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ABSTRACT

Large scale inference models are widely used in neuroscience to extract latent rep-
resentations from high-dimensional neural recordings. Due to the statistical het-
erogeneities between sessions and animals, a new model is trained from scratch
to infer the underlying dynamics for each new dataset. This is computationally
expensive and does not fully leverage all the available data. Moreover, as these
models get more complex, they can be challenging to train. In parallel, it is be-
coming common to use pre-trained models in the machine learning community
for few shot and transfer learning. One major hurdle that prevents the re-use
of generative models in neuroscience is the complex spatio-temporal structure of
neural dynamics within and across animals. Interestingly, the underlying dynam-
ics identified from different datasets on the same task are qualitatively similar.
In this work, we exploit this observation and propose a source-free and unsuper-
vised alignment approach that utilizes the learnt dynamics and enables the re-use
of trained generative models. We validate our approach on simulations and show
the efficacy of the alignment on neural recordings from the motor cortex obtained
during a reaching task.

1 INTRODUCTION

With advancements in recording techniques, we have access to a large number of simultaneously
recorded neurons, exhibiting complex spatio-temporal activity. Consequently, significant efforts
have been dedicated to the development of computational models that can infer the underlying
structure from these recordings (Linderman et al., 2017; Pandarinath et al., 2018; Duncker et al.,
2019; Schimel et al., 2022; Dowling et al., 2023). The progress in deep generative models, such
as variational autoencoders (VAEs) (Kingma & Welling, 2013) and sequential variational autoen-
coders (Bowman et al., 2015; Hafner et al., 2019), has further contributed to a proliferation of these
latent variable models for neuroscience. These models are trained to extract the latent dynamical
process – typically confined to a low-dimensional manifold – that drives the high-dimensional neural
or behavioral observations.

Despite the abundance of latent variable models for neural data, there are some issues that prevent
their widespread adoption by the experimental community. Firstly, training large models can be
data intensive; although the number of simultaneously recorded neurons continues to increase, the
number of trials a subject can perform during a single experimental session is still limited (Williams
& Linderman, 2021). Furthermore, there is a growing interest in studying naturalistic behaviors
in the field, where trial boundaries are ill-defined and trial repetitions are few, if any (Rosenberg
et al., 2021; Kennedy, 2022; Minkowicz et al., 2023). Secondly, training deep neural networks is
computationally expensive and can pose several challenges. This is partly attributed to the complex
relationship between training process and hyperparameter optimzation, which can considerably im-
pact the model’s performance.

In parallel, the use of pre-trained models has led to significant breakthroughs in natural language
processing and computer vision (Girshick et al., 2014; Rasmy et al., 2021). These are driven by
the empirical observation that model re-use is highly data efficient and achieves comparable per-
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formance as a model trained from scratch, with only a fraction of the data (Goyal et al., 2019).
Moreover, re-using a pre-trained model allows us to circumvent challenges associated with training
a model from scratch. Recent evidence also suggests that pre-trained models are fairly generalizable
and can be fine-tuned to perform a variety of tasks, even across domains (Parisi et al., 2022).

Inspired by the empirical success of pre-trained models in machine learning and the recent interest
in training large models for neuroscience (Azabou et al., 2023; Ye et al., 2023), we investigate the
case of using pre-trained sequential VAEs (seqVAEs) for neural time series data. seqVAEs have
been widely successful at inferring the underlying latent dynamics from high-dimensional neural
time series data. However, due to statistical heterogeneities across datasets, arising from disparities
in the number and tuning properties of recorded neurons, differences in recording modalities, etc.,
pre-trained seqVAEs cannot be re-used directly on new recordings. A potential approach to tackle
this problem is by learning an alignment that transforms the new dataset such that it is statistically
similar to the data used to train the seqVAE. Previous approaches for learning an alignment between
neural datasets require access to the original data used to train the model and/or the existence of
paired samples between datasets (Degenhart et al., 2020; Chen et al., 2021; Williams et al., 2021;
Duong et al., 2023; Wang et al., 2023). The paired samples are commonly constructed by arbitrarily
pairing stimulus-conditioned neural activity across the datasets. This entirely ignores trial-to-trial
variability and cannot be applied to naturalistic task settings. Moreover, many of these methods
do not explicitly model the temporal structure of data which can lead to suboptimal learning of the
alignment (Wang et al., 2023).

p(xt | xt-1)

Fixed prior dynamics

g( . )

w

ne
ur

on
s

time

trials
Alignment

la
te

nt
 s

ta
te

1

latent state2

la
te

nt
 s

ta
te

1

latent state2

Encoder
Inferred latents

min DKL

After training

FixedTrained

Inferred latents
follow reference

dynamics

q(x | yembed)New
observations

constrained
by reference

dynamics

Figure 1: Schematic of unsupervised alignment scheme. We train a sequential VAE on some refer-
ence observations to learn an encoder, along with the underlying low-dimensional dynamics. Given
new observations ynew generated from the same dynamical process, we learn a function g that tran-
forms and implicitly aligns them to the reference, allowing for the re-use of the pre-trained model.
The latent trajectories inferred after transforming the new observations, g(ynew), are constrained by
the learnt latent dynamics.

In this work, we propose a simple unsupervised method for aligning neural time series that facilitates
the re-use of pre-trained seqVAEs. Our approach stems from the observation that learning to perform
inference on new recordings using a pre-trained seqVAE implicitly results in learning an alignment
between datasets. Moreover, our approach leverages the similarity in temporal dynamics across
datasets to learn the alignment, as optimizing for inference in this framework encourages the inferred
latents to be close to the learned dynamics (see Figure 1). As our proposed method is unsupervised,
it does not require the availability of paired samples nor access to the original training data, making
it highly flexible and easy to use. We empirically validate our method on synthetic experiments and
test it on neural recordings obtained from the primary motor cortex (M1) of two monkeys during a
center out reaching task (Dyer et al., 2017).

