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ABSTRACT

Since the inception of Graph Neural Networks (GNNs), extensive research efforts
have concentrated on enhancing graph convolution, refining pooling operations,
devising robust training strategies, and advancing theoretical foundations. No-
tably, one critical facet of current GNN research remains conspicuously underex-
plored—the design of activation functions. Activation functions serve as pivotal
components, imbuing GNNs with the essential capacity for non-linearity. Yet, the
ubiquitous adoption of Rectified Linear Units (ReLU) persists. In our study, we
embark on a mission to craft task-aware activation functions tailored for diverse
GNN applications. We introduce TAFS (Task-aware Activation Function Search),
an adept and efficient framework for activation function design. TAFS leverages
a streamlined parameterization and frames the problem as a bi-level stochastic
optimization challenge. To enhance the search for smooth activation functions, we
incorporate additional Lipschitz regularization. Our approach automates the dis-
covery of the optimal activation patterns, customizing them to suit any downstream
task seamlessly. Crucially, this entire process unfolds end-to-end without imposing
significant computational or memory overhead. Comprehensive experimentation
underscores the efficacy of our method. We consistently achieve substantial im-
provements across a spectrum of tasks, including node classification over diverse
graph data. Moreover, our approach surpasses state-of-the-art results in the realm
of link-level tasks, particularly in biomedical applications.

1 INTRODUCTION

Graph Neural Networks (GNN) have demonstrated their prowess in modeling relationships within
graph-structured data, as evidenced by their superior performance in various domains (Kipf &
Welling, 2017; Velickovic et al., 2017; Hu et al., 2020; Xu et al., 2019). They have excelled in
applications spanning biomedicine (Wu et al., 2023; Jiang et al., 2021), physical simulation (Sanchez-
Gonzalez et al., 2020), material design (Reiser et al., 2022), sustainability (Donon et al., 2020), social
network (Fan et al., 2019), transportation (Li et al., 2018b), recommendation (Wu et al., 2019), and
more. Consequently, GNN models continue to captivate the attention of researchers across diverse
scientific communities (Shi et al., 2020; Wang et al., 2022; Seo et al., 2020).

Figure 1: Activation function makes a
big difference in GNN.

Despite the extensive body of literature, we must
highlight a significant gap in current research, specif-
ically the design of activation functions, a funda-
mental component used in nearly every GNN model.
While Rectified Linear Unit (ReLU) (Nair & Hinton,
2010) is a prevalent choice for activation, it often
falls short, as illustrated in Figure 1. Regrettably,
GNN studies have hardly explored alternative acti-
vation functions. This oversight is critical, as the
activation function plays a pivotal role in introduc-
ing non-linearity to GNNs. Without it, GNNs merely
perform linear transformations on raw graph features.

In contrast, the Computer Vision community has
spent decades exploring a wide array of manually
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designed activation functions such as Sigmoid (LeCun et al., 1998), Tanh, ReLU (Nair & Hinton,
2010), and improved variants of ReLU (He et al., 2015; Clevert et al., 2016; Maas et al., 2013).
However, transferring these manually crafted functions to different tasks poses challenges, and
customizing new ones is a labor-intensive process. Furthermore, the marginal performance gains from
human-designed functions diminish rapidly. To address this, researchers have proposed automated
methods to discover tailored activation functions, which have demonstrated notable improvements
in other network architectures like Convolutional Neural Networks (CNNs) or Recurrent Neural
Networks (RNNs) (Ramachandran et al., 2018; Eger et al., 2018; Farzad et al., 2019).

Hence, our research question is how can we design GNN activation functions to adapt effectively to
various graph-based tasks, creating task-aware activation functions?

Addressing this question poses two primary challenges. Challenge #1: Existing search algorithms are
inefficient. Current activation function search methods suffer from over-parameterization and heavy
computation. For example, APL (Agostinelli et al., 2015) introduces additional parameters for each
neuron, which usually leads to at least ten times more parameters upon any model, thus significantly
increasing the model complexity. Swish (Ramachandran et al., 2018) requires training a full network
until convergence for each iteration, making it computationally burdensome. These issues render
current search algorithms inefficient and less effective. Challenge #2: Current search methods lack
support for non-differentiable objectives. GNN methods have wide applications regarding tasks of
different levels (node, link, graph), many of which are evaluated by non-differentiable metrics. In the
case of drug interaction prediction, we would like to know a certain positive (synergy) or negative
(confliction) interaction exist. In fact, most drug pairs does not have positive or negative interactions.
Receiver Operating Characteristic curve (ROC) which is not differentiable, is what we should use
instead of accuracy. Similar application cases can be found in hit ratio of recommendation, latency
optimization, hardware resources constraint, etc. Supporting these non-differentiable objectives
would broaden the applicability of activation function search in diverse GNN tasks.

In this study, we embark on a systematic exploration of GNN activation function search—a first of its
kind. We frame this search as a bi-level optimization problem, with the inner level optimizing GNN
parameters and the outer level optimizing activation function parameters. We propose an efficient
search algorithm that navigates through a compact search space. This space is characterized by
universal approximators with additional smoothness constraints, facilitating the rapid discovery of
high-quality functions, thereby addressing Challenge #1. Additionally, we tackle Challenge #2 by
jointly considering non-differentiable objectives and potential activation function constraints. We
incorporate these elements into a stochastic relaxation of the outer level optimization, removing the
need to compute gradients for non-differentiable metrics used in GNN tasks. Our algorithm under-
goes extensive experimentation across various GNN models, datasets, and objectives, consistently
outperforming existing activation functions. By overcoming Challenges #1 and #2, our algorithm
achieves task-awareness in GNN activation function design.

Our contributions can be summarized in three key points:

1. To the best of our knowledge, we are the first to propose activation function search in the context
of Graph Neural Networks. Our work serves as a catalyst, drawing attention to this critical aspect
of GNN model design and paving the way for future investigations.

