
Offline Reinforcement Learning for
Customizable Visual Navigation

Dhruv Shah†, Arjun Bhorkar†, Hrishit Leen, Ilya Kostrikov, Nick Rhinehart, Sergey Levine
UC Berkeley

Abstract: Robotic navigation often requires not only reaching a distant goal, but
also satisfying intermediate user preferences on the path, such as obeying the rules
of the road or preferring some surfaces over others. Our goal in this paper is
to devise a robotic navigation system that can utilize previously collect data to
learn navigational strategies that are responsive to user-specified utility functions,
such as preferring specific surfaces or staying in sunlight (e.g., to maintain solar
power). To this end, we show how offline reinforcement learning can be used
to learn reward-specific value functions for long-horizon navigation that can then
be composed with planning methods to reach distant goals, while still remaining
responsive to user-specified navigational preferences. This approach can utilize
large amounts of previously collected data, which is relabeled with the task re-
ward. This makes it possible to incorporate diverse data sources and enable ef-
fective generalization in the real world, without any simulation, task-specific data
collection, or demonstrations. We evaluate our system, ReViND, using a large
navigational dataset from prior work, without any data collection specifically for
the reward functions that we test. We demonstrate that our system can control
a real-world ground robot to navigate to distant goals using only offline training
from this dataset, and exhibit behaviors that qualitatively differ based on the user-
specified reward function.

Keywords: offline reinforcement learning, visual navigation

1 Introduction

Robotic navigation approaches aim to enable robots to navigate to user-specified goals in known
and unknown environments. The geometric approach to this problem involves using a geometric
map of the environment to plan a collision-free path towards the goal. The learning-based approach
to this problem involves the robot learning to take actions by associating new inputs with prior
navigational experience, typically through imitation learning (IL) or reinforcement learning (RL).
In many practical navigational scenarios, the goal is not merely to reach a particular destination
without collision, but to do so while maximizing some desired utility measure, which could include
obeying the rules of the road, staying in a bike lane or off the lawn, maintaining safety, or even
more esoteric goals such as remaining in direct sunlight for a solar-powered vehicle. In these cases,
neither IL nor geometric navigation alone would suffice without strong assumptions on the nature
of the task or task-specific near-optimal demonstrations, which may be difficult to obtain. RL can,
in principle, address such challenges, but prior work on applying RL to robotic navigation relies
on infeasible amounts of online data collection, or requires high-fidelity simulators for simulation
to real world transfer. Is there a practical RL paradigm than can solve this challenge directly from
real-world data?

† These authors contributed equally.

Self-Supervised Reward Labeling

(a) Training (b) Evaluation (c) Deployment

Figure 1: Customizable navigation with ReViND: (a) During training, we use an offline dataset of trajectories
in conjunction with reward labels, specifying a target utility, to learn a Q-function. (b) During deployment, we
use the values from this Q-function to generate a topological graph over observations, and plan through it. This
plan incorporates the desired utility objective and can demonstrate varied behaviors (c) such as goal-reaching
while driving in the sun, driving on grass, or more abstract objectives like following a bike lane.

RL from offline datasets [1] can address this challenge by learning policies from a dataset of previ-
ously collected trajectories. Importantly, given a previously collected diverse dataset of navigational
trajectories, it is possible to relabel that dataset post-hoc with any reward function we want. Thus,
a user could gather a large dataset from a variety of prior sources (e.g., experiments in similar envi-
ronments, or even from the web), label it with a custom reward function, train their own policy, and
then deploy it, all without ever having to collect their own data. Since this approach can leverage
large datasets, it may lead to significantly better generalization [2] than methods that require much
more tightly curated data, such as imitation learning methods. How can we design a system to learn
control policies from large datasets that can be immediately deployed onto a mobile robot?

In this paper, we describe a robotic learning system that performs visual navigation to distant goals
(e.g. 100s of meters away) while also incorporating user-specified reward objectives. Our system
consists of two parts: (i) an offline Q-learning algorithm [3] that can incorporate the desired pref-
erences in the learned Q-function and trains a policy operating directly on raw visual observations,
and (ii) a topological representation of the environment, where nodes are represented by the raw
visual observations and the connectivity between them is described by the learned value function
(see system overview in Fig. 1). While the Q-function alone may only be sufficient to learn accurate
navigational startegies over short horizons [4], combining it with a topological graph allows scaling
to large environments by searching for a sequence of nodes to the goal that maximizes the desired
objective at a coarse-level. The policy derived from the Q-function is subsequently used to navigate
between the nodes, while also maximizing the specified objective at the lower-level.

The primary contribution of this work is ReViND, a robotic system for Reinforcement learning
for Visual Navigation with prior Data, that can utilize previously collected data in real-world en-
vironments, adopt behavior that is well-suited to user-specified reward functions (e.g., staying on
the grass, staying in sunlight), and still be able to reach distant goals by combining planning and
learning. We demonstrate that ReViND can readily incorporate high-level rewards, such as pref-
erences for particular surfaces or staying in sunlight, and can perform goal-reaching in complex
environments over hundreds of meters. ReViND is pre-trained on 30 hours of publicly available
navigation data [5] and is deployed in a visually similar target environment without any on-policy
data collection or fine-tuning. To the best of our knowledge, our results are the first demonstration of
offline RL for navigation utilizing only previously available public datasets. Our experiments show
that ReViND demonstrates markedly different goal-reaching behaviors by tweaking the reward ob-
jectives, while outperforming policies trained with imitation learning and model-free reinforcement
learning.

2 Related Work

Robotic navigation has been studied from perspective of mapping, planning, imitation learning, and
reinforcement learning. Classical navigation methods first acquire a geometric map, and then use
this map to plan collision-free paths [6]. The map can be built up incrementally, including with
intelligent exploration strategies that maximize information gain or otherwise optimize for faster
map acquisition [7–18]. Such methods often aim to map out the entire environment first and then

2

execute specific navigational tasks, though it is also possible to perform target-driven exploration,
where the map is built in the course of navigating to a specific goal [19, 20]. However, all such
methods are fundamentally geometric: the task is defined as reaching some destination, rather than
in terms of semantic reward functions that we consider in this work.