The main contributions of this paper are summarized as follows: (1) We propose a novel unsuper-
vised method for implicit alignment of sequence data with low-dimensional dynamics that enables
the re-use of trained generative models. (2) For the linear and Gaussian setting, we analytically
demonstrate that the proposed approach recovers an alignment that is close to the optimal. (3)
On synthetic and real data, we provide empirical evidence that the proposed method outperforms
other methods. The corresponding code is available at https://github.com/ayeshav/
align-seqvae.
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2 RELATED WORK

There has been a large body of work on aligning neural datasets for applications such as computing
metrics between neural representations (Williams et al., 2021; Duong et al., 2023); enabling the use
of decoders across sessions (Sussillo et al., 2016b; Farshchian et al., 2019; Gallego et al., 2020; De-
genhart et al., 2020; Ma et al., 2023; Wang et al., 2023), across animals (Herrero-Vidal et al., 2021;
Chen et al., 2021), and even across species (Rizzoglio et al., 2022). One popular alignment approach
minimizes the error between the original and the aligned dataset, using methods such as Canonical
Correlation analysis(CCA) (Gallego et al., 2020; Rizzoglio et al., 2022) or Procrustes (Degenhart
et al., 2020; Duong et al., 2023). However, they require access to the original dataset and require
the existence of a one-to-one correspondence between the two datasets. Moreover, they don’t lever-
age the spatio-temporal structure in neural time series. A related approach works by minimizing a
divergence between the original and aligned dataset, either explicitly (Dyer et al., 2017; Karpowicz
et al., 2022; Wang et al., 2023), or implicitly via generative adversarial networks (Farshchian et al.,
2019; Ma et al., 2023).

The two most similar approaches to the proposed method are NoMAD (Karpowicz et al., 2022) and
ERDiff (Wang et al., 2023). In NoMAD, LFADS (Sussillo et al., 2016a)—a popular seqVAE for
neural time series—is first trained on the original dataset. New datasets are aligned by maximiz-
ing the log-likelihood of data and minimizing the KLD between the distribution of latent states of
the original and aligned dataset, where both are assumed to be Gaussian. Crucially, since LFADS
models the latent dynamics to be deterministic, the log-likelihood accounts for the spatio-temporal
structure of data. While similar to the proposed method, we make no assumption on the distribu-
tion of latent states nor do we require the statistics of the original dataset. In ERDiff, a seqVAE
is trained along with a spatio-temporal diffusion model that approximates the latent distribution of
the original dataset. Given new data, ERDiff optimizes the alignment function to produce latent
states from the pre-trained encoder that are likely under this distribution. Although this is similar in
spirit to the proposed approach, there are significant differences. Namely, ERDiff requires training
a spatio-temporal diffusion model, along with a seqVAE, on the source dataset to perform align-
ment on new data. This incurs additional overhead as re-using or sharing the pre-trained seqVAE
necessitates training a diffusion model. Moreover, it does not use the learned latent dynamics for
aligning as it only re-uses the encoder, instead relying on spatio-temporal transformer blocks to cap-
ture the spatio-temporal structure in the data. In contrast, our approach is considerably simpler as it
only requires training an inexpensive alignment function that feeds into the encoder. Moreover, we
explicitly consider the spatio-temporal structure by using the pre-trained latent dynamics.

3 BACKGROUND

3.1 SEQUENTIAL VARIATIONAL AUTOENCODER

In this work, we focus on learning an alignment between datasets that enables the re-use of state-
space models (SSMs), a class of latent variable models for spatio-temporal data. Let xt ∈ X ⊆ Rdx
and yt ∈ Y ⊆ Rdy be the low-dimensional latent state, and the observation at time t, respectively.
A SSM can be described as follows,

xt | xt−1 ∼ pθ(xt | xt−1), (1)
yt | xt ∼ pϕ(yt | xt), (2)

where equation 1 is the latent dynamics distribution, parameterized by θ, that describes the temporal
evolution of the latent state, xt; equation 2 is the likelihood distribution, parameterized by ϕ, that
maps the low-dimensional latent state to the high-dimensional observation, yt. While there are many
choices for the parametric form of equation 1, we follow standard practice (Krishnan et al., 2015;
Hafner et al., 2019) and parameterize it as pθ(xt | xt−1) = N (xt | fθ(xt−1), Q), where fθ is a deep
neural network (DNN). While one can also parameterize the likelihood distribution 2 with a DNN,
previous work has shown that making both the likelihood and the dynamics highly expressive can
lead to optimization issues (Bowman et al., 2015). Thus, we parameterize the likelihood distribution
to be a linear function of xt. Specifically, for spike data, we parameterize equation 2 as pϕ(yt |
xt) = Binomial(yt | 4, σ (Cxt +D)) where σ is the sigmoid function; for real-valued observation,
such as behavioral recording, we parameterize equation 2 as pϕ(yt | xt) = N (yt | Cxt +D,R).
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Given a neural time series dataset, y1:T = [y1, . . . yt, . . . yT ], we are generally interested in inferring
the corresponding latent states, x1:T , and learning the parameters of the generative model, θ and ϕ.
Exact inference and learning is difficult as it requires computing the posterior, p(x1:T | y1:T ), and the
log marginal likelihood, p(y1:T ), which are both commonly intractable. We address this challenge
by using the seqVAE model—an extension of VAEs for spatio-temporal data (Krishnan et al., 2015).
Similar to VAEs, seqVAEs are trained by maximizing a lower-bound of the log-marginal likelihood,
commonly referred to as the evidence lower bound (ELBO). Specifically, given data, y1:T , the ELBO
is defined as

L(y1:T , θ, ϕ, ψ) =
T∑
t=1

Eqψ [log pϕ(yt | xt) + log pθ(xt | xt−1)− qψ(xt | y1:T )] , (3)

where Eqψ ≡ Eqψ(x1:T |y1:T ) and qψ(xt | y1:T )—commonly referred to as the encoder—is a varia-
tional approximation to the posterior distribution, p(x1:T | y1:T ). The parameters of the generative
model, θ, ϕ, and the encoder, ψ, are optimized jointly.