2. We propose TAFS (Task-aware Activation Function Search), a probabilistic search algorithm
capable of efficiently exploring a regularized functional space to discover novel activation functions
tailored for diverse downstream tasks.

3. Through comprehensive evaluations spanning node and link level tasks, we demonstrate that
our algorithm enhances activation function design without requiring extensive manual effort and
excels in optimizing non-differentiable objectives. We also conduct ablation studies to examine
the searched activation functions, the impact of design choices, and algorithm efficiency.

2 RELATED WORKS

Graph Neural Networks. GNN is a power model in capturing relational information including
typically GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2017), GIN (Xu et al., 2019), etc.
Mathematically, in the context of GNN with a given network G = {V, E} containing node set V and
edge set E , the problem is formulated below:
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z(l+1)
u = UPDATE(l+1)

(
h(l)
u ,AGGREGATE(l)

(
{h(l)

u ,∀v ∈ N (u)}
))

, (1)

where h
(l)
u is the latent representation of node u at layer l and zu is the pre-activation of node u.

AGGREGATE (abbr. Agg) and UPDATE (abbr. Up) are core modules of GNN, denoting the different
message passing operations used across the model for collecting and updating representations. The
latent representation (respectively pre-activation) for all nodes constitute H (resp. Z) and then we
have the activation transformation: H(l+1) = σ(l+1)(Z(l+1)), where Z is activated by function σ at
the (l + 1)th layer.

Numerous studies have been devoted to ameliorate it through different aspects. For example,
GCN (Kipf & Welling, 2017) simplifies graph convolution and derives performant GCN networks.
GAT (Velickovic et al., 2017) proposes graph attention as a replacement to model global features.
GNN-Pretrain (Hu et al., 2020) studies pretraining strategies at the node level and graph level to
make GNN model work for transferable tasks. GIN (Xu et al., 2019) understands the fundamental
question of graph expressiveness by discriminating Weisfeiler-Lehman graph isomorphism. GNN
Co-training (Li et al., 2018a) connects Laplacian smoothing with graph convolution and studies
the problem of oversmoothing. However, almost every GNN model uses ReLU as the activation
function (Kipf & Welling, 2017; Velickovic et al., 2017; Xu et al., 2018; Huang et al., 2020; KC et al.,
2022; Xu et al., 2019), leaving GNN activation function a missing research piece.

Activation Function Design. Since the early application of Sigmoid in Le-Net, activation func-
tions have been considered as an important component until today (Hayou et al., 2019). In 2012,
ReLU (Nair & Hinton, 2010) was proposed to train Boltzman Machines and soon extensively adopted
in every neural network models. The study of activation function design happens mostly in CNN
community, where a couple of milestone works include Swish (Ramachandran et al., 2018; Eger et al.,
2018) and APL (Agostinelli et al., 2015). Swish proposes a Reinforcement Learning (RL)-based
search algorithm to find appropriate activation functions in a discrete space. APL (Adaptive Piecewise
Linear) uses linear hinge functions to approximate target patterns in a differentiable way. Comprehen-
sive surveys of manual designed and parametric activation functions can be found in (Apicella et al.,
2021; Dubey et al., 2022). Another notable work related to our research question is GReLU (Zhang
et al., 2022), which tries to make GNN activation function adaptive by including graph convolution
into the activation function. However, such design is not a typical univariate activation function. As a
result, no work yet has proposed novel activation functions designed under the context of GNN.

3 PROBLEM FORMULATION AND CHALLENGES

Our research problem requires to propose a systematic way of designing adaptive activation functions
that can be effectively integrated into GNN for downstream applications. Similar to Neural Architec-
ture Search (NAS) (Liu et al., 2019), the activation function design could be modeled into a bi-level
optimization problem:

minα M(w∗(α), α;Dval) s.t. w∗(α) = argminw L(w,α;Dtrain), (2)

where the inner level optimization learns w weight of GNN and the outer level optimization learns α
weights of activation function. Both levels may have different objective metrics M,L depending on
downstream applications.

Previous activation function search methods suffer from low efficiency (Challenge #1) and poor
support of non-differentiable metrics (Challenge #2). On one hand, the efficiency bottleneck lies in
the search space choice and search strategy design. The search space is crucial for search efficiency
and requires careful consideration. The space should be proper both in candidate function number
and effectiveness, making it a trade-off between quantity and quality. Then, the search strategy should
be able to discover as quickly as possible the most suitable function candidate in the space. On the
other hand, diverse GNN applications requires that the algorithm is able to tackle any downstream
target metric, whether or not differentiable.

All these issues prevent us from using off-the-shelf algorithms for GNN activation function search.
To this end, we need a novel parameterization of the search space, that is jointly designed with search
strategy to allow efficient search, and we need to deal with differentiable and non-differentiable target
metrics at the same time to enable general applications in all kinds of GNN tasks.
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Figure 2: Algorithm framework. We replace the activation function with sampled weights from Gaussian
distributions. The inner level optimization is the learning of distribution parameter θ(1), . . . , θ(L) and the outer
level optimization is the learning of GNN weights. Both levels are iterated for faster convergence.

4 THE PROPOSED METHOD

4.1 ALGORITHM FRAMEWORK

As illustrated in Figure 2 and Table 1, we propose TAFS to solve both challenges in a unified way. We
follow the bi-level optimization formulation and search activation function represented by learnable
parameters. Specifically, a typical GNN network of L layers can be represented as below:

σ(L) ◦ GL(L) · · ·σ(2) ◦ GL(2) ◦ σ(1) ◦ GL(1)(X), (3)

where Graph Layer (GL) denotes all the AGGREGATE (Agg) and UPDATE (Up) operations related
to graph, X is the initial graph features. Note that different layers could use different activation
functions whereas current GNN models tend to fix the same ReLU for every layer.