Similarly, many learning-based approaches to navigation also focus on largely geometric tasks, such
as the “PointGoal” task [21], though they often utilize reinforcement learning methods that in prin-
ciple can accommodate any reward function. The more severe issue with such methods is that RL
algorithms can require a large amount of online experience (e.g., millions or even billions of tri-
als) [22]. A method that requires a million 1-minute episodes would take more than 1.5 years of
nonstop real-world collection, making it poorly suited for learning from scratch directly in the real
world. Therefore, such methods typically require simulation, transfer, and other additional compo-
nents [23–25]. An alternative for encoding specific user preferences into a learning-based method is
to employ imitation learning [26]. While imitation learning can enable a user to define their desired
behavior through the demonstrations, such demonstrations are time-consuming to gather, and must
be recollected for each new reward function. In contrast, our offline RL method utilizes previously
collected datasets, which we show is practical for real-world robots, and relabels the same dataset
with different reward functions, which means no reward-specific data collection is needed.

Prior offline RL work has proposed a number of algorithms that can utilize previously collected
data [1, 3, 27, 27–31]. Our goal is not to develop a new offline RL algorithm, but rather to explore
their application to robotic navigation tasks. Most prior robotics applications of such methods in-
clude multi-task learning for manipulation [32–36]. Unlike these works, our focus is specifically
on how a single dataset can be reused to enable long-horizon navigation with different user pref-
erences. To that end, we combine our approach with graph-based search to reach distant goals,
which we show significantly improves over direct use of the learned policy, and utilize the same
exact data to optimize different reward functions. While prior work has also explored the use of
offline data with varying reward functions [37, 38], we address significantly longer horizon tasks by
incorporating model-free RL and graph search.

Our use of graph search in combination with RL parallels prior work that integrates graph search
and planning into supervised skill learning methods [26, 39] and goal-conditioned reinforcement
learning [4, 40, 41]. However, our method differs from these works in two ways. First, while these
prior works use the value function to estimate the temporal distance between pairs of nodes in the
graph, we specifically exploring using a variety of objectives. More importantly, we use offline
RL, whereas prior work uses either supervised regression for distances, or online RL. Our goal is
not to develop a new offline RL algorithm, but to explore their application to robotic navigation
tasks by building a learning-based system that can use one of these algorithms for planning. To
our knowledge, our work is the first to combine topological graphs with RL for arbitrary reward
functions, and the first to combine them with offline RL.

3 Offline Reinforcement Learning for Long-Horizon Robotic Navigation

Our system combines offline learning of reward-specific value functions with topological planning
over a graph constructed from prior experience in a given environment, so as to enable a robot to
navigate to distant goals while maximizing user-specified rewards. The learned value function is
used not only to supervise a local policy that chooses reward-maximizing actions, but also as a way
to evaluate edge costs on a graph constructed from past experience. The graph is then used to plan a
path, and the policy is used to execute the action to reach the first subgoal on that path. Structurally,
this resembles SoRB [4], but with two critical changes: the use of offline RL to learn value functions
from data, and the ability to handle various reward functions rather than just finding minimum length
paths.

3

3.1 Problem Statement and Assumptions

The robot’s task is defined in the context of a goal-conditioned MDP, with state observations s ∈ S,
actions a ∈ A, and goals g ∈ G. The robot receives a reward r(st) at each time step t, which
depends on the degree to which it is satisfying user preferences (e.g., staying on the graph), with
an additional bonus for reaching the goal. The objective can be expressed as maximizing the total
reward of the robot’s executed path, since the reward accounts for both the desired utility and goal
reaching. We discuss specific rewards in Section 4. The state observations consist of RGB images
from the robot’s forward-facing camera and a 2D GPS coordinate, the actions are 2D steering and
throttle commands, the goal is a 2D GPS coordinate expressed in the robot’s frame of reference. In
this setting, reinforcement learning methods will learn policies of the form π(at|st, gt), though our
approach will not command the final task goal gt directly, but instead will use a planning method
to determine intermediate subgoals, which in practice makes it significantly easier to reach distant
goals. To enable this sort of planning, we make an additional assumption that parallels prior work
on combining RL with graph search [4, 26]: we assume that the robot has access to prior experience
from the current environment that it can use to build a topological graph that describes its connec-
tivity. Intuitively, this corresponds to a kind of “mental map” that describes which landmarks are
reachable from which other landmarks. Importantly, we do not assume that this graph is manually
constructed or provided: the algorithm constructs the graph automatically using an uncurated set of
observations recorded from prior drive-throughs of the environment. In our experiment, these traver-
sals are done via teleoperation, though they could also be performed via autonomous exploration,
and our method could be extended to handle unseen environments by integrating the exploration
procedures discussed in prior work [5].