While there are various approaches for designing qϕ(xt | y1:T ), we follow the parameterization
described in Krishnan et al. (2015) for simplicity, where qψ(x1:T | y1:T ) =

∏T
t=1 qψ(xt | y1:T ) and

qψ(xt | y1:T ) = N
(
xt | µψ(y1:T ), σ2

ψ(y1:T )
)
, (4)

where µψ(·) and σ2
ψ(·) are bidirectional recurrent neural networks.

3.2 ALIGNMENT OF NEURAL TIME SERIES

Now let’s consider a seqVAE model trained on y1:T , which we are interested in re-using for a new
dataset, w1:T = [w1, . . . , wT ]

1, where wt ∈ W ⊂ Rdw . In general, w1:T will not follow a similar
distribution to y1:T . This can be due to several reasons—there might be drift in the recording probes
over sessions, the data might have been collected from a different animal, or using a different record-
ing modality, and so on. The distribution mismatch between y1:T and w1:T prevents straightforward
application of the trained seqVAE to w1:T .

One approach for re-using this model for w1:T is learning an alignment function between the
datasets, gϑ : W → Y, that projects wt to Y , i.e. ŷt ≡ g(wt). The projected data can subsequently
be fed to the pre-trained encoder, i.e., qψ(xt | gϑ(w1:T )), gϑ(w1:T ) ≡ [gϑ(w1), . . . , gϑ(wT )],
thereby enabling us to re-use it for inferring the latent states from w1:T . Broadly, the main ob-
jective for optimizing the alignment function, gϑ, is minimizing the distance between the original
data distribution, p(y1:T ), and the distribution of projected data, p(ŷ1:T ) (Dyer et al., 2017; Duong
et al., 2023). Directly minimizing the distance between the two distributions is usually infeasible, as
we don’t have knowledge about the marginal distributions of the datasets. Moreover, most common
distance measures are tractable for a limited class of distributions, many of which are not able to
effectively model complex spatio-temporal neural activity.

An alternative is using a supervised learning approach to learn the alignment. Specifically, suppose
that we have paired samples from the two datasets, i.e., D = {(wt, yt)}Tt=1. We can then learn gϑ
by minimizing the error between yt and gϑ(wt), i.e., ∥yt − gϑ(wt)∥2. Although this approach can
recover the optimal alignment, it requires the source dataset y, and has the restrictive requirement of
paired samples between the datasets.

4 UNSUPERVISED ALIGNMENT OF NEURAL TIME SERIES

In order to re-use the pre-trained seqVAE, we begin by assuming that the underlying latent dynam-
ics for w1:T are the same as y1:T , allowing us to fix the parameters of the trained dynamics model,
pθ(xt | xt−1). This is supported by empirical evidence that the inferred latent dynamics from
different neural networks (both biological and artificial) performing the same task are similar (Ma-
heswaranathan et al., 2019; Safaie et al., 2022; Brain et al., 2023). The other components of our
pre-trained seqVAE consist of the likelihood function, pϕ(yt | xt), and the encoder, qψ(x1:T | y1:T ).

1For ease of presentation, we set the length of y1:T and w1:T to be the same, but the proposed approach
does not require this to be the case.
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The encoder and likelihood both assume that the observations have a dimensionality of dy but in gen-
eral, dw ̸= dy . Moreover, different recording modalities require different likelihoods, thus pϕ(· | xt)
may not be the suitable parametric form for wt. However, given that we paramterize the likelihood
as a linear function of xt, re-training a likelihood model for w1:T will result in minimal compu-
tational overhead. Thus, we train a new likelihood distribution specific to the new dataset, w1:T ,
i.e., pϕw(wt | xt). In contrast, the encoders for seqVAEs are usually parameterized by large neural
networks, such as a bidirectional recurrent neural network, and it would be preferable to keep its
parameters fixed. As described in Section 3.2, a way to avoid re-training the encoder is by learning
an alignment between the two datasets. In this work, we propose an unsupervised algorithm based
off a simple observation.

In the VAE framework, the role of the encoder is to infer the latent states given the observed data,
where the optimal encoder corresponds to the true posterior distribution (Blei et al., 2017). Suppose
that the pre-trained encoder provides a good approximation to the posterior, i.e., qψ(x1:T | y1:T ) ≈
p(x1:T | y1:T ). Intuitively, a good alignment function should facilitate the re-use of the pre-trained
encoder to obtain a reasonable approximation to the posterior on the new dataset, i.e., qψ(x1:T |
gϑ(w1:T )) ≈ p(x1:T | w1:T ). To study the validity of this intuition, we consider a simple linear
model that affords analytical tractability; for ease of presentation, we drop the time index. Let
p(x) = N (0, I), p(y | x) = N (Ax,Q), p(w | x) = N (Cx,R) and gϑ(w) = ϑw, where I is the
identity matrix. Based on the previous intuition, we can optimize the parameters of the alignment,
ϑ, by minimizing the expected Kullback-Leibler divergence between q(x | gϑ(w)) and p(x | w)

