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Abstract
We propose Unsupervised Episode Generation
method called Neighbors as Queries (NAQ) to
solve the Few-Shot Node-Classification (FSNC)
task by unsupervised Graph Meta-learning. Do-
ing so enables full utilization of the information of
all nodes in a graph, which is not possible in cur-
rent supervised meta-learning methods for FSNC
due to the label-scarcity problem. In addition,
unlike unsupervised Graph Contrastive Learning
(GCL) methods that overlook the downstream task
to be solved at the training phase resulting in vul-
nerability to class imbalance of a graph, we adopt
the episodic learning framework that allows the
model to be aware of the downstream task format,
i.e., FSNC. The proposed NAQ is a simple but
effective unsupervised episode generation method
that randomly samples nodes from a graph to
make a support set, followed by similarity-based
sampling of nodes to make the corresponding
query set. Since NAQ is model-agnostic, any
existing supervised graph meta-learning meth-
ods can be trained in an unsupervised manner,
while not sacrificing much of their performance
or sometimes even improving them. Extensive
experimental results demonstrate the effective-
ness of our proposed unsupervised episode gen-
eration method for graph meta-learning towards
the FSNC task. Our code is available at: https:
//github.com/JhngJng/NaQ-PyTorch.

1. Introduction
Graph-structured data are useful and widely applicable in
the real-world, thanks to their capability of modeling com-
plex relationships between objects such as user-user rela-
tionships in social networks and product networks, etc. To
handle tasks such as node classification on graph-structured
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data, Graph Neural Networks (GNNs) are widely used and
have shown remarkable performance (Kipf & Welling, 2017;
Veličković et al., 2018). However, it is well known that
GNNs suffer from poor generalization when only a small
number of labeled samples are provided (Zhou et al., 2019;
Ding et al., 2020; Wang et al., 2022b).

To mitigate such issues inherent in the ordinary deep neural
networks, few-shot learning methods have emerged, and the
dominant paradigm was applying meta-learning algorithms
such as MAML (Finn et al., 2017) and ProtoNet (Snell et al.,
2017), which are based on the episodic learning frame-
work (Vinyals et al., 2016). Inspired by these methods,
recent studies proposed graph meta-learning methods (Zhou
et al., 2019; Ding et al., 2020; Huang & Zitnik, 2020; Wang
et al., 2022b) to solve the Few-Shot Node Classification
(FSNC) task on graphs by also leveraging the episodic learn-
ing framework, which is the main focus of this study.

Despite their effectiveness, existing supervised graph meta-
learning methods require abundant labeled samples from di-
verse base classes for the training. As shown in Figure 1(a),
such label-scarcity causes a severe performance drop of
representative methods (i.e., TENT (Wang et al., 2022b), G-
Meta (Huang & Zitnik, 2020), ProtoNet (Snell et al., 2017),
and MAML (Finn et al., 2017)) in FSNC. However, gath-
ering enough labeled data and diverse classes may not be
possible, and is costly in reality. More importantly, as these
methods depend on a few labeled nodes from base classes,
while not fully utilizing all nodes in the graph, they are
also vulnerable to noisy labels in base classes (Figure 1(b)).
In this respect, unsupervised methods are indispensable to
fundamentally address the label-dependence problem of
existing supervised graph meta-learning methods.

Most recently, TLP (Tan et al., 2022) empirically demon-
strated that a simple linear probing with node embeddings
pre-trained by Graph Contrastive Learning (GCL) methods
outperforms existing supervised graph meta-learning meth-
ods in FSNC. This is because GCL methods tend to generate
generic node embeddings, since all nodes in a graph are in-
volved in the training.

However, despite the effectiveness of generic node embed-
dings, we argue that they are vulnerable to class imbalance
in the graph, which might lead to a significant performance
drop due to the lack of model generalizability resulting from
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Figure 1. (a): Impact of the label-scarcity on supervised graph meta-learning methods (‘Class%’: a rate of available base classes during
training, ‘Label%’: a rate of available labeled samples for each class). (b): Impact of the (randomly injected) label noise p on supervised
graph meta-learning methods. (c): Impact of the class imbalance (‘Pareto’ setting: we kept nodes for top-20% head classes, while keeping
only 10 nodes for remaining classes; ‘Extreme’ setting: the only difference from the ‘Pareto’ setting is that we kept nodes only for top-5
head classes instead of top-20% classes). (5-way 1-shot)

the discrepancy in the objective between pre-training and
fine-tuning (in downstream task) phase (Lu et al., 2021). If
the given graph mainly consists of nodes from the majority
classes, GCL methods have difficulty in learning embed-
dings of nodes from the minority classes, which results in
poor FSNC performance on such minority classes. On the
other hand, as each episode in the episodic learning frame-
work provides the GNN encoder with the information about
the downstream task format (i.e., FSNC), meta-learning
methods are rather more robust to the class imbalance that
may exist in the given graph1. To corroborate our argu-
ment, we modified the original graph to simulate two class
imbalance settings (i.e., ‘Pareto’ and ‘Extreme’), and eval-
uated GCL methods (i.e., BGRL (Thakoor et al., 2022),
SUGRL (Mo et al., 2022), AFGRL (Lee et al., 2022b))
and meta-learning methods (i.e., ProtoNet and NAQ-FEAT
(ours)) on the FSNC task (See Figure 1(c)). As expected,
the performance deterioration of GCL methods was more
severe than meta-learning methods under class imbalance
settings.

Therefore, we argue that the FSNC performance can be
further enhanced by unsupervised Graph Meta-learning,
which can achieve the best of both worlds: 1) GCL that
fully utilizes all nodes in a graph in an unsupervised manner,
and 2) Meta-learning whose episodic learning framework is
aware of the downstream task format (i.e., FSNC).

In this work, we propose a simple yet effective unsupervised
episode generation method called Neighbors as Queries
(NAQ), which enables unsupervised graph meta-learning,
to benefit from the generalization ability of meta-learning
methods for the FSNC task, while fully utilizing all nodes
in a graph. The main idea is to construct a support set by
randomly choosing nodes from the entire graph, and gen-
erate a corresponding query set via sampling similar nodes
based on pre-calculated node-node similarity. It is important

1Please refer to Section A.2.1 for more detail regarding how the
episodic learning allows the model to be robust to class imbalance.

to note that our unsupervised episode generation method is
model-agnostic, i.e., NAQ can be used to train any existing
supervised graph meta-learning methods in an unsupervised
manner directly or only with minor modifications.

To sum up, our contributions are summarized as follows:

1. We present an unsupervised episode generation method,
called NAQ, designed to solve the FSNC task via unsu-
pervised graph meta-learning. To our best knowledge,
this is the first study that focuses on the unsupervised
episode generation of graph meta-learning framework.

2. NAQ is model-agnostic; that is, it can be used to train
any existing supervised graph meta-learning methods in
an unsupervised manner, while not sacrificing much of
their performance or sometimes even improving them,
without using any labeled nodes.

3. Extensive experimental results demonstrate the effective-
ness of NAQ in the FSNC task and highlight the potential
of the unsupervised graph meta-learning framework.

2. Preliminaries
2.1. Problem Statement

Let G = (V, E , X) be a graph, where V, E ⊂ V ×
V, X ∈ R|V|×d are a set of nodes, a set of edges, and a d-
dimensional node feature matrix, respectively. We also use
X to denote a set of node features, i.e., X = {xv : v ∈ V}.
Let C be a set of total node classes. Here, we denote the
base classes, a set of node classes that can be utilized during
training, as Cb, and denote the target classes, a set of node
classes that we aim to predict in downstream tasks given a
few labeled samples, as Ct. Note that Cb ∪ Ct = C and
Cb ∩ Ct = ∅, and the target classes Ct are unknown during
training. In common few-shot learning settings, the number
of labeled nodes from classes of Cb is sufficient, while we
only have a few labeled nodes from classes of Ct in down-
stream tasks. Now we formulate the ordinary supervised
few-shot node classification (FSNC) problem as follows:
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Definition 2.1 (Supervised FSNC). Given a graph G =
(V, E , X), labeled data (XCb

, YCb
) and a model fθ trained

on (XCb
, YCb

), the goal of supervised FSNC is making
predictions for xq ∈ XCt

(i.e. query set) based on a few
labeled samples (xs, ys) ∈ (XCt

, YCt
) (i.e., support set)

during the testing phase.

Based on this problem formulation, we can formulate the
unsupervised FSNC problem as below. The only difference
is that labeled nodes are not available during training.

Definition 2.2 (Unsupervised FSNC). Given a graph G =
(V, E , X), unlabeled data X = XCb

∪XCt
, and a model

fθ trained on X , the goal of unsupervised FSNC is making
predictions for xq ∈ XCt (i.e., query set) based on a few
labeled samples (xs, ys) ∈ (XCt , YCt) (i.e., support set)
during the testing phase.

Overall, the goal of FSNC is to adapt well to unseen target
classes Ct only using a few labeled samples from Ct after
training a model fθ on training data. In this work, we study
how to facilitate unsupervised Graph Meta-learning to solve
the FSNC task. More formally, we consider solving a N -
way K-shot FSNC task (Vinyals et al., 2016), where N is
the number of distinct target classes and K is the number
of labeled samples in a support set. Moreover, there are Q
query samples to be classified in each downstream task.

2.2. Episodic Learning Framework

We follow the episodic training framework (Vinyals et al.,
2016) that is formally defined as follows:

Definition 2.3 (Episodic Learning). Episodic learning is a
learning framework that utilizes a bundle of tasks {Tt}Tt=1,
where Tt = (STt

, QTt
), STt

= {(xspt
t,i , y

spt
t,i )}

N×K
i=1 and

QTt
= {(xqry

t,i , yqryt,i )}N×Q
i=1 , instead of commonly used

mini-batches in the stochastic optimization.

By mimicking the ‘format’ of the downstream task (i.e.,
FSNC), the episodic learning allows the model to be aware
of the task to be solved in the testing phase. Note that exist-
ing supervised meta-learning methods require a large num-
ber of labeled samples in the training set (XCb

, YCb
) and

a sufficient number of base classes |Cb| (i.e., diverse base
classes) to generate informative training episodes. However,
gathering enough labeled data and diverse classes may not
be possible and is usually costly in the real world. As a
result, supervised methods fall short of utilizing all nodes in
the graph as they rely on a few labeled nodes, and thus lack
generalizability.

Therefore, we propose unsupervised episode generation
methods not only to tackle the label-scarcity problem caus-
ing a limited utilization of nodes in the graph, but also to
benefit from the episodic learning framework for down-
stream task-aware learning of node embeddings, thereby
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Figure 2. Overview of the NAQ-FEAT.

being robust to a class imbalance in a graph.

3. Proposed Method
3.1. Motivation: A Closer Look at Training Episodes

In the episodic learning framework, there are two essential
components: 1) support set that provides basic information
about the task to be solved, and 2) query set that enables the
model to understand about how to solve the given task. For
this reason, the query set should share similar semantics
with the support set. Motivated by this characteristic of
episodic learning, we consider the similarity condition as
the key to our proposed query generation process. Note that
in the ordinary supervised setting, the similarity condition is
easily achievable, since labels of the support set and query
set are known, and thus can be sampled from the same class.
However, as our goal is to generate training episodes in an
unsupervised manner, how to sample a query set that shares
similar semantics with each support set is non-trivial.

3.2. NAQ: Neighbors as Queries

In this work, we propose a simple yet effective query gener-
ation method, called Neighbors as Queries (NAQ), which
leverages raw feature-level similar nodes as queries. The
overview of NAQ can be found in Figure 2.

