using samples from a proposal Poisson
distribution q with rate λq = 10. Rejection sampling is not possible in this setting as the ratio
p(x)/q(x) = (e−1111x/x!)/(e−1010x/x!) = e−1 1.1x can take arbitrarily large values when x
increases, i.e. is unbounded. However, it is still possible and practical to use the QRS sampler.

We perform five independent experiments in which we sample 10M elements from q that we use
to compute the quality of the approximation by estimating: TVD(p, pβ) (Eq. 9), its upper bound
1− p(Aβ) (Eq.3), and DKL(p, pβ) (Eq. 10) measured in nats/sequence. In all cases, we use a range
of β values in the interval [0.5, 4]. Furthermore, we compute the sampler’s efficiency by estimating
the acceptance rate (AR) for each value of β following Equations 2 and 6. To visualize the trade-off
between quality and efficiency, we also plot one as a function of the other by computing the inverse
of the AR curve and composing it with the TVD and KL ones.

We first display quality and efficiency results as a function of β (first three panels in Fig. 2). As
shown, using higher values of β improves the TVD and KL, even though this comes at the cost of
lower acceptance rate. The last two panels in Fig. 2 show the quality/efficiency trade-off in a more
concise form, which is why we will prefer this presentation in experiments below. As shown, the
TVD reaches very low values (< 10−4) with a moderate acceptance rate of 0.25.

3.2 GENERATION WITH DISTRIBUTIONAL CONTROL

Our following experiments focus on the generation with distributional control setting introduced by
Khalifa et al. (2021). Given a language model a(x), the goal of this task is to obtain a model p(x)
that, on the one hand, constrains the moments of a set of n pre-defined features φ(x) to match some
desired values µ̄ (i.e., Ex∼pφ(x) = µ̄), while on the other hand minimizing DKL(p, a). For example,
one might want to debias a language model trained on a corpus of biographies to produce biographies
only of scientists, 50% of which should be female. Then φ1(x) and φ2(x) would be binary classifiers
assessing whether a sentence speaks about a scientist or female person respectively, and the desired
moments would be set to µ̄ = [1, 0.5].

The authors show that p can be expressed as an unnormalized EBM P (x) = a(x)b(x), and describe
two variations. On the one hand, they consider pointwise constraints, where µ̄ ∈ {0, 1}n. For
instance, if there is a single binary feature for which we would like that ∀x : φ(x) = 1, then b takes
the form b(x) = φ(x). Otherwise, in the case of distributional constraints in which µ̄ ∈ Rn, they
show that there is a vector λ ∈ Rn such that b(x) = exp(λ · φ(x))4 such that p(x) ∝ a(x)b(x)
fulfills the requirements of moment matching and minimal KL distance from the original model.
Finding this vector of λ parameters is done through a combination of self-normalized importance
sampling (Owen, 2013; Parshakova et al., 2019a) and stochastic optimization.

3.2.1 PROPOSAL DISTRIBUTIONS FOR A POINTWISE CONSTRAINT

We first experiment with constraining GPT-2 small (Radford et al., 2019) using one of the pointwise
constraints (µ̄ = 1.0) proposed in Khalifa et al. (2021), namely, b(x) = 1[x contains “Wikileaks”].
In order to apply QRS we need to find a suitable proposal distribution. A possible candidate is

4For a precise formulation covering all cases, see (Khalifa et al., 2021).
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prompt-
name

prompt

simple Wikileaks.
multiple Wikileaks, Wikileaks, Wikileaks.
knowledge Here is what I know about Wikileaks:
jeopardy This medium was founded by Julian Assange in 2006.
news Here are the latest developments on Wikileaks:

Figure 3: GPT-2 generations containing the term “Wikileaks”. We use GPT-2 small, GPT-2 small
conditioned on various prompts and the fine-tuned model obtained through DPG (Khalifa et al., 2021)
as proposal distributions q for the QRS algorithm. Points in the left-upper corner correspond to
TVD(p, q) before QRS, while the curves show TVD(p, pβ) as a function of the acceptance rate.

GPT-2 small itself. An advantage of this proposal is that we can use pure rejection sampling with an
upper-bound β = 1 to obtain exact samples from the EBM. This is because we can upper bound the
ratio P (x)/q(x) = a(x)b(x)/a(x) = b(x) ≤ 1. Furthermore, for b(x) ∈ {0, 1} this process reduces
to “naively” filtering out all samples for which b(x) = 0. However, a serious disadvantage is that
the acceptance rate will be given by the natural frequency of the constraint (in this case, in the order
of 10−4). Using QRS, we can employ proposal distributions leading to better efficiency at a small
cost in quality of approximation to p. We explore two such options. First, we make use of the model
proposed by Khalifa et al. (2021), which consists of a fine-tuned auto-regressive model obtained from
applying the distributional policy gradient (DPG) algorithm (Parshakova et al., 2019a) to approximate
the target EBM. While this model is considerably better at satisfying the desired constraints, it does
not match the desired distribution perfectly. Second, we propose to condition a(x) on a prompt with
the aim to increase the constraint satisfaction rate in the resulting conditional distributions. In contrast
to the previous approach, this solution does not require training a model, even though it does require
to find the prompts themselves. We experiment with five such prompts, which we present in Fig. 3.

The right panel of Fig. 3 shows the TVD(p, ·) as a function of the acceptance rate for different
samplers. For this and following experiments, we chose a range of β values that yield acceptance
rates in a range 100–10−5 (cf. Table 1 in Appendix). We first show the TVD(p, q) for each proposal
q, at an acceptance rate of 1, before applying QRS. Then, we plot TVD(p, pβ) as a function of
acceptance rate, running the QRS sampler for each of the various proposal distributions. We compute
importance sampling estimates of the TVD on 1M samples from each proposal distribution. As
expected, using GPT-2 small comes with perfect TVD at the cost of low efficiency with an acceptance
rate around 10−4. Using prompting, we can improve the constraint satisfaction of the resulting
proposal distributions and trade-off quality for efficiency using QRS. Some prompts work notably
better than others and we do not exclude the possibility of there existing prompts that perform even
better than the ones we tested. We leave a more extensive exploration of prompting to create proposal
distributions to future work. The auto-regressive policy obtained from the DPG algorithm is the best
proposal distribution we tested. Notably, it allows for obtaining very low TVD values at a higher
acceptance rate than would be obtained by naively filtering samples from the base language model.

3.2.2 DEBIASED SCIENTIST BIOGRAPHIES

We now turn to the task, also introduced by Khalifa et al. (2021), of generating biographies of scientists
while debiasing the gender distribution to contain female scientists 50% of the time. For this we make
use of GPT-2 Biographies (a(x)), a language model fine-tuned on Wikipedia biographies5 and follow
the same the setup as the authors to define the binary classifiers identifying sequences talking about
scientists or female figures6 and infer an EBM that matches the distributional constraints with minimal
deviation from the original model. The frequency of a(x) generating scientist biographies is 1.8%,
female biographies 7.5%, and female scientist biographies only 0.14%. As proposal distribution
we use the DPG model that Khalifa et al. (2021) trained to approximate the EBM, which reaches a
constraint satisfaction of 69.0% scientist, 27.3% female and 19.6% female scientist biographies.

5https://huggingface.co/mkhalifa/gpt2-biographies
6Gender is estimated by the ratio of female to male pronoun counts, scientists are identified by the mention

of at least one of multiple words associated with the profession.