ϑ⋆ = argmin
ϑ

Ep(w) [DKL (q (x | gϑ(w)) ∥p(x | w))] , (5)

which is equivalent to maximizing the expected ELBO

ϑ⋆ = argmax
ϑ

Ep(w)

[
Eq(x|gϑ(w)) [log p(w | x) + log p(x)− log q (x | gϑ(w))]

]
. (6)

Recalling that the optimal encoder is the posterior—and that the linear and Gaussian model allows
for a tractable posterior (Bishop, 2007)—we define q(x | y) as

q(x | y) = p(x | y) = N (µ(y),Σ), (7)

µ(y) ≜ ΣA⊤Q−1y, (8)

Σ ≜ (A⊤Q−1A+ I)−1. (9)

Thus, q(x | gϑ(w)) = N (µ (gϑ(w)) ,Σ). The tractability of this simple model allows us to directly
compare the solution of equation 6, ϑ⋆, with the optimal alignment with respect to the mean-squared
error, ϑ†

ϑ† = argmin
ϑ

Ep(w,y)
[
(y − ϑw)⊤(y − ϑw)

]
. (10)

In the following proposition, we demonstrate that ϑ⋆ can be expressed as a linear transformation of
ϑ†; the proof can be found in the Appendix (A)

Proposition 1 Let ϑ⋆ be the solution of equation 6 and ϑ† be the solution of equation 10. Then
ϑ⋆ =

(
I +Q(AA⊤)−1

)
ϑ†, where I is the identity matrix.

Proposition 1 demonstrates that by optimizing equation 6, we obtain a linear transformation of the
optimal alignment, ϑ†. Moreover, we see that the difference between ϑ† and ϑ⋆ is a function of
Q(AA⊤)−1. Thus, when the new observation noise, Q is small and/or when AA⊤ is large, we
expect for ϑ⋆ ≈ ϑ†. We emphasize that we are able to implicitly learn a good approximation of the
optimal alignment function in an unsupervised fashion without paired samples or the source data, y.

Inspired by Proposition 1, we move on to designing a general purpose algorithm for unsupervised
learning of an alignment function, gϑ. A straightforward approach is to jointly learn the parameters
of the alignment, gϑ, and of the dataset specific likelihood, pϕw(wt | xt), by optimizing the ELBO

L(w1:T , ϕw, ϑ) =

T∑
t=1

Eqψ,ϑ [log pϕw(wt | xt) + log pθ(xt | xt−1)− qψ (xt | gϑ(w1:T ))] , (11)

where Eqψ,ϑ ≡ Eqψ(x1:T |gϑ(w1:T )) and both the latent dynamics, pθ(xt | xt−1), and the encoder,
qψ(xt | y1:T ), are kept fixed.

5



Published as a conference paper at ICLR 2024

1-step prior K-step prior

Figure 2: A case for K-
step regularization.

While optimizing equation 11 is simple and can lead to good empirical
performance, we found that it was easy for the optimizer to converge
to a suboptimal local minimum. Further investigation revealed that the
optimizer would produce latent states that are likely under the one-step
ahead dynamics, log pθ(xt | xt−1), but would not respect the global
dynamics; Fig 4 presents an example (denoted as 1-step prior).

To regularize the optimizer to produce latent states that respect the global
dynamics, we replace the one-step ahead dynamics, log pθ(xt | xt−1),
with a K-step ahead dynamics term,

∑K
j=1 log pθ(xt−K+j | xt−K),

(Hafner et al., 2019), which encourages the latent states to follow the
dynamics over the k-step horizon. Following (Hafner et al., 2019), al-
though log pθ(xt−K+j | xt−K) is intractable, it is straightforward to
obtain an unbiased Monte Carlo estimate; in the Appendix B we discuss
how an unbiased estimate is obtained. This leads to the K-step ahead ELBO, which we use going
forward

LK(w1:T , ϕw, ϑ) =
T∑
t=1

Eqψ,ϑ

log pϕw(wt | xt) + K∑
j=1

log pθ(xt−K+j | xt−K)− qψ(xt | gϑ (w1:T ))

 .
We note that, although log pθ(xt−K+j | xt−K) is intractable, it is straightforward to obtain an
unbiased Monte Carlo estimate (Hafner et al., 2019). In Fig 4, we see that using the K-step ahead
ELBO leads to much better latents (denoted as K-step prior)

5 EXPERIMENTS

We validate our alignment approach on synthetic datasets generated with via the Van der Pol dy-
namics and the Lorenz system. Then, we test our method on neural recordings obtained from the
primary motor cortex (M1) in two monkeys during a reaching task (Dyer et al., 2017). We compare
the proposed approach against the following methods:

ERDiff (Wang et al., 2023). This method uses a pre-trained seqVAE along with a diffusion model
with spatio-temporal transformer blocks to estimate the density of latent trajectories on the original
dataset ps(x1:T ). The alignment function is trained to maximize Eqψ,ϑ [log ps(x1:T )] where the
encoder is kept fixed. They additionally optimize a Sinkhorn divergence between the source and
target latents.

NoMAD (Karpowicz et al., 2022). Given a pre-trained seqVAE, NoMAD fits a multivariate Gaus-
sian to the inferred latent states from the original dataset, py(x) = N (µy,Σy). The alignment func-
tion is trained to maximize

∑T
t=1 Eqψ,ϑ [log pϕw(wt)]−DKL[py(x)∥pϑ(x)] where pϑ = N (µϑ,Σϑ)

is a Gaussian distribution fit to the latents from the new dataset.

Cycle-GAN (Ma et al., 2023). Cycle-GAN leverages adversarial training, via a generative adversar-
ial network, to align new sessions to the original dataset.