3.2 Reinforcement Learning from Offline Data

Offline RL algorithms learn policies from static datasets. In our implementation we use implicit
Q-learning (IQL) [3], though our approach is compatible with any value-based offline RL algo-
rithm. We summarize offline RL in general and IQL specifically in this section. Given a dataset
D = {(si, ai, ri, s′i) | i = 1 . . . N}, the goal of offline RL is to learn a policy that optimizes the
sum of discounted future rewards without any additional interactions with the environment. IQL
involves fitting two neural networks, Qθ and Vψ , where Qθ(s, a, g) approximates the Q-function
of an implicit policy that maximizes the previous Q-function, and Vψ represents the corresponding
value function. The Q-function is updated by minimizing squared error against the next time step
value function, with the objective

L(θ) = E(s,a,s′)∼D,g∼p(g|s)[(γVψ(s
′, g) + r(s, a, g)−Qθ(s, a, g))

2],

where p(g|s) is a goal distribution, which we will discuss later. The value function Vψ(s, g) should
be trained to correspond to Qϕ(s, a, g) for the optimal action a that maximizes the value at s, but
directly computing maxaQϕ(s, a, g) is likely to select an “adversarial” out-of-distribution action
that leads to erroneously large values, since the static dataset does not permit Qϕ(s, a, g) to be
trained on all possible actions [1, 3, 30]. Therefore, IQL employs an implicit expectile update, with
a loss function given by

L(ψ) = E(s,a)∼D,g∼p(g|s)[L
τ
2(Qθ(s, a, g)− Vψ(s

′, g))],

where Lτ2(u) = |τ − 1(u < 0)|u2. This can be shown to approximate the maximum over in-
distribution actions [3], but does not require ever querying out-of-sample actions during training. To
instantiate this method, it remains only to select p(g|s).

Goal relabeling. The IQL algorithm is not goal-conditioned [3], and the dataset was not collected
with a goal-reaching policy, so the goals must be selected post-hoc with some sort of relabeling
strategy. While a variety of relabeling strategies have been proposed in prior work [4, 36, 42–44],
we follow prior work on offline RL for goal-reaching [36] and simply set the goal to states that are
observed in the dataset in the same trajectory at time steps subsequent to a given sample si. In our
implementation, we select this time step at random between 10 and 70 time steps after si (the total

4

trajectory lengths are typically around 80 steps). Algorithm 1 outlines pseudocode for training the
Q-function with IQL.

Long-horizon control. Instead of directly using the policy learned with IQL, in this paper we use
the IQL value function to obtain edge costs for a graph used for topological planing. The standard
IQL method directly extracts a reactive policy from the Q-function. However, we found that in
the real world, this approach was unable to reach goals farther than 20m, or 80 time steps. A
deeper analysis of the system revealed that, while the policy and values learned by the IQL agent
are valid over shorter horizons, they degrade rapidly as the horizon increases. This is not surprising,
because like all value-based methods, IQL assumes that s represents a Markovian state. But this
assumption becomes increasingly violated for long-horizon tasks with first-person images: while
goals that are within line of sight of the robot are relatively simple, goals that require navigating
around obstacles tend to fail if using the policy directly. In the next subsection, we will discuss how
we can use a topological graph as a sort of “nonparametric memory” of the environment to alleviate
this challenge, enabling our method to reach distant goals.

3.3 Long-Horizon Reward Maximization with a Topological Graph

To enable long-horizon navigation, we combine the value function learned via offline RL with a
topological graph built from prior observations in a given environment. As discussed previously,
we assume that the robot has a limited amount of prior experience in the test environment that can
be used to build a “mental map,” corresponding to a graph where nodes are observations and edges
represent the cumulative reward the robot will accumulate as it travels from one node to another.
Note that this graph is topological rather than geometric: the nodes are image observations, and
the connectivity is determined by the learned value function. We do not use the data from the test
environment to finetune the value functions, only to construct the graph.

The graph G is constructed in the same way as prior work on graph-based navigation (see Shah et al.
[26] for the closest prior method): each state observation si in the test environment corresponds
to a node ni, and each edge eij receives a cost corresponding to C(eij) = −Vψ(si, sj).1 We
further filter these edges based on the GPS coordinates of the nodes to eliminate wormholes arising
due to optimistic value estimates. For more details on how the graph is constructed, please see
Appendix B. Given an overall task goal, we add it to the graph as an additional node nG, along
with a node representing the robot’s current state, and then use Dijkstra’s algorithm to compute the
shortest path with these edge costs. We then use the policy learned via offline RL to navigate to the
first node along this path. Algorithm 2 outlines pseudocode for this procedure.

In our implementation, we use goal-conditioned reward functions of this form:

R(st, at, g) =

{
−kt(st) ∀st ̸= g

0 otherwise.
(1)

where kt(st) > 0 is always positive to ensure that the planner actually reaches the goal.

Proposition 3.1 If we recover the optimal value function V ∗(s, s′) for short-horizon goals s′ (rela-
tive to s), and G = S (all states exist in the graph), and the MDP is deterministic with γ = 1, then
finding the minimum-cost path in the graph G with edge-weights −V ∗(s, s′) recovers the optimal
path, that is, a policy π that maximizes V ∗(s, g).

Proof (sketch): The Bellman equation can be used to write the cost of the minimal-cost path in the
graph with edge-weights −V (s, s′): J∗(s, g) = mins′ [−V (s, s′)+J∗(s′, g)] = −maxs′ [V (s, s′)−
J∗(s′, g)]. We can further expand V (s, s′) into a sum of rewards induced by the policy π and then
rearrange the terms to obtain a similar optimality equation for V ∗ that demonstrates that J∗(s, g) =
−V ∗(s, g).

1In our actual implementation, goals are defined only in terms of GPS coordinates, rather than the full
image, so technically the second argument is only the GPS coordinate of sj , which we found to be sufficient,
though extending the method to use the full image is a simple modification

5

While the above proposition is in some sense an obvious statement (and derived under strong as-
sumptions), it provides some degree of confidence that our proposed method is correct and consis-
tent, in the sense that in the limit of unlimited data it will eventually obtain the optimal solution.