6
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QRS samples from p at AR = 10−3

Chandra Pradha Towni (born February 11, 1965) is a social scientist, activist, poet, and author living in Portugal. She is. . .

Enrella Carrière is a Canadian writer, translator, and philosopher specializing in the history of show business. She has covered topics such
as the direction and psychology of television and the evolution of human. . .

Albert Fahn (born 1970) is an American scientist who focuses on algorithms for generating biomechanical data. Methods to generate and
construct biomechanical data from. . .

Wyndham Radnor (born 1946) is a British historian and criminologist specialising in the subject of labour law. He has written extensively
on. . .

Figure 4: Estimation of the divergence from the EBM (TVD and KL to p), moments of features
female and science, and divergence from the original base model (KL from a) to debias GPT-2
biographies talking about scientists. We also show samples from running the QRS sampler at 10−3

acceptance rate. Samples are cut off at 40 (subword) tokens and are manually chosen to show two
male and two female biographies, for constraint satisfaction (moment matching) results refer to the
graph. We color words that fire our female or science features.

As before, we obtain 1M samples from the proposal distribution to compute importance sampling
estimates of quality and efficiency metrics (i.e., TVD(p, pβ),DKL(p||pβ) and AR), plus the backward
KL-divergence from the base language model DKL(·||a) (Eq. 27, in Appendix B) and the moments
of the features that we wish to control (Eq. 8). We show all metric curves as a function of acceptance
rate of the QRS algorithm as well as some example generations in Fig. 4.

We find that TVD(p, pβ) and DKL(p||pβ) (as well as the upper-bound on TVD(p, pβ)) steadily
converge to 0 as the acceptance rate decreases, meaning that we can perfectly match the target EBM
at the cost of sampling efficiency. As a result, at a moderate acceptance rate AR = 10−3 we nearly
perfectly debias our original language model while exclusively having it generate biographies about
scientists (49.5% female and 99.8% scientist biographies). We show some example generations
at AR = 10−3 chosen manually to show two male and two female biographies. Notably, we also
achieve very decent constraint satisfaction (44.8% female and 99.7% scientist biographies) and TVD
(at 0.27) already at AR = 10−1, allowing to considerably improve the quality at a small cost in
efficiency. Divergence to the original language model DKL(pβ ||a) steeply increases as the feature
moments are matched more closely, after which it gradually decreases before stabilizing. This reflects
the construction of the EBM, which projects a(x) onto the constraint manifold in such a way that the
KL-divergence from the original language model is minimized. Two more pointwise and two more
distributional constraints are shown in Appendix G with similar results.

3.3 PARAPHRASING

Finally, inspired by Miao et al. (2019), we do proof-of-concept experiments on paraphrase generation
by framing it as a conditional EBM. Specifically, given a sentence y to paraphrase, we define our
EBM through a pointwise constraint on a(x) = GPT-2(x), with b(x) a binary classifier that classifies
a pair (x, y) as a paraphrase if the cosine similarity between their sentence embeddings is above 0.95.
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Input Sequence Proposal Distribution QRS samples from p at AR = 10−5

How is the two wheeler
insurance from Bharti
Axa insurance?

What about bicycle insurance from Bharti Axa insurance? How is the Axa Bharti two-wheeler insurance policy?
What about the Bharti Axa insurance? How is Bharti Axa insurance for two-wheeler?
What is the Bharti Axa insurance plan? The Bharti Axa Two-wheeler insurance. How is it?

Are there Doctor
Who references in
the Muse song
”Knights of
Cydonia”?

Do you hear a hint of doctors in the Muse songs ”Knights
of Cydonia”?

Are there Doctor Who references in Muse’s Knights
of Cydonia?

Can you find a hint at Doctor Who in the ”Knights of Cy-
donia” line from the book’s Muse song?

Does this Muse song ’Knights of Cydonia’ have any
references to Doctor Who?

Are there any references to Doctor Who in a muse song,
Knights of Cydonia?

Are there Doctor Who references in Muse’s Knights
of Cydonia?

In French, how do
you say ”cool”?

How do you call ’cool’ in French? How to Say ”cool” in French
How do you keep the language Cool in French? How to Say ’Cool’ in French
How do you say ’cool’ in French? How do you say ”cool” in French

Figure 5: TVD(p, pβ) running the QRS sampler at various acceptance rates to generate paraphrases
of three sequences (top). We show some example paraphrases from both the proposal distribution
q(x) (round-trip NMT) as well as the QRS sampler pβ at an acceptance rate of 10−5 (bottom).

We obtain high-quality sentence embeddings from sentence BERT7 (Reimers & Gurevych, 2019). As
proposal distribution we will not be using GPT-2, but rather illustrate how we can utilize off-the-shelf
deep learning models as proposal distributions for QRS. In particular, we use a round-trip MT model,
which is a well-known tool in generating paraphrases (Bannard & Callison-Burch, 2005; Mallinson
et al., 2017). Specifically, we use the English-to-German and German-to-English models from Ng
et al. (2019). We first obtain a beam searched (Graves, 2012) translation into German,8 and then
define the proposal distribution as the German-to-English model conditioned on the beam searched
translation. We locally renormalize the model to do top-30 sampling (Fan et al., 2018).

We show importance sampling estimates of TVD(p, pβ) using 1M samples for three sequences in
Fig. 5 along with example samples from both the proposal distribution and QRS at AR = 10−5. The
proposal distribution quality varies per input sequence as can be seen by the slope of the curve and the
low-efficiency starting points of some curves (non-paraphrases are always rejected and so have a big
influence on the acceptance rate). Still, QRS allows us to approximate the target EBM reasonably well
at the cost of sampling efficiency (TVD(p, pβ) is 0.20, 0.42 and near 0). Looking at the examples, we
find the proposal distribution to produce decent paraphrases, but not always semantically equivalent
or grammatically correct. The QRS samples are mostly semantically equivalent, though they still
produce some mistakes (“Axa Bharthi” vs “Bharti Axa”) and seem to be insensitive to the question
mark and to the casing of words (“Cool”, “Two-wheeler insurance”). Interestingly, this experiment
illustrates how the presented approach could be employed to disentangle the questions of how to
model a problem (by defining the corresponding EBM) and how to efficiently sample from it (by
improving the proposal distributions), allowing to work on each of these questions separately.