Orthogonal Procrustes (Schönemann, 1966). An alignment is learned via Orthogonal Procrustes.
We note that this requires paired samples from the original and new datasets.

Re-training. We train a generative model from scratch on the new dataset as an upper bound on
performance.

To isolate the benefits of each method, one seqVAE is trained and is then given to all methods. Due
to space constraints, we defer training and architecture details to the Appendix C.

5.1 VAN DER POL OSCILLATOR

The Van der Pol oscillator is a two-dimensional nonlinear dynamical system. We consider a noisy
version of this system described as follows:

ẋ1 = µ(x1 −
1

3
x31 − x2) + ϵ, ẋ2 =

1

µ
x1 + ϵ, (12)
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where µ = 1.5 and ϵ ∼ N (0, 0.1). For training the seqVAE, we generated 1600 trajectories of length
T = 300 with spike observations where the number of neurons was set to 250, i.e., dy = 250. To
avoid aligning the raw spikes (which are high-dimensional), we use a non-linear embedding function
that down-projects spikes to 64 dimensions using an MLP before passing it into the encoder.

For evaluating the alignment methods, we generated three more datasets, w1,1:T , w2,1:T , and
w3,1:T—each of length T = 300—where each dataset has a different number of neurons (dw1 =
200, dw2

= 250, dw3
= 300). For the proposed approach, ERDiff and NoMAD, we parameterize

gϑ as an MLP. For each dataset, all methods were trained using 500 trajectories and were evaluated
on a held-out test set.
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Figure 3: A. The vector field is generated from the learnt source dynamics. Sampled latent trajec-
tories from the encoder after aligning the observations using the proposed approach, ERDiff and
CycleGAN. B. The true firing probability of example neurons on a trial (top) and the reconstruction
and prediction for the aligned data using the pre-trained model (below). C. Likelihood of source dy-
namics given inferred latents for the source and aligned data. D. K-step prediction r2 performance.
E. K=30-step prediction performance for various approaches. We plot the median (solid) and the
[20, 80] percentile (dotted) r2.

In Fig. 3A, we plot example latent trajectories sampled from the encoder using comparing our
approach to ERDiff and CycleGAN. We see that our approach produces smoother latents that
respects the pre-trained dynamics; this leads to better reconstructed firing rates and smoother
predictions Fig. 3B. To quantify whether the alignment procedures lead to latents that respect
the dynamics we compute the likelihood of the inferred latents on the trained dynamics, i.e.,∑T
t=1 Eq(x1:T |gϑ(w1:T )) [log pθ(xt|xt−1)] (Fig. 3C). We see that the proposed method outperforms

all comparisons. Moreover, we see that using a K-step ahead prior leads to better performance as
opposed to the standard 1-step ahead prior.

We subsequently evaluate the methods on their forecasting performance. We use the first 250 time
points to infer the latents after aligning and sample 50 steps in the future. We measure the per-
formance by computing the r2 between the true and predicted trajectories (Fig 3D). Our approach
performs close to a model trained from scratch on the new dataset. We also test the few-shot perfor-
mance of these methods. In Fig 3E, we plot the forecasting performance for k = 30 as a function of
the number of trajectories used for training. Even in the one-shot regime, our method consistently
achieves high r2 performance and demonstrates low variance compared to other alignment methods.

To demonstrate that the method can also allow for alignment across recording modalities, we include
an experiment in the Appendix where we align real-valued data to the pre-trained model Fig 6.
Specifically, wt ∼ N (Cxt, σI), where dw = 30 and σ = 0.1. From Fig. 6, we see that the proposed
method performs well and is able to match the forecasting performance of a model trained from
scratch.

5.2 LORENZ ATTRACTOR

The Lorenz attractor is a three-dimensional system with chaotic dynamics described by the following
set of equations,

ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ− x3)− x2, ẋ3 = x1x2 − βx3, (13)
where σ = 10, β = 8/3, and ρ = 28. For training the seqVAE, we generated 1600 trajectories of
length T = 500 with real-valued observations where dy = 40.
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Figure 4: A. Latent samples from new data using
our approach are aligned with the source latents.
B. Prediction performance for various alignment
methods and re-training a model from scratch.

For evaluating the alignment methods, we gen-
erated two more datasets, w1,1:T , and w2,1:T ,
each of length T = 500, where dw1

= 35
and dw2

= 55. For the proposed approach,
ERDiff and NoMAD, we parameterize gϑ as a
linear function. For each dataset, all methods
were trained using 1,000 trajectories and were
evaluated on a held-out test set. We evaluate
the models on reconstruction and forecasting,
where for forecasting we use 400 time points
to infer the latents and sample 50 steps in the
future.

In Table 1, we display the reconstruction and
forecasting r2 for each of the methods. On
reconstruction, we see that both the proposed
approach and NoMAD perform very well and
are able to match the performance of training a
model from scratch. In contrast, we see that for a prediction horizon of only 5, all the baselines
deteriorate. Only the proposed approach is able to match the forecasting performance of a model
trained from scratch. In Fig 4, we see that the proposed approach allows for stable forecasting up to
30 time steps ahead.

Methods Reconstruction r2 5-step ahead r2

Re-training 0.99 ± 0.0005 0.99 ± 0.0006
Our approach 0.99 ± 0.0008 0.99 ± 0.0012

ERDiff -0.08 ± 0.0496 -0.23 ± 0.0553
NoMAD 0.99 ± 0.0005 -0.03 ± 0.0714

Cycle-GAN 0.86 ± 0.0131 -0.42 ± 0.0937
Procrustes 0.68 ± 0.052 0.18 ± 0.0833

Table 1: Reconstruction and forecasting performance for the Lorenz attractor. The values indicate
the median and standard error over the observations from new sessions. We report the prediction
performance for 5-step ahead prediction.