Algorithm 1 Training ReViND

1: Initialize parameters ψ, θ, θ̂, ϕ.
2: for each gradient step do
3: Sample a mini-batch {(si, ai, ri, s′i)}
4: for each sample do
5: T ← T ∈ D | si ∈ T
6: gi ← SampleGoal(T, si)
7: si, s

′
i ← Relabel(si, s

′
i, gi)

8: ri ← Reward(si, gi)

9: ψ ← ψ − λV∇ψLV (ψ)
10: θ ← θ − λQ∇θLQ(θ)
11: θ̂ ← (1− α)θ̂ + αθ

Algorithm 2 Deploying ReViND

1: Inputs: current observation obs := {img, x}, set
of past observations N := {n1, . . . , nm}, IQL
agent {Q,V, π}, goal node nG ∈ N

2: G ← ConstructGraph(N , V)
3: while not IsClose(obs, nG) do
4: UpdateGraph(obs)
5: w1, . . . , wk ← DijkstraSearch(obs, nG)
6: for t = 1, . . . , H do
7: goal vector = GetRelative(x,w1)
8: RunPolicy(img, goal) ▷ runs on robot
9: obs← next observation

4 System Evaluation

We now describe our system and experiments that we use to evaluate ReViND in real-world environ-
ments with a variety of utility functions. Our experiments evaluate ReViND’s ability to incorporate
diverse objectives and learn customizable behavior for long-horizon navigation, and compare it al-
ternative methods for learning navigational skills from offline datasets.

4.1 Mobile Robot Platform

We implement ReViND on a Clearpath Jackal UGV platform (see Fig. 1). The sensor suite consists
of a 6-DoF IMU, a GPS unit for approximate localization, and wheel encoders to estimate local
odometry. The robot observes the environment using a forward-facing 170◦ field-of-view RGB
camera. Compute is provided by an NVIDIA Jetson TX2 computer, with the offline RL controller
running on-board. Our method uses only the monocular RGB images from the on-board camera and
unfiltered GPS measurements.

4.2 Offline Trajectory Dataset and Self-Supervised Labeling

The ability to utilize offline datasets enables ReViND to learn navigation behavior directly from
existing datasets — which may be expert teleoperated or collected via an autonomous exploration
policy — without collecting any new data. While it may be extremely challenging to get generaliza-
tion capabilities that work for all scenarios, we demonstrate that ReViND can learn behaviors from
a small offline dataset and generalize to a variety of previously unseen, visually similar environ-
ments including grasslands, forests and suburban neighborhoods. Expanding this training dataset to
include more diverse scenes can help extend these results to alternate applications (e.g. indoors). To
emphasize this, we train ReViND using 30 hours of publicly available robot trajectories collected
using a randomized data collection procedure in an office park [5]. To utilize this data with our
method, we relabel it with several different reward labels corresponding to three behaviors: simple
shortest-path goal-reaching, driving in the sun (to emulate a solar-powered vehicle that needs sun-
light), and driving on grass. We automatically generate labels for “sunny” and “grassy” observations
by simple image processing operations in the HSV color space. We implement these rewards via ad-
ditive bonus to the negative rewards which corresponds to reducing the penalty for traversing these
areas. For more details, see Appendix A. Note that the relabeling process is fully autonomous using
these rewards, although learning more intricate behaviors may require defining special rewards or
manual labeling. As discussed in Sec. 3.2, we use IQL to learn the value functions and policies for
each task.

6

Figure 2: Comparison of policies for different reward functions learned by ReViND. Left: an overhead
map (not available to the method), with grassy areas indicated with green shading. Note that the policy for the
“sunny” reward chooses a significantly different path through a concrete parking lot without tree cover, while
the policy for the “grassy” reward takes frequent detours to drive on lawns. Right: first person images during
each traversal, with the chosen path indicated with colored lines.

Figure 3: The learned values for different utilities, shown here as horizontal bar plots, can incorporate diverse
objectives, and are used downstream by ReViND to infer edge connectivity in the topological graph. E.g. a
solar robot would perceive goals in a sunny environment (right) as favorable due to lower distance estimates,
and prefer a route that avoids shadows.

Figure 3 illustrates the values learned by the Q-function for reaching goals that are ∼10m away. The
value estimates corresponding to the three different utility functions estimate markedly different
traversability costs. For example, Vdist+sun predicts a lower cost (i.e., a higher value) for sunny
observations, indicating that this value function prefers such paths.

4.3 Learning Varied Behaviors with ReViND

We now evaluate our method both in terms of its ability to tailor the navigational strategy to the pro-
vided reward, and in terms of how it compares to prior approaches and baselines. We test ReViND in
five suburban environments for a large number of goal-reaching tasks (see Appendix H). While these
environments are visually similar to the offline training data, they exhibit dynamic elements such as
humans, moving automobiles, and changes in the appearance of grass and trees across the seasons.
In each evaluation environment, we first construct a topological graph by manually driving the robot
and collecting visual and GPS observations. The nodes of this graph are obtained by sub-sampling
these observations, such that they are 10–30m apart, and the edge connectivity is determined by the
corresponding value estimates. Note that the Q-function is not updated with this data, it is only used
to build the graph. Once the graph is constructed, the robot is tasked with reaching a goal location,
where it follows Alg. 2 to search for a path through the graph, and then executes it via the learned
policy. Fig. 2 shows the paths taken by policies corresponding to the different reward functions for
a specific start-goal pair. The overhead image is not available to ReViND and is only provided for
illustration.

Our results show that utilizing value functions for different rewards from ReViND leads to signif-
icantly different paths through the environment. For example, the “sunny” reward function causes
a large detour through a parking lot without tree cover, while the “grassy” reward causes frequent
detours to drive on lawns. All of the policies successfully avoid obstacles and collisions and suc-
cessfully reach the goal. In Table 1 we provide a quantitative summary of the behavior of the method
for each reward function, showing success weighted by path length (SPL, which corresponds to an
optimality measure that awards higher scores to successful runs with the shortest route length), the
average value of the grass reward, and the average value of sun reward for trials corresponding to
each reward function (note that these rewards are normalized to maximum of 1). As expected, we
see that the values of these metrics strongly covary with the commanded reward.

7

fBCBC

Start
Goal

IQL

ViNG Ours

Figure 4: Qualitatively, only ReViND reaches the goal while prioritizing grassy terrain (shaded green).