Support set generation. To generate training episodes
{Tt}Tt=1, we start by randomly sampling T sets of N nodes
from the entire graph for the support set generation. Next,
we assign pseudo-labels yt,i to each node xt,i ∈ Tt, i.e.,
STt

= {(xt,i, yt,i) | xt,i ∈ V}N×K
i=1 . Note that we only

generate 1-shot support set (i.e., K = 1) regardless of the
downstream task setting, to assure that randomly sampled N
support set nodes (corresponding to ‘N -way’) are as much
distinguishable from one another as possible.

Query set generation. Then, we generate a corresponding
query set QTt with Top-Q similar nodes of each node xt,i in
STt based on a pre-calculated node-node similarity matrix
S, and give them the same pseudo-label yt,i. Formally, we
can express this query generation process as follows:

QTt
=

⋃
(xt,i,yt,i)∈STt

Top(Sxt,i
,Q) (1)
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where Sxt,i
denotes a row of the similarity matrix S cor-

responding to the node xt,i, and Top(Sxt,i ,Q) indicates a
set of Q nodes corresponding to Q largest entries in Sxt,i

excluding xt,i itself.

Similarity Metric. For sampling ‘similar’ nodes to be used
as queries, we used cosine similarity for node features such
as bag-of-words, and Euclidean distance for the features
such as word embeddings. Refer to Section A.3 in the
Appendix for further discussions on the similarity metric.

3.2.1. AN EXTENSION TO NAQ: NAQ-DIFF

Since NAQ described above solely relies on the raw node
feature X , the structural information that is inherent in
graphs is overlooked, which plays an important role depend-
ing on the target domain. For example, in citation networks,
since the citation relationship between papers implies that
these papers usually share similar semantics (i.e., related
paper topics), they have similar features even if their class
labels are different. Hence, considering structurally similar
nodes as queries can be more beneficial than solely relying
on the feature-level similar nodes in such cases.

Hence, we present a variant of NAQ, called NAQ-DIFF,
which utilizes structurally similar nodes found by gener-
alized graph diffusion (Gasteiger et al., 2019) as queries.
Specifically, NAQ-DIFF leverages diffusion matrix S =
Σ∞

k=0θkT
k as node-node similarity matrix, with weighting

coefficients θk, and the generalized transition matrix T. As
edge weights of the diffusion matrix S can be interpreted
as structural closeness, we can sample similar nodes of
each support set node from S. It is important to note that
computing the diffusion matrix does not require additional
computation during training and can be readily calculated
before the model training. The overview of NAQ-DIFF can
be found in Figure 10 in the Appendix, and detailed settings
for NAQ-DIFF can be found in Section A.4. Hereafter, we
call the former version of NAQ that is based on the raw
features as NAQ-FEAT, and the latter version that is based
on the graph structural information as NAQ-DIFF.

3.3. Model Training with Episodes from NAQ

In this section, we explain how to train existing meta-
learning models with episodes generated by NAQ. Let
Tt = (STt

, QTt
) be a generated episode and Meta(Tt; θ) be

any of existing graph meta-learning methods (e.g., MAML,
ProtoNet, G-Meta, etc.) with parameter θ. For simplicity
of explanation, we used the same notation here even for
methods that use meta-batches like MAML. Regardless of
whether Tt is generated from NAQ or an ordinary supervised
episode generation, it follows the common format of Tt =
(STt

, QTt
),where STt

= {(xspt
t,i , y

spt
t,i )}

N×K
i=1 and QTt

=

{(xqry
t,i , yqryt,i )}N×Q

i=1 . That is, the only difference is whether

ysptt,i and yqryt,i are annotated based on the ground-truth la-
bel (supervised) or a psuedo-label (NAQ). Hence, any of
Meta(Tt; θ) can be trained in the same way in an ‘unsu-
pervised manner with NAQ’ as ordinary supervised meta-
learning methods. The details are presented in Algorithm 1.

Algorithm 1 Training Meta-learner Meta( · ; θ) with NAQ

input Bundle of training episodes {Tt}Tt=1, Graph Meta-
learner Meta( · ; θ), learning rate η.
Randomly initialize the model parameter θ
for t = 1, · · · , T do

Step 1: Calculate loss L by Meta(Tt; θ)
Step 2: Update θ ← θ − η∇θL

end for
output Meta(Tt; θ)

Remark. Supervised TENT (Wang et al., 2022b) addi-
tionally computes cross-entropy loss LCE over the entire
labeled data (XCb

, YCb
) in Step 1 of Algorithm 1. There-

fore, when we train TENT with our NAQ, LCE is calculated
over a single training episode.

It is important to note that since NAQ generates training
episodes based on all nodes in a graph, it enables existing
graph meta-learning methods to fully utilize all nodes in a
graph, while the supervised episode generation fails to do so
as it depends on a few labeled nodes from base classes. The
detailed model training example in case of ProtoNet (Snell
et al., 2017) can be found in Section A.7 in the Appendix.

3.4. Theoretical Insights

In this section, we provide some insights on conditions that
enable NAQ to work within the episodic learning framework
to justify our motivation of utilizing similar nodes as queries
described in Section 3.1. Specifically, we investigate the
learning behavior of MAML (Finn et al., 2017), which is
one of the most widely adopted meta-learning methods in
the perspective of ‘generalization error’ for a single episode
during the training phase. Since each of the existing graph
meta-learning methods has its own sophisticated architec-
ture, we only consider MAML here. The formal definition
of the expected generalization error is as follows (Gareth
et al., 2013; Hastie et al., 2009).

Definition 3.1. Let S,Q, fS , f be a given training set, test
set, an encoder trained on S, and the unknown perfect esti-
mation, respectively. With an error measure L, for a given
point (x′, y′) ∈ Q, an expected generalization error is de-
fined as E[L

(
y′, fS(x

′)
)
].

By assuming that y = f(x) + ϵ holds for an arbitrary input-
output pair (x, y) (E[ϵ] = 0,Var(ϵ) = σ2 <∞) and an er-
ror measure L is the mean squared error, we can decompose
expected generalization error in Def. 3.1 as follows (Gareth
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Table 1. Overall averaged FSNC accuracy (%) with 95% confidence intervals on product networks (Full ver. available at: Table 15)
Dataset Amazon-Clothing Amazon- Electronics
Setting 5 way 10 way Avg.

Rank
5 way 10 way 20 way Avg.

RankBaselines 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
MAML (Sup.) 76.13±1.17 84.28±0.87 63.77±0.83 76.95±0.65 10.25 65.58±1.26 78.55±0.96 57.31±0.87 67.56±0.73 46.37±0.61 60.04±0.52 9.33

ProtoNet (Sup.) 75.52±1.12 89.76±0.70 65.50±0.82 82.23±0.62 7.25 69.48±1.22 84.81±0.82 57.67±0.85 75.79±0.67 48.41±0.57 67.31±0.47 5.83
TENT (Sup.) 79.46±1.10 89.61±0.70 69.72±0.80 84.74±0.59 5.25 72.31±1.14 85.25±0.81 62.13±0.83 77.32±0.67 52.45±0.60 69.39±0.50 4.00

G-Meta (Sup.) 78.67±1.05 88.79±0.76 65.30±0.79 80.97±0.59 7.75 72.26±1.16 84.44±0.83 61.32±0.86 74.92±0.71 50.39±0.59 65.73±0.48 5.67
GLITTER (Sup.) 75.73±1.10 89.18±0.74 64.30±0.79 77.73±0.68 9.00 66.91±1.22 82.59±0.83 57.12±0.88 76.26±0.67 49.23±0.57 61.77±0.52 7.00
COSMIC (Sup.) 82.24±0.99 91.22±0.73 74.44±0.75 81.58±0.63 3.75 72.61±1.05 86.92±0.76 65.24±0.82 78.00±0.64 58.71±0.57 70.29±0.44 3.00

TLP-BGRL 81.42±1.05 90.53±0.71 72.05±0.86 83.64±0.63 4.25 64.20±1.10 81.72±0.85 53.16±0.82 73.70±0.66 44.57±0.54 65.13±0.47 8.67
TLP-SUGRL 63.32±1.19 86.35±0.78 54.81±0.77 73.10±0.63 11.50 54.76±1.06 78.12±0.92 46.51±0.80 68.41±0.71 36.08±0.52 57.78±0.49 11.67
TLP-AFGRL 78.12±1.13 89.82±0.73 71.12±0.81 83.88±0.63 5.25 59.07±1.07 81.15±0.85 50.71±0.85 73.87±0.66 43.10±0.56 65.44±0.48 9.00

VNT 65.09±1.23 85.86±0.76 62.43±0.81 80.87±0.63 10.50 56.69±1.22 78.02±0.97 49.98±0.83 70.51±0.73 42.10±0.53 60.99±0.50 10.83
NAQ-FEAT-Best (Ours) 86.58±0.96 92.27±0.67 79.55±0.78 86.10±0.60 1.00 76.46±1.11 88.72±0.73 69.59±0.86 81.44±0.61 61.05±0.59 74.60±0.47 1.00
NAQ-DIFF-Best (Ours) 84.40±1.01 91.72±0.69 73.39±0.79 84.82±0.58 2.25 74.16±1.08 87.09±0.75 65.95±0.81 79.13±0.60 60.40±0.59 73.75±0.42 2.00

et al., 2013; Hastie et al., 2009):

E[L
(
y′, fS(x

′)
)
] =

(
E[fS(x′)]− f(x′)

)2
+

(
E
[
fS(x

′)2
]
− E[fS(x′)]2

)
+ σ2.

(2)

Let us consider the training process of MAML with an en-
coder fθ and a training episode T = (ST , QT ), where
ST = {(xspt

i , yspti )}N×K
i=1 and QT are the N -way K-

shot support set and the query set, respectively. During
the inner-loop optimization, MAML produces fθ′ , where
θ′ = argminθ

∑
(xspt,yspt)∈ST

L
(
yspt, fθ(x

spt)
)
.

If we regard the inner-loop optimization of MAML as a
training process with training set S = ST , the outer-loop
optimization (i.e., meta-optimization) as a testing process
with test set Q = QT , and the trained encoder fS = fST =
fθ′ , we can interpret that the meta-optimization actually
reduces the generalization error in Eq. 2 over the query set
QT with encoder fθ′ (Khodadadeh et al., 2019). With this
interpretation, we can re-write Eq. 2 as follows:

E[L
(
yqry, fθ′(x

qry)
)
] =

(
E[fθ′(xqry)]− fT (xqry)

)2
+

(
E
[
fθ′(x

qry)2
]
− E[fθ′(xqry)]2

)
+ σ2,

(3)

where fT is the unknown perfect estimation for T . With-
out loss of generality, we considered a single query
(xqry, yqry) ∈ QT to derive Eq. 3. As Eq. 3 is used as
a loss function, an accurate calculation of Eq. 3 is essential
for a better model training on T (Khodadadeh et al., 2019).

Remark. Let s := (xspt, yspt) ∈ ST be a specific corre-
sponding support set sample of the query q := (xqry, yqry)
above. Let ỹspt, ỹqry be the true labels of s, q, respec-
tively. Note that the same new labels (i.e., yspt, yqry s.t.
yspt=yqry) are assigned to each of xspt, xqry during the
training episode generation (regardless of whether it is super-
vised or not), to perform classification of N classes instead
of classifying |C| classes (i.e., total number of classes in the
entire dataset) in the training phase of the episodic learning
framework. To get an accurate computation of Eq. 3, it is

essential to assure that ỹspt = ỹqry holds. Otherwise, we
have yqry = fT (x

qry)+ ϵ+ δ, where δ is an error resulting
from ỹspt ̸= ỹqry , which may lead to a suboptimal solution
when training with loss defined by Eq. 3.