Next, we compare the alignment learnt from our approach to the optimal alignment that can be
obtained with respect to mean-squared error. In order to do this, we simulated 100 trajectories
from the Lorenz attractor, and used the same likelihood models as above to generate observations
with paired samples. The alignment function from our unsupervised approach closely matches the
optimal (Fig. 7B, RMSE: 0.0017± 0.002).

5.3 NEURAL RECORDINGS

We applied our method to motor cortex recordings from two monkeys (M and C) during a delayed
center out reaching task(see (Dyer et al., 2017) for details). Briefly, the monkeys were trained to use
a manipulandum to move a cursor to one of eight possible target locations on the screen (Fig. 5A).
As they performed the task, electrophysiological activity was recorded from M1 along with the hand
position and velocity. For each monkey, two sessions of data were available where the number of
correct trials per session ranged from 159 to 215 while the total number of neurons varied from 150
to 167. Following (Wang et al., 2023), we pre-process the data by first binning the neural activity
into 20 ms bins. The binned spikes were then smoothed using a 50 ms Gaussian kernel.

We trained a seqVAE on session 1 from monkey M as we observed that the recordings from this
session were highly informative about the monkey’s behavior relative to the other datasets. We set
the latent dimension to be 30 and also learn an embedding that projects the smoothed spikes down to
64 dimensions before being passed into the encoder. To ensure that the latents were also informative
of the behavior, we included likelihood terms for both the smoothed spikes and the monkey’s hand
velocity where a Gaussian likelihood was used in both cases. We treat session 2 from Monkey
M along with sessions 1 and 2 from Monkey C as new datasets and use them to investigate the
performance of the methods. For the proposed approach, NoMAD and ERDiff, we parameterize
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Figure 5: A. Schematic depicting the center out reaching tasks that the monkeys performed. B.
True and decoded monkey hand trajectories after alignment.

gϑ with an MLP. For the proposed approach and NoMAD, the behavior likelihood term was also
included in the loss function, but its parameters were kept fixed.

In Fig. 5B, we demonstrate example decoded hand trajectories for some methods where we see that
the proposed method, along with NoMAD and Procrustes are able to produce good decoded hand
trajectories, both across sessions and across monkeys. In Fig. 8, we plot example latent trajectories
where a similar trend is observed. In Table 2, we quantify the reconstruction and forecasting per-
formance for each of the methods. We see that the proposed approach, NoMAD and Procrustes are
able to reconstruct the hand trajectories, with NoMAD performing slightly better. In forecasting, we
see that only the proposed approach is able to forecast well while the other approaches struggle.

Methods Reconstruction r2 5-step ahead r2

Our approach 0.66 ± 0.023 0.39 ± 0.071
ERDiff -0.32 ± 0.38 -0.23 ± 0.553
NoMAD 0.68 ± 0.021 0.15 ± 0.101
Cycle-GAN -0.15 ± 0.154 -0.81 ± 0.121
Procrustes 0.61 ± 0.051 0.07 ± 0.141

Table 2: Reconstruction and forecasting performance for monkey hand trajectories. Values indicate
the median and standard error over the observations from new sessions. We report the prediction
performance for 5-step ahead prediction.

6 CONCLUSIONS AND LIMITATIONS

In this work, we propose an unsupervised alignment approach that leverages the temporal dynamics
learnt from a source dataset to align new data. This enables the re-use of a pre-trained generative
model without access to training data or the restrictive requirement of paired samples. We demon-
strate the efficacy of our approach by re-using a seqVAE trained on neural recordings from M1 of
one monkey to predict behavior on different sessions. This lends further credence to the hypothesis
that low dimensional neural representations play a crucial role in neural computation and behavior.
The importance of studying these representations in a common space has been previously high-
lighted (Dabagia et al., 2022) and is naturally afforded by our approach. Moreover, the variability in
recordings not explained by the common dynamics assumption can offer a complementary insight
into individual differences.

While the proposed approach is promising, there are limitations and room for improvement. Firstly,
we assume that we have a good pre-trained model that has learnt the underlying dynamics well. An
important direction for future research would be learning the underlying dynamics on a task using
multiple datasets to identify generalizable latent representations. Secondly, the proposed approach
relies assumes that the latent dynamics are exactly the same across datasets. Thus, we would expect
our method to work well on recordings obtained during the same or similar cognitive task as the data
used for pre-training. Moreover, this assumption does not take behavioral variability into account.
The dynamics on tasks with different structure that require the same computation would introduce
additional variability. Fine-tuning the model after aligning recordings is one possibility to get good
performance across different contexts and would be an interesting direction for future work.
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A PROOF OF PROPOSITION 1

We assume that p(x) = N (0, I), p(y | x) = N (Ax,Q) and p(w | x) = N (Cx,R). Let gϑ(x) be a
linear function of x, i.e. gϑ = ϑx. Using standard Gaussian identities, we can derive the marginal
distribution for y

p(y) =

∫
p(y | x)p(x)dx, (14)

=

∫
N (y | Ax,Q)N (x | 0, I)dx, (15)

= N (y | 0, Q+AA⊤), (16)

and w

p(w) =

∫
p(w | x)p(x)dx, (17)

=

∫
N (w | Cx,R)N (x | 0, I)dx, (18)

= N (w | 0, R+ CC⊤). (19)
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A.1 DERIVATION OF ϑ†

We begin by first solving for the parameters of the optimal alignment function by minimizing the
expected mean squared error (MSE)

ϑ† = argmin
ϑ

Ep(w,y)
[
(y − ϑw)⊤(y − ϑw)

]
. (20)