Denote by wσ all the parameters of activation functions, i.e. σ(1), . . . , σ(L), and denote by wσ all
the parameters of GNN, i.e., parameters of GL(1), . . . ,GL(L). We propose a continuous implicit
functional space to parameterize wσ . This search space is expressive yet compact, with smoothness
regularization induced by human prior. The parameter update process is stochastic to deal with
any downstream objective especially non-differentiable metrics. The search algorithm is bi-level
and end-to-end trained. The optimization step of the outer level (learning wσ) and the inner level
optimization (learning wσ) are iterated. In the following parts, we explain in sequence the design of
search space, stochastic relaxation and search algorithm.

4.2 IMPLICIT FUNCTIONAL SEARCH SPACE

In order to facilitate activation function search, we propose a continuous implicit functional space
that parameterizes the search space by universal approximators. This implicit functional space could
be implemented by Multi-Layer Perception (MLP) to approximate target function. As in Figure 2,
activation function parameters is equivalent to the parameters of MLP, denoted by wσ .

It’s worth noting that we employ MLP as a representative example of universal approximators, chosen
for its simplicity, while retaining generality. However, it’s crucial to emphasize that alternative
implementations, such as Gaussian Mixtures or Radial Basis Functions (RBF), are entirely feasible.

In addition, we focus on the smooth functions such that the searched activation functions will not
change dramatically if the pre-activation value Z is slightly perturbed. Smooth functions are bounded
by Lipschitz constant c, i.e. |f(x) − f(y)| ≤ c|x − y|. As a result, the functional search space is
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regularized by smoothness constraint {wσ|wσ ∈ R|wσ|, c < γ}, where c is the Lipschitz constant
of the function parameterized by wσ and γ is the hard limit on c. Here, we model the constraint on
Lipschitz constant as a regularization term denoted by R(wσ). Many references design Lipschitz
constant as additional soft metric to be trained together with any loss (Hoffman et al., 2019; Weng
et al., 2018; Liu et al., 2022). We use Jacobian regularization (Hoffman et al., 2019) without loss of
generality R(wσ) = ||J(x)||F = {Σi,j [Ji,j(x)]

2}, where Ji,j(x) =
∂hi

∂xj
(x) is the Jacobian matrix.

This design of our functional space encourages the discovery of smooth functions characterized
by small Lipschitz constants. Notably, this characteristic aligns with existing manually designed
functions, such as ReLU, Tanh, Sigmoid, and Swish, all of which exhibit 1-Lipschitz properties.

4.3 STOCHASTIC RELAXATION

GNN applications are diverse that in many cases, the preferred evaluation metrics may not be
differentiable. As mentioned in Table 1 and related works, APL could not deal with non-differentiable
metrics but Swish could due to the RL-based search algorithm. However, the search efficiency of
Swish is far from satisfactory.

We propose to use stochastic relaxation that re-parameterizes the search space (wσ) with a Gaussian
distribution pθσ (wσ). The Gaussian distribution has its own parameters θσ and we sample the
parameters of activation function wσ from the probability pθσ (wσ) and optimize the probability
parameters θσ instead of wσ .

Following (4), we replace σ by wσ to emphasize the parameters on activation function; we replace
w by wσ to denote the rest parameters of GNN model. Task objective M is jointly integrated into
stochastic relaxation with space regularization R. The ultimate problem is formulated as below:

θ∗σ = argmin
θσ

{
J (θσ) ≡ Ewσ∼pθσ (wσ)[M(wσ, wσ

∗;Dval) + ηR(wσ)]
}
,

s.t. wσ
∗ = argmin

wσ

L(wσ, wσ;Dtrain),
(4)

where wσ denotes the parameters of activation functions σ with a regularization term R weighted by
η, wσ represents GNN parameters, L is downstream task criterion of interest, M is upstream task
criterion of interest, probably non-differentiable, θσ represents the re-parameterization of wσ through
Gaussian distribution, then the whole learning problem is optimized in a stochastic way.

To compute the target loss gradient with respect to probability parameters ∇θσJ (θσ), we have the
following proposition. The proof is given in Appendix A.

Proposition 1 Let wσ ∼ pθσ (wσ) represent that the weights of activation functions are sampled
from pθσ . We have

∇θσJ (θσ) = ∇θσEwσ∼pθσ (wσ)[M(wσ, wσ
∗;Dval) + ηR(wσ)]

= Ewσ∼pθσ (wσ)[[M(wσ, wσ
∗;Dval) + ηR(wσ)]∇θσ log pθσ (wσ)]

(5)

With the help of stochastic relaxation, the previously needed derivation of M is replaced by a
multiplication between forward pass of M and a gradient of probability loss. In practice, this
gradient expectation could be further approximated by Monte Carlo samplings, i.e. ∇θσJ (θσ) ≈∑K

i=1 ∇θσ log pθσ (w
i
σ)[M(wi

σ, wσ
∗;Dval) + ηR(wi

σ)], K is the sample number that we use to
approximate the gradient. As a result, the differentiability requirement of M is removed.

4.4 SEARCH STRATEGY

According to (4), the learning is divided in two levels. The outer level optimizes probability parameters
θσ on validation dataset with (non-differentiable) metric M. Every time K number of samples are
generated from the probability distribution (such as Gaussian). Each sample is forwarded and
calculated according to (Prop. 1), whose average is an approximation of outer level loss gradient. The
optimization of outer level parameters θσ influences directly the value of activation function weights
since the weights are sample from the updated probability every time a forward pass is needed. The
inner level optimizes GNN parameters wσ on training dataset with metric L. It is similar to a normal
training epoch of any network. The outer and inner levels are interplayed to accelerate convergence.
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Algorithm 1 TAFS: Task-aware Activation Function Search

1: Initialize θ0 = 1, initialize wσ by Xavier initialization and wσ randomly sampled from pθ0(wσ).
2: for m = 0, . . . ,M − 1 do
3: // Outer level optimization
4: Freeze GNN paramaters wσ;
5: for k = 0, . . . ,K − 1 do
6: Sample activation functions weights wk

σ from pθm(wσ);
7: Forward inference of the whole network and accumulate stochastic loss J (θσ) as in Prop 1;
8: end for
9: Obtain ∇θσJ (θσ) by automatic differentiation and update θm;

10: // Inner level optimization
11: Sample activation function paramaters wσ from distribution pθm(wσ) and freeze wσ;
12: Forward inference of the whole network to obtain loss L;
13: Update GNN parameters wσ by automatic differentiation;
14: end for
15: Training until convergence and obtain the final model parameter w∗

σ and dist. parameter θσ;
16: return Final model parameter w∗

σ and distribution parameter θσ .

