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Abstract—Cardiovascular disease is one of the leading causes
of death among people of all genders and races in the United
States. According to the CDC, approximately 695,000 people
died in the United States in 2021 due to poor cardiovascular
conditions and approximately 17% of these deaths were due to
a stroke. To increase patients’ awareness and understanding of
their cardiovascular health, this paper presents a method for
extracting a 3D model of the carotid artery from videos taken
with handheld ultrasound devices which, due to their relatively
low cost, make it possible for primary care physicians to own
and use them on a large number of patients. Technicians using
the device move it up and down the neck, changing positions
and angles frequently. Our approach extracts the artery from
each frame using machine vision methods, reorders the frames
spatially (from the bottom of the artery to the top) as opposed
to the temporal order in the video, and then uses computer
graphics methods to build a 3D model. The method used for
reordering the frames yielded an accuracy of 86.34% when
compared to the ground truth sequence. Our goal is to have an
easily understandable representation of the state of the carotid
artery to educate patients about their risks and thereby increase
compliance with treatment.

I. INTRODUCTION

The two carotid arteries are vital components of the car-

diovascular system, supplying oxygenated blood to the neck

and the head, including the brain. They start as a single vessel

from the heart and bifurcate towards the upper end of the neck

to form the internal and external carotid arteries.

Our goal in this work is to generate a 3D model of the

carotid arteries from an ultrasound video to provide a clear

indication of cardiovascular health. A common cardiovascular

problem is Carotid Artery Stenosis. This occurs when a plaque

buildup of fatty deposits clogs the artery, resulting in decreased

blood flow to the brain and the head. Demonstrating a problem

like this visually to patients could be a driver for them to take

action, leading to an early and easily understandable diagnosis

and increase compliance with treatment.

The Point-Of-Care Ultrasound (POCUS) device used in

our dataset is the Butterfly iQ+. Each video is recorded by

a skilled technician who scans the carotid artery multiple

times from different angles. This paper presents a method for

visualizing the exterior shape of the artery given these videos

as inputs, which is a challenging, heretofore unsolved problem.

Modifying the method to visualize the interior of the artery is

left for future work.

†
Equal contribution

Fig. 1. The three phases of the carotid artery in the ultrasound video:
unbifurcated, semi-bifurcated, and bifucated.

Figure 1 shows the transverse view of the artery as a

circle or ellipse (unbifurcated) that begins to split apart (semi-

bifurcated) and then becomes two circles/ellipses as the two

component vessels branch off in different directions. This view

makes it easier to detect and visualize plaque buildups on the

artery walls. The goal is to take a video made by a technician,

in which the device is moved up and down the neck of the

patient, and extract a video such that the frames are ordered

spatially, from the bottom of the artery to the top. One of the

main challenges is detecting the exact position of the artery in

the ultrasound video and determining when a frame is looking

at the same part of the artery seen in other frames. Another

problem is the low resolution and noisy nature of the videos,

which makes detection of the artery difficult.

The approach used for this problem has three parts. The

first is image segmentation, or finding the artery in a video

frame. For this task we manually annotated six ultrasound

videos of the carotid artery and trained deep neural networks

to perform image segmentation. Each video consists of 449

frames, for a total of 2,694 frames to train and validate the

models. Segmentation of the video frames generates masks

over the transverse view of the carotid artery, and also draws

contours around these masks. Given these masks, the second

step is finding the correct order of frames according to the

carotid artery’s 3D structure.

We compare two approaches to ordering. In the first ap-

proach, a clustering algorithm finds frames that are probably

from the same region of the artery in the video based on visual

similarity. A model trained using the masks generated in the

first part is then used to separate the clusters of frames into

two classes: bifurcated and unbifurcated. Finally, a machine

vision method uses Scale Invariant Feature Transform (SIFT)

features of frames to first order the clusters and then the frames

in each cluster to get the correct sequence from the bottom of

the artery to the top, first working on the unbifurcated images
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and then the bifurcated ones. In the second approach, which

is simpler, we construct an ellipse around the mask for each

frame and the attributes of each ellipse (e.g., area, perimeter,

aspect ratio, and orientation) are compared to calculate a

similarity score. This score is then used to order the frames,

again using knowledge of how the shape of the artery changes

as it bifurcates.

Given the segmentation masks, contours, and the sequence

of frames from the above steps, we generate a 3D point

cloud. Computer graphics algorithms are then used to compute

normals on the point cloud and then surface reconstruction

algorithms build a 3D model of the surface of the carotid

artery.