To solve the above optimization, we expand the expected MSE

Ep(w,y)
[
(y − ϑw)⊤(y − ϑw)

]
= Ep(w,y)

[
y⊤y + w⊤ϑ⊤ϑw − w⊤ϑ⊤y

]
, (21)

= Ep(y)[y⊤y] + Ep(w)[w
⊤ϑ⊤ϑw]− 2Ep(w,y)[w⊤ϑ⊤y], (22)

= tr(Q+AA⊤) + tr
(
ϑ⊤ϑ(R+ CC⊤)

)
− 2tr(C⊤ϑ⊤A). (23)

To find ϑ†, we differentiate equation 23

2ϑ(R+ CC⊤)− 2AC⊤. (24)

We set equation 24 to 0 and solve for ϑ†

2ϑ†(R+ CC⊤)− 2AC⊤ = 0 (25)

ϑ†(R+ CC⊤) = AC⊤ (26)

ϑ† = AC⊤(R+ CC⊤)−1. (27)

A.2 DERIVATION OF ϑ⋆

We now move on to solving for ϑ⋆
ϑ⋆ = argmax

ϑ
Ep(w) [L(ϑ,w)] , (28)

= argmax
ϑ

Ep(w)

[
Eq(x|gϑ(w)) [log p(w | x) + log p(x)− log q(x | gϑ(w))]

]
, (29)

= argmax
ϑ

Ep(w)

[
Eq(x|gϑ(w)) [log p(w | x)]− DKL [q(x | gϑ(w)∥p(w)]

]
, (30)

where DKL is the Kullback-Leibler divergence. Recalling that the optimal encoder is the posterior,
we set q(x | y) to be the posterior p(x | y)

q(x | y) = p(x | y) = N (µ(y),Σ), (31)

µ(y) ≜ ΣA⊤Q−1y, (32)

Σ ≜ (A⊤Q−1A+ I)−1, (33)

thus

q(x | gϑ(w)) = N (µ(gϑ(w)),Σ), (34)

µ(gϑ(w)) ≜ ΣA⊤Q−1ϑw, (35)

Σ ≜ (A⊤Q−1A+ I)−1, (36)

Due to the linear and Gaussian assumptions placed on the model, we can analytically evaluate
L(ϑ,w). For conciseness, we use the substitution, ŷ ≜ ϑw, when appropriate and absorb all con-
stants with respect to ϑ into C

L(ϑ,w) = Eq(x|gϑ(w)) [log p(w | x)]− DKL [q(x | gϑ(w)∥p(w)] , (37)

= Eq(x|gϑ(w)) [log p(w | x)]− 1

2
µ(ŷ)⊤µ(ŷ) + C, (38)

= Eq(x|gϑ(w))

[
−1

2
(w − Cx)⊤R−1(w − Cx)

]
− 1

2
µ(ŷ)⊤µ(ŷ) + C, (39)

= Eq(x|gϑ(w))

[
w⊤R−1Cx− 1

2
x⊤C⊤R−1Cx

]
− 1

2
µ(ŷ)⊤µ(ŷ) + C, (40)

= w⊤R−1Cµ(ŷ)− 1

2
µ(ŷ)⊤C⊤R−1Cµ(ŷ)− 1

2
µ(ŷ)⊤µ(ŷ) + C (41)
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We now take the expectation over w of the analytical ELBO from equation 41, where to ease nota-
tion, we set T ≡ ΣA⊤Q−1

Eq(x|gϑ(w)) [L(ϑ,w)] = Eq(x|gϑ(w))

[
w⊤R−1Cµ(ŷ)− 1

2
µ(ŷ)⊤C⊤R−1Cµ(ŷ)− 1

2
µ(ŷ)⊤µ(ŷ)

]
+ C,

(42)

= Eq(x|gϑ(w))

[
w⊤R−1CTϑw − 1

2
w⊤ϑ⊤T⊤C⊤R−1CTϑw − 1

2
w⊤ϑ⊤T⊤Tϑw

]
+ C, (43)

= tr
(
R−1CTϑ(R+ CC⊤)

)
− 1

2
tr
(
ϑ⊤T⊤C⊤R−1CTϑ(R+ CC⊤)

)
− 1

2
tr
(
ϑ⊤T⊤Tϑ(R+ CC⊤)

)
+ C

(44)
To find ϑ⋆, we differentiate equation 44 and set it equal to 0.

∇ϑEp(w)[L(ϑ,w)] = 0, (45)

T⊤C⊤R−1(R+ CC⊤)− T⊤C⊤R−1CTϑ(R+ CC⊤)− T⊤Tϑ(R+ CC⊤) = 0, (46)

T⊤C⊤R−1 − T⊤C⊤R−1CTϑ− T⊤Tϑ = 0, (47)

T⊤C⊤R−1CTϑ+ T⊤Tϑ = T⊤C⊤R−1, (48)

C⊤R−1CTϑ+ Tϑ = C⊤R−1, (49)(
I + C⊤R−1C

)
Tϑ = C⊤R−1, (50)

Tϑ =
(
I + C⊤R−1C

)−1
C⊤R−1 (51)

We use the following variant of the Woodbury identity (Petersen et al., 2008) (equation 158)(
I + C⊤R−1C

)−1
C⊤R−1 = C⊤ (

R+ CC⊤)−1
, (52)

and plug it into equation 51 to get

Tϑ = C⊤ (
R+ CC⊤)−1

. (53)

Recalling that T ≡ ΣA⊤Q−1 and Σ =
(
A⊤Q−1A+ I

)−1

ΣA⊤Q−1ϑ = C⊤ (
R+ CC⊤)−1

, (54)(
A⊤Q−1A+ I

)−1
A⊤Q−1ϑ = C⊤ (

R+ CC⊤)−1
. (55)