Unlike the ordinary supervised episode generation in which
case δ = 0 holds as condition that ỹspt = ỹqry is naturally
satisfied, our NAQ cannot guarantee δ = 0 since no label
information is given (i.e., ỹspt, ỹqry are both unknown) dur-
ing its episode generation phase. Hence, we argue that it is
crucial to discover class-level similar query qNAQ for each
support set sample sNAQ = (xspt

NAQ, y
spt
NAQ) ∈ ST

2 during the
query generation process of NAQ. If s and q are class-level
similar, i.e., the difference between their corresponding true
labels ỹsptNAQ, ỹ

qry
NAQ are small enough, we would have |δ| < ξ

for some small enough ξ > 0 so that we can successfully
train encoder fθ.

In summary, the above analysis explains that discovering a
query that is class-level similar enough to a given support
set sample is crucial for minimizing the training loss (i.e.,
the generalization error defined in Eq. 3), which eventually
yields a better fθ. In this regard, NAQ works well within
the episodic learning framework, since NAQ generates
class-level similar query nodes using node-node similarity
defined based on the raw node feature (i.e., NAQ-FEAT) and
graph structural information (i.e., NAQ-DIFF).

Further discussions on why class-level similarity is sufficient
for unsupervised episode generation (Section A.1.1) and an
empirical result that our NAQ can find class-level similar
queries (Section A.1.2) are provided in the Appendix.

4. Experiments
Evaluation Datasets. We use five benchmark datasets
that are widely used in FSNC to comprehensively evalu-
ate the performance of our unsupervised episode genera-

2Here, we use ST to denote the support set generated by NAQ.
For details, see ‘Support set generation’ process in Section 3.2.
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Table 2. Overall averaged FSNC accuracy (%) with 95% confidence intervals on citation networks (Full ver. available at: Table 16, OOT:
Out Of Time, which means that the training was not finished in 24 hours, OOM: Out Of Memory on NVIDIA RTX A6000)

Dataset Cora-full DBLP
Setting 5 way 10 way 20 way Avg.

Rank
5 way 10 way 20 way Avg.

RankBaselines 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
MAML (Sup.) 59.28±1.21 70.30±0.99 44.15±0.81 57.59±0.66 30.99±0.43 46.80±0.38 9.67 72.48±1.22 80.30±1.03 60.08±0.90 69.85±0.76 46.12±0.53 57.30±0.48 8.50
ProtoNet (Sup.) 58.61±1.21 73.91±0.93 44.54±0.79 62.15±0.64 32.10±0.42 50.87±0.40 7.67 73.80±1.20 81.33±1.00 61.88±0.86 73.02±0.74 48.70±0.52 62.42±0.45 4.33

TENT (Sup.) 61.30±1.18 77.32±0.81 47.30±0.80 66.40±0.62 36.40±0.45 55.77±0.39 4.50 74.01±1.20 82.54±1.00 62.95±0.85 73.26±0.77 49.67±0.53 61.87±0.47 2.67
G-Meta (Sup.) 59.88±1.26 75.36±0.86 44.34±0.80 59.59±0.66 33.25±0.42 49.00±0.39 7.50 74.64±1.20 79.96±1.08 61.50±0.88 70.33±0.77 46.07±0.52 58.38±0.47 7.00

GLITTER (Sup.) 55.17±1.18 69.33±0.96 42.81±0.81 52.76±0.68 30.70±0.41 40.82±0.41 11.50 73.50±1.25 75.90±1.19 OOT OOT OOM OOM 9.50
COSMIC (Sup.) 62.24±1.15 73.85±0.83 47.85±0.77 59.11±0.60 42.25±0.43 47.28±0.38 6.33 72.34±1.18 80.83±1.03 59.21±0.80 70.67±0.71 49.52±0.51 59.01±0.42 7.50

TLP-BGRL 62.59±1.13 78.80±0.80 49.43±0.79 67.18±0.61 37.63±0.44 56.26±0.39 3.17 73.92±1.19 82.42±0.95 60.16±0.87 72.13±0.74 47.00±0.53 60.57±0.45 4.83
TLP-SUGRL 55.42±1.08 76.01±0.84 44.66±0.74 63.69±0.62 34.23±0.41 52.76±0.40 6.33 71.27±1.15 81.36±1.02 58.85±0.81 71.02±0.78 45.71±0.49 59.77±0.45 8.17
TLP-AFGRL 55.24±1.02 75.92±0.83 44.08±0.70 64.42±0.62 33.88±0.41 53.83±0.39 7.17 71.18±1.17 82.03±0.94 58.70±0.86 71.14±0.75 45.99±0.53 60.31±0.45 7.83

VNT 47.53±1.14 69.94±0.89 37.79±0.69 57.71±0.65 28.78±0.40 46.86±0.40 11.17 58.21±1.16 76.25±1.05 48.75±0.81 66.37±0.77 40.10±0.49 55.15±0.46 11.17
NAQ-FEAT-Best (Ours) 66.30±1.15 80.09±0.79 52.23±0.73 68.87±0.60 44.13±0.47 60.94±0.36 1.33 73.55±1.16 82.36±0.94 60.70±0.87 72.36±0.73 50.42±0.52 64.90±0.43 3.67
NAQ-DIFF-Best (Ours) 66.26±1.15 80.07±0.79 52.17±0.74 69.34±0.63 44.12±0.47 60.97±0.37 1.67 76.58±1.18 82.86±0.95 64.31±0.87 74.06±0.75 51.62±0.54 64.78±0.44 1.17

tion method: 1) Two product networks (Amazon-Clothing,
Amazon-Electronics (McAuley et al., 2015)), 2) three ci-
tation networks (Cora-Full (Bojchevski & Günnemann,
2018), DBLP (Tang et al., 2008)) in addition to a large-
scale dataset ogbn-arxiv (Hu et al., 2020). Detailed expla-
nations of the datasets and their statistics are provided in
Section A.5 in the Appendix.

Baselines. We use six graph meta-learning models as base-
lines, i.e., MAML (Finn et al., 2017), ProtoNet (Snell et al.,
2017), G-Meta (Huang & Zitnik, 2020), TENT (Wang
et al., 2022b), GLITTER (Wang et al., 2022a), and COS-
MIC (Wang et al., 2023b) to evaluate the performance of
our proposed unsupervised episode generation methods, i.e.,
NAQ-FEAT and NAQ-DIFF. In addition, three recent GCL
baselines, i.e., BGRL (Thakoor et al., 2022), SUGRL (Mo
et al., 2022) and AFGRL (Lee et al., 2022b), are included
as they have shown remarkable performance on the FSNC
task without using labels (Tan et al., 2022). Lastly, we
compare with VNT (Tan et al., 2023) that uses a pretrained
graph transformer without labels and fine-tunes injected soft
prompts to solve downstream FSNC task. For both NAQ-
FEAT and NAQ-DIFF, we sampled Q = 10 queries for each
support set sample to generate the training episodes. Details
on compared baselines and their experimental settings are
presented in Section A.6 in the Appendix.

Evaluation. For each dataset except for Amazon-Clothing,
we evaluate the performance of the models in 5/10/20-way,
1/5-shot settings, i.e., six settings in total. For Amazon-
Clothing, as the validation set contains 17 classes, evalua-
tions on 20-way cannot be conducted. Instead, the evalua-
tion is done in 5/10-way 1/5-shot settings, i.e., four settings
in total. In the validation and testing phases, we sampled 50
validation tasks and 500 testing tasks for all settings with 8
queries each. For all the baselines, validation/testing tasks
are fixed, and we use linear probing on frozen features to
solve each downstream task except for GLITTER and VNT
as they use different strategies for solving downstream tasks.
We report average accuracy and 95% confidence interval

over sampled testing tasks.

4.1. Overall Performance Analysis

The overall results on five datasets are presented in Ta-
ble 1, 2, and 3. Note that since NAQ is model-agnostic,
we apply NAQ with all the supervised graph meta-learning
models contained in our baselines, and report the best per-
formance among them. We have the following observations.

First, our proposed methods outperform the existing super-
vised baselines. We attribute this to the episode generation
strategy of NAQ that allows the model to extensively utilize
all nodes in the graph without reliance on node labels. It is
worth noting that for each training episode while other su-
pervised methods use 5-shot support sets, our methods use
1-shot support sets to ensure that the support set nodes are as
much distinguishable from one another as possible. Hence,
we expect that our methods can be further improved if we
develop methods to generate additional support set samples
that would make each support set even more distinguishable
from one another, which we leave as future work.

Second, our proposed methods outperform methods utiliz-
ing the pre-trained encoder in an unsupervised manner (i.e.,
GCL methods and VNT). Unlike these methods, by ap-
plying the episodic learning framework for model training,
our methods can capture information about the downstream
task ‘format’ during the model training, leading to generally
better performance in the FSNC task.

Third, NAQ-DIFF outperforms NAQ-FEAT in citation net-
works (Table 2). This result verifies our motivation for pre-
senting NAQ-DIFF in Section 3.2.1, which was to capture
the structural information instead of the raw node features in
domains where the structural information is more beneficial.
On the other hand, NAQ-FEAT outperforms NAQ-DIFF in
product networks. This is because products in ‘also-viewed’
or ‘bought-together’ relationships are not always similar or
related in case of product networks (Zhang et al., 2022),
implying that discovering query sets based on ‘raw-feature’
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Figure 3. Result of applying NAQ-FEAT and NAQ-DIFF to existing graph meta-learning models (5-way 1-shot).
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Figure 4. Result of applying NAQ-FEAT and NAQ-DIFF to existing graph meta-learning models in higher way settings (Amazon-Clothing:
10-way 1-shot, Others: 20-way 1-shot).

similarity is more beneficial.

Lastly, NAQ outperforms other baselines on the ogbn-arxiv
dataset, which is a large-scale dataset (Table 3). It is worth
noting that the performances of two variants of NAQ are
at the best and second best in a more challenging one-shot
setting. One interesting observation is that NAQ-FEAT out-
performs NAQ-DIFF, even though ogbn-arxiv is a citation
network. We attribute this to the fact that the raw node
features of ogbn-arxiv are ‘embeddings’ extracted from the
skip-gram model. This implies that high-quality node fea-
ture enables NAQ-FEAT to find high-quality queries, which
leads to a better FSNC performance of NAQ-FEAT.

In summary, NAQ resolves the label-scarcity problem of
supervised graph meta-learning methods and achieve perfor-
mance enhancement on FSNC tasks by providing training
episodes that contain both the information of all nodes in the
graph, and the information of the downstream task format
to the model.

4.2. Model-agnostic Property of NAQ

In this section, we verify that NAQ can be applied to any
existing graph meta-learning models while not sacrificing
much of their performance.

In Figure 3 and 4, we observe that our methods retained
or even improved the performance of existing graph meta-
learning methods across various few-shot settings with only
a few exceptions. Particularly, in higher way settings shown
in Figure 4, which are more challenging, NAQ generally
outperforms supervised methods. Therefore, we argue that
our methods allow existing graph meta-learning models to
be trained to generate more generalizable embeddings with-
out any use of label information thanks to the full utilization
of all nodes in a graph.