Method Uses Graph? Easy (<50m) Medium (50–150m) Hard (150–500m)
Success E1grass Success E1grass Success E1grass

Behavior Cloning No 1/5 0.08 0/5 0.04 0/5 0.12
Filtered BC No 3/5 0.29 0/5 0.08 0/5 0.12
IQL [3] No 3/5 0.37 1/5 0.29 0/5 0.16
ViNG [26] Yes 5/5 0.07 4/5 0.09 3/5 0.14
Filtered BC + Graph Yes 5/5 0.24 4/5 0.15 3/5 0.19
ReViND (Ours) Yes 5/5 0.47 4/5 0.84 4/5 0.78

Table 2: Success rates and utility maximization for the task of navigation un grassy regions (Rgrass).

Agent Utility SPL ERgrass ERsun

Rdist 0.87 0.16 0.61
Rdist +Rgrass 0.84 0.86 0.39
Rdist +Rsun 0.64 0.05 0.68

Table 1: ReViND learns custom behaviors that
maximize the desired utility.

Next, we compare ReViND to four baselines, each
trained on the same offline dataset. These ap-
proaches represent natural points of comparison for
our method, and include prior imitation learning and
RL methods, as well as a prior graph-based method
that does not use RL. Since our approach is (to our
knowledge) the first to combine RL with arbitrary
rewards and topological graph search, no prior approach supports both graphs and arbitrary rewards.
All methods have access to egocentric images and GPS, and command future waypoints to the robot.

Behavioral Cloning (BC): A goal-conditioned imitation policy that maps images and goals to con-
trol actions [45]. This baseline does not incorporate reward information.

Filtered BC (fBC): A similar goal-conditioned BC policy that incorporates reward information by
filtering the training data, picking only trajectories with the top 50% aggregate rewards [46].

ViNG: A graph-based navigation system that combines a goal-conditioned BC policy and distance
function with a topological graph [26]. This baseline does not incorporate reward information.

IQL: A baseline that uses only the learned Q-function, without a topological graph [3].

Method Easy (<50m) Medium (50–150m) Hard (150–500m)
Success E1sun Success E1sun Success E1sun

Behavior Cloning 1/5 0.58 0/5 0.32 0/5 0.29
Filtered BC 3/5 0.51 0/5 0.31 0/5 0.32
IQL [3] 3/5 0.54 2/5 0.42 0/5 0.34
ViNG [26] 5/5 0.63 4/5 0.58 3/5 0.63
ReViND (Ours) 5/5 0.61 3/5 0.75 4/5 0.74

Table 3: Success rates and utility maximization for the task of navigation in sunny regions (Rsun).

8

Fig. 4 shows the qualitative behavior exhibited by the different systems for maximizing the “grassy”
reward function. IQL and Filtered BC can incorporate the reward function into the policy, but
since they rely entirely on a reactive policy for navigation, they are unable to determine how to
navigate toward the goal, and exhibit meainingless bee-lining behavior. Using a graph search to
find a minimum distance path, ViNG can reach the goal, but does not satisfy the reward function.
Only ReViND is successful in navigating to the goal while taking a short detour that maximizes the
desired objective, demonstrating affinity to grassy terrains.

We provide a quantitative evaluation of these methods in Tables 2/3, showing the average distance
traveled by each method over all test trials prior to disengagement (which occurs when there is high
risk of collision), as well as the average value of the utilities. We see that non-RL methods are
unable to take into account the task reward, and simply aim to reach the task goal, which leads
to suboptimal utility. We can take reward into account either using RL, or by filtering BC to imi-
tate only the high-reward trajectories. In easier environments, we see that both fBC and IQL can
learn reward-maximizing behavior. However, both the RL and BC flat policies suffer sharp drops in
performance as the distance to goal increases. The addition of a graph greatly helps improve per-
formance. Here again, we notice that offline RL (ReViND), which uses Q-learning to optimize the
reward, consistently outperforms filtering-based approaches (fBC-graph) – this confirms that taking
the reward into account is important for respecting the user’s preferences (which is unsurprising),
but also that offline RL is more effective at this than simple filtering.

The biggest failure mode for current offline RL and IL methods in our task is their inability to reach
distant goals. BC, fBC and IQL consistently fail to reach goals beyond 15-20m away, due to chal-
lenges in learning a useful policy from offline data — these flat baseline policies often demonstrate
bee-lining behavior, driving straight to the goal, which often leads to collisions.

5 Discussion

We presented ReViND, a robotic navigation system that uses offline reinforcement learning in com-
bination with graph search to reach faraway goals while optimizing arbitrary user-specified reward
functions. We showed that ReViND can be trained on a navigational dataset collected in prior work
and, when this dataset is relabeled with a variety of reward functions, ReViND can exhibit distinct
behavior, preferring certain terrains or environment conditions during the traversal. Our experi-
ments show that ReViND can generalize to novel, visually simlar environments, and is responsive to
the specified reward function, and significantly outperforms prior methods that either do not utilize
graph search and rely entirely on reactive policies, or else utilize graphs without RL and therefore
do not support arbitrary rewards. We hope that our work will provide a step toward robotic learn-
ing methods that routinely reuse previously collected data, while still accomplishing new tasks and
maximizing new user-specified reward functions. Such methods can exhibit effective generalization
in the real world through their ability to incorporate large and diverse previously collected datasets,
while still flexibly solving new tasks in a variety of visually similar environments, as long as the
specified reward functions are valid in novel environments.