4 RELATED WORK9

Sampling from discrete EBMs does not require an MC approach. DPG (Parshakova et al., 2019b)
instead trains an autoregressive model that approximates a given EBM, which can then be used
to obtain samples efficiently. However, it can be hard or impossible, in practice, to approximate
the target EBM accurately because of its complexity, or more fundamentally, because of inherent

7We use https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
8We use a beam size of 5.
9For more related work, in particular about continuous EBMs, and also the use of sampling techniques in

natural language processing, please see App. F.
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limitations of autoregressive architectures (Lin et al., 2021). For instance, while empirical results
by Khalifa et al. (2021) show that their DPG-based approximation is reasonable, there is still a
sizeable gap to the target distribution. Here, we close the gap almost completely at moderate cost in
sampling efficiency by using the approximation as a proposal distribution for QRS. For this paper
we were inspired by the ability of some Monte Carlo approaches to guarantee accurate sampling
in the limit. Without trying to cover the full landscape here, we provide some pointers to relevant
MC techniques that can exploit global proposal distributions. Possibly the most obvious MCMC
candidate, as already mentioned, is IMH (Robert & Casella, 2004, §7.4); we devote Appendix E to
a detailed comparison of IMH with QRS. Due to the non i.i.d. nature of the associated sampler, to
its inability to score its samples, and the resulting unavailability of explicit convergence diagnostics,
we then argue for the superiority of QRS for our purposes. Several other approaches than ours have
taken rejection sampling as their starting point. Similar to us, Rejection Sampling Chains (Tierney,
1992), (Chib & Greenberg, 1995, §6.1) do not require a global upper-bound. It is a hybrid that uses
rejection sampling in a region satisfying a partial upper-bound but combines it with IMH outside of
that region to produce a Markov chain that converges to the correct stationary distribution in the limit.
Caffo et al. (2002) propose Empirical Supremum Rejection Sampling, an algorithm that adaptively
increases the β upper-bound based on the maximum observed so far, with a focus on convergence
in the limit rather than approximation quality. Some researchers have observed before us that a
partial bound β leads to the probability distribution presented in Eq. 1. Rejection Control (Liu et al.,
1998), (Liu, 2004, pp. 44-45) makes use of this observation for accelerating the computation of an
unbiased importance sampling estimate of the expectation Ex∼pf(x) in situations where computing
f(x) is expensive and where it is desired to reduce such computation in regions of p for which the
importance ratios are small and have less impact on the importance sampling estimate. None of
the above approaches provide explicit convergence diagnostics nor consider a trade-off between
efficiency and approximation accuracy. We argue that such a trade-off is important for practical
use-cases of sampling, where fast response time may be prioritized over obtaining exact samples.

5 CONCLUSIONS

In this paper, we address the problem of obtaining samples from a target EBM given access to a good
global proposal distribution. In general, a technique that addresses this question has the potential to
decouple, for any generative task, modelling (by tuning the EBM definition) from efficient sampling
(by tuning the proposal distribution). In the past, high-quality global proposals were typically not
easy to come by, thus strongly motivating the development of MCMC techniques which could exploit
simple local proposals that computed transition probabilities between candidate samples. Today,
however, developments in neural network training techniques make high-quality global proposal
distributions easier to obtain than before. Motivated by such developments we propose QRS, a
generalization of rejection sampling that exploits such proposals to approximately sample from an
EBM. QRS can be applied even in cases in which no upper bound of the importance ratio between the
EBM and the proposal distribution scores is known, or even exists at all. Notably, QRS also provides
strong theoretical guarantees, which include not only convergence to the target distribution (Eq. 4),
but also diagnostics that are not available for other MCMC sampling techniques like independent
Metropolis-Hastings, such as an upper bound on the TVD (Eq. 3) or unbiased estimators of the TVD
and KL divergence to the target distribution (Eqs. 9 - 10). Our experimental results on discrete EBMs
show that QRS achieves strong results on the studied controlled text generation setting where, for
instance, the sampler achieves excellent debiasing of the language model using acceptance rates
in the range of 10−1 to 10−3. Furthermore, we show the versatility of the approach by showing
how it can be applied to sample paraphrases from an EBM formulation derived from combining a
pretrained language model and a sentence similarity score. Yet, there is a trade-off between quality
and efficiency, and finding the right balance will depend on the particular application. QRS allows to
use any arbitrary value of β, producing levels of quality and efficiency that can be estimated. For
convenience, in Appendix D we also describe a variant of QRS that automatically adjusts β under the
constraint of not falling below a target acceptance rate. Last, we note that while here we have focused
on EBMs for discrete sequential spaces, nothing prevents QRS from being applied to continuous
spaces, making it potentially useful for such applications as speech or vision.

9
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REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of this work, we have included in Appendix A and B complete
proofs and derivations of all propositions and quantities in this paper. Furthermore, source code of
all experiments is provided as an anonymized link to the reviewers and will be open-sourced upon
publication of this manuscript. Lastly, a table with the range of β values used to generate the plots is
given in Table 1 in the Appendix.

ETHICS STATEMENT

Part of the experimental section of this paper studies the generation with distributional control task,
defined by Khalifa et al. (2021). The goal of this task is to adapt the generations of a language
model to a given set of norms that should be quantifiable as preferences over the moments of certain
features. This formalization has the potential of addressing numerous problems related to social bias
in large pretrained language models (Sheng et al., 2019; Liang et al., 2021), including gender bias.
Nonetheless, we note that the approach is not prescriptive with respect to which norms should be
applied, nor about how to quantify the relevant features, all of which can be decided with the relevant
stakeholders. Finally, we note that all experiments have been done on the English language due to the
availability of large pre-trained language models in this language. We believe that the presented set
of techniques should be equally applicable to other languages and multilingual models as well.
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A PROPERTIES OF QRS: PROOFS

Equation (1): By definition pβ(x) is the probability that the first10 output from Algorithm 1 is
equal to x. On the first step of the algorithm, the probability that a given x is accepted is
q(x)rx, while the probability that no x at all is accepted is ρ .

=
∑
x∈X q(x)(1 − rx) =

1 −
∑
x∈X q(x)rx. More generally, the probability for x to be accepted on step i of the

algorithm, while no x was accepted on previous steps is then ρi−1q(x)rx. Overall, the
probability pβ(x) of x to be the first x to be accepted is:

∞∑
i=1

ρi−1q(x)rx = q(x)rx

∞∑
i=1

ρi−1 =
1

1− ρ
q(x)rx (11)

=
1∑

x∈X q(x)rx
q(x)rx =

1

Zβ
Pβ(x). (12)

Equation (2): We have:

ARβ = Ex∼q min(1, P (x)/βq(x)) = β−1
∑
x∈X

min(P (x), βq(x)) (13)

= β−1
∑
x∈X

Pβ(x) = Zβ/β. (14)

Equation (3): For the proof, we will need a well-known property of TVD (Chafaı̈, 2010), namely
that, for any distributions p1, p2 over X , we have:

TVD(p1, p2) =
∑

x∈X:p1(x)≥p2(x)

p1(x)− p2(x). (15)

The reason is simple; we have: ∑
x∈X:p1(x)≥p2(x)

p1(x)− p2(x)

−
 ∑
x∈X:p1(x)<p2(x)

p2(x)− p1(x)


=
∑
x∈X

p1(x)−
∑
x∈X

p2(x) = 0,

which proves that the first and second expressions under brackets are equal. Then we have:

TVD(p1, p2) = 1/2
∑
x∈X
|p1(x)− p2(x)|

= 1/2

 ∑
x∈X:p1(x)≥p2(x)

p1(x)− p2(x)

 +1/2

 ∑
x∈X:p1(x)<p2(x)

p2(x)− p1(x)


=

∑
x∈X:p1(x)≥p2(x)

p1(x)− p2(x).

Our main proof, illustrated in Figure 6, proceeds as follows.
Let Aβ

.
= {x ∈ X : P (x) ≤ βq(x)} and Āβ

.
= X \Aβ .