To summarize, our main contributions are as follows:

1) Successful segmentation of the transverse view of the

carotid artery in low-resolution ultrasound videos.

2) Creating and comparing two different approaches for

generating sequential ultrasound video to evaluate which

is more robust and accurate.

3) Building a 3D model of the artery using the segmenta-

tion masks and the ordering.

II. RELATED WORK

A. 3D Ultrasound Reconstruction

There is some prior work on building 3D models from ultra-

sound videos. [15] describes a method to transform images and

stack them into a 3D image cube, but its error rate was high

and the target area of the body needed to be scanned multiple

times. This prolonged the ultrasound procedure and was not

feasible for all patients. [28] presents an approach to building

3D models from intravascular ultrasound to semi-automate the

process of plaque detection. Intravascular ultrasound (IVUS)

imaging is used along with X-ray coronary angiography to

detect vessel pathologies, which makes it an intrusive proce-

dure compared to ultrasound alone. Using methods from 3D

ultrasound imaging [12], [16] attempts to study in vitro blood

flow using three-dimensional color doppler ultrasound.

B. Carotid Artery Segmentation

Carotid artery segmentation is a long-standing problem and

significant work has been done in this field. [25] is a good

survey of much of this research up to 2006. It describes

ten significant contributions to ultrasound segmentation, and

claims that ultrasound segmentation using deep learning was

first proposed back in 1999 [4]. Others have treated ultrasound

segmentation as a spatio-temporal problem [13], which we dis-

cuss later in this paper. [24] presents a segmentation approach

that takes into consideration missing object boundaries, as is

the case with some of the instances in our dataset. [23] uses

gray-level distribution and shape priors to find boundaries of

the objects of interest. Except for [4], none of these methods

use deep learning, and rely on classical computer vision

algorithms such as contouring, edge detection, smoothing, etc.,

and encode prior information to eventually segment the object

of interest in the ultrasound image.

A very recent algorithm presented in [14] shows impressive

results without the use of machine learning. They use a dataset

sourced from Brno University’s SPLab, which is similar to our

dataset. It contains 974 transverse and 84 longitudinal B-mode

ultrasound images, respectively. They use a basis splines-based

active contour method to find lumen and media adventitia

boundaries in transverse as well as longitudinal B-mode ul-

trasound images, and their dice indices for segmentation of

both boundaries in both types of images are over 92%.

One of the most recent approaches [34] uses contrast-

enhanced MR angiography, not ultrasound, but only 61% of

the segmentations were deemed to be usable. [5] worked on the

same problem, and while the results may be impressive, their

dataset is CT scans, which do not fall under Non-Destructive

Testing (NDT) because they expose the body to radiation and,

in the case of carotid arteries case, if focused on a highly

sensitive region.

C. POCUS device for Ultrasound Videos

Our dataset is a group of videos that were recorded using

the Point-of-Care Ultrasound device called the Butterfly iQ+.

There are several papers highlighting the use of this device

and its efficiency. [6] highlights the use of point-of-care

ultrasound devices in the real world, citing their efficiency

and accessibility. We found no significant prior work related

to sequencing frames of handheld ultrasound videos.

III. METHODOLOGY

This section describes our processing pipeline, which has

three steps:

1) carotid artery segmentation;

2) sequencing the frames in spatial order;

3) building a 3D model.

A. Carotid Artery Segmentation

1) Dataset, Annotations, and Preprocessing: As described

earlier, each video in our dataset has 449 frames, with an aver-

age 25 fps rate. The videos did not indicate any changes in the

orientation of the probe such as tilting or rocking therefore we

were not able to assess the impact of such scenarios during our

experiment. However, the data was gathered in a natural setting

so there is some variation in orientation in the data. The video

frames are first manually cropped from 480x640 to 280x500

resolution to remove extraneous information added by the

device. Next, we use the VIA VGG [11] image annotator

tool to draw ellipses on the artery walls. The artery typically

goes through three stages when considering its trajectory from

the heart to the head - unbifurcated, semi-bifurcated (or in

transition), and bifurcated. The annotations are only ellipses,

so they do not perfectly match the actual artery (especially

in the transition stage). We later show that this inaccuracy

does not affect segmentation performance. After annotation,

the frames and annotations are resized to 384x384. The

segmentation task has two classes: artery and background. Six

videos were annotated, for a total of 2,694 frames, with five

used for training (2,245 frames) and one for validation (449

frames). Even though our dataset contains videos consisting of

449 frames our code is capable of handling longer or shorter
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videos. In case the video is extremely large or there are too

