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Abstract

We consider a novel problem setting: data-free one-shot federated regression. This setting
aims to prepare a global model through a single round of communication without relying on
auxiliary information, e.g., proxy datasets. To address this problem, we propose a practical
framework that consists of three stages: local training, data synthesizing, and knowledge
distillation, and demonstrate its efficacy with an application to bone age assessment. We
conduct validation under independent and identical distribution (IID) and non-IID settings
while considering both model homogeneity and heterogeneity. Validation results show that
our method surpasses FedAvgOneShot by a large margin and sometimes even outperforms
the proxy-data-dependent approach FedOneShot.
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1. Introduction

One-shot federated learning (FL) (Guha et al., 2019) has emerged as a potential solution
to address concerns regarding the costly inter-node communication and possible privacy
leakage in standard FL methods, as it allows for only a single global round between clients
and the central server. While one-shot FL. methods typically require additional sources like
proxy datasets for global model training, recent advances in data-free one-shot FL (Zhang
et al., 2022; Luz-Ricca et al., 2023) overcomes this limitation, eliminating the need for
additional datasets. Nevertheless, current FL methods have predominantly focused on
classification tasks, with a limited exploration of regression problems.

Motivated by these observations, we consider a novel problem setting: data-free one-
shot federated regression. Inspired by the work (Zhang et al., 2022) that proposed for
classification, we present a practical framework specialized for regression, which comprises
three stages: local training, data synthesizing, and knowledge distillation (KD), and
evaluate it with a bone age assessment task (Halabi et al., 2019). Our method is the first
attempt in this setting, and validation results demonstrate its efficacy.
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2. Method

Generally, let there be K local clients {C’Z}fi , with each client holding a private dataset
D; = {xi,y;}, where x; are images, and y; are ground truth, e.g., bone ages in our study.

First stage: local training. Each client C; trains its local model M;(-, ®i) with the
private dataset D; and uploads the model weight to the central server after training.

Second stage: data synthesizing. We adopt a generator G(-, ®g) to synthesize im-
ages. In our study, bone ages range from 1 to 228 months, and we assume y follows a discrete
uniform distribution p(y) over the set of {1, 2,3, ...,228}. To train G (-, ®g), we first sample
a batch of random noise vectors z ~ N (0,I) and a batch of random values § ~ p(y). After-
ward, we input z to G (-, @g) to get a batch of produced images X = G (z, ®g). Next, we feed
% into local models { M;(-, @i)}fil to get predictions { M; (X%, @z)}fil By adopting the basic
ensemble scheme (Mendes-Moreira et al., 2012), we get the ensembled result of local models
E(x) = Z{( M;(%x,017)/K. We calculate a loss Lgim (E (X),y) = ||E (X) — 9|5 to expect X
following a similar distribution to x. Besides, to improve the quality of X, we adopt a feature
distribution regularization term Lqq; (Yin et al., 2020), which enforces feature-level similar-
ity and is defined as £ feqt (%) = Sp >, (1t (X) = gy (%) ||y + oy (X) — or (%)]],) /K,
where pi,; () and o (-) denote the mean and variance of features of I-th batch normaliza-
tion layer for M;(-, ®i). In addition, to ensure G(-,@g) generates more diverse images, we
propose Lg;s to encourage disagreement between local models {M;(-, @z)}fi , and the global
model S (-, ®s), which is written as Lg;5(X) = — || E (%) — S (X, ®s)]|,. To conclude, the to-
tal training objective of G(:,®g) is Lyen (X,9) = Lsim (E (X),9) + Afeat (X) + BLais(X).
We set A to 0.5 and S to 0.1. Note that local and global models are fixed at this stage.

Third stage: knowledge distillation. We update the global model S (-, ®s) by
knowledge transfer. Specifically, the fixed generator first synthesizes a batch of images
X when feeding a batch of random noise vectors z. Then X are input into local mod-
els to get ensembled prediction E (X). We finally utilize a loss Liq (E (X),S5 (X,0s)) =
|E (%) — S (%X,05)]||, to enforce the similarity between E (X) and S (%, ©s).

3. Experiments, Results, and Conclusions

Dataset and metric. We applied the public dataset RNSA-BAA (Halabi et al., 2019),
which contains 12,611/1,425/200 hand radiographs for training/validation/testing. We re-
ported the mean absolute difference (MAD) results on the test set based on three runs.

Experimental setup. We maintained four local clients. We divided the training set
into four subsets with bone age values falling within four ranges, as shown in Figure 1(a).
To simulate an IID setting among clients, we ensured that each client received a similar
number of images within the same bone age range by randomly extracting 1/4 of the data
from each subset without repetition and assigning them to individual clients, as shown
in Figure 1(b). Conversely, to form a non-IID setting, we distributed one subset to one
client, as illustrated in Figure 1(c). We also considered model homogeneity and hetero-
geneity. Thus, we introduced four different settings: (1) homo-IID: model homogeneity
with IID. (2) homo-non-IID: model homogeneity with non-I1ID. (3) hetero-IID: model
heterogeneity with IID. (4) hetero-non-IID: model heterogeneity with non-IID.
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Baselines. We compared our scheme with FedAvg (McMahan et al., 2017) and its
one-shot version FedAvgOneShot (averaging model weights after local training). We also
implemented a scheme that used random noise images for KD, and we abbreviated it
as FLNoisyKD. In addition, we realized FedOneShot (Guha et al., 2019) using a public
dataset (Pietka et al., 2001) as the proxy dataset for KD.

Implementation details. When considering model homogeneity, all clients used
ResNet34 (He et al., 2016). For model heterogeneity, we applied ResNet34, ResNet50,
and two variants (WRN-16-10, WRN-40-6) based on Wide-Resnets (Zagoruyko and Ko-
modakis, 2016). The global model was always adopted as ResNet34. We applied the Adam
optimizer. Local models were trained for 200 epochs using a poly-learning rate with an
initial value of 107*. We set a learning rate of 1072 and the latent dimension of z to train
the generator to 128. We set an initial learning rate of 10~* to train the global model
and decayed it to 1075, The generator and the global model were trained in a loop of 120
rounds, and at each round, we trained the generator for 40 epochs and the global model for
1 epoch. We set the batch size to 32. All images were resized to a size of 224 x 224 pixels.

Experiment results. As illustrated in Table 1, Centralization represents the upper-
bound accuracy derived by centralized training. We can observe a noticeable accuracy gap
between FedAvg with IID and non-IID, indicating that FedAvg is also sensitive to non-1ID
in regression, similar to classification (Hsu et al., 2019). Then let us focus on one-shot FL
methods. Limiting by a single global round, FedAvgOneShot achieves much larger MAD
values than FedAvg. FedNoisyKD uses random noise images for KD, leading to the worst
performance. FedOneShot, which conducts KD with a public dataset, achieves overall the
best results. Compared to FedOneShot, our method outperforms it under the setting of
homo-IID and realizes competitive accuracy under the other three settings. This suggests
that our approach has the potential to synthesize images comparable to authentic images
for KD, eliminating the requirements for proxy datasets.

Conclusions. This paper made a first attempt to explore data-free one-shot FL in re-
gression. Our method demonstrated its efficacy in this setting. Future work may investigate
improving image generation and apply the proposed method to more regression tasks.
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