We have Pβ(x)
.
= min(P (x), βq(x)) and therefore Pβ(x) = P (x) for x ∈ Aβ , and

Pβ(x) < P (x) for x ∈ Āβ . Overall Pβ is smaller or equal to P and thus Zβ ≤ Z.
For any x, we have pβ(x) = Z−1

β Pβ(x) and p(x) = Z−1P (x), and hence for x ∈ Aβ ,
p(x) ≤ pβ(x).
If we define Cβ

.
= {x ∈ X : p(x) ≤ pβ(x)}, and C̄β

.
= X \ Cβ , we have Aβ ⊆ Cβ and

C̄β ⊆ Āβ .
Using Equation (15), we now see that TVD(p, pβ) =

∑
x∈X:p(x)≥pβ(x) p(x) − pβ(x) =∑

x∈X:p(x)>pβ(x) p(x)− pβ(x) =
∑
x∈C̄β p(x)− pβ(x) ≤

∑
x∈C̄β p(x).

Finally we get:
TVD(p, pβ) ≤ p(C̄β) ≤ p(Āβ) = 1− p(Aβ). (16)

10Or, for that matter, due to the obvious i.i.d nature of the algorithm, for any fixed k, the k-th output.
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Figure 6: Visualization of Main Proof. The left panel shows the unnormalized distributions P and Pβ ,
the right panel their normalized versions p and pβ . On the right panel, the area under the p (resp. the
pβ) curve represents the total p-mass (resp pβ-mass) of X , namely 1. To simplify visual comparison,
the figure assumes that Z = 1, in other words that P = p; then Zβ ≤ 1 and pβ is Pβ moved up by
the constant factor 1

Zβ
. The TVD between p and pβ is equal to the area between the two curves above

Cβ , but also to the area between the two curves above C̄β . This last area is included inside the area
below the p curve above Āβ , which is the visual counterpart of equation (16).

Equation (4): Clearly, for any (normalized) distribution p over a discrete space X , for any ε > 0,
there exists a finite subset X ′ ⊆ X s.t. p(X ′) > 1− ε. If we take β .

= maxx∈X′
P (x)
q(x) , then

β is finite, X ′ ⊆ Aβ , and therefore p(Aβ) ≥ 1− ε, which proves the result.

A generalization to arbitrary q-supports This last result exploits the assumption — that
we made during the whole section 2 — that the support of p, Supp(p), is contained in the
support of q, Supp(q), in other terms, p(x) > 0 ⇒ q(x) > 0. If that were not the case
then β .

= maxx∈X′
P (x)
q(x) could be infinite and Aβ would not be defined. However, it is

interesting that we can actually generalize the result to the case where Supp(p) may not be
contained in Supp(q). Then, for any ε > 0, there exists a finite subset Y ′ ⊆ Supp(q) s.t.
p(Y ′) > p(Supp(q)) − ε. If we now take β .

= maxx∈Y ′
P (x)
q(x) , then β is finite, Y ′ ⊆ Aβ ,

and therefore p(Aβ) ≥ p(Supp(q))− ε. For any β, because all the x’s in Aβ are obviously
in Supp(q), we have p(Aβ) ≤ p(Supp(q)), and therefore

p(Supp(q)) ≥ p(Aβ) ≥ p(Supp(q))− ε. (17)

When the support of p is included in Supp(q), we have p(Supp(q)) = 1, and therefore we
get the previous result back, but now we see that, in the general case:

lim
β→∞

(1− p(Aβ)) = 1− p(Supp(q)). (18)

B TVD AND KL ESTIMATES

Here we provide derivations for the estimates of equations (9) and (10):

TVD(p, pβ) = 1/2
∑
x∈X
|p(x)− pβ(x)| = 1/2 Ex∼q

∣∣∣∣ P (x)

Zq(x)
− Pβ(x)

Zβq(x)

∣∣∣∣ (19)

' 1/2 N−1
∑

i∈[1,N ]

∣∣∣∣ P (xi)

Zq(xi)
− Pβ(xi)

Zβq(xi)

∣∣∣∣ , (20)

DKL(p, pβ) =
∑
x∈X

p(x) log
p(x)

pβ(x)
= log

Zβ
Z

+ Ex∼q
P (x)

Zq(x)
log

P (x)

Pβ(x)
, (21)

' log
Zβ
Z

+N−1
∑

i∈[1,N ]

P (xi)

Zq(xi)
log

P (xi)

Pβ(xi)
. (22)
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Furthermore, we present the derivation and estimate for DKL(pβ , a):

DKL(pβ , a) = Ex∼pβ log
pβ(x)

a(x)
= Ex∼pβ log

Pβ(x)

Zβ a(x)
(23)

= − logZβ + Ex∼pβ log
Pβ(x)

a(x)
(24)

= − logZβ + Ex∼q
Pβ(x)

Zβ q(x)
log

Pβ(x)

a(x)
(25)

= − logZβ + Zβ
−1 Ex∼q

Pβ(x)

q(x)
log

Pβ(x)

a(x)
(26)

' − logZβ + Zβ
−1N−1

∑
i∈[1,N ]

Pβ(xi)

q(xi)
log

Pβ(xi)

a(xi)
. (27)

C PROJECTION OF THE PROPOSAL FOR POINTWISE CONSTRAINTS

Lets say we have a proposal distribution q that we want to use for approximating an EBM with
a pointwise constraint P (x) = a(x)b(x) where b(x) ∈ {0, 1}. One simple approach would be
projecting q directly into the manifold of the sequences matching the constraint, by simply rejecting
all sequences x where b(x) = 0. In other words, we are sampling from a new probability distribution
qproj(x) ∝ q(x)b(x). It turns out that we can compute the probability assigned to each sequence x
by qproj , as follows:

qproj(x) = 1/Zqproj q(x) for b(x) = 1

= 0 for b(x) = 0

Note that Zqproj
.
=
∑
x q(x)b(x) can be easily estimated by using a sample from q.

Therefore, the TVD(p, qproj) and DKL(p, qproj) can be estimated following the same procedure as
Eqs. 19 and 21, respectively.

D INCREMENTAL PRUNING WITH MINIMAL EFFICIENCY TARGETS

The following algorithm describes a version of QRS that incrementally builds a batch of samples S
with a desired minimum acceptance rate armin. The algorithm works by obtaining samples x from q
and provisionally storing them into S as long as the rejection coefficient αx = P (x)/q(x)ux does
not exceed the current value of β, where ux ∼ U(0, 1). Given that higher values of β imply a lower
upper bound on the TVD between the samples and the target distribution, β is continually adapted
to be as high as possible. Yet, the higher β is, the lower the acceptance rate becomes. Therefore, to
be practical, β is capped at the highest possible value such that the acceptance rate of the samples
seen so far would not fall below a minimum threshold armin. The corresponding maximum β value
for an acceptance rate threshold armin is computed as the value α for which the percentage of all
previously obtained samples satisfying αx > α is armin (i.e., the percentile armin of all previously
computed A = {αx} values). Should β be increased at any point, previously stored samples in S
are pruned to remove those that failed to meet the acceptance criterion αx > β. The algorithm stops
when at least n samples have been collected.
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Algorithm 2 QRS with incremental pruning
Require: EBM P , proposal q, desired number of samples n, minimum acceptance rate armin.
Ensure: A set of n samples S and an estimation of β s.t. the acceptance rate is at least armin.
1: procedure QRS-INCREMENTAL
2: S ← [ ], β ← 0, A← [ ], βmax ← 0
3: while |S| < n do
4: x ∼ q(.)
5: βx ← P (x)

q(x)

6: βmax ← PERCENTILE(A, armin)
7: if min(βx, βmax) > β then
8: β ← min(βx, βmax)
9: S ← PRUNE(S, β)

10: ux ∼ Unif(0, 1)
11: αx ← βx

ux

12: if αx > β then . i.e. ux < P (x)
βq(x)

13: S ← S + [(x, αx)]

14: A← A+ [(αx)]

15: return S, β
16: procedure PRUNE(S, β)
17: keep (x, αx) in S iff αx > β . i.e. ux < P (x)

βq(x)

18: procedure PERCENTILE(A, r)
19: return max αx in A s.t. |αy ∈ A : αy ≤ αx| < r|A|.