Lastly, it is important to note again that the performances

Table 3. Overall averaged FSNC accuracy (%) with 95% confi-
dence intervals on ogbn-arxiv (NAQ base-model: ProtoNet, OOM:
Out Of Memory on NVIDIA RTX A6000)

Dataset ogbn-arxiv
Setting 5 way 10 way

Baselines 1 shot 5 shot 1 shot 5 shot
MAML (Sup.) 40.61±0.89 58.75±0.89 27.32±0.55 43.87±0.56

ProtoNet (Sup.) 43.34±1.01 58.30±0.95 28.17±0.60 46.11±0.60

TENT (Sup.) 48.06±0.97 63.45±0.88 33.85±0.65 48.14±0.59

G-Meta (Sup.) 41.06±0.87 59.43±0.87 27.20±0.53 45.04±0.53

GLITTER (Sup.) 35.64±0.97 34.51±0.85 20.95±0.50 21.84±0.47

COSMIC (Sup.) 50.32±0.95 63.54±0.80 38.41±0.62 49.31±0.51

TLP-BGRL 49.88±1.01 69.10±0.82 36.40±0.62 56.15±0.54

TLP-SUGRL 49.25±0.97 62.15±0.92 32.87±0.61 45.76±0.60

TLP-AFGRL OOM OOM OOM OOM
VNT OOM OOM OOM OOM

NAQ-FEAT (Ours) 54.09±1.03 69.94±0.84 41.61±0.68 58.18±0.59

NAQ-DIFF (Ours) 51.45±1.04 66.73±0.89 39.27±0.67 55.93±0.56

of the supervised models reported in our experiments are
only achievable when they have access to all labeled sam-
ples of entire base classes and the given labeled samples
in the base classes are clean. On the other hand, when
there is only a limited amount of labeled samples within
a limited number of base classes (Figure 1(a)) or there is
inherent label noise in the base classes (Figure 1(b)), the
performance of supervised models severely drops, while our
proposed unsupervised methods would not be affected at
all. Furthermore, as will be demonstrated in Section 4.4,
the performance of NAQ can be improved by adjusting the
number of queries.

4.3. Regarding the Class Imbalance

In this section, we visualize t-SNE (Van der Maaten & Hin-
ton, 2008) embeddings of nodes that belong to the top-10
tail classes. Doing so can further justify our motivation for
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(a) Amazon-Electronics

(b) Cora-Full

Figure 5. The t-SNE plot of tail-class embeddings (base-model:
ProtoNet, NAQ: trained with 5-way 1-shot training episodes)

using unsupervised graph meta-learning on FSNC problems
rather than using GCL methods.

As shown in Figure 5, we can observe that our NAQ can
learn clearly separable embeddings for tail-class nodes than
GCL method BGRL. This result further supports our claim
that GCL methods have difficulty in learning embeddings
of nodes from minority classes. Therefore, we can ver-
ify that additional downstream task ‘format’ information
provided by episodic learning is beneficial for learning tail-
class nodes when solving the FSNC problem. Further dis-
cussions on why NAQ can attain robustness against the
class imbalance (Section A.2.1) and additional results on
various dataset biases, such as structure or feature noise
(Section A.2.2), are presented in the Appendix.

4.4. Hyperparameter Sensitivity Analysis
So far, the experiments have been conducted with a fixed
number of queries, Q = 10. In this section, we investigate
the effect of the number of queries on the performance of
NAQ. To thoroughly explore the effect of the number of
queries on NAQ, we check the performance of NAQ with
ProtoNet by changing the number of queries Q ∈{1, 3, 5,
7, 10, 13, 15, 17, 20, 30, 40, 100}. We have the follow-
ing observations from Figure 6: (1) In Amazon-Clothing,
since both NAQ-FEAT and NAQ-DIFF can discover highly
class-level similar queries (Figure 7), they exhibit an in-
creasing tendency in performance as Q increases. (2) In the
case of Amazon-Electronics, NAQ-FEAT shows a similar
tendency as in Amazon-Clothing due to the same reason,
while there is a slight performance drop when Q = 100. In
contrast, NAQ-DIFF shows clearly decreasing performance
after Q = 5, as its queries have relatively low class-level
similarity (Figure 7). From the results above, we can con-
clude that sampling a proper number of queries Q during the
episode generation phase is essential. Otherwise, a signifi-
cant level of label noise in the generated episode might hin-
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Figure 6. Effect of the number of queries NAQ (5-way 1-shot, base-
model: ProtoNet, star marker: maximal point)

der the model training. (3) In the DBLP dataset, NAQ-FEAT
shows a nearly consistent performance tendency, while the
performance of NAQ-DIFF can be enhanced by increas-
ing the number of queries for training. This is because
NAQ-DIFF can sample more class-level similar queries than
NAQ-FEAT (Figure 7). From this observation, we again
validate the motivation of utilizing structural neighbors as
queries in such datasets (Section 3.2.1).

5. Related Work
5.1. Few-Shot Node Classification (FSNC)

Few-shot learning (Vinyals et al., 2016; Finn et al., 2017;
Snell et al., 2017) aims to classify unseen target classes with
only a few labeled samples based on the meta-knowledge ob-
tained from training on abundant samples from base classes.

Graph Meta-learning. There have been various studies
to solve FSNC in graph-structured data. Meta-GNN (Zhou
et al., 2019) addresses the problem by directly applying
MAML (Finn et al., 2017) on GNN, and GPN (Ding et al.,
2020) uses ProtoNet (Snell et al., 2017) architecture with
adjusted prototype calculation by considering node impor-
tance. G-Meta (Huang & Zitnik, 2020) utilizes subgraph-
level embeddings of nodes inside training episodes based
on both ProtoNet and MAML frameworks to enable scal-
able and inductive graph meta-learning. TENT (Wang et al.,
2022b) tries to reduce variances within training episodes
through node-level, class-level, and task-level adaptations.
Meta-GPS (Liu et al., 2022) utilizes various components of
network encoder, prototype-based parameter initialization,
and S2 (scaling & shifting) transformation to solve FSNC
tasks even on heterophilic graphs. GLITTER (Wang et al.,
2022a) claims that the given entire graph structure is redun-
dant for learning node embeddings within the meta-task so
that it tries to learn task-specific structure for each meta-
task. COSMIC (Wang et al., 2023b) applies a contrastive
learning scheme on meta-learning to obtain the intra-class
generalizability with hard (unseen) node classes generated
by similarity-sensitive mix-up to achieve high inter-class
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generalizability.

Graph Meta-learning for Label-scarcity Problem. There
were a few studies aiming to alleviate the label-scarcity prob-
lem of graph meta-learning methods. TEG (Kim et al., 2023)
utilizes equivariant neural networks to capture task-patterns
shared among training episodes regardless of node labels,
enabling the learning of highly transferable task-adaptation
strategies even with a limited number of base classes and
labeled nodes. Meanwhile, X-FNC (Wang et al., 2023a) ob-
tains pseudo-labeled nodes via label propagation based on
Poisson Learning, and optimizes the model based on infor-
mation bottleneck to discard irrelevant information within
the augmented support set. Although these methods ex-
tract useful meta-knowledge based on training episodes (i.e.,
TEG) or from pseudo-labeled nodes (i.e., X-FNC), they still
highly depend on a few labeled nodes during the model
training, and thus still fall short of utilizing the information
of all nodes in the graph. As a result, their FSNC perfor-
mance degrades as the number of labeled nodes and base
classes decreases (Wang et al., 2023a; Kim et al., 2023).

Unsupervised FSNC. As existing graph meta-learning
methods suffer from the label-scarcity problem, there were
several studies to handle the FSNC problem in an unsuper-
vised manner. TLP (Tan et al., 2022) utilizes GCL methods
to solve FSNC, and it has shown superior FSNC perfor-
mance than graph meta-learning methods without labels.
VNT (Tan et al., 2023) applies graph transformer on FSNC
and solves downstream FSNC task by only fine-tuning ‘vir-
tual’ nodes injected as soft prompts and the classifier with
given a few-labeled samples in the downstream task. Most
recently, (Liu et al., 2024) analyse advantages of applying
GCL on FSNC over graph meta-learning in two aspects: 1)
utilization of graph augmentation, and 2) explicit usage of
all nodes in a graph. Base on this analysis, they present
a GCL-based method named COLA that aims to combine
GCL and meta-learning by constructing meta-tasks without
labels during the training phase, which is computationally
costly. Although it shares some similarities with our method
NAQ, COLA focuses on GCL-based model while our NAQ
focuses on enabling unsupervised graph meta-learning.

5.2. Unsupervised Meta-learning

In computer vision, several unsupervised meta-learning
methods exist that attempt to address the limitations of re-
quiring abundant labels for constructing training episodes.
More precisely, UMTRA (Khodadadeh et al., 2019) and
AAL (Antoniou & Storkey, 2019) are similar methods, mak-
ing queries via image augmentation on randomly sampled
support set samples. In addition, AAL focuses on task
generation, while UMTRA is mainly applied to MAML.
On the other hand, CACTUs (Hsu et al., 2018) aims to
make episodes based on pseudo-labels obtained from clus-

ter assignments, which come from features pre-trained in an
unsupervised fashion. LASIUM (Khodadadeh et al., 2020)
generates synthetic training episodes that can be combined
with existing models, such as MAML and ProtoNet, with
generative models. Moreover, Meta-GMVAE (Lee et al.,
2021) uses VAE (Kingma & Welling, 2013) with Gaussian
mixture priors to solve the few-shot learning problem.

6. Limitations & Future Work
Although NAQ has proven its effectiveness for Few-Shot
Node Classification (FSNC), it is crucial to acknowledge its
limitations, presented below, to stimulate future work.

6.1. Computational Issue of NAQ-DIFF

Due to some technical issues regarding sparse matrix mul-
tiplication, we cannot even calculate the truncated approx-
imation of the graph Diffusion for the dataset, which has
many edges (e.g., ogbn-products). This problem hinders
the applicability of NAQ-DIFF to large real-world datasets.
Hence, it will be promising to devise unsupervised episode
generation methods that can fully leverage the structural
information of graphs while reducing computational costs.

6.2. Problem of Naı̈ve Support Set Generation.

Since NAQ depends on naı̈ve random sampling for support
set generation, there is a possibility that nodes having the
same label can be assigned to a distinct support set, which is
an undesirable case. Although we sample 1-shot support sets
to avoid the above problem, developing a more sophisticated
support set generation method that mitigates the problem
mentioned above and generates a K-shot (K > 1) support
set will be valuable future work.

7. Conclusion
In this study, we proposed NAQ, a novel unsupervised
episode generation algorithm that enables unsupervised
graph meta-learning. NAQ generates 1) support sets by
random sampling from the entire graph, and 2) query sets
by utilizing feature-level similar nodes (i.e., NAQ-FEAT)
or structurally similar neighbors from graph diffusion (i.e.,
NAQ-DIFF). As NAQ generates training episodes out of
all nodes in the graph without any label information, it can
address the label-scarcity problem of supervised graph meta-
learning models. Moreover, generated episodes from NAQ
can be used for training any existing graph meta-learning
models almost without modifications and even boost their
performance on the FSNC task. Extensive experimental
studies on various downstream task settings demonstrate the
superiority and potential of NAQ.
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A. Appendix
A.1. Regarding ‘Class-level Similarity’

A.1.1. WHY IS ‘CLASS-LEVEL SIMILARITY’ SUFFICIENT?

In Section 3.4, we justified our ‘similarity’ condition presented in Section 3.1 in terms of ‘class-level similarity’. In this
section, we provide an explanation on why considering the class-level similarity instead of the exact same class condition,
which is in fact impossible because the class information is not given, is sufficient for the query generation process in NAQ,
and further justify why our method outperforms supervised meta-learning methods.

Overall, we conjecture that training a model via episodic learning with episodes generated from NAQ can be done
successfully not only because our methods enable the utilization of all nodes in a graph, but also because our methods
generate sufficiently informative episodes that enable the model to learn the downstream task format. When we take a closer
look at the training process of an episodic learning framework, the model only needs to classify a small number (N -way)
of classes in a single episode unlike the conventional training scheme requiring the model to classify total |C| classes in a
graph. For this reason, we do not have to strive for finding queries whose labels are exactly the same as their corresponding
support set sample as in ordinary supervised episode generation. Therefore, finding class-level similar queries is sufficient
for generating informative training episodes.