9

References
[1] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline Reinforcement Learning: Tutorial, Review,

and Perspectives on Open Problems, 2020. 2, 3, 4

[2] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models. CoRR, abs/2001.08361,
2020. URL https://arxiv.org/abs/2001.08361. 2

[3] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021. 2, 3, 4, 8, 17

[4] B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the Replay Buffer: Bridging
Planning and RL. In Advances in Neural Information Processing Systems (NeurIPS). 2019. 2,
3, 4

[5] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine. Rapid exploration for open-world navi-
gation with latent goal models. In 5th Annual Conference on Robot Learning, 2021. 2, 4, 6,
18

[6] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2005. ISBN
0262201623. 2

[7] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-Whyte.
Information based adaptive robotic exploration. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 1, pages 540–545 vol.1, 2002. doi:10.1109/
IRDS.2002.1041446. 2

[8] T. Kollar and N. Roy. Efficient optimization of information-theoretic exploration in slam. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2008.

[9] W. Tabib, K. Goel, J. Yao, M. Dabhi, C. Boirum, and N. Michael. Real-time information-
theoretic exploration with gaussian mixture model maps. In Robotics: Science and Systems,
2019.

[10] B. Yamauchi. A frontier-based approach for autonomous exploration. In IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA), 1997.

[11] D. Holz, N. Basilico, F. Amigoni, and S. Behnke. A comparative evaluation of exploration
strategies and heuristics to improve them, 2011.

[12] B. Charrow, S. Liu, V. Kumar, and N. Michael. Information-theoretic mapping using cauchy-
schwarz quadratic mutual information. In IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[13] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael, and V. Kumar.
Information-theoretic planning with trajectory optimization for dense 3d mapping. In Robotics:
Science and Systems (RSS), 2015.

[14] J. McCormac, A. Handa, A. Davison, and S. Leutenegger. Semanticfusion: Dense 3d seman-
tic mapping with convolutional neural networks. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[15] K. M. Jatavallabhula, G. Iyer, and L. Paull. gradslam: Dense SLAM meets automatic differen-
tiation. CoRR, 2019.

[16] C. Connolly. The determination of next best views. In Proceedings. 1985 IEEE International
Conference on Robotics and Automation, 1985.

10

https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1109/IRDS.2002.1041446
http://dx.doi.org/10.1109/IRDS.2002.1041446

[17] C. Papachristos, S. Khattak, and K. Alexis. Uncertainty-aware receding horizon exploration
and mapping using aerial robots. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017.

[18] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt. Efficient autonomous exploration
planning of large-scale 3-d environments. IEEE Robotics and Automation Letters, 2019. 2

[19] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza. Active autonomous aerial explo-
ration for ground robot path planning. IEEE Robotics and Automation Letters, 2017. 3

[20] I. Lluvia, E. Lazkano, and A. Ansuategi. Active mapping and robot exploration: A survey.
Sensors, 2021. 3

[21] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain,
J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embod-
ied AI Research. In IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
3

[22] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. DD-
PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames. In International
Conference on Learning Representations (ICLR), 2020. 3

[23] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to Explore using
Active Neural SLAM. In International Conference on Learning Representations (ICLR), 2020.
3

[24] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. AI2-THOR: An Interactive 3D Environment for Visual AI. ArXiv,
2019.

[25] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Ma-
lik, R. Mottaghi, M. Savva, and A. R. Zamir. On Evaluation of Embodied Navigation Agents,
2018. 3

[26] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine. ViNG: Learning Open-World
Navigation with Visual Goals. In IEEE International Conference on Robotics and Automation
(ICRA), 2021. 3, 4, 5, 8

[27] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International Conference on Machine Learning, pages 2052–2062. PMLR, 2019.
3

[28] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement learn-
ing, pages 45–73. Springer, 2012.

[29] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[30] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.
4

[31] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pages
5774–5783. PMLR, 2021. 3

[32] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021. 3

11

[33] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

[34] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox. Iris: Implicit
reinforcement without interaction at scale for learning control from offline robot manipulation
data. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
4414–4420. IEEE, 2020.

[35] A. X. Lee, C. M. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan,
A. Abdolmaleki, N. Gileadi, D. Khosid, et al. Beyond pick-and-place: Tackling robotic stack-
ing of diverse shapes. In 5th Annual Conference on Robot Learning, 2021.

[36] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,
R. Julian, C. Finn, and S. Levine. Actionable models: Unsupervised offline reinforcement
learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021. 3, 4

[37] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine. Self-Supervised Deep RL with
Generalized Computation Graphs for Robot Navigation. In IEEE International Conference on
Robotics and Automation (ICRA), 2018. 3

[38] G. Kahn, A. Villaflor, P. Abbeel, and S. Levine. Composable action-conditioned predictors:
Flexible off-policy learning for robot navigation. In Conference on robot learning, pages 806–
816. PMLR, 2018. 3

[39] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-Parametric Topological Memory for Naviga-
tion. In International Conference on Learning Representations, 2018. 3

[40] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J. Davidson. PRM-RL:
Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-
Based Planning. In IEEE International Conference on Robotics and Automation (ICRA), pages
5113–5120, 2018. doi:10.1109/ICRA.2018.8461096. 3

[41] S. Nasiriany, V. Pong, S. Lin, and S. Levine. Planning with goal-conditioned policies.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

c8cc6e90ccbff44c9cee23611711cdc4-Paper.pdf. 3

[42] L. P. Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer, 1993. 4

[43] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, 2017.

[44] B. Eysenbach, X. Geng, S. Levine, and R. R. Salakhutdinov. Rewriting history with inverse
rl: Hindsight inference for policy improvement. Advances in neural information processing
systems, 33:14783–14795, 2020. 4

[45] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-to-End Driving Via
Conditional Imitation Learning. In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2018. 8

[46] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas,
and I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=

a7APmM4B9d. 8

12

http://dx.doi.org/10.1109/ICRA.2018.8461096
https://proceedings.neurips.cc/paper/2019/file/c8cc6e90ccbff44c9cee23611711cdc4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c8cc6e90ccbff44c9cee23611711cdc4-Paper.pdf
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d

[47] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu. Impala: Scalable distributed deep-
rl with importance weighted actor-learner architectures. In ICML, 2018. URL http:

//proceedings.mlr.press/v80/espeholt18a.html. 17

13

http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html

Self-Supervised Reward Labeling

(a) Training (b) Evaluation (c) Deployment

Figure 1: Customizable navigation with ReViND: (a) During training, we use an offline dataset of trajectories
in conjunction with reward labels, specifying a target utility, to learn a Q-function. (b) During deployment, we
use the values from this Q-function to generate a topological graph over observations, and plan through it. This
plan incorporates the desired utility objective and can demonstrate varied behaviors (c) such as goal-reaching
while driving in the sun, driving on grass, or more abstract objectives like following a bike lane.