Table 1: Our proposed TAFS (Task-aware Activation Function Search) enables efficient differentiable search
through a flexible and powerful MLP functional space. TAFS supports non-differentiable objective metrics in
diverse GNN applications.

Search Method Search Efficiency Non-Differentiable Metric

Search Space Search Strategy
Swish Discrete template choice Reinforcement Learning Applicable

APL Explicit piecewise linear Differentiable Not applicable

TAFS (ours) Continuous implicit MLP Differentiable Applicable

The complete TAFS algorithm is given in Algorithm 1. We also compare in Table 1 our proposed
TAFS and literature methods. From the time efficiency perspective, Swish is the slowest in Table 1
because it optimizes a new network until convergence before the learning of RL controller. APL
on the other hand, has a number of parameters dependent of base models due to its adaptability per
neuron. As a result, TAFS enjoys a compact search space without over-parameterization and has
superior efficiency in searching. Empirical results are given in Table 4.

5 EXPERIMENTS

In this section, we experiment our methods on diverse GNN applications including node classification
and link prediction, in order to fully evaluation the methods on differentiable and non-differentiable
metrics. Later, we provide detailed analysis on search efficiency and hyperparameter impact. All our
experiments are run on single NVIDIA RTX 3090.

5.1 NODE CLASSIFICATION

Datasets. We experiment on diverse graph datasets for node tasks, including Cora and DBLP for
paper classification based on reference network, Cornell and Texas for webpage classification from
university network, and Chameleon for wikipedia page classification based on hyperlink network.
Statistics are in Appx. E. The task metric here is classification accuracy.

Baselines. To fairly compare different activation functions, we compare our searchable activation
functions with manually designed ones or previously searched function. Some of these activation
functions are visualized in Figure 3(a). For each dataset and baseline chosen, we evaluate on two
aggregation layers (GCN and GraphSage) and five network connection topologies (stack, residual,
dense, jump knowledge, mixhop). Each model has four layers of aggregation layers. The model is
trained for 400 epochs.
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Table 2: Overall node classification improvement of different models on different datasets. Metric is classification
accuracy. Avg. Imp. is the improvement of TAFS with respect to the other choices averaged over all the datasets.

Model Activation Cora DBLP Cornell Texas Chameleon Avg. Imp.
G

C
N

Stack ReLU 83.06±0.66 84.63±0.21 56.76±5.92 60.54±6.42 61.60±1.75 ↑ 2.8%
Tanh 84.82±0.51 85.58±0.15 56.49±5.19 57.84±5.01 61.51±1.88 ↑ 3.2%
L-ReLU 84.57±0.93 84.50±0.40 57.38±2.16 60.54±7.37 61.95±2.18 ↑ 2.1%
Swish 83.88±0.81 84.89±0.34 57.30±3.97 58.65±5.55 58.33±1.68 ↑ 4.1%
TAFS 89.08±0.48 86.24±0.17 57.37±4.37 62.11±5.48 62.31±1.82 -

Residual ReLU 85.13±0.95 84.45±0.34 57.84±5.43 57.84±5.95 66.93±2.17 ↑ 3.2%
Tanh 86.02±0.55 85.63±0.14 58.38±4.39 57.57±5.93 68.86±1.84 ↑ 2.0%
L-ReLU 86.60±0.72 84.97±0.33 55.68±8.30 57.84±6.75 67.50±1.48 ↑ 3.3%
Swish 85.86±0.64 84.67±0.19 56.22±6.14 60.54±7.66 66.29±2.12 ↑ 2.8%
TAFS 88.16±0.58 86.29±0.18 58.20±4.80 60.22±5.51 70.49±1.64 -

JKNet ReLU 86.86±0.71 84.99±0.25 76.49±7.36 77.57±7.36 58.18±1.63 ↑ 3.8%
Tanh 86.41±0.57 85.57±0.20 68.92±6.76 65.95±9.22 60.20±2.19 ↑ 9.1%
L-ReLU 87.45±0.51 85.04±0.15 74.05±5.57 76.49±8.80 57.98±2.36 ↑ 4.1%
Swish 86.34±0.92 84.95±0.28 77.03±5.57 78.11±6.99 57.00±2.54 ↑ 4.7%
TAFS 88.84±0.56 87.07±0.22 81.35±6.40 81.08±5.01 60.21±2.04 -

Mixhop ReLU 85.31±0.64 85.10±0.18 73.78±5.55 74.05±9.53 51.64±2.24 ↑ 2.7%
Tanh 85.15±0.67 85.12±0.30 72.97±7.55 76.76±6.86 50.59±2.60 ↑ 2.6%
L-ReLU 86.38±0.50 85.01±0.17 72.43±6.14 72.70±5.05 51.36±2.80 ↑ 3.4%
Swish 86.21±1.03 85.43±0.25 72.34±8.18 74.86±6.51 51.89±2.10 ↑ 2.5%
TAFS 88.77±0.57 86.18±0.17 75.14±5.38 78.43±5.28 52.17±1.97 -