many frames we can always use clustering (described below

in section III.B.1) to remove repetitive consecutive frames to

generate an accurate 3D structure.
2) Model and Architecture: We compare the performance

of two state-of-the-art segmentation architectures based on

Convolutional Neural Networks (CNNs): Mask R-CNN [17]

and U-Net [27]. Mask R-CNN is a popular architecture

used for general-purpose classification, object detection, and

segmentation tasks. It was originally trained on the ImageNet

[9] and COCO [21] datasets for the ImageNet and COCO

challenges. The Mask R-CNN pipeline starts with a ResNet

[18] network which is followed by a Feature Pyramid Network

(FPN) that serves as a Region Proposal Network (RPN). These

networks propose a pre-determined number of regions for

where the object(s) of interest might be in the image. One

of the drawbacks of this architecture is that it is computa-

tionally expensive and slow, while also requiring significant

space. We experimented with both ResNet-50 and ResNet-101

backbones.

U-Net [27] is a model architecture that shares some proper-

ties with Mask R-CNN[17] in that it includes ResNet-like skip

connections. The unique property of this architecture is that it

retains the features computed in earlier layers and uses them

as as inputs to later layers. Individual blocks of this network,

in addition to the input and output blocks, include double-

convolutional blocks, downsampling blocks, and upsampling

blocks. The double-convolutional block consists of two con-

volutional layers with the same number of output channels. Its

output is sent to the downsampling block, where a max pooling

layer performs downsampling. This is done sequentially four

times. In the upsampling block, the output from the previous

layer is upsampled, either using transposed convolution or

interpolation. When upsampled, the output from the double-

convolutional block corresponding to the dimensions of the

newly upsampled volume is concatenated with the upsampled

output. This is done sequentially until the original image

resolution is restored. After the original resolution is restored,

the output layer is simply a sigmoid activation layer with the

same number of output channels as the number of classes,

one channel for each class. For our problem there is just one

channel as each pixel either belongs to the artery or doesn’t.

Fig 2 illustrates the U-Net architecture.

Fig. 2. The U-Net architecture is commonly applied to medical imagery.

B. Sequencing Frames in Handheld Ultrasound Videos

We compared two methods to sequence the frames in

ultrasound videos to match the spatial structure of the artery

as opposed to the temporal structure of the video.

1) Method 1: Clustering: After segmenting the ultrasound

video, the next step is to identify frames that display the

same area of the carotid artery. The first method does that by

separating frames based on whether the artery is bifurcated,

clustering frames within each category, and then sequencing

the clusters based on centroids and then sequencing the frames

in each cluster. These steps are described below.

Given that our goal is to sequence frames in spatial order

from the bottom of the artery to the top, a preliminary step is to

classify each frame as to whether it is bifurcated (top) or unbi-

furcated (bottom) to simplify downstream processing. CNNs

were trained to solve this binary classification task, including

pretrained VGG16, VGG19[30], and Resnet50 networks.

The features used by the classification models, after fine

tuning on our data, were also used for clustering frames. The

activations in the penultimate fully connected layer - 25,088

in VGG16 and VGG19, 100,352 in Resnet50 - were reduced

further using Principle Component Analysis before clustering.

Fig. 3. Illustration of VGG19 Architecture

The clustering algorithms we used are k-Means and Gaus-

sian Mixture Models (GMMs). k-Means is a method of vector

quantization [2]. It aims to cluster n observations (in our case

images) into k clusters in which each observation belongs

to the cluster with the nearest mean. GMMs are another

type of clustering algorithm that classifies data into different

categories based on probability distributions [26]. GMMs

are probabilistic models that assumes all the data points

are generated from a mixture of Gaussian distributions with

unknown parameters. We used full covariance matrices rather

than assuming a diagonal covariance matrix.

Both k-Means and Gaussian Mixture models converge

quickly to local optima and they both employ an iterative

refinement approach. They both use cluster centers to model

data. However, k-Means finds clusters of comparable spa-

tial extent, while GMMs allow clusters to have different

shapes [26]. We explored both to determine which was better

suited to our task. The cluster size chosen in this case is 20.

We arrived at this number by doing trial and error on our

dataset and confirming that 20 clusters gave the most distinct

frames but also did not miss important groups.