Part I

Appendix

Table of Contents
Erratum 14

A Reward Labeling 14

B Building the Topological Graph 15

C Extended Experiments/Baselines 16

D Formal Analysis of Proposition 3.1 16

E Miscellaneous Implementation Details 17

F Interim Code Release 17

G Experiment Videos 18

H Environments 18

Erratum

We noticed that Figure 1 in the submitted draft is extremely low resolution, likely due to a PDF
compilation error. Please see a higher resolution copy above (reproduced without changes).

A Reward Labeling

For the base task of goal-reaching, we use a simple reward scheme with a survival penalty that
incentivizes the robot to take the shortest path to the goal:

Rdist(st, at, g) =

{
−1 ∀st ̸= g

0 otherwise.
(2)

For more complex utilities, such as incentivizing driving in the sun (e.g., for a solar robot), we
discount the survival penalty by a factor of 4.

14

Figure 5: ReViND can support a wide range of reward functions and performs as expected for varying levels
of trade-offs between the goal-reaching and utility maximization objectives.

Rgrass(st, at, g) =

{
−1 + 0.75 ∗ 1grass{st} ∀st ̸= g

0 otherwise.
(3)

Rsun(st, at, g) =

{
−1 + 0.75 ∗ 1sun{st} ∀st ̸= g

0 otherwise.
(4)

An interesting implication of the above reward scheme is to view the negative penalty as a proxy
for the amount of work a robot needs to do — a solar robot may use 1 unit of energy per time step
to navigate in an environment, but it may also create 0.75 units of energy by exposing itself to the
sun, effectively discounting the navigation cost in sunny regions. This reward scheme trades-off the
choice of the shortest path to the goal with maximizing the user-specified utility function.

For our experiments, we use the robot’s egocentric visual observations to automatically label these
rewards. To determine whether the current state is in a sunny/grassy area, we process the front view
image of the Jackal by thresholding in the HSV colorspace. We process the bottom center crop of
the image by thresholding it, and declare event 1sun or 1sun if a majority of the pixels satisfy the
thresholds.

We note that while the above choice of reward function may seem arbitrary, the overall utility func-
tion (or the “relative weight” between the two objectives) would be application-dependent. For
instance, a solar-powered robot may be able to recoup 20% of its navigation energy when driving in
the sun, and its effective reward could be (−1 + 0.2 ∗ 1sun). We ran experiments to test ReViND’s
sensitivity to this trade-off and found that it performs expectedly for a wide range of reward func-
tions (see Figure 5). Practically, this would be a hyperparameter set empirically by the user based
on the desired level of trade-off between the goal-reaching and utility maximization objectives.

B Building the Topological Graph

As discussed in Section 3.3, we combine the value function learned via offline RL with a topolog-
ical graph of the environment. This section outlines the finer details regarding how this graph is
constructed. We use a combination of learned value function (from Q-learning), spatial proximity
(from GPS), and temporal proximity (during data collection), to deduce edge connectivity. If the
corresponding timestamps of two nodes are close (< 2s), suggesting that they were captured in
quick succession, then the corresponding nodes are connected — adding edges that were physically
traversed. If the distance estimates (or, negative value) between two nodes are small, suggesting that

15

they are close, then the corresponding nodes are also connected — adding edges between distant
nodes along the same route, and giving us a mechanism to connect nodes that were collected in
different trajectories or at different times of day but correspond to the nearby locations. To avoid
cases of underestimated distances by the model due to aliased observations, e.g. green open fields
or a white wall, we filter out prospective edges that are significantly further away as per their GPS
estimates — thus, if two nodes are nearby as per their GPS, e.g. nodes on different sides of a wall,
they may not be disconnected if the values do not estimate a small distance; but two similar looking
nodes 100s of meters away, that may be facing a white wall, may have a small distance estimate but
are not added to the graph in order to avoid wormholes. Algorithm 0 summarizes this process — the
timestamp threshold ϵ is 1 second, the learned distance threshold τ is 50 time steps (corresponding
to ∼ 12 meters), and the spatial threshold η is 100 meters.

Algorithm 3 Graph Building

1: function GETEDGE(i, j)
2: Input: Nodes ni, nj ∈ G; value function Vψ; hyperparameters {τ, ϵ, η}
3: Output: Boolean eij corresponding to the existence of edge in G, and its weight
4: goal = GetRelative(ni, nj) ▷ using GPS and compass
5: Dij = −Vψ(ni, goal) ▷ learned distance estimate
6: Tij = |ni[‘timestamp’]− nj [‘timestamp’]| ▷ timestamp distance
7: Xij = ∥ni[‘GPS’]− nj [‘GPS’])∥ ▷ spatial distance
8: if (Tij < ϵ) then return {True, Dij}
9: else if (Dij < τ) AND (Xij < η) then return {True, Dij}

10: else return False

Since a graph obtained by such an analysis may be quite dense, we perform a transitive reduction
operation on the graph to remove redundant edges.

C Extended Experiments/Baselines

This section presents a detailed breakdown of the quantitative results discussed in Section 4.3. We
evaluate ReViND against four baselines in 15 environments with varying levels of complexity, in
terms of environment organization, obstacles, and scale. Tables 2 and 3 summarize the performance
of the different methods for the task of maximizing the Rgrass and Rsun utilities, respectively.