E INDEPENDENT METROPOLIS HASTINGS (IMH): ALTERNATIVE TO QRS ?

Figure 7: Metropolis-Hastings: Theorem 7.4. copied from (Robert & Casella, 2004). Here f is
the target distribution. Note the difference between (i) and (ii). Property (i) is concerned with the
f -expectation of R.V. h, and considers the average over the T first elements of a single chain, which
converges to the expectation for increasing T . Property (ii) is concerned with the TVD distance
between the target distribution f and the distribution obtained by repeatedly running an n-step chain
and outputting the n-th element. This distance converges to 0 for increasing n.

E.1 THE INDEPENDENT METROPOLIS HASTINGS (IMH) ALGORITHM

Markov chain Monte-Carlo (MCMC) (Robert & Casella, 2004) is the most developed general class
of techniques for sampling from EBMs, exploiting random walk and Markov Chain theory (rejection
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sampling (RS) and QRS do not use random walks, and do not qualify as MCMC). In the situation that
we are focussing on here, namely, the availability of a global proposal q that already approximates p
to some extent, a suitable MCMC technique is Independent Metropolis-Hasting (IMH) (Robert &
Casella, 2004, §7.4), see Algorithm 3.

Algorithm 3 IMH

Require: P , q
1: x ∼ q
2: while True do
3: x′ ∼ q
4: rx,x′ ← min(1, P (x′)/q(x′)

P (x)/q(x) ) . Prob. of moving to x′

5: u ∼ U[0,1]

6: if u ≤ rx,x′ then
7: output x′
8: x← x′

9: else
10: output x

IMH is a special case of the Metropolis-Hastings (MH) algorithm, where the proposal q(x′) does not
depend on the current x.11

IMH and QRS vs. RS: no need for global β IMH and QRS share a common advantage over RS:
they do not need a global β with P (x)/q(x) ≤ β,∀x ∈ X . It is often the case that such a bound
does not exist, is not known, or is intractably large. In such cases, RS cannot be used, but both IMH
and QRS can.

IMH vs. QRS: convergence to p in the limit IMH inherits from MH a fundamental “convergence
to p in the limit” property:

lim
n→∞

TVD(p, π(n)) = 0 (28)

where π(n) denotes the sampler associated with what we will call the “n-steps variant of Algorithm
3”, namely the algorithm that performs the loop on Line 1 exactly n times, does not output anything,
but returns the last x. This property corresponds, in our own notation, to Theorem 7.4.(ii) of (Robert
& Casella, 2004), copied in Fig. 7.

QRS has its own form of convergence in the limit, Equation 4.

IMH vs. QRS: convergence diagnostics Equation 28 tells us that performing n steps of MH (and
in particular IMH) produces a distribution π(n) that gets closer and closer to p with increasing n, but
it does not provide any explicit estimate of TVD(p, π(n)), nor any other divergence metric from the
target distribution.

In general, with MCMC techniques, such explicit convergence diagnostics are very difficult to obtain
(Cowles & Carlin, 1996; Roy, 2020). By contrast, as we saw (Equations 3, 7, 9, 10), the QRS
algorithm does provide such explicit estimates. This is important because it allows us to calibrate the
level of effort (acceptance rate) we have to invest in order to obtain a certain quality (TVD or KL to
p).12

IMH vs. QRS: ability to score Equation (1) provides an explicit value for pβ(x). This is an
important property, which, in particular, is exploited in the computation of estimates of TVD(p, pβ)
and DKL(p, pβ) in Equations (9) and (10). This ability to score is conspicuously absent in IMH:
there is no obvious way to compute π(n)(x), not even up to a constant factor.

11In the general MH algorithm, line 4 is replaced by: rx,x′ ← min(1, P (x′)/q(x′|x)
P (x)/q(x|x′) ).

12However, IMH does have an advantage over MH here. In the special case that a global β s.t. p(x)
q(x)
≤ β, ∀x ∈

X exists, it can be shown that TVD(p, π(n)) ≤ 2 (1− β−1)n (Robert & Casella, 2004, p. 277). However, this
bound can be very conservative and unusable in practice, even in those cases where it is explicitly known.
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(a) IMH vs QRS

(b) IMH-reset vs QRS

Figure 8: We compare the QRS and IMH samplers in practice by taking 1,000 samples at 3 orders of
acceptance rate for the constraint 50% female and 100% science. We experiment with a version of
IMH in which we use a fixed burn-in of 1000 and set thinning as to obtain the desired acceptance
rate, as well as a version in which we reset the chain after 10, 100, or 1,000 samples. For the latter
version we can also estimate perplexity as the samples are i.i.d. We do not show the percentage of
unique samples for the latter version, but note this is 100% for both QRS and IMH-reset.

IMH vs. QRS: i.i.d properties The outputs produced by the QRS Algorithm 1 are immediately
i.i.d: the acceptance of an x on Line 6 does not depend on the acceptance of the previous x. By
contrast, with any MH algorithm, and in particular IMH, if the goal is to produce actual samples,
we face a choice. First, we could follow the spirit of (Theorem 7.4.ii) above, restarting the chain
each time we need to produce a sample. Then we would produce i.i.d samples, but at the high cost of
wasting n− 1 draws from the proposal before producing just one sample. Or we can — similar to the
spirit of (Theorem 7.4.i) for expectations — just produce one long chain from which we extract the
actual samples, which is the approach we are taking in Algorithm 3. The outputs of this algorithm
are not i.i.d: it is possible for the new proposal x′ to be rejected (Line 6) and then the current x is
repeated in the sequence of outputs, possibly many times if the current x is “good” (i.e. has a high
importance ratio P (x)

q(x) ). To mitigate that problem, it is often advocated to use a “thinning” heuristics
on the outputs of the algorithm: only retain one output out ofm, in order to reduce the autocorrelation,
in the hope of obtaining a good balance between the quality of the samples and the efficiency of the
sampler, but again, without explicit quality estimates.

E.2 IMH VS. QRS EXPERIMENT

In Figure 8a we compare the QRS and the IMH sampler on the 50% female and 100% science
EBM by taking 1,000 samples from each sampler at different levels of acceptance rates. We use
the procedure described in Appendix D to obtain QRS samples at the specified acceptance rate.
For the IMH sampler we obtain the desired “acceptance rate” by having a fixed burn-in period
of 1,000 samples and afterwards only keep every 10th, 100th or 1000th sample. The definition of
“acceptance rate” we use for both samplers is the ratio of samples obtained from the sampler (1,000)
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and the number of samples used from the proposal distribution. We use the DPG model as proposal
distribution.

We find that while IMH is able to achieve constraint satisfaction similar to the QRS sampler at similar
acceptance rates, it does so by repeating some samples multiple times. This can be seen in the fraction
of unique samples, which can get as low as 50% out of the 1,000 samples obtained at lower amounts
of thinning. While this does not hinder the IMH sampler from achieving asymptotic consistency
in estimating expectation values, we believe this to be an undesirable property of a sampler whose
outputs are to be used in actual applications. QRS does not suffer from the same problem, as the QRS
algoritm does not make use of a Markov chain.