After this stage, we choose one image from each of the 20

clusters and start the process of putting them in the correct

order. To ensure that the artery starts as unbifurcated and ends

up being bifurcated we train a VGG16 model based on the
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Fig. 4. Cluster obtained after implementing KMeans

As demonstrated in this image, the K-means algorithm
clusters all the frames in the video that look identical or

very similar. This helps us avoid repeated frames and
simplifies the process of sequentialization.

masked images received from the U-Net to classify if the artery

is bifurcated on unbifurcated. After this step, the 20 images

(one from each cluster) are separated into two classes. Then

we apply Scale Invariant Feature Transform (SIFT) to order

the frames with respect to their similarity. SIFT is a computer

vision algorithm to detect, describe, and match local features

in images. SIFT key points of objects are first extracted from a

set of reference images and stored in a database. An object is

recognized in a new image by individually comparing each

feature from the new image to this database and finding

candidate matching features based on the Euclidean distance

of their feature vectors. From the full set of matches, subsets of

key points that agree on the object and its location, scale, and

orientation in the new image are identified to filter out good

matches. The determination of consistent clusters is performed

rapidly by using an efficient hash table implementation of the

generalized Hough transform. Each cluster of three or more

features that agree on an object and its pose is then subject to

further detailed model verification and, subsequently, outliers

are discarded. Finally, the probability that a particular set of

features indicates the presence of an object is computed, given

the accuracy of fit and number of probable false matches.

Object matches that pass all these tests can be identified as

correct with high confidence [22]. The motive behind using

SIFT is that the parts of the artery closer to each other spatially

will appear more visually similar than parts further away.

Hence, after applying SIFT, we get the correct order of frames.

After this, we can regenerate the video with that ordering. .

2) Method 2: Ellipse Features: : This method uses a more

mathematical approach relying heavily on the attributes of the

ellipse matching the artery such as the center coordinates,

major axis, minor axis, and angle.

Cropping and Segregation: The first problem that we tackle

in this approach is fixing the lateral shift of the artery in the

ultrasound videos by locating the artery mask obtained from

segmentation and extracting only the ellipse which indicates

Fig. 5. Demonstration of Scale Invariant Feature Transform

the border of the carotid artery. This helps to get rid of

the extra noise in the form of tissues scanned during the

ultrasound. This process also helps segregate the images into

bifurcated and unbifurcated categories based on the number

of ellipses detected in each image.

Fig. 6. Ultrasound Video Frames with Masks

Calculating the Similarity of Ellipses: We chose 4 different

factors to calculate the similarity of two ellipses which are

area similarity, perimeter similarity, aspect ratio similarity,

and orientation similarity. All four similarity scores have

equal weight and the sum of these factors yields the optimal

similarity score for each ellipse pair. The similarity score is

stored in an adjacency matrix which makes it easier to compare

each ellipse with the other.

Sorting and Sequencing the Frames: To sort the adjacency

matrix we used a modified version of topological sort. It

starts at the most elongated ellipse which is on the verge

of bifurcating and continues back to the most dissimilar

ellipse which is the starting point of the artery. In the case

of bifurcated artery frames, since it is common knowledge

that the internal and external arteries move further apart as

we move away from the common carotid artery, we have

computed the distance between the two ellipses and sorted

them accordingly. This gives us the complete sequence of
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Fig. 7. Ultrasound Video Frames Displaying the Ellipses after Fixing the
Lateral Shift

frames starting at the most bifurcated point in the artery to

the starting point, i.e., the unbifurcated artery.

C. Generating a 3D visualization of the artery using the
segmentation masks and the ultrasound video orderings

For building the 3D model, we need the orderings obtained

from the previous step as well as the contours of the seg-

mentation masks. After arranging the frames according to

the ordering along with the mask contours, we stack them

up and obtain the co-ordinates of all the points that form

the walls of the carotid artery. We then use the open3d [33]

package to generate a 3D point cloud. We then perform some

pre-processing steps, such as cleaning the point cloud, and

removing outliers and other asymmetrical points. This pre-

processing step prevents unpredictable behaviour in the steps

that follow, and ensures a smoother and more aesthetic end

result.

After this, we experimented with two approaches to prepare

for the final step of surface reconstruction. For the first

approach we split the artery point cloud along the Z-axis from

where it starts bifurcating into a few separate point clouds

with some overlap, and separately compute a convex hull [3]

on each of these point clouds. Having multiple convex hulls is

especially useful in this scenario as it defines the artery while

considering the bifurcation.

The other was to compute normals [20] on the final set

of points. An important parameter to consider is the number

of neighboring vertices to be considered when computing the

normals for a given vertex. We conducted experiments using a

variety of values, ranging from a minimum of 5 to a maximum

of 500 neighbors.