G
ra

ph
Sa

ge

Stack ReLU 83.06±0.66 83.67±0.41 58.11±6.19 70.00±6.78 47.02±4.20 ↑ 12.1%
Tanh 84.82±0.51 84.90±0.19 68.65±6.75 71.89±7.85 53.50±1.68 ↑ 4.3%
L-ReLU 84.57±0.65 84.16±0.23 62.16±5.92 68.11±7.23 49.21±3.02 ↑ 9.8%
Swish 81.53±0.74 83.62±0.50 57.03±6.45 68.65±6.19 48.42±2.17 ↑ 13.0%
TAFS 87.08±0.48 85.22±0.30 72.43±7.23 74.51±6.92 58.57±1.20 -

Residual ReLU 84.11±0.82 83.05±0.33 65.95±6.64 73.51±6.71 55.02±2.73 ↑ 6.1%
Tanh 85.62±0.52 85.22±0.17 72.43±3.97 78.11±9.00 59.17±1.80 ↑ 0.6%
L-ReLU 85.63±0.42 84.05±0.21 71.89±3.67 74.86±5.80 55.86±1.83 ↑ 3.1%
Swish 84.97±0.79 84.17±0.43 71.08±4.02 75.41±7.09 54.17±1.44 ↑ 3.9%
TAFS 89.10±0.385 85.22±0.17 73.38±3.63 77.03±6.86 58.62±2.08 -

JKNet ReLU 85.29±0.56 83.97±0.15 80.00±6.07 81.62±5.10 56.78±1.62 ↑ 3.0%
Tanh 86.01±0.51 85.25±0.18 77.03±5.57 78.92±6.14 57.68±1.92 ↑ 3.8%
L-ReLU 85.90±0.42 85.01±0.25 80.27±6.84 81.35±4.75 57.41±2.01 ↑ 2.5%
Swish 85.56±0.61 84.71±0.22 77.13±5.30 81.06±5.43 55.00±1.93 ↑ 4.5%
TAFS 89.51±0.66 86.73±0.20 81.79±5.08 82.10±5.16 59.37±1.53 -

Mixhop ReLU 84.55±1.07 84.23±0.21 75.95±9.59 81.63±4.80 54.19±2.15 ↑ 2.3%
Tanh 84.82±0.65 84.21±0.38 78.11±6.99 81.89±5.80 53.20±1.21 ↑ 2.0%
L-ReLU 84.80±1.10 84.34±0.28 76.22±8.36 77.30±4.71 53.14±1.72 ↑ 3.7%
Swish 84.18±0.55 84.69±0.30 75.95±8.15 80.27±6.74 53.20±1.86 ↑ 3.0%
TAFS 87.77±1.40 85.30±0.24 77.77±4.39 83.70±4.05 55.07±0.57 -

Results. We provide in Table 2 the results of node classification tasks. The improvement of TAFS
with respect to the other function choices is significant. Note that the improvements are observable
across different graph data and GNN models, showing that TAFS is task-aware to graphs in citation,
university webpage, wikipedia link graph, etc.

5.2 MOLECULE AND PROTEIN INTERACTION PREDICTION

Datasets. Biomedical graph are one of the most active and effective application areas of GNN.
Biomedical GNN has accelerated important studies in protein prediction, molecule generation, gene
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expression, etc. We consider the link prediction that is a typical task in molecule and protein inter-
action prediction. Specifically, we consider Drug-Drug Interaction (DDI), Drug-Target Interaction
(DTI), Protein-Protein Interaction (PPI) and Disea-Gene Association (DGA). The statistics of the
four datasets are provided in Appx. Table 6.

Baselines. We adopt two biomedical graph baselines SkipGNN (Huang et al., 2020) and HOGCN (KC
et al., 2022). SkipGNN proposes a general GNN architecture to model molecular interactions and
works well on all these biomedical tasks. We use both as base model and experiment TAFS to replace
the activation functions. The training hyperparameters are the same as in the orginal work.

Table 3: Drug and protein interaction predictions.

Task Model Activation ROCAUC PRAUC

Drug-Target Interaction SkipGNN ReLU 0.922±0.004 0.928±0.006

TAFS w.o. relaxation 0.933±0.002 0.934±0.001

TAFS 0.952±0.001 0.954±0.001

HOGCN ReLU 0.927±0.001 0.929±0.001

TAFS w.o. relaxation 0.923±0.002 0.922±0.001

TAFS 0.943±0.002 0.940±0.001

Drug-Drug Interaction SkipGNN ReLU 0.886±0.003 0.866±0.006

TAFS w.o. relaxation 0.890±0.002 0.874±0.001

TAFS 0.911±0.002 0.898±0.003

HOGCN ReLU 0.898±0.002 0.881±0.003

TAFS w.o. relaxation 0.897±0.002 0.901±0.002

TAFS 0.917±0.002 0.901±0.001

Protein-Protein Interaction SkipGNN ReLU 0.917±0.004 0.921±0.003

TAFS w.o. relaxation 0.920±0.001 0.922±0.002

TAFS 0.927±0.001 0.937±0.002

HOGCN ReLU 0.919±0.001 0.922±0.002

TAFS w.o. relaxation 0.919±0.002 0.924±0.001

TAFS 0.923±0.003 0.929±0.002

Disease-Gene Association SkipGNN ReLU 0.912±0.004 0.915±0.003

TAFS w.o. relaxation 0.916±0.001 0.920±0.001

TAFS 0.930±0.001 0.940±0.001

HOGCN ReLU 0.927±0.001 0.934±0.001

TAFS w.o. relaxation 0.929±0.002 0.933±0.001

TAFS 0.933±0.001 0.942±0.002

Results. We provide in Table 3 the results of four link prediction tasks. Again, both SkipGNN
and HOGCN use ReLU by default. With TAFS, SkipGNN and HOGCN has gained significant
performance evaluated in ROCAUC and PRAUC, two non-differentiable metrics. Furthermore, when
TAFS is integrated with SkipGNN, a model from 2020, it outperforms HOGCN, the state-of-the-art
model from 2022. This underscores the significance of activation function search, which has hitherto
been overlooked in the GNN community.
5.3 ABLATION STUDY

To further analyze our proposed TAFS algorithm, we provide additional experiments to illustrate the
search results, search efficiency and hyperparameter impact.