We see that ReViND is able to consistently outperform the baselines, both in terms of success as
well as its ability to maximize the utilities 1.. In particular, we see that ReViND’s performance
closely matches that of IQL in the easier environments, where the system does not need to rely ex-
cessively on the graph. However, the real prominence of ReViND is evident in the more challenging
environments, where it is consistency successful while also maximizing the chosen utility. As the
horizon of the task increases, the search algorithm on the graph returns more desirable paths that
may stray from the direct, shortest path to the goal, but are highly effective in maximizing the utility.
We also note that ViNG, which uses a similar topological graph, is statistically similar to ReViND
in terms of its goal-reaching ability; however, since it does not support a mechanism to customize
the behavior of the learned policy, it suffers in the other performance metrics. BC, fBC and IQL
consistently fail to reach goals beyond 15-20m away, due to challenges in learning a useful policy
from offline data — these “flat” policies often demonstrate bee-lining behavior, driving straight to
the goal, which leads to collisions in all but the easiest experiments.

D Formal Analysis of Proposition 3.1

Proposition 3.1 If we recover the optimal value function V ∗(s, s′) for short-horizon goals s′ (rela-
tive to s), and G = S (all states exist in the graph), and the MDP is deterministic with γ = 1, then
finding the minimum-cost path in the graph G with edge-weights −V ∗(s, s′) recovers the optimal
path. .

16

Proof : Let A(s) and Ah(s) define a set of all nodes adjacent to node s and within a short horizon
from a node s correspondingly.

The Bellman equation can be used to write the cost of the minimal-cost path, J∗(s, g), in the graph
with rewards defined via edge-weights r(s, a, s′) = −V ∗(s, s′):

J∗(s, g) = min
s′∈Ah(s)

[−V ∗(s, s′) + J∗(s′, g)] = − max
s′∈Ah(s)

[V ∗(s, s′)− J∗(s′, g)].

We can expand the recursion:

J∗(s, g) = − max
s′∈Ah(s),s′′∈Ah(s′),...,g∈Ah(s(n))

[V ∗(s, s′) + V ∗(s′, s′′) + . . .+ V ∗(s(n), g)]. (5)

We can further expand each V ∗(·, ·) term as

V ∗(s(n−k), s(n−k+1)) = max
s1∈A(s(n−k))
s2∈A(s1)

...
s(n−k+1)∈A(st)

t∈N

[−C(s(n−k), s1)− C(s1, s2)− . . .− C(st, s
(n−k+1))].

(6)

If we expand every term in Equation 5 with 6 it becomes exactly the optimization objective for the
shortest path problem with the original edge-weights. One can see V ∗(s, s′) as a solution to the
shortest path problems in the subgraphs of G induced by Ah(s).

E Miscellaneous Implementation Details

Table 4 presents the neural network architectures used by our system. We provide the important
hyperparameters for training our system in Table 5. The underlying learning algorithm in ReViND is
based on IQL [3], and we encourage the reader to check out the IQL paper for more implementation
details.

Layer Input Shape Output Shape Layer details

1 [3, 64, 48] [1536] Impala Encoder [47]
2 [1536] [50] Dense Layer
3 [50] [50] tanh (LayerNorm)
4 [50], [3] [53] Concat. image & goal

Policy Network at ∼ π(st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [10] Dense Layer

Q Network Q(st, at)
5 [53], [10] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Value Network V (st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Table 4: Architectures of the various neural networks used by ReViND.

F Interim Code Release

We are sharing the code corresponding to our offline learning algorithm, labeling, and evaluation
scripts — please see revind code.zip in the supplemental material. We will make a more polished
and usable version of the code available with a future release.

17

Hyperparameter Value Meaning

τ 0.9 IQL Expectile
A 0.1 Policy weight
γ 0.99 Discount factor
η 0.005 Soft Target Update
αactor, αcritic, αvalue 3e− 4 Learning rates

Table 5: Hyperparameters used during training ReViND from offline data.

Figure 6: Example egocentric observations from the training dataset [5] (top) and the deployment environments
(bottom), including the predicted labels for the “sunny” reward.

G Experiment Videos

We are sharing experiment videos of ReViND deployed on a Clearpath Jackal mobile robotic plat-
form — please see revind video.mp4 in the supplemental material. The videos correspond to
the qualitative behaviors learned by ReViND for the task of maximizing the corresponding utility
functions, and a comparison to alternative learning-based algorithms (Table ??).

H Environments

We train ReViND using 30 hours of publicly available robot trajectories collected using a random-
ized data collection procedure in an office park [5]. We conduct evaluation experiments in a variety
of novel environments with similar visual structure and composition as the training environments
— i.e. suburban environments with some traversals on the grass, around trees of a certain kind, and
on roads. While it may be extremely challenging to get generalization capabilities that work for all
scenarios, we demonstrate that ReViND can learn behaviors from a small offline dataset and gener-
alize to a variety of previously unseen, visually similar environments including grasslands, forests
and suburban neighborhoods. Figure 6 shows some example environments from the training and
deployment environments, along with their corresponding labels (automatically generated).

18

	Introduction
	Related Work
	Offline Reinforcement Learning for Long-Horizon Robotic Navigation
	Problem Statement and Assumptions
	Reinforcement Learning from Offline Data
	Long-Horizon Reward Maximization with a Topological Graph

	System Evaluation
	Mobile Robot Platform
	Offline Trajectory Dataset and Self-Supervised Labeling
	Learning Varied Behaviors with ReViND

	Discussion
	I Appendix
	Erratum
	Reward Labeling
	Building the Topological Graph
	Extended Experiments/Baselines
	Formal Analysis of Proposition 3.1
	Miscellaneous Implementation Details
	Interim Code Release
	Experiment Videos
	Environments