Using the same Woodbury identity, we can simplify the above

A⊤ (
Q+AA⊤)−1

ϑ = C⊤ (
R+ CC⊤)−1

, (56)

(AA⊤)−1AA⊤ (
Q+AA⊤)−1

ϑ = (AA⊤)−1AC⊤ (
R+ CC⊤)−1

, (57)(
Q+AA⊤)−1

ϑ = (AA⊤)−1AC⊤ (
R+ CC⊤)−1

, (58)

ϑ =
(
Q+AA⊤) (AA⊤)−1AC⊤ (

R+ CC⊤)−1
, (59)

ϑ = Q(AA⊤)−1AC⊤ (
R+ CC⊤)−1

+AA⊤(AA⊤)−1AC⊤ (
R+ CC⊤)−1

, (60)

ϑ = Q(AA⊤)−1AC⊤ (
R+ CC⊤)−1

+AC⊤ (
R+ CC⊤)−1

, (61)

ϑ =
(
I +Q(AA⊤)−1

)
AC⊤(R+ CC⊤)−1, (62)

ϑ⋆ =
(
I +Q(AA⊤)−1

)
ϑ† (63)

B EVALUATING K-STEP AHEAD PRIOR

The K-step ahead log prior, log pθ(xt+K | xt), is defined as

log p(xt+K | xt) =
∫
pθ(xt+1 | xt) . . . pθ(xt+K−1 | xt+K−2) log pθ(xt+K | xt+K−1)dxt+1:t+K−1

(64)
We can rewrite the above as an expectation

log p(xt+K | xt) = Epθ(xt+1|xt)...pθ(xt+K−1|xt+K−2) [log pθ(xt+K | xt+K−1)] (65)
which allows for an unbiased estimator by applying the dynamics K times to xt.
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C ADDITIONAL DETAILS

C.1 BASELINES

We note that while the proposed approach and NoMAD learn a dataset specific likelihood
while aligning, i.e., log pϕw(wt | xt), the other methods do not. Thus, for the other meth-
ods, we first train the alignment function, gϑ. Next, we fit log pϕw(wt | xt) by maximizing∑T
t=1 Eqψ(x1:T |gϑ(w1:T )) [log pϕw(wt | xt)]

C.2 MODEL ARCHITECTURE AND TRAINING

For all experiments, the seqVAE encoder was parametrized by a bi-directional GRU with 64 hidden
units. The latent dynamics were modeled as pθ(xt | xt−1) = N (fθ(xt−1, Q) where fθ was a
two-layer MLP with a width of 256 and tanh activations.

As spike data tends to be very high-dimensional, we avoid learning an alignment in the original
space. Instead, when training the seqVAE we also trained an embedding function that projects the
spikes down to 64 dimensions before being passed into the encoder. The embedding function was a
two-layer MLP with width of 64 and relu activations.

We used Adam to optimize the model. Unless stated otherwise, we used a weight decay of 10−4 and
a learning rate of 1e−3.

C.3 EXPERIMENTS

EVALUATION METRICS AND COMPARISONS

We evaluated all methods on their reconstruction RMSE and the normalized r2. We also report the
forecasting performance using the pre-trained model. After aligning the datasets with each method,
we use T time points to sample latents from the encoder, x0:T−1 and subsequently generate x̂T :T+k

using the dynamics. This is decoded to obtain the predicted observations ŷT :T+k. The r2k is then
computed as:

r2k = 1−
∑M
i=1(yk−ŷk)

2∑M
i=1(yk−ȳ)2

where ȳ is the mean activity during the trial, andM is the number of testing samples. In the synthetic
experiments, we additionally train a likelihood function after learning the alignment for methods that
do not optimize for reconstruction. We have not performed an extensive hyperparameter search for
the reported methods and instead followed the values recommended in the papers and/or the code.

ADDITIONAL DETAILS

Van der Pol oscillator. We used an embedding function in this experiment with dỹ = 64 since
the number of simulated neurons for all datasets was over 200. In this case, we directly align to
the intermediate embedding except for the approaches that directly work in the observation space
(Cycle-GAN, Procrustes). We used an MLP with dh = 64 to align new observations in our approach
and used a 10-step prior during optimization.

Lorenz Attractor In this experiment, we parameterized g as a linear function, and used 1000 trajec-
tories for training all the alignment methods. Due to the chaotic dynamics in the system, we found
that using a small, stochastic value the k-step prior was better than using a large k. As a result, we
randomly sampled k = [1, 2] during training. We used a weight decay of 1 for the optimizer.

Motor cortex When training the reference model from neural recordings with different stimulus
conditions, we included the stimulus input when passing data through the embedding function, as
well as the prior dynamics. In order to encourage the model to learn smooth dynamics, we randomly
jittered the spike counts in [−2, 2] bins during the first half of training. Additionally, the weight
decay parameter for the Adam optimizer was set to 10−2. We did not include the stimulus input
when training the alignment function for any method.
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Figure 6: Cross-modal alignment. Aligning Gaussian observations to seqVAE trained on spiking
data A. Example trajectories of true rates (top) and reconstructed and predicted trajectories after
aligning. B. k-step prediction performance using the pre-trained model after aligning.
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Figure 7: Lorenz attractor with paired samples. A. Example units with the same initial condition for
y, w and the aligned g(w) obtained using our approach, as well as the optimal alignment. B. The
optimal g and the one recovered from our method.
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Figure 8: A. Projected latents from the source data used to train the reference seqVAE. Each trajec-
tory corresponds to the stimulus conditioned mean. B. Inferred latents after aligning a session from
the same subject (above) and across subject(below) projected on the same space.
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