In Figure 8b we also experiment with a version of IMH that does obtain i.i.d. samples by resetting
the Markov chain after every sample obtained. We coin this version IMH-reset. We achieve desired
acceptance rates by resetting the chain after every 10th, 100th or 1000th sample. We obtain 100%
unique sequences for this version for a sample of 1,000 samples, like the QRS sampler. For this
version we can additionally estimate perplexity under GPT-2, as we have i.i.d. samples from both
samplers. We find that at the target feature moments (for both samplers at the acceptance rate of
10−3, QRS samples achieve slightly lower perplexity than IMH-reset.

F ADDITIONAL RELATED WORK: CONTINUOUS EBMS AND EBMS FOR NLP

While this paper is concerned about generating samples from discrete EBMS, more research so far has
been more concerned with the training of continuous EBMs, in particular for applications in vision.
Continuous EBMs have the advantage over discrete ones in that it is possible to differentiate the
EBM P (x) relative to x, and not only the approximating model πθ relative to θ. Training such EBMs
(see the survey in (Song & Kingma, 2021)) can then often be addressed through techniques such as
contrastive divergence (Hinton, 2002; Du et al., 2021), score matching (Hyvärinen, 2005; Song &
Ermon, 2020), or noise contrastive estimation (Gutmann & Hyvärinen, 2010). These approaches
sometimes require an internal sampling procedure, and then one technique of choice is Langevin
MCMC (Parisi, 1981), in which the local Markov chain moves are done based on∇xP (x), a technique
which is also employed in case actual samples need to be generated. While such techniques are not
available for discrete EBMs, some recent efforts are trying to bridge the gap (Grathwohl et al., 2021).

Sampling techniques are popular in various natural language processing (NLP) applications. For
example, Miao et al. (2020) construct a rejection-sampling inspired sampler that aims to counteract
over- and underestimation of probability regions due to overfitting when fine-tuning large pre-trained
language models on small datasets. Deng et al. (2020) train globally normalized language models to
combat negative effects of local normalization, and use a form of SIR to sample from the resulting
EBM using an autoregressive proposal language model. Goyal et al. (2021) develop a Metropolis-
Hastings algorithm to sample from masked language models. For controlled text generation Miao
et al. (2019) propose a random-walk Metropolis-Hastings (MH) algorithm for sampling from an
EBM that encodes sequence-level preferences on natural text. Their proposal distribution consists
of local string editing operations on randomly selected words or positions. Zhang et al. (2020)
improve on this approach by making use of a tree-search algorithm to more efficiently explore the
space of proposals, by allowing several edits in a single step of the MH algorithm. In contrast with
these approaches we make use of a strong global proposal distribution and the QRS sampler. This
eliminates any autocorrelations in the samples and ensures good sample diversity inherited from
the underlying EBM. Furthermore, the QRS sampler allows us to assess the quality of our samples
through divergence metrics from the target EBM, something that is famously difficult to do with
MCMC samplers.

G ADDITIONAL CONTROLLED TEXT GENERATION RESULTS

We perform constrained text generation on a distributional, two pointwise and two mixed distributional
pointwise constraints. In particular, we constrain the GPT-2 biographies model to contain 1) 50%
female biographies about scientists, 2) 50% female biographies about sports or 3) 50% female
biographies without additional constraint. Also, we constrain GPT-2 small to generate exclusively
sequences containing the term “amazing” or to generate exclusively sequences containing the term
“Wikileaks”. For each of these tasks, we obtained a fine-tuned model using DPG, which serves both
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(a) 50% female scientist biographies

(b) 50% female sports biographies

(c) 50% female biographies

(d) 100% sequences containing “amazing”

(e) 100% sequences containing “Wikileaks”

Figure 9: We show importance sampling estimates of TVD(p, .), an upper-bound on TVD(p, pβ),
DKL(p||.), DKL(.||a) and feature moments as a function of acceptance rate. We show three distribu-
tional constraints on GPT-2 Biographies and two pointiwse constraints on GPT-2 small. As proposal
distribution we make use of a DPG model trained for each constraint separately. We show separate
lines for the target moments and the moments realized by the EBMs, revealing slight inaccuracies
in the EBM moments for some constraints. We also show observed moments for 50k QRS samples
obtained at acceptance rates 10−1, 10−2, and 10−3.
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Experiment βmin βmax

50% female and 100% scientists 1.0 · 10−12 9.3 · 106

50% female and 100% sports 1.0 · 10−12 2.9 · 107

50% female 4.0 · 10−7 4.0 · 103

100% “amazing” 1.0 · 10−12 5.3 · 101

100% “Wikileaks” 1.0 · 10−12 6.0 · 100

Table 1: We report the range of β values used to obtain the range of acceptance rates in Figure 9.
We note that the procedure described in Appendix D can be used to find β values that target some
minimum acceptance rate.

as a baseline and as a proposal q that we can sample from. In the case of pointwise constraints, we
also consider a naive filter sampler qproj in which the proposal distribution is directly projected onto
the constraint manifold by filtering out all samples that do not match the constraint. This sampler
also assigns well-defined probabilities to the sequences that it samples (see Appendix C), and so we
can compute estimates of the TVD and DKL for it.

For each task, we again obtain 1M samples from the corresponding proposal, which we use to
evaluate the proposal q, the projected proposal qproj (only for the pointwise constraint), and QRS
sampling (pβ) for a range of β values reported in Table 1. For all of these, we compute estimates of
the same metrics as in Section 3.2.2 (i.e., TVD(p, pβ), DKL(p, pβ), AR, backward KL-divergence
from the base language model DKL(·||a), and the moments of the features that we wish to control).
Furthermore, we do a downstream evaluation of 50k samples obtained through QRS choosing β so
that the acceptance rate falls exactly at 10−1, 10−2 and 10−3. (The process is described in Appendix
D). In particular, we look at the feature moments of the obtained samples.

Our results are shown in Fig. 9. As expected, we find that the upper bound of the TVD of pβ with p
and the KL-divergence from pβ to p steadily converge towards 0 as the acceptance rate decreases.
For the distributional constraints and corresponding proposal distributions shown here, it seems that
an acceptance rate of 10−3 is sufficient to match the target EBM nearly perfectly. Feature moments
therefore shows the same pattern, converging towards the target moments with lower acceptance rates,
although we find that in some cases the QRS sampler matches the target EBM so closely that small
inaccuracies in the lambdas obtained from the EBM estimation procedure as described in Khalifa et al.
(2021) become apparent. As for the divergence to the original language model DKL(pβ ||a), there is
no obvious trajectory that it should follow other than it should converge to the lowest possible value
when all constraints are satisfied. Indeed, our results show that this metric follows a non-monotonic
path at different ARs. Validating our estimates, we note that the moments computed downstream
on QRS match tightly the IS predictions, giving us confidence in the accuracy of those estimates.
Finally, in the case of our pointwise “amazing” and “Wikileaks” constraints, we find that the naive
filter strategy (qproj) corresponds to running the QRS sampler at a high acceptance rate.