Moreover, if we can generate training episodes that have queries similar enough to the corresponding support set sample
while being dissimilar to the remaining N−1 support set samples, we further conjecture that the episodes utilizing class-level
similar queries from NAQ is even more beneficial than episodes generated in the ordinary supervised manner. This is because
the episodes generated by NAQ provide helpful information from different but similar classes while episodes generated in
the supervised manner merely provide the information within the same classes as support set sample. To further demonstrate
that NAQ has the ability to discover such class-level similar queries, empirical analysis is provided in Section A.1.2.
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Figure 7. Averaged class-level similarity between each node and top-10 similar nodes found via NAQ-FEAT and NAQ-DIFF

A.1.2. NAQ DISCOVERS ‘CLASS-LEVEL SIMILAR’ QUERIES

In this section, we provide an empirical evidence that NAQ can find class-level similar neighbors as queries for each support
set sample (Figure 7), and we further analyze the experimental results of our methods based on that evidence.

To verify that queries found by NAQ are class-level similar, we measure the averaged class-level similarity between a node
and its top-10 similar nodes found by NAQ-FEAT (raw feature similarity) and NAQ-DIFF (graph diffusion) in all four
datasets. The class-level similarity between two nodes is computed based on the similarity between their class centroids,
where the centroid of class c is computed by ac = MEAN(

∑
xi · I{yi = c}) with xi denoting the raw feature of node i and

yi denoting the label of node i. The results are presented in Figure 7. In most cases, similar nodes found by NAQ-FEAT and
NAQ-DIFF exhibit a high-level (∼80%) average class-level similarity. This result shows that NAQ-FEAT and NAQ-DIFF
can discover enough class-level similar nodes as queries for each support set sample.

In addition, we can further justify our arguments in Section 3.2.1 and the experimental results in Section 4.1 based on these
results. First, in Figure 7, we observe that we can sample more class-level similar queries by NAQ-DIFF than NAQ-FEAT in
citation networks (i.e., Cora-Full and DBLP), implying that considering graph structural information can be more beneficial
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in citation networks for the reason described in Section 3.2.1. Second, since NAQ-DIFF can discover class-level similar
queries in the DBLP dataset, it shows superior performance in the DBLP dataset even though DBLP has a low homophily
ratio. Therefore, we emphasize again that discovering class-level similar queries is essential in generating informative
episodes. Third, we observe that the variant of NAQ with higher class-level similarity always performs better in the
downstream FSNC task, implying that making queries class-level similar to corresponding support set samples is directly
related to the performance of NAQ.

In summary, we quantitatively demonstrated that NAQ indeed discovers class-level similar nodes without using label
information, and showed that the experimental results for our methods align well with our motivation regarding the
support-query similarity, presented in Section 3.1 and justified in Section 3.4.

A.2. Regarding the Inherent Bias in Graphs

Although in the main paper, we mentioned about the vulnerability of existing GCL methods to class imbalance, there
exist other inherent bias that may exist in graphs, i.e., structure noise and feature noise. In this section, we provide
further discussions on class imbalance (Section A.2.1) followed by additional results under structure and feature noise
(Section A.2.2).

A.2.1. FURTHER DISCUSSION ON CLASS IMBALANCE

In this section, we discuss in detail why existing graph meta-learning methods and our NAQ retains robustness against class
imbalance in a graph. Even though we can conclude that task format information learned by episodic learning framework
makes the model to be robust against the class imbalance from various experimental results (See Figure 1(c) and Section 4.3),
here we delve deeper into which elements of the (ordinary) supervised or unsupervised episode generation (NAQ) contribute
to the robustness against the class imbalance. In addition, we present empirical analysis to further support our claim that
episodic learning is beneficial to attain robustness against the class imbalance.

Supervised Graph Meta-learning. In the training episode generation step of the ordinary supervised meta-learning
methods, they first sample N -way classes in base classes Cb, then sample K-shot support set samples and Q queries within
each of sampled classes. As a result, all classes in base classes are treated equally regardless of the number of samples they
contain. Therefore, with an aid of the task format information obtained via episodic learning, supervised graph meta-learning
can be robust to class imbalance in a graph.

Table 4. Class-level similarity between each node from Top-p% tail classes in the graph and top-10 similar nodes found via NAQ-FEAT

and NAQ-DIFF (Results of 100%: reported in Figure 7)

Datasets Amazon-Clothing Amazon-Electronics Cora-Full DBLP
top-p%

tail classes
NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF

10% ∼78.7% ∼75.2% ∼72.3% ∼48.2% ∼69.7% ∼77.9% ∼66.6% ∼75.1%
20% ∼81.3% ∼78.2% ∼74.1% ∼51.6% ∼70.7% ∼77.6% ∼68.3% ∼78.0%
50% ∼81.7% ∼80.7% ∼77.8% ∼53.0% ∼74.6% ∼81.8% ∼70.4% ∼80.9%
80% ∼80.8% ∼79.0% ∼78.9% ∼52.5% ∼77.8% ∼84.6% ∼71.9% ∼82.1%

100% ∼81.6% ∼78.8% ∼81.9% ∼52.7% ∼79.8% ∼86.0% ∼73.5% ∼83.0%

Unsupervised Graph Meta-learning with NAQ. Since the class label information is not given to NAQ, addressing class
imbalance is not trivial as in the supervised case described above. Instead, NAQ samples ‘class-level similar’ queries to the
support set nodes from tail classes, which can help learning tail-class embeddings. To demonstrate that NAQ still finds
‘class-level similar’ queries to the tail-class nodes, we measured the averaged class-level similarity between node of the
top-p% tail classes and top-10 similar nodes found by NAQ. Results can be found in Table 4. We observe that NAQ still
finds class-level similar enough queries even for the nodes from tail classes, especially in the dataset in which each variant
of NAQ outperforms (i.e., NAQ-FEAT for product networks (Amazon-Clothing/Electronics), and NAQ-DIFF for citation
networks (Cora-Full, DBLP)). For top-10% tail classes, queries found by NAQ-FEAT exhibit 78.67% / 72.29% class-level
similarity in Amazon-Clothing / Amazon-Electronics, and queries found by NAQ-DIFF exhibit 77.89% / 75.05% class-level
similarity in Cora-Full / DBLP. Therefore, we can conclude that ‘class-level similar’ queries found by NAQ are beneficial
for learning tail-class embeddings from the results of Table 4 and Section 4.3.
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Role of the Episodic Learning Framework. To empirically examine whether downstream task format information
provided by episodic learning helps attain robustness against the class imbalance in the graph or not, we observed the change
in the quality of t-SNE embeddings of the top-10 tail-class nodes produced by NAQ-DIFF when N -way becomes larger (i.e.,
N = 5→ 20, more challenging training setting) in the Amazon-Electronics dataset.

Figure 8. (Left): The t-SNE plot of tail-class embeddings produced by NAQ-DIFF trained with 5-way training episodes. (Right): The
t-SNE plot of tail-class embeddings produced by NAQ-DIFF trained with 20-way training episodes (base-model: ProtoNet)

As we observed in Figure 5(a), NAQ-DIFF has difficulty in finding class-level similar queries (See Figure 7 and Table 4) due
to the low average degree (∼2.06) of the Amazon-Electronics dataset, so that produces inferior tail-class embedding quality
compared to NAQ-FEAT in case of Amazon-Electronics. However, by training with more challenging episodes (i.e., 20-way
training episodes), NAQ-DIFF can produce clearly separable tail-class node embeddings even in the Amazon-Electronics
dataset. Therefore, we can conclude that downstream task ‘format’ information provided by episodic learning benefits
learning about minority classes.
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Figure 9. (a): Impact of the structure noise, (b): Impact of the feature noise (5-way 1-shot, NAQ base-model: ProtoNet)

A.2.2. ADDITIONAL RESULTS ON THE INHERENT BIAS

Structure Noise. Since structure noise in a graph is also a crucial inherent bias that is known to deteriorate the performance
of GNNs, we also evaluated the FSNC performance when there are noisy edges in the given graph structure. To perturb
graph structure, we considered random edge addition, because adding edges are known to be a more effective attack (Wu
et al., 2019). We add random edges as much as p ∈ {0.1, 0.3} of the number of edges in the original graph. By adjusting the
random edge adding ratio p, we examined the impact of the structure noise on 5-way 1-shot FSNC performance. Results are
presented in Figure 9(a). We observe that meta-learning methods are more robust than a GCL method, BGRL, which we
attribute to the task format information learned by episodic learning framework. Moreover, NAQ-FEAT shows significantly
better robustness compared with other baselines, as it only utilizes clean raw node feature instead of noisy structure for
training episode generation.
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Feature Noise. We also examined the impact of the feature noise on the FSNC performance. After random sampling
p ∈ {0.1, 0.3} nodes to be corrupted (Liu et al., 2021), we injected feature noise into sampled nodes by randomly flipping
0/1 value on each dimension of the node feature X:.i from Bernoulli distribution with probability 1

d

∑d
i=1 X:.i (Zhang &

Lu, 2020; Huang et al., 2023). By adjusting the ratio of noisy nodes, we examined the impact of noisy features on 5-way
1-shot FSNC performance. Results are presented in Figure 9(b). We observe that as more noise is added, BGRL shows a
significant performance drop compared to meta-learning methods except for NAQ-FEAT, which we attribute again to the
task format information learned by episodic learning framework. As expected, as NAQ-FEAT relies on the node features for
the similarity computation, its performance drops as more feature noise is added. Thus, developing a more robust algorithm
under feature noise will be a promising direction for future work.

A.3. Ablation Study: Similarity Metric in NAQ-FEAT

As discussed in the Section 3.2, the choice of the similarity metric is an important factor for NAQ-FEAT, since inappropriate
choice of the similarity metric can lead to the wrong selection of queries. To examine the impact of the similarity metric, we
use the cosine similarity and the negative Euclidean distance to measure the class-level similarity between each node and
top-10 similar nodes found by NAQ-FEAT (Table 5), as done in Section A.1.2. Note that Jaccard similarity is excluded when
measuring class-level similarity since it cannot be applied to the continuous features. In addition, we evaluated the 5-way
1-shot FSNC performance on each dataset when using the cosine similarity, Jaccard similarity, and the negative Euclidean
distance as the similarity metric (Table 6). Note that all hyperparameter settings of NAQ-FEAT other than the similarity
metric are identical.

In Table 5, we observe that using the cosine similarity as the similarity metric discovers more class-level similar nodes
than using the negative Euclidean distance. As a result, in Table 6, the FSNC accuracy when using the cosine similarity is
superior to when using the negative Euclidean distance. Note that this is mainly due to the fact that the datasets used in this
experiment have bag-of-words node features, and thus the cosine similarity serves as a better metric. Therefore, we can
confirm that choosing an appropriate similarity metric is important.

Table 5. Impact of the similarity metric on class-level similarity between each node and top-10 similar nodes found via NAQ-FEAT.

Datasets
(Feature type: bag-of-words)

Avg. Class-level sim.
(Cosine sim.)

Avg. Class-level sim.
(Neg. Euclidean dist.)

Amazon-Clothing ∼ 81.6% ∼ 61.0%
Amazon-Electronics ∼ 81.9% ∼ 64.6%

Cora-Full ∼ 79.8% ∼ 40.4%
DBLP ∼ 73.5% ∼ 19.1%

Table 6. Impact of the similarity metric on NAQ-FEAT (5-way 1-shot, base-model: ProtoNet)

Datasets
(Feature type: bag-of-words)

FSNC Accuracy
(Cosine sim.)