Visualization of activation function search. We show in Figure 3 the searched activation functions
from the literature methods and TAFS. It can be observed that TAFS could find diverse activation
functions different than manually design ones or the searched ones by Swish and APL. Moreover,
TAFS learns layer-wise activation function, leading to different behaviours of functions in different
layers as in Figure 3(b)(c). Deeper layers’ activation functions are smoother than shallow layers.

Search efficiency The modeling differences between literature search methods and TAFS are given in
Table 1. In this part, we provide more empirical details of the search efficiency comparison in Table 4.
TAFS has a significantly smaller consumption of extra memory and shorter running time. This huge
efficiency improvement is credited to TAFS’ compact MLP functional search space and differentiable
search strategy, making TAFS’ extra parameters independent of base models, whichever dataset or
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(a) Literature search algorithms. (b) Results on dataset Cora (c) Results on dataset DBLP

Figure 3: Literature activation functions and searched activation results. (b)(c) include searched results on
different layers across two datasets.

GNN model (as long as the model has the same number of activation functions), while APL models
each neuron with a piecewise linear unit, leading to over 2000 times more parameters than TAFS.

Table 4: Search efficiency comparison.

Dataset Model Parameters Time(min)

DBLP Base 420K 0.15

Swish +340K (+82%) 350
APL +2400K (+575%) 4
TAFS +1.3K (+0.3%) 1

Chameleon Base 315K 1.2

Swish +420K (+108%) 2990
APL +1760K (+558%) 33
TAFS +1.3K (+0.4%) 11

Ogbg-Molhiv Base 27M 1020

Swish - > 70 days
APL OOM (+150M) -
TAFS +12K 1380

Hyperparameters impact. The choice of
hyperparameters significantly affects per-
formance. TAFS introduces two sets of hy-
perparameters: the number of samples (K)
and the selection of the MLP architecture.
We present their effects in Figure 4. The
number of samples (K) in stochastic opti-
mization exhibits a consistent increasing
trend, representing a trade-off between ac-
curacy and computational time. Regarding
MLP hyperparameters, we analyze their im-
pact on two node tasks, DBLP and Cornell,
using nine different configurations: depths
ranging from two to four layers and widths
spanning from 10 to 1000 neurons. It is
evident that a very small MLP (e.g., two
layers with 10 neurons) is inadequate for
modeling adaptive activation functions. However, the distinctions between other choices are negligi-
ble. Given that deeper and wider MLPs require significantly more parameters, we opt for a two-layer
MLP with 100 hidden units in all other experiments.

(a) Number of samples in
stochastic optimization. Larger
K is laways better but slower.

(b) MLP dimension im-
pacts on DBLP dataset.

(c) MLP dimension im-
pacts on Cornell dataset.

Figure 4: Hyperparameter impact of number of samples in stochastic relaxation and the impact of MLP
dimensions. In (b)(c), deeper color means better performance.

9
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6 CONCLUSION

In a word, we achieve a task-aware activation function search in GNN through an expressive and
compact representation of search space, stochastic relaxation with reparameterization, which are
carefully co-designed with search strategy. Our search space is inclusive and parameter efficient,
including appropriate number of high-quality functions. The search strategy is end-to-end trained
and every operation of the framework is differentiable. Finally, the stochastic relaxation is capable of
dealing with any metric of interest, closing the optimization gap.
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A PROOF OF PROPOSITION 1

∇θσJ (θσ) = ∇θσEwσ∼pθσ (wσ)[M(wσ, wσ
∗;Dval) + ηR(wσ)]

=

∫
∇θσpθσ (wσ)[M(wσ, wσ

∗;Dval) + ηR(wσ)]dwσ

=

∫
[M(wσ, wσ

∗;Dval) + ηR(wσ)]
∇θσpθσ (wσ)

pθσ (wσ)
pθσ (wσ)dwσ

=

∫
[M(wσ, wσ

∗;Dval) + ηR(wσ)]pθσ (wσ)∇θσ log pθσ (wσ)dwσ

= Ewσ∼pθσ (wσ)[[M(wσ, wσ
∗;Dval) + ηR(wσ)]∇θσ log pθσ (wσ)]

≈
K∑
i=1

∇θσ log pθσ (w
i
σ)[M(wi

σ, wσ
∗;Dval) + ηR(wi

σ)]

(6)

B MORE DETAILS ABOUT SWISH AND APL

Figure 5: Search space illustra-
tion.

Two notable works have set up to solve this problem. Adap-
tive piecewise linear (APL) (Agostinelli et al., 2015) parame-
terizes σ of each neuron by a sum of hinge-shaped functions
σ(x) = max(0, x) + ΣS

s=1a
s max(0,−x+ bs), leading to a piece-

wise linear function with S a predefined hyperparameter. a and
b are learnable parameters to control the slope and location of
each hinge. Swish (Ramachandran et al., 2018) takes the idea
of Neural Architecture Search (NAS) and proposes to search
through a symbolic discrete space composing of unary and bi-
nary functions. Typical mathematical operations are included such
as (unary) x,−x, βx, sinx, cosx, tanhx, tanh−1 x, expx, log(1 +
exp (x)) and (binary) x1 + x2, x1 − x2, x1 × x2,max(x1, x2),min(x1, x2), σ(x1)x2, etc.