H EXTRA EXPERIMENTS AND COMPARISONS WITH LOCALIZED MCMC

We focus on discrete Random Walk Metropolis-Hastings (RWMH) for text generation, conceptually
close to Miao et al. (2019) with some ingredients from Goyal et al. (2021). We did consider GwG
(Gibbs-with-Gradients Grathwohl et al. (2021)) and other related gradient-based proposals, but felt
that attempting to apply such techniques for text generation tasks such as those considered in our
main experiments would be very ambitious and worth a paper on its own, see Appendix I.

In our proposed experiments, we construct a local proposal distribution composed of single-token
insert, delete and replace operations (chosen randomly from a uniform distribution like in Miao et al.
(2019)). We inform the insert (resp. replace) operation by inserting (resp. replacing a word with)
a [MASK] token and sampling a new token from BERT. This differs from Miao et al. (2019), who
instead do a form of Gibbs sampling for insert and replace operations, which requires V (vocabulary
size) assessments of the EBM per such operation (an EBM with GPT-2 as a component). This
would make this version prohibitively more expensive than our QRS and IMH operations, for which
reason we replace this with a single pass of BERT instead. We accept or reject such edits using
the Metropolis-Hastings acceptance ratio and seed the chain using a high-quality global proposal
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Method AR %Female (exp. 50%) %Science (exp. 100%) PPL↓ Self-BLEU-5↓ %Uniq↑ TVD↓ KL↓

GDC 1 28.1± 1.8 69.2± 1.2 34.9± 1.1 89.9± 0.2 100± 0.0 tbd tbd
RWMH-10 10−1 37.5 32.2 – 99.97 23.4 Unk. Unk.
RWMH-reset-10 10−1 26.3 68.4 36.1 89.6 100 Unk. Unk.
IMH-10 10−1 55.0 100 – 94.7 58.0 Unk. Unk.
IMH-reset-10 10−1 41.4 99.4 29.6 91.4 100 Unk. Unk.
QRS 10−1 44.1± 1.1 99.8± 0.2 30.2± 0.8 91.0± 0.2 100± 0.0 0.29 0.56

RWMH-1000 10−3 0 100 – 100 0.1 Unk. Unk.
RWMH-reset-1000 10−3 26.6 68.2 33.1 90.0 100 Unk. Unk.
IMH-1000 10−3 51.5 99.9 – 91.2 94.9 Unk. Unk.
IMH-reset-1000 10−3 48.8 99.8 35.6 90.8 100 Unk. Unk.
QRS 10−3 49.3± 1.5 99.8± 0.1 34.6± 1.1 90.8± 0.1 100± 0.0 0.02 0.02

Table 2: Additional results comparing MC sampling methods on obtaining samples from the “female-
science” EBM described in Section 3.2.2. We do not compute perplexity for IMH and RWMH
without reset as it does not yield i.i.d. samples. As noted, TVD and KL for MCMC methods are
unknown (i.e. we have no way of estimating them). Where available we show mean ± one standard
deviation over 10 runs.

Method AR %Amazing (exp. 100%) PPL↓ Self-BLEU-5↓ %Uniq↑ TVD↓ KL↓

GDC 1 63.0± 1.5 62.4± 1.2 85.7± 0.3 100± 0.0 tbd tbd
RWMH-10 10−1 100 - 99.96 47.9 Unk. Unk.
RWMH-reset-10 10−1 61.7 65.1 85.3 100 Unk. Unk.
IMH-10 10−1 100 - 91.6 62.9 Unk. Unk.
IMH-reset-10 10−1 100 60.4 87.2 100 Unk. Unk.
QRS 10−1 100± 0.0 62.8± 1.1 86.9± 0.3 100± 0.0 0.17 0.27

RWMH-1000 10−3 71.2 - 97.3 59.2 Unk. Unk.
RWMH-1000 + 0.01 * δ(“amazing”) 10−3 100 – 100.0 0.1 Unk. Unk.
RWMH-1000 + 0.1 * δ(”amazing”) 10−3 tbd tbd tbd tbd Unk. Unk.
RWMH-reset-1000 10−3 62.9 63.7 85.5 100 Unk. Unk.
RWMH-reset-1000 + 0.01 * δ(”amazing”) 10−3 64.1 61.6 85.8 100 Unk. Unk.
RWMH-reset-1000 + 0.1 * δ(”amazing”) 10−3 63.7 59.9 85.5 100 Unk. Unk.
IMH-1000 10−3 100 - 87.3 99.6 Unk. Unk.
IMH-reset-1000 10−3 100 64.0 87.1 100 Unk. Unk.
QRS 10−3 100± 0.0 64.1± 1.3 86.6± 0.2 100± 0.0 0.01 0.01

Table 3: Additional results comparing MC sampling methods on the task of obtaining samples from
an EBM with a point-wise constraint to include the word “amazing” in the sequence. We do not
compute perplexity for IMH and RWMH without reset as it does not yield i.i.d. samples. As noted,
TVD and KL for MCMC methods are unknown (i.e. we have no way of estimating them). Where
available we show mean ± one standard deviation over 10 runs.

distribution (DPG, as used in QRS experiments). Per step of the MCMC chain this algorithm is
roughly similar in cost to our IMH algorithm. A single step of RWMH requires a pass through BERT
(for insert or replace) and a pass through GPT-2 (for scoring under the EBM), while a single step of
IMH requires sampling a sequence from DPG (a highly parallelizable operation, in practice we take
many samples at once and pre-store them on disk) and pass through GPT-2 as well (for scoring under
the EBM). Therefore, we use the same definition of acceptance rate as in the IMH experiments in
Appendix E. Like for IMH, we also provide two versions of RWMH: one in which we do thinning to
reduce autocorrelations (RWMH) and one in which we reset the chain (RWMH-reset) after a number
of steps (and set the seed again from the DPG proposal). The value of the thinning parameter and
the number of steps after which the chain is reset determines the AR of the algorithm. In order to
inform the local proposal distribution of the EBM, we also investigate mixing BERT with a Dirac
δ on a particular word (e.g. “amazing” or “Wikileaks”) for a pointwise constraint. We compare
each sampler (QRS, IMH, IMH-reset, RWMH, RWMH-reset) in terms of moment matching results,
perplexity, Self-BLEU (Zhu et al., 2018), and finally TVD and KL where possible (that is to say, for
QRS only, as we stress below).

We run on both a pointwise constraint (generating from GPT-2 using the word “amazing”) and a
mixed distributional constraint (debiasing scientist biographies, see Section 3.2.2) to compare the
samplers. We run all samplers (QRS, IMH, IMH-reset, RWMH, RWMH-reset) both at 10−1 and
10−3 acceptance rate. We use Algorithm 2 for QRS to find a β value that approximately satisfies the
target acceptance rate. For IMH and RWMH we have a fixed burn-in period of 1,000 steps and define
the acceptance rate as the amount of thinning that is done: e.g. keep only every 10th sample for an
acceptance of 10−1. For IMH-reset and RWMH-reset we define the acceptance rate by the rate at
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which we reset the chain (and re-seed from the global proposal), e.g. we run a chain of length 1,000
and only keep the last sample for an acceptance rate of 10−3. We also report performance on the
global proposal (DPG). We show results on collecting 1,000 samples of each in Tables 2 and 3.

We find that IMH, IMH-reset and QRS perform considerably better than RWMH and RWMH-reset at
all acceptance rate levels. RWMH and RWMH-reset seem to have trouble achieving good constraint
satisfaction consistently. We currently report numbers on a single run of the sampler, which might
suffer from a poor seed sampled from DPG. In the final version we shall include mean and variance
results over multiple runs.