FSNC Accuracy
(Jaccard sim.)

FSNC Accuracy
(Neg. Euclidean dist.)

Amazon-Clothing 83.77% 83.35% 80.83%
Amazon-Electronics 76.46% 76.63% 70.68%

Cora-Full 64.20% 63.53% 45.60%
DBLP 71.38% 72.68% 67.53%

When comparing cosine similarity and Jaccard similarity, since they are similar metrics when measuring similarities in
bag-of-words data, NAQ-FEAT with both similarity metrics shows similar FSNC performance over four datasets as shown in
Table 6. Thus, we have the freedom to choose one of those two metrics when using NAQ-FEAT on data with bag-of-words
features. However, Jaccard similarity cannot be computed with continuous features, as we mentioned above. Hence, it will
be more beneficial to consider cosine similarity as a similarity metric due to its generality.

Lastly, note that we did not consider the learnable similarity metric since it requires node-node similarity calculation process
per model update for episode generation, which is computationally burdensome. For this reason, we have not considered the
learnable metric since we pursued an episode generation method that can be performed before the training phase.
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Figure 10. Overview of the NAQ-DIFF. The only difference from NAQ-FEAT is that NAQ-DIFF utilizes graph diffusion instead of
raw-feature-based similarity to get node-node similarity.

A.4. Details on NAQ-DIFF

For NAQ-DIFF, we used Personalized PageRank (PPR) (Page et al., 1999)-based diffusion to obtain diffusion matrix S,
where θPPR

k = α(1−α)k, with teleport probability α ∈ (0, 1), as the weighting coefficient θk. In our experiments, α = 0.1

is used to calculate PPR-based diffusion. Also, we used T̃sym = (wloop ·IN +D)−1/2(wloop ·IN +A)(wloop ·IN +D)−1/2,
with the self-loop weight wloop = 1, as transition matrix, where A ∈ R|V|×|V| is an adjacency matrix of the graph G and D
is a diagonal matrix whose entries Dii =

∑
j Aij are each node’s degree.

Last but not least, although there can be other approaches for capturing the graph structural information (e.g., using the
adjacency matrix, or using a k-NN graph computed based on node embeddings learned by a GNN encoder during the
training phase) (Lee et al., 2022a), we choose the graph diffusion as it captures more global information than the adjacency
matrix, and computationally more efficient than the k-NN approach.

A.5. Details on Evaluation Datasets

The following is the details on evaluation datasets used in this work.

• Amazon-Clothing (McAuley et al., 2015) is a product-product network, whose nodes are products from the category
“Clothing, Shoes and Jewelry” in Amazon. Node features are constructed from the product descriptions, and edges
were created based on ”also-viewed” relationships between products. The node class is a low-level product category.

• Amazon-Electronics (McAuley et al., 2015) is a network of products, whose nodes are products from the category
“Electronics” in Amazon. Node features are constructed from the product descriptions, and edges represent the
“bought-together” relationship between products. The node class is a low-level product category.

• Cora-Full (Bojchevski & Günnemann, 2018) is a citation network, whose nodes are papers. The node features are
constructed from a bag-of-words representation of each node’s title and abstract, and edges represent the citation
relationship between papers. The node class is the paper topic.

• DBLP (Tang et al., 2008) is a citation network, whose nodes are papers. Node features are constructed from their
abstracts, and edges represent the citation relationship between papers. The node class is the venue where the paper is
published.

• ogbn-arxiv (Hu et al., 2020) is a citation network, whose nodes are CS arXiv papers. Node features are constructed
by averaging the embeddings of words in the title and abstract, where the word embeddings are obtained from the
skip-gram model (Mikolov et al., 2013) over the MAG (Wang et al., 2020) corpus. Edges are citation relationships
between papers, and the node class is 40 subject areas of arXiv CS papers.

The detailed statistics of the datasets can be found in Table 7. “Hom. ratio” denotes the homophily ratio of each dataset,
and “Class split” denotes the number of distinct classes used to generate episodes in training (only for supervised settings),
validation, and testing phase, respectively. For ogbn-arxiv, due to the GPU memory issue, graph diffusion calculation is
done as a truncated sum. Moreover, as node features in ogbn-arxiv are word embeddings, we used the negative Euclidean
distance as the similarity metric used for sampling query nodes in NAQ.
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Table 7. Dataset statistics.
Dataset # Nodes # Edges # Features # Labels Class split Hom. ratio

Amazon-Clothing 24,919 91,680 9,034 77 40/17/20 0.62
Amazon-Electronics 42,318 43,556 8,669 167 90/37/40 0.38

Cora-Full 19,793 65,311 8,710 70 25/20/25 0.59
DBLP 40,672 288,270 7,202 137 80/27/30 0.29

ogbn-arxiv 169,343 1,166,243 128 40 15/10/15 0.43

A.6. Details on Compared Baselines & Experimental Settings

Details on compared baselines are presented as follows.

• MAML (Finn et al., 2017) aims to find good initialization for downstream tasks. It optimizes parameters via two-phase
optimization. The inner-loop update finds task-specific parameters based on the support set of each task, and the
outer-loop update finds a good parameter initialization point based on the query set.

• ProtoNet (Snell et al., 2017) trains a model by building N class prototypes by averaging support samples of each class,
and making each query sample and corresponding prototype closer.

• G-Meta (Huang & Zitnik, 2020) obtains node embeddings based on the subgraph of each node in episodes, which
allows scalable and inductive graph meta-learning.

• TENT (Wang et al., 2022b) performs graph meta-learning to reduce the task variance among training episodes via
node-level, class-level, and task-level adaptations.

• GLITTER (Wang et al., 2022a) aims to learn task-specific structures consisting of support set nodes and their relevant
nodes, which have high node influence on them for each meta-training/test task since the given original graph structure
is redundant when learning node embeddings in each meta-task.

• COSMIC (Wang et al., 2023b) adopts contrastive learning scheme on graph meta-learning to enhance the intra-
class generalizability and similarity-sensitive mix-up which generates hard (unseen) node classes for the inter-class
generalizability.

• BGRL (Thakoor et al., 2022) applies BYOL (Grill et al., 2020) on graphs, so it trains the model by maximizing the
agreement between an online embedding and a target embedding of each node, where each embedding is obtained
from two differently augmented views.

• SUGRL (Mo et al., 2022) simplifies architectures for effective and efficient contrastive learning on graphs, and trains
the model by concurrently increasing inter-class variation and reducing intra-class variation.

• AFGRL (Lee et al., 2022b) applies BYOL architecture without graph augmentations. Instead of augmentations,
AFGRL generates another view by mining positive nodes in the graph in terms of both local and global perspectives.

• VNT (Tan et al., 2023) utilizes pretrained transformer-based encoder (Graph-Bert (Zhang et al., 2020)) as a backbone,
and adapts to the downstream FSNC task by tuning injected ‘virtual’ nodes and classifier with given a few labeled
samples in the downstream task, then makes prediction on queries with such fine-tuned virtual nodes and classifier.

For meta-learning baselines except for GLITTER and COSMIC, we used a 2-layer GCN (Kipf & Welling, 2017) as the
GNN encoder with the hidden dimension chosen from {64, 256}, and this makes MAML to be essentially equivalent
to Meta-GNN (Zhou et al., 2019). Such choice of high hidden dimension size is based on (Chen et al., 2019), which
demonstrated that a larger encoder capacity leads to a higher performance of meta-learning model. For each baseline,
we tune hyperparameters for each episode generation method. In the case of GLITTER3 and COSMIC4, we adopted the
settings regarding the GNN encoder (e.g., number of layers and GNN model type) and hyperparameter settings reported in
their official source code. For GCL baselines, we also used a 2-layer GCN encoder with the hidden dimension of size 256.

3https://github.com/SongW-SW/GLITTER
4https://github.com/SongW-SW/COSMIC
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For VNT, following the original paper, Graph-Bert (Zhang et al., 2020) is used as the backbone transformer model. As
the official code of VNT is not available, we tried our best to reproduce VNT with the settings presented in the paper of
VNT and Graph-Bert. For all baselines, Adam (Kingma & Ba, 2015) optimizer is used. The tuned parameters and their
ranges are summarized in Table 8. Note that training TENT with NAQ was non-trivial, as it utilizes the entire labeled data
(XCb

, YCb
) to compute cross-entropy loss along with episode-specific losses computed with training episodes per each

update. Therefore, when we train TENT with NAQ, the cross-entropy loss was calculated over a single episode. For this
reason, the superior performance of NAQ with TENT is especially noteworthy (See Figure 3 and 4) as it outperforms vanilla
supervised TENT even with much less data involved in each parameter update during the training phase.

Table 8. Tuned hyperparameters and their range by baselines
Baselines Hyperparameters and Range

MAML-like
(MAML, G-Meta)

Inner step learning rate ∈ {0.01, 0.05, 0.1, 0.3, 0.5},
# of inner updates ∈ {1, 2, 5, 10, 20}, Meta-learning rate ∈ {0.001, 0.003}

ProtoNet-like
(ProtoNet, TENT)

Learning rate ∈ {5 · 10−5, 10−4, 3 · 10−4, 5 · 10−4, 10−3, 3 · 10−3, 5 · 10−3}

Self-Supervised (TLP) Learning rate ∈ {10−6, 10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3}

ProtoNet NaQ-Feat
(Ours)
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30

35

40

45

50

55

60

65 Meta-
Learning GCL

Cora-Full

ProtoNet NaQ-Feat
(Ours)

BGRL SUGRL AFGRL VNT
35

40

45

50

55

60

65

70

75

80
Meta-
Learning GCL

Amazon-Electronics
Settings

Original
Pareto
Extreme

Figure 11. Impact of the class imbalance (5-way 1-shot, NAQ-FEAT base-model: ProtoNet)

Discussion on VNT. Although we tried our best to reproduce VNT, we failed to achieve their reported performance
especially on Cora-Full, an evaluation dataset shared by VNT and our paper. This might be due to the random seed, dataset
split, or the transformer architecture used in the experiment. However, we conjecture it will also suffer from the inherent bias
in data such as class imbalance similar to GCL methods, as graph transformer-based model also learn generic embedding by
pretraining on a given graph. As an evidence, in Figure 11, we show the results on Cora-Full and Amazon-Electronics under
the same setting used to report results in Figure 1(c). We observe that the performance of VNT deteriorates under class
imbalance like GCL methods.

A.7. Model Training with Episodes from NaQ: ProtoNet Example

In this section, we explain how to train ProtoNet (Snell et al., 2017), which is one of the most widely used meta-learning
models, with episodes generated by NAQ, as a detailed example of Algorithm 1. Let fθ be a GNN encoder, Tt be a generated
episode, and STt

= {(xspt
t,i , y

spt
t,i )}

N×K
i=1 be a randomly sampled support set, then a corresponding query set is generated as

QTt = {(x
qry
t,i , yqryt,i )}N×Q

i=1 = NAQ(STt).

More precisely, we first obtain a prototype cj for each class j ∈ {1, · · · , N} based on the support set ST as follows5:

cj =
1

K

∑K

i=1
fθ(x

spt
i ) · I{yspti = j} (4)

where I{yspti = j} is an indicator function that is equal to 1 only if the label yi of xi is j, otherwise 0. Then, the probability
of each query (xqry, yqry) ∈ QT belonging to class j is computed as follows:

P (yqry = j;xqry) =
exp(−d(fθ(xqry), cj))∑
j′ exp(−d(fθ(xqry), cj′))

(5)

5To remove clutter, we drop the task subscript t from all notations from now on.
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where d(·, ·) is a distance function. We use Euclidean distance in this work.