APL’s piecewise linear function space, in theory, can approximate any functions of interest with
appropriate choice of hinge numbers. However, this is in practice unrealizable because we do not
know how much complexity the activation pattern requires. For example, in the authors’ experiment,
they choose S = 2 in the case of Cifar-100, which means basically all the functions learned are
just two straight lines, similar to ReLU. There are many functions out of the scope of this space,
such as Tanh, which we show significantly outperform the others in Figure 1. Moreover, APL learns
activation function per hidden unit, which introduces too many parameters. Total number of extra
parameters in APL is 2SN, where S is number of hinges and N is number of hidden units.

Swish has a larger space since it contains atomic trigonometric functions. But still, all the searched
functions are explicitly written as cascading the atomic operations while many other functions cannot
satisfy this requirement. Moreover, Swish uses policy gradient to train a controller that optimize
the decision choices in the space, which is very inefficient compared to end-to-end differentiable
search. Lastly, APL fails to optimize towards non-differentiable metrics, which are quite common in
especially graph data such as ROCAUC for link prediction. On the other hand, Swish do not have
such limitation since the reinforcement learning algorithm is intrinsically adaptive to all metrics.

Besides Swish and APL, our work has also been inspired by Network in Network (NiN) (Lin et al.,
2013). Classic convolutional operation applies linear filters to extract local features. NiN replaces a
linear filter by non-linear MLP for better expressiveness, i.e. MLPConv. We note that it has as inputs
all the elements within the receptive field, making it non-univariate. Thus we adopt similar principle,
i.e., using generalizable approximators to replace low complexity modules in a network.
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C MORE BACKGROUND ON LIPSCHITZ SMOOTHNESS

Lipschitz smoothness has been explored in many deep learning works. Specifically, we have the
following formal definition and proposition.

Definition 1 (Lipschitz Smoothness(Weng et al., 2018)) Let S ∈ Rd be a convex bounded closed
set and let h(x) : S → R be a continuously differentiable function on an open set containing S.
Then h(x) is a Lipschitz funciton with Lipschitz constant c if the following inequality holds for any
x, y ∈ S:

|h(x)− h(y)| ≤ c||x− y||p (7)
where c = max{||∇h(x)||q : x ∈ S}, ||∇h(x)||q is the gradient norm of h(x), and 1 ≤ q ≤ ∞.

It has been shown that determining the Lipschitz constant of an MLP is NP-hard. As a result, we could
not explicitly calculate the Lipschitz constant c and use it as a differentiable metric for optimization.
Instead, without loss of generality, we apply Jacobian regularization to improve the smoothness of
activation functions.

Proposition 2 (Jacobian regularization(Hoffman et al., 2019)) Denote Jacobian matrix Ji,j(x) =
∂hi

∂xj
(x). Jacobian regularization can be realized by minimizing the additional term ||J(x)||F =

{Σi,j [Ji,j(x)]
2}

The Jacobian minimization term could be combined with any downsteam task such that Eq. 4 applies
to activation function search in general learning tasks.

D CONNECTIONS TO GNN NEURAL ARCHITECTURE SEARCH

Our work focuses on searching the most suitable activation functions without human intervention.
This principle is similar to Neural Architecture Search (NAS), which searches the GNN architecture
including graph convolution, residual connection, pooling, etc. A subsequent question is why not
search activation function together with GNN architectures? The reasons are two-fold. Firstly, we
want to emphasize the importance of activation functions in GNN which is largely neglected in
current GNN research. It is more appropriate to study this single part in a disentangled way. Secondly,
if combined with whole architecture search, the whole search space is significantly larger and it is
hard to reduce the space size. In our work, since we have some prior knowledge about the activation
functions such as smoothness, we could regularize greatly the space. However, such priors are not
easily transferable to other searchable parts.

E STATISTICS OF DIVERSE EXPERIMENTAL DATASETS

We provide in Table 5 and Table 6 the statistics of dataset used in node and link tasks.

Table 5: Statistics of the node datasets

Datasets #Nodes #Edges #Features #Classes

Cora 2708 5278 1433 7
DBLP 17,716 105,734 1,639 4
Cornell 183 280 1703 5
Texas 183 295 1703 5

Chameleon 2277 31421 2325 5
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Table 6: Biomedical tasks and dataset statistics.

Task Data Source #Nodes #Edges

Drug-Target Interaction BIOSNAP 7343 15139

Drug-Drug Interaction BIOSNAP 1514 48514

Protein-Protein Interaction HuRI 5604 23322

Disease-Gene Association DisGeNET 19783 81746

F MORE EXPERIMENTAL RESULTS

In this section, we include in Table 7 more results on node- and link-level tasks that are removed
from the main text due to space limit.

G MORE VISUALIZATIONS OF ACTIVATION FUNCTIONS

(a) ReLU (b) Tanh (c) Leaky ReLU (d) Swish

(e) DBLP Layer 1 (f) DBLP Layer 2 (g) DBLP Layer 3 (h) DBLP Layer 4

Figure 6: Literature activation functions and searched activation results. (a)-(d) are manually designed activation
functions. (e)-(h) are TAFS searched activation functions.

Figure 7: Visualization of symbolized formula

Dataset Baseline Activation Accuracy

Cora GCN-JK TAFS 89.08
0.6*Tanh(-x) 87.89

Table 8: Comparison with symbolized formula

H SYMBOLIZED EXPLICIT FORMULA

On the Cora dataset with GCN-JK network baseline, the searched result is the blue line. We distill an
explicit formula by symbolic regression: y = 0.6 Tanh(-x) and plug in this activation function back to
the model. The performance is shown in Table 8 and we visualize the function in Figure 7. There is a
performance gap in the table below. This is because explicit symbolic space is not accurate, which
shows further that our implicit functional space is expressive.
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I LICENSE OF ASSETS

The source code will be shared under MIT license. All the datasets used in this research is publicly
available.
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Table 7: Overall node classification improvement of different models on different datasets.