QRS, IMH and IMH-reset meet the imposed constraint of only generating sequences containing the
term “amazing” and, at lower acceptance rate, also the constraints of generating debiased scientist
biographies roughly. At 10−1 acceptance rate IMH suffers from high autocorrelation among the
samples due to repetitions (as seen from the percentage of unique sequences). Also at a 10−3

acceptance rate IMH and IMH-reset both seem to have slightly less diversity than QRS, but all in
all do achieve similar self-BLEU as QRS and produce roughly 1,000 unique sequences. Perplexity
is also similar for QRS and IMH-reset (we do not compute perplexity for IMH as the computation
requires i.i.d. samples), slightly in favor of QRS in the mixed distributional constraint. We found
similar results before in Appendix E.2.13 In conclusion, QRS and IMH-reset have an advantage over
IMH in that they provide i.i.d. samples and have higher diversity at high acceptance rates. Both
versions of IMH and QRS perform on par in terms of perplexity and self-BLEU. QRS, however, has
a large advantage in that it allows to compute actual divergence from the target distribution (TVD
and KL), something simply not available to MCMC methods.14

H.1 INFORMING THE LOCAL PROPOSAL DISTRIBUTION

We attempt to inform the local proposal distribution without introducing excessive additional com-
putation by proposing a simple mixture model for the insert and replace operations. With a small
probability, that we tune as a hyperparameter, the proposal distribution proposes to insert or replace a
token with the token “amazing” (additionally to the probability of that occurring under BERT alone).
We show some preliminary results of this on RWMH and RWMH-reset in Table 3.

Our preliminary results do generally increase the constraint satisfaction of the resulting sampler.
However, in the case of RWMH it leads to a catastrophic failure mode: where in the burn-in period
an “amazing” was inserted somewhere in the sequence, and the chain got stuck at that local optimum
for all 1,000 samples we collected (including thinning steps). The results on RWMH-reset look more
promising, increasing constraint satisfaction only slightly, but steadily improving perplexity. We will
perform more experiments on this for the camera-ready version and include some variance estimates
over different runs of the algorithm.

I OBSERVATIONS ON GWG AND OTHER GRADIENT-BASED TECHNIQUES FOR
DISCRETE SPACES

Gibbs with Gradients (GwG) (Grathwohl et al., 2021) is a recent promising technique for importing
the effective gradient techniques of continuous EBMs (as in vision) to discrete EBMs. Grathwohl et al.
(2021) start by observing that basic techniques for discrete distributions such as RWMH (Random
Walk Metropolis Hastings) (i) require meticulous customization of the local proposal to lead to
reasonable results and (ii) are unable to exploit differentiability over sample-space densities, which
are so crucial for efficient MCMC sampling from EBMs in continuous domains. The method they
propose instead addresses those situations (which they argue are many) where the discrete EBM
can be seen as a projection of a differentiable function over an underlying continuous space, which

13We note that our perplexity numbers slightly differ in magnitude compared to Appendix E.2 due to a slight
change in tokenization. We will update this in the final version to be consistent throughout the appendices.

14Note that constraint satisfaction plus perplexity estimates do not provide a good estimate of distributional
divergence (TVD or KL) from p. This is true for both pointwise and distributional constraints. For instance,
with the female-science experiment, if a sampler ω generates only two fluent sentences each with probability
0.5, both about science, and one of the two with a female mention, then constraint satisfaction is perfect and
perplexity (i.e. fluency) is very good, but divergence from p can be terrible. Self-BLEU is a proxy to diversity
that improves the evaluation somewhat, but still does not allow to estimate divergence.
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β 1e−12 3.1e3 4.4e4 6.4e5 9.3e6

AR 1.00± 0.00 1.4e−1± 3.4e−4 1.6e−2± 6.8e−5 1.3e−3± 1.2e−5 9.2e−5± 1.8e−6
TVD(p, pβ) 0.70± 0.00 0.38± 0.01 0.14± 0.01 0.02± 0.01 1.6e−6± 5.6e−7
DKL(p, pβ) 2.35± 0.09 0.83± 0.08 0.21± 0.05 0.02± 0.02 3.3e−7± 2.0e−6

Table 4: Means and standard deviation of importance sampling estimates of acceptance rate, TVD
with the target distribution and KL-divergence to the target distribution for various β on debiasing
scientist biographies (see Section 3.2.2). We perform 10 runs using 1,000,000 samples each to
compute the means and standard deviations. Values of β are chosen within the range used for our
experiments as reported in Table 1.

leads them to perform sampling in the discrete space, but with a novel “locally informed proposal”
(Zanella, 2017) that exploits gradients in the underlying continuous space in order to avoid explicitly
computing the energy of each point in the “local neighborhood” of x, a very costly operation.

Grathwohl et al. (2021) do not experiment with textual data, and we believe that while applying
their technique to some text generation EBMs similar to those of our current experiments would be
possible (see just below), this would be an ambitious research project on its own, beyond the scope of
the current paper.

A possible GwG approach for P (x), where x = x1, ..., xn is a text to be generated, and where
P (x) could be computed as a differentiable function of e1, ..., en, where ei is the embedding of xi,
could work as follows, adapting to text generation the last line (“Deep EBM”) of Table 1 in Grath-
wohl et al. (2021). We would first pick some position m, then compute ∇emP (e1, ..., em, ..., en).
Then for each x′ = x1, ..., x

′
m, ..., xn differing from x only at position m, we would approximate

P (e1, ..., e
′
m, ..., en) using the previous gradient,15 a much less costly operation than computing

P (e1, ..., e
′
m, ..., en) from scratch (this is the gist of GwG). In principle such a procedure could be

done for any P (x) = a(x)b(x), where a is a neural model (hence in principle differentiable over the
word embeddings, e.g. for a an autoregressive model), and b is differentiable over these embeddings.
As mentioned above, this would be a whole project on its own, but note that the requirement that b be
differentiable could make the approach tricky to apply to some cases such as when b computes an
arbitrary binary predicate, is provided as a black box, etc.

Grathwohl et al. (2021) contrast their approach to other recent gradient-based techniques, such as
“continuous relaxation”, that first map discrete x’s to continuous representations, perform gradient-
based MCMC there (e.g. with HMC, SGLD, etc.) and then map back to the discrete space (while
GwG performs MCMC in the discrete space). They argue that MCMC sampling in the continuous
relaxation does not directly exploit the underlying discrete structure of the space and therefore that
sampling performance in the relaxed space may not be indicative of sampling performance in the
discrete space. We are not aware of such techniques that we could directly apply to our text generation
tasks, and did not attempt experiments in this space.

J IMPORTANCE SAMPLING AND VARIANCE

We perform many importance sampling estimates in this work to estimate quantities such as ac-
ceptance rate, and TVD and KL to the target distribution. We report variance estimates for the
experiments on debiasing scientist biographies (Section 3.2.2) in Table 4. We collect 10 times the
number of samples used to generate our plots (1 million) and report mean ± one standard deviation
for β values within the range used within our experiments (also see Table 1). We find our estimates
to be accurate within reasonable variance.

15P (e1, ..., e
′
m, ..., en) ' P (e1, ..., em, ..., en) + 〈∇emP (e1, ..., em, ..., en), (e

′
m − em)〉.
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