Then, the parameter is updated as: θ ← θ − η∇θL(θ; qry), where η is the learning rate and L(θ; qry) is a loss given as:

L(θ; qry) = − 1

N ×Q

∑
(xqry,yqry)∈QT

log(P (yqry = j;xqry)). (6)

A.8. Discussion on the Time Complexity of NAQ

In this section, we provide the time analysis of NAQ for generating training episodes. We measured the time spent for the
similarity calculation in each dataset, and the time taken to generate all training episodes (i.e., 16,000 in total). The results
can be found in Table 9 and 10. Even though the datasets we used are not small, NaQ does not require significant time costs.
Moreover, when we use NAQ, the time cost required for similarity calculation and episode generation is at least three times
faster than for ordinary supervised methods’ training episode generation.

Table 9. Averaged elapsed time over 5 runs in seconds for node-node similarity calculation.

Dataset NAQ-FEAT NAQ-DIFF

Amazon-Clothing 1.7769 2.7194
Amazon-Electronics 0.6538 11.0443

Cora-Full 0.0014 1.3207
DBLP 0.0194 9.8653

Table 10. Averaged elapsed time over 5 runs in seconds for generating 16,000 training episodes.

Dataset NAQ-FEAT NAQ-DIFF Supervised
Amazon-Clothing 5.2117 5.0242 64.0850

Amazon-Electronics 6.1301 5.9622 64.4830
Cora-Full 4.9786 4.7484 57.2931

DBLP 5.9689 6.5407 65.8119

However, there are cases where it is challenging to perform similarity calculations at once due to GPU memory problems,
if the size of the graph is too large. In such cases, we can calculate the node-node similarity by performing node-wise
calculation (NAQ-FEAT) or calculating graph diffusion as a truncated sum (NAQ-DIFF), where this process is required
only once for each dataset. Then, a list of Top-k (k << # of nodes) similar nodes for each node can be stored and used by
loading them during the episode generation process. For example, in the case of the ogbn-arxiv dataset, which contains
about 160,000 nodes, we can calculate the Top-k similar nodes list with a capacity of ∼129.20 MiB in a short time of about
150 seconds for NAQ-FEAT and 740 seconds for NAQ-DIFF, for k = 100. By using this Top-k similar nodes list, only
2.2713 for NAQ-FEAT and 2.2266 for NAQ-DIFF seconds are spent on average (5 times) for generating total 16,000 training
episodes, which is faster than the supervised models’ average of 55.9989 seconds in the ogbn-arxiv dataset.

Moreover, in the case of ogbn-products having 2,449,029 nodes, which is a very large-scale dataset, we can calculate such
Top-100 similar nodes list in a short time of about 705 seconds by using batched node-node similarity calculation. Thus, our
NAQ-FEAT can be scalable to very large graphs having million scale nodes. The following results presented in Table 11
demonstrate the effectiveness of our NAQ-FEAT in a very large-scale dataset.

Table 11. Overall averaged FSNC accuracy (%) with 95% confidence intervals on very large-scale dataset (ogbn-products: having
2,449,029 nodes, 61,859,140 edges, 47 classes (class split: 15/15/17), # of features: 100 (obtained by PCA on bag-of-words features),
NAQ-FEAT base-model: ProtoNet)

Dataset ogbn-products
Baselines 5-way 1-shot 10-way 1-shot

ProtoNet (Sup.) 43.50±1.20 34.19±0.69

COSMIC (Sup.) OOM OOM
TLP-BGRL OOM OOM

TLP-SUGRL 27.81±0.78 18.72±0.52

NAQ-FEAT (Ours) 53.82±1.26 43.84±0.77

It is worth noting that we only need one similarity calculation per dataset, which makes NAQ practical in reality.
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A.9. Regarding Overlapping Queries in NAQ

In this section, we discuss the query overlapping problem of NAQ, where sampled query sets corresponding to each distinct
support set have an intersection, which might hurt the FSNC performance of NAQ. Although we tried to prevent this problem
by generating only a 1-shot support set as we mentioned in ‘Support set generation’ process in Section 3.2 (In other words,
as each class contains only a 1-shot support node, the number of overlapping queries among classes can be minimized.),
such query overlapping problem can happen and might be problematic for NAQ. To assess the severity of this problem, we
measured the average query overlap ratio within training episodes generated by NaQ for each dataset. As shown in Table 12
below, query overlap is generally very rare case.

Table 12. Averaged query overlap ratio within 16,000 training episodes generated by NAQ

Datasets Amazon-Clothing Amazon-Electronics Cora-Full DBLP
N -way NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF NAQ-FEAT NAQ-DIFF

5 0.1573% 0.9978% 0.0871% 11.1715% 0.2206% 0.4743% 0.1826% 0.0605%
10 0.3855% 2.0769% 0.2118% 16.9618% 0.5101% 1.0138% 0.4108% 0.1389%
20 0.7834% 4.0358% 0.4457% 21.4706% 1.0221% 2.0151% 0.8559% 0.3054%

However, in the Amazon-Electronics dataset, which has a very low average degree (∼2.06), we observe non-negligible
overlap ratio in the case of NAQ-DIFF, which uses graph Diffusion to find queries. To address this issue, we intentionally
dropped overlapping queries in training episodes. Table 13 and 14 below show results of the effect of dropping overlapping
queries. ‘Overlap drop ver.’ means that we dropped overlapping queries after the episode generation process of NAQ.

Table 13. Impact of dropping overlapping queries on FSNC performance (%) of NAQ-DIFF in Amazon-Electronics (base-model: ProtoNet)

Amazon-Electronics

Setting
NAQ-DIFF

(Original ver.)
NAQ-DIFF

(Overlap drop ver.)

5-way 1-shot 68.56±1.18 69.77±1.17

10-way 1-shot 59.46±0.86 61.98±0.86

20-way 1-shot 49.24±0.59 52.15±0.60

Table 14. Impact of dropping overlapping queries on FSNC performance (%) of NAQ-FEAT in Cora-Full (base-model: ProtoNet)

Cora-Full

Setting
NAQ-FEAT

(Original ver.)
NAQ-FEAT

(Overlap drop ver.)

5-way 1-shot 64.20±1.11 63.37±1.08

10-way 1-shot 51.78±0.75 52.32±0.75

20-way 1-shot 40.11±0.45 40.27±0.48

From above results, we can conclude that removing query overlaps is a promising solution when query overlap is not
negligible like the case of NAQ-DIFF in Amazon-Electronics (see Table 13). However, when query overlap is negligible,
dropping overlapping queries does not bring remarkable improvements (see Table 14).

In summary, the results in Table 12 and Table 14 demonstrate that the query overlapping problem of NAQ is generally
negligible in real-world datasets, and the results in Table 13 imply that dropping overlapping queries can be a promising
solution for some of the exceptional cases like NAQ-DIFF in Amazon-Electronics dataset.

A.10. g-UMTRA: Augmentation-based Query Generation Method

In this section, we introduce our investigation method named g-UMTRA, utilizes graph augmentation to generate queries.
In computer vision, UMTRA (Khodadadeh et al., 2019) tried to apply MAML in an unsupervised manner by generating
episodes with image augmentations. With randomly sampled N support set nodes, UMTRA makes a corresponding query set
through augmentation on the support set. Inspired by UMTRA (Khodadadeh et al., 2019), we devised an augmentation-based
query generation method called g-UMTRA. as an investigation method. g-UMTRA generates query set by applying graph
augmentation on the support set. The method overview an be found in Figure 12.
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Figure 12. Overview of g-UMTRA. First, we randomly sample T sets of N nodes from the entire graph and assign them distinct labels.
Then, we generate support set features by using a GNN encoder with original structures and query set features with augmented structures.

Specifically, we first randomly sample T sets of N nodes from entire graph to generate {Tt}Tt=1. Then for each task Tt,
we generate a N -way support set STt

= {(xt,i, yt,i) | xt,i ∈ V}N×1
i=1 with distinct pseudo-labels yt,i for each xt,i, and their

corresponding query set QTt
in the embedding space by applying graph augmentation.

By notating GNN encoder fθ as fθ(V;G), we can formally describe the query generation process of g-UMTRA as follows:

XSTt
= {

(
fθ(xt,i;G), yt,i

)
| (xt,i, yt,i) ∈ STt},

XQTt
= {

(
fθ(xt,i;A(G)), yt,i

)
| (xt,i, yt,i) ∈ STt

}, (7)

where fθ(xt,i;G) is an embedding of node xt,i with the given graph G and a GNN encoder fθ, and A(·) is a graph
augmentation function. For A(·), we can consider various strategies such as node feature masking (DropFeature) or
DropEdge (Rong et al., 2020).

Note that g-UMTRA is distinguished from UMTRA in the following two aspects: (1) g-UMTRA can be applied to any
existing graph meta-learning methods as it only focuses on episode generation, while UMTRA is mainly applied on MAML.
(2) As described in Equation 7, g-UMTRA generates episodes as pair of sets (XSTj

, XQTj
) that consist of embeddings.

Hence, its query generation process should take place in the training process, since augmentation and embedding calculation
of GNNs depend on the graph structure. However, in UMTRA, image augmentation and ordinary convolutional neural
networks are applied in instance-level, implying that the episode generation process of UMTRA can be done before training.

60

65

70

75

80

85
Amazon-Clothing

35
40
45
50
55
60
65 Cora-Full

MAML ProtoNet TENT G-Meta
63

68

73

78 DBLP

MAML ProtoNet TENT G-Meta
50
55
60
65
70
75

Amazon-Electronics

Ac
cu

ra
cy

 (%
)

Supervised g-UMTRA(DropEdge=0.5) g-UMTRA(DropEdge=0.5 & DropFeature=0.5)

Figure 13. Performance comparison between supervised, g-UMTRA with DropEdge, and g-UMTRA with DropEdge and DropFeature on
existing graph meta-learning models (5-way 1-shot).
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Figure 14. Effect of augmentation function and its strength on g-UMTRA. (5-way 1-shot, base-model: ProtoNet)

A.10.1. DRAWBACKS OF G-UMTRA

Although g-UMTRA can show remarkable performance with some of base-models like ProtoNet (Snell et al., 2017)
(See Figure 13), there are several drawbacks of g-UMTRA that limit its applicability in the real-world settings. First,
g-UMTRA requires additional computation of augmented embedding by each update to make query set embeddings, which
is time-consuming. Next, g-UMTRA cannot be model-agnostic, since it makes episode within the training phase due to
the graph augmentation for the query set generation. Thus, g-UMTRA requires inevitable modification on the training
process of some existing models like G-Meta (Huang & Zitnik, 2020) and TENT (Wang et al., 2022b), up-to-date graph
meta-learning methods which are developed under the premise of utilizing supervised episodes, having mutually exclusive
support set and query set. Lastly, g-UMTRA is also highly sensitive to the augmentation function choice and its strength
(See Figure 14), similar to the original UMTRA.

A.11. Additional Experimental Results

Impact of the label-scarcity in Cora-Full. We additionally conducted the experiment about the label-scarcity problem
presented in Figure 1(a) in the Cora-Full dataset. Similar to the result shown in Figure 1(a), supervised graph meta-learning
methods’ FSNC performance decreases as available labeled data and diversity of base classes decrease (See Figure 15(a)).