Both of these steps were followed by a screened poisson

surface reconstruction [19] to get to the penultimate step of

generating the 3D model. Here we experimented with the

reconstruction depth and octree depth parameters to find a

combination that generated a surface that included a large

portion of the point cloud while being fairly smooth. This

was then followed by surface smoothing algorithms, such as

Laplacian smoothing [31], and Taubin smoothing [32].

To perform these tasks, we experimented with copmuter

graphics softwares such as the visualization toolkit (VTK)

python library [29], Blender [8], and Meshlab[7]. We de-

termined that Blender was an overkill for our problem, and

while using VTK with python was useful, the preprocessing

and cleaning of the point cloud was not easy. With Meshlab,

we were able to manually preprocess our point cloud, and

progressively visualize the 3D model with every step.

IV. RESULTS

A. Artery segmentation

We use the frames of five videos for training and one video

for validation. The quantitative metrics we have used are mask

accuracy and network loss. For the U-Net[27], we have used

the dice coefficient[10] as an additional metric for validation.

We have used the same hardware and kept the hyperparameters

(such as batch size) consistent across the models to make a

fair comparison.

All three network architectures were trained on a NVIDIA

RTX 6000 GPU with 24 GB VRAM. The batch size was

fixed to 8 images. One epoch for the Mask R-CNN[17] is

100 train steps, which is equivalent to 800 randomly chosen

training examples per epoch. For the U-Net, however, one

epoch was one full run of the dataset, which is equivalent

to 2245 training examples per epoch. Figures 8, 9, 10, and

11 visualize the performance of these models. We modified

matterport’s[1] implementation of the Mask R-CNN to suit

our problem

Fig. 8. Mask Loss vs epochs for all three architectures

Fig. 9. Total Loss vs epochs for Mask-RCNN architectures
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Fig. 10. U-Net dice coefficient vs epochs

Fig. 11. Architecture Performance

Fig 8 shows that the U-Net loss decreases a lot faster than

that of the Mask R-CNN, and just by the twentieth epoch

it starts plateauing out. However, the Mask RCNN continues

to learn even by the end of the hundredth epoch. In our

experiment, we trained the Mask RCNN for upto 1000 epochs,

and that was when the mask validation loss plateaued at around

0.065; meaning that it takes 900 epochs of training for the

batch loss value to decrease by an additional 0.035. This is

very resource intensive compared to the U-Net.

Between Resnet50 and Resnet101 backends, we see that

both perform similarly when it comes to validation loss, as

well as the quality of the generated masks. We conclude that

using the Resnet101 backbone is overkill.

The measured validation mask accuracy of the Mask RCNN

doesn’t exceed 83% either for any epoch, but the U-Net does

significantly better, exceeding 94% after training for just 40

epochs.

After a qualitative analysis of the results (Fig 12 and 13), we

conclude that the U-Net performs significantly better than the

Mask R-CNN for this ultrasound segmentation task. The U-

Net lives up to its purpose of specializing in medical imagery

segmentation as mentioned in the original U-Net paper.

Also, the U-Net is more robust to inaccurate annotations.

The U-Net was able to detect masks accurately in the con-

nected region in the frame where the carotid artery had started

bifurcating, even though the provided annotations did not

include that region.

The U-Net was trained with a batch size of 8, however, we

could have easily fit close to 80 images in a single batch on

the same GPU. This could have enabled even faster training.

B. Frame Sequentializing

After doing a comparative study on which method yielded

the best results we observed that the accuracy of the first

Fig. 12. Masks generated on Carotid Artery in different phases by Mask-
RCNN

Fig. 13. Masks generated on Carotid Artery in different phases by U-Net

method was 69.89% whereas that of the second method

was 86.34%. We have been able to calculate this value by

calculating the displacement of each frame to the sequence in

the ground truth video. If a frame in the generated result is

present in the 3rd position whereas in the ground truth video,

it is present in the 1st position then 2 is added to the error.

Thus, we have been able to calculate the accuracy percentage

of both methods. The total error values obtained for method 1

is 60699 and method 2 is 27551. The maximum error possible

is 201601.