Model Activation Cora DBLP Cornell Texas Chameleon

GCN-Stack ReLU 83.06±0.66 84.63±0.21 56.76±5.92 60.54±6.42 61.60±1.75

Tanh 84.82±0.51 85.58±0.15 56.49±5.19 57.84±5.01 61.51±1.88

LeakyReLU 84.57±0.93 84.50±0.40 57.38±2.16 60.54±7.37 61.95±2.18

Swish 83.88±0.81 84.89±0.34 57.30±3.97 58.65±5.55 58.33±1.68

TAFS 89.08±0.48 86.24±0.17 57.37±4.37 62.11±5.48 62.31±1.82

GCN-Residual ReLU 85.13±0.95 84.45±0.34 57.84±5.43 57.84±5.95 66.93±2.17

Tanh 86.02±0.55 85.63±0.14 58.38±4.39 57.57±5.93 68.86±1.84

LeakyReLU 86.60±0.72 84.97±0.33 55.68±8.30 57.84±6.75 67.50±1.48

Swish 85.86±0.64 84.67±0.19 56.22±6.14 60.54±7.66 66.29±2.12

TAFS 88.16±0.58 86.29±0.18 58.20±4.80 60.22±5.51 70.49±1.64

GCN-Dense ReLU 85.88±0.41 84.59±0.38 53.78±9.16 57.30±6.37 65.81±2.12

Tanh 86.23±0.55 85.62±0.25 58.65±5.41 57.57±4.69 67.24±2.11

LeakyReLU 86.60±0.36 84.68±0.23 57.57±4.37 58.11±7.38 65.66±1.61

Swish 86.12±0.46 84.77±0.28 57.52±5.68 59.46±6.22 65.94±2.69

TAFS 89.58±0.46 86.62±0.16 60.27±4.84 61.62±6.26 67.34±2.24

GCN-JKNet ReLU 86.86±0.71 84.99±0.25 76.49±7.36 77.57±7.36 58.18±1.63

Tanh 86.41±0.57 85.57±0.20 68.92±6.76 65.95±9.22 60.20±2.19

LeakyReLU 87.45±0.51 85.04±0.15 74.05±5.57 76.49±8.80 57.98±2.36

Swish 86.34±0.92 84.95±0.28 77.03±5.57 78.11±6.99 57.00±2.54

TAFS 88.84±0.56 87.07±0.22 81.35±6.40 81.08±5.01 60.21±2.04

GCN-Mixhop ReLU 85.31±0.64 85.10±0.18 73.78±5.55 74.05±9.53 51.64±2.24

Tanh 85.15±0.67 85.12±0.30 72.97±7.55 76.76±6.86 50.59±2.60

LeakyReLU 86.38±0.50 85.01±0.17 72.43±6.14 72.70±5.05 51.36±2.80

Swish 86.21±1.03 85.43±0.25 72.34±8.18 74.86±6.51 51.89±2.10

TAFS 88.77±0.57 86.18±0.17 75.14±5.38 78.03±7.49 52.17±1.97

Sage-Stack ReLU 83.06±0.66 83.67±0.41 58.11±6.19 70.00±6.78 47.02±4.20

Tanh 84.82±0.51 84.90±0.19 68.65±6.75 71.89±7.85 53.50±1.68

LeakyReLU 84.57±0.65 84.16±0.23 62.16±5.92 68.11±7.23 49.21±3.02

Swish 81.53±0.74 83.62±0.50 57.03±6.45 68.65±6.19 48.42±2.17

TAFS 87.08±0.48 85.22±0.30 72.43±7.23 74.51±6.92 58.57±1.20

Sage-Residual ReLU 84.11±0.82 83.05±0.33 65.95±6.64 73.51±6.71 55.02±2.73

Tanh 85.62±0.52 85.22±0.17 72.43±3.97 78.11±9.00 59.17±1.80

LeakyReLU 85.63±0.42 84.05±0.21 71.89±3.67 74.86±5.80 55.86±1.83

Swish 84.97±0.79 84.17±0.43 71.08±4.02 75.41±7.09 54.17±1.44

TAFS 89.10±0.385 85.22±0.17 73.38±3.63 77.03±6.86 58.62±2.08

Sage-Dense ReLU 84.65±0.66 83.03±0.39 77.03±8.98 76.49±6.95 58.00±1.29

Tanh 85.49±1.04 85.15±0.21 75.14±5.77 78.92±6.14 58.29±1.63

LeakyReLU 85.64±0.78 84.24±0.16 76.22±6.14 74.32±6.97 57.17±2.05

Swish 84.84±0.69 84.20±0.24 75.68±6.62 78.38±5.67 52.87±2.57

TAFS 88.47±0.50 86.01±0.13 76.22±5.19 79.73±3.87 58.02±1.94

Sage-JKNet ReLU 85.29±0.56 83.97±0.15 80.00±6.07 81.62±5.10 56.78±1.62

Tanh 86.01±0.51 85.25±0.18 77.03±5.57 78.92±6.14 57.68±1.92

LeakyReLU 85.90±0.42 85.01±0.25 80.27±6.84 81.35±4.75 57.41±2.01

Swish 85.56±0.61 84.71±0.22 77.13±5.30 81.06±5.43 55.00±1.93

TAFS 89.51±0.66 86.73±0.20 81.79±5.08 82.10±5.16 59.37±1.53

Sage-Mixhop ReLU 84.55±1.07 84.23±0.21 75.95±9.59 81.63±4.80 54.19±2.15

Tanh 84.82±0.65 84.21±0.38 78.11±6.99 81.89±5.80 53.20±1.21

LeakyReLU 84.80±1.10 84.34±0.28 76.22±8.36 77.30±4.71 53.14±1.72

Swish 84.18±0.55 84.69±0.30 75.95±8.15 80.27±6.74 53.20±1.86

TAFS 87.77±1.40 85.30±0.24 77.77±4.39 83.70±4.05 55.07±0.57
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