Impact of the label noise in Cora-Full. We also conducted the experiment regarding the label noise presented in
Figure 1(b) in the Cora-Full dataset. Note that as Cora-Full has smaller size than Amazon-Electronics, we selected label
noise p ratio from {0, 0.1, 0.2, 0.3}. As shown in Figure 15(b), similar to the result in Figure 1(b), supervised meta-learning
methods’ FSNC performance is highly degraded as noise level increases.
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Figure 15. (a): Impact of the label-scarcity on supervised graph meta-learning methods, (b): Impact of the (randomly injected) label noise
p on supervised graph meta-learning methods. (5-way 1-shot)
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Table 15. Overall averaged FSNC accuracy (%) with 95% confidence intervals on product networks (Full Version)

Dataset Amazon Clothing Amazon Electronics

Setting 5 way 10 way 5 way 10 way 20 way

Base Model Episode Generation 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

MAML

Supervised 76.13±1.17 84.28±0.87 63.77±0.83 76.95±0.65 65.58±1.26 78.55±0.96 57.31±0.87 67.56±0.73 46.37±0.61 60.04±0.52

NAQ-FEAT (Ours) 74.07±1.07 86.49±0.86 59.44±0.91 75.99±0.70 59.56±1.17 74.85±1.03 49.03±0.88 70.47±0.73 45.27±0.60 62.36±0.51

NAQ-DIFF (Ours) 79.30±1.17 86.81±0.82 69.97±0.86 79.74±0.68 62.90±1.18 78.37±0.90 52.23±0.84 68.77±0.76 43.28±0.62 59.88±0.51

ProtoNet

Supervised 75.52±1.12 89.76±0.70 65.50±0.82 82.23±0.62 69.48±1.22 84.81±0.82 57.67±0.85 75.79±0.67 48.41±0.57 67.31±0.47

NAQ-FEAT (Ours) 83.77±0.96 92.27±0.67 76.08±0.81 85.60±0.60 76.46±1.11 88.72±0.73 68.42±0.86 81.36±0.64 58.80±0.60 74.60±0.47

NAQ-DIFF (Ours) 78.64±1.05 90.82±0.68 71.75±0.81 83.81±0.60 68.56±1.18 84.88±0.83 59.46±0.86 76.73±0.67 49.24±0.59 67.99±0.48

TENT

Supervised 79.46±1.10 89.61±0.70 69.72±0.80 84.74±0.59 72.31±1.14 85.25±0.81 62.13±0.83 77.32±0.67 52.45±0.60 69.39±0.50

NAQ-FEAT (Ours) 86.58±0.96 91.98±0.67 79.55±0.78 86.10±0.60 76.26±1.11 87.27±0.81 69.59±0.86 81.44±0.61 59.65±0.60 74.09±0.46

NAQ-DIFF (Ours) 80.87±1.08 90.53±0.71 72.67±0.82 84.54±0.61 68.14±1.13 83.64±0.80 60.44±0.79 76.03±0.67 51.44±0.58 68.37±0.49

G-Meta

Supervised 78.67±1.05 88.79±0.76 65.30±0.79 80.97±0.59 72.26±1.16 84.44±0.83 61.32±0.86 74.92±0.71 50.39±0.59 65.73±0.48

NAQ-FEAT (Ours) 85.83±1.03 90.70±0.73 73.45±0.84 82.61±0.66 74.49±1.15 84.68±0.86 61.18±0.83 77.36±0.67 55.35±0.60 69.16±0.51

NAQ-DIFF (Ours) 82.27±1.10 89.88±0.77 71.48±0.86 82.07±0.63 69.62±1.20 80.87±0.94 58.71±0.80 75.55±0.67 49.06±0.58 67.41±0.47

GLITTER

Supervised 75.73±1.10 89.18±0.74 64.30±0.79 77.73±0.68 66.91±1.22 82.59±0.83 57.12±0.88 76.26±0.67 49.23±0.57 61.77±0.52

NAQ-FEAT (Ours) 68.24±1.27 76.91±1.00 59.15±0.81 77.19±0.65 64.06±1.16 80.25±0.86 59.31±0.79 74.65±0.67 49.75±0.59 65.30±0.51

NAQ-DIFF (Ours) 70.24±1.21 82.48±0.83 63.36±1.14 80.41±0.62 65.45±1.22 80.33±0.87 54.96±0.84 71.10±0.72 44.26±0.57 60.20±0.50

COSMIC

Supervised 82.24±0.99 91.22±0.73 74.44±0.75 81.58±0.63 72.61±1.05 86.92±0.76 65.24±0.82 78.00±0.64 58.71±0.57 70.29±0.44

NAQ-FEAT (Ours) 84.42±1.01 91.73±0.69 73.15±0.78 84.74±0.58 73.98±1.09 87.08±0.75 65.96±0.82 79.11±0.60 61.05±0.59 73.73±0.42

NAQ-DIFF (Ours) 84.40±1.01 91.72±0.69 73.39±0.79 84.82±0.58 74.16±1.08 87.09±0.75 65.95±0.81 79.13±0.60 60.40±0.59 73.75±0.42

TLP

BGRL 81.42±1.05 90.53±0.71 72.05±0.86 83.64±0.63 64.20±1.10 81.72±0.85 53.16±0.82 73.70±0.66 44.57±0.54 65.13±0.47

SUGRL 63.32±1.19 86.35±0.78 54.81±0.77 73.10±0.63 54.76±1.06 78.12±0.92 46.51±0.80 68.41±0.71 36.08±0.52 57.78±0.49

AFGRL 78.12±1.13 89.82±0.73 71.12±0.81 83.88±0.63 59.07±1.07 81.15±0.85 50.71±0.85 73.87±0.66 43.10±0.56 65.44±0.48

VNT 65.09±1.23 85.86±0.76 62.43±0.81 80.87±0.63 56.69±1.22 78.02±0.97 49.98±0.83 70.51±0.73 42.10±0.53 60.99±0.50

Table 16. Overall averaged FSNC accuracy (%) with 95% confidence intervals on product networks (Full Version, OOT: Out Of Time,
which means that the training was not finished in 24 hours, OOM: Out Of Memory on NVIDIA RTX A6000)

Dataset Cora-full DBLP

Setting 5 way 10 way 20 way 5 way 10 way 20 way

Base Model Episode Generation 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

MAML

Supervised 59.28±1.21 70.30±0.99 44.15±0.81 57.59±0.66 30.99±0.43 46.80±0.38 72.48±1.22 80.30±1.03 60.08±0.90 69.85±0.76 46.12±0.53 57.30±0.48

NAQ-FEAT (Ours) 64.64±1.16 74.31±0.94 49.86±0.78 64.88±0.64 38.90±0.46 53.87±0.43 68.49±1.23 77.31±1.08 55.70±0.88 67.94±0.82 44.18±0.53 56.50±0.48

NAQ-DIFF (Ours) 62.93±1.17 76.48±0.92 50.10±0.83 63.50±0.66 38.09±0.45 54.08±0.41 71.14±1.15 79.47±1.01 59.18±0.91 70.19±0.78 44.94±0.57 58.68±0.47

ProtoNet

Supervised 58.61±1.21 73.91±0.93 44.54±0.79 62.15±0.64 32.10±0.42 50.87±0.40 73.80±1.20 81.33±1.00 61.88±0.86 73.02±0.74 48.70±0.52 62.42±0.45

NAQ-FEAT (Ours) 64.20±1.11 79.42±0.80 51.78±0.75 68.87±0.60 40.11±0.45 58.48±0.40 71.38±1.17 82.34±0.94 58.41±0.86 72.36±0.73 47.30±0.53 61.61±0.46

NAQ-DIFF (Ours) 65.30±1.08 79.66±0.79 51.80±0.78 69.34±0.63 40.76±0.49 59.35±0.40 73.89±1.15 82.24±0.98 59.43±0.79 72.85±0.76 48.17±0.52 61.66±0.48

TENT

Supervised 61.30±1.18 77.32±0.81 47.30±0.80 66.40±0.62 36.40±0.45 55.77±0.39 74.01±1.20 82.54±1.00 62.95±0.85 73.26±0.77 49.67±0.53 61.87±0.47

NAQ-FEAT (Ours) 64.04±1.14 78.48±0.79 51.31±0.77 67.09±0.62 40.04±0.48 56.15±0.40 72.85±1.20 80.91±1.00 60.70±0.87 71.98±0.79 47.29±0.53 61.01±0.46

NAQ-DIFF (Ours) 61.85±1.12 77.26±0.84 49.80±0.76 67.65±0.63 37.78±0.45 56.55±0.41 76.58±1.18 82.86±0.95 64.31±0.87 74.06±0.75 51.62±0.54 63.05±0.45

G-Meta

Supervised 59.88±1.26 75.36±0.86 44.34±0.80 59.59±0.66 33.25±0.42 49.00±0.39 74.64±1.20 79.96±1.08 61.50±0.88 70.33±0.77 46.07±0.52 58.38±0.47

NAQ-FEAT (Ours) 65.79±1.21 79.21±0.82 48.90±0.80 63.96±0.61 40.36±0.46 55.17±0.43 70.08±1.24 80.79±0.97 57.98±0.87 71.18±0.75 45.65±0.52 59.38±0.46

NAQ-DIFF (Ours) 62.96±1.14 77.31±0.87 47.93±0.79 63.18±0.61 37.55±0.46 54.23±0.41 70.39±1.20 80.47±1.03 57.55±0.85 69.59±0.78 44.56±0.52 58.66±0.45

GLITTER

Supervised 55.17±1.18 69.33±0.96 42.81±0.81 52.76±0.68 30.70±0.41 40.82±0.41 73.50±1.25 75.90±1.19 OOT OOT OOM OOM

NAQ-FEAT (Ours) 62.66±1.12 76.40±0.87 50.05±0.79 67.66±0.61 40.16±0.47 57.13±0.42 64.55±1.18 78.54±1.10 OOT OOT OOM OOM

NAQ-DIFF (Ours) 54.58±1.14 70.59±0.93 47.62±0.74 64.58±0.65 38.91±0.46 52.70±0.41 63.44±1.21 75.79±1.06 OOT OOT OOM OOM

COSMIC

Supervised 62.24±1.15 73.85±0.83 47.85±0.77 59.11±0.60 42.25±0.43 47.28±0.38 72.34±1.18 80.83±1.03 59.21±0.80 70.67±0.71 49.52±0.51 59.01±0.42

NAQ-FEAT (Ours) 66.30±1.15 80.09±0.79 52.23±0.73 68.63±0.61 44.13±0.47 60.94±0.36 73.55±1.16 82.36±0.94 58.81±0.80 71.14±0.70 50.42±0.52 64.90±0.43

NAQ-DIFF (Ours) 66.26±1.15 80.07±0.79 52.17±0.74 68.95±0.60 44.12±0.47 60.97±0.37 73.82±1.16 82.29±0.94 58.81±0.80 71.10±0.70 50.47±0.52 64.78±0.44

TLP

BGRL 62.59±1.13 78.80±0.80 49.43±0.79 67.18±0.61 37.63±0.44 56.26±0.39 73.92±1.19 82.42±0.95 60.16±0.87 72.13±0.74 47.00±0.53 60.57±0.45

SUGRL 55.42±1.08 76.01±0.84 44.66±0.74 63.69±0.62 34.23±0.41 52.76±0.40 71.27±1.15 81.36±1.02 58.85±0.81 71.02±0.78 45.71±0.49 59.77±0.45

AFGRL 55.24±1.02 75.92±0.83 44.08±0.70 64.42±0.62 33.88±0.41 53.83±0.39 71.18±1.17 82.03±0.94 58.70±0.86 71.14±0.75 45.99±0.53 60.31±0.45

VNT 47.53±1.14 69.94±0.89 37.79±0.69 57.71±0.65 28.78±0.40 46.86±0.40 58.21±1.16 76.25±1.05 48.75±0.81 66.37±0.77 40.10±0.49 55.15±0.46
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