Fig. 14. This histogram shows the displacement of each frame from its
original position for Method 1

Fig. 15. This histogram shows the displacement of each frame from its
original position for Method 2
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By observing these 2 graphs we can conclude that Method

2 has performed better based on 2 major factors. In the first

graph, we can see that the displacement of the frames that are

not present in the correct position is majorly present between

0 and 80 and also 250 to 300 whereas, in the second graph,

we can see that most of the frames that are not present in the

correct position have an error between 0 to 50. Secondly, the

range of x axis which indicates the displacement of each frame

from the correct position is much larger in the first graph i.e.

400 as compared to the second graph i.e. 250.

C. 3D model of the Carotid Artery

After implementing the steps outlined in the methodology

section, we were able to generate a comprehensible visualiza-

tion of the carotid arteries.

Computing separate convex hulls[3] was comparatively

much faster than computing normals, however this advantage

is somewhat nullified due to the manual intervention when

splitting the original point cloud. Using this method also

reduces the effect that the reconstruction depth and octree

depth parameters have during the final stage of surface recon-

struction. Fig 16 shows an example of the visualization when

using the convex hull approach. Computing normals[20] for

Fig. 16. 3D Artery visualization using the convex hull approach

the point cloud, however is more effective for this particular

scenario. Meshlab[7] defaults to just ten neighbors for comput-

ing normals, and having just ten neighbors leaves out a large

section of the vertices not having their normals computed.

We experiment with an even lesser number of neighbors,

and as many as up to 1000 neighbors, and we conclude that

having 500 neighbors is sufficient to compute the normals for

most of the vertices accurately. This ensures that the surface

reconstruction algorithm covers all these vertices.

We experiment with the reconstruction depth and octree

depth parameters, and a reconstruction depth of 4 and an

octree depth of 4 suffices to create the desired artery surface,

and requires so little compute that it’s done almost instantly.

However, this surface is somewhat edgy and blunt, and also not

smooth. A reconstruction depth of 5 and an octree depth of 8

generates a sufficiently smooth surface that incorporates all the

intricacies, while going easy on the computation required; the

required time for this is around 57 seconds. A reconstruction

depth of 6 combined with an octree depth of 8 results in a sur-

face that is unnecessarily intricate for a patient’s visualization

needs while also requiring significantly heavier compute; the

required time for this is about 320 seconds. Hence, our pick

for this problem is the second configuration. Fig 17 has the

artery surfaces as per each of the described configurations.

Fig. 17. 3D visualization of the artery with different reconstruction and octree
depth configurations; from left to right (4,4), (5,8), (6,8)

V. LIMITATIONS AND FUTURE SCOPE

Our work is the first that we know that is an end-to-end

pipeline for segmentation and sequencing of the artery from

ultrasound data. We faced a few roadblocks, elaborated as

follows.

The dataset is derived from a POCUS device, and the quality

of the videos is blurry and noisy. To enhance the quality of

the image, changes in contrast, brightness, sharpness, structure,

and exposure need to be made to obtain clearer boundaries.

The tissues moving in the ultrasound videos interfere with

the clustering even though the artery position and width

remain unchanged. Opting for advanced image enhancement

techniques, such as AI-based noise reduction, to improve

image quality would create the risk of losing crucial infor-

mation hence we have opted for minimal image enhancement

techniques.

Another challenge is the lateral movement of the device

when the ultrasound is being taken. This leads to a shift in

the location of the artery we see in the video, and we need to

come up with algorithms that could find this shift so we can

take that into account when processing the 3D structure.

In the future, we can consider using segmentation algo-

rithms that are more geared towards video segmentation and

that make use of the temporal nature of the data. This may

lead to a more accurate visualization. Further fine-tuning of

hyperparameters in K-Means algorithm can help improve the

accuracy of the first frame sequentializing method. We also

plan on correlating the results with ground truth data which

will be available in the future, for now, we have focused on

building the pipeline for solving the problem.

Another useful extension of this could be to detect plaque in

the Carotid Artery as well and incorporate it in the 3D model,

thus providing a visual representation of the state of the artery.

VI. CONCLUSION

In this paper, we have demonstrated that we can successfully

reconstruct the sequential ultrasound video of the carotid artery

from the original ultrasound video. We have successfully

performed segmentation on the carotid artery and also have

been able to find the correlation between the frames of the

ultrasound video. We have effectively mapped each frame in

the video to a particular part of the carotid artery and removed

repetitive and redundant frames. We have been able to organize

the frames in the correct order to move from the base of the

neck up to the head and generate the ultrasound video that
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now moves in a single direction. We have demonstrated how

we can generate a 3D model of the carotid artery using the

orderings and the segmentation masks, and how this can be

extended to modeling plaque in the carotid artery as well.
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