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Abstract

Adversarial training is the industry standard for producing models that are ro-
bust to small adversarial perturbations. However, machine learning practitioners
need models that are robust to other kinds of changes that occur naturally, such
as changes in the style or illumination of input images. Such changes in input
distribution have been effectively modeled as shifts in the mean and variance of
deep image features. We adapt adversarial training by directly perturbing feature
statistics, rather than image pixels, to produce models that are robust to various un-
seen distributional shifts. We explore the relationship between these perturbations
and distributional shifts by visualizing adversarial features. Our proposed method,
Adversarial Batch Normalization (AdvBN), is a single network layer that generates
worst-case feature perturbations during training. By fine-tuning neural networks
on adversarial feature distributions, we observe improved robustness of networks
to various unseen distributional shifts, including style variations and image corrup-
tions. In addition, we show that our proposed adversarial feature perturbation can
be complementary to existing image space data augmentation methods, leading to
improved performance. The source code and pre-trained models are released at
https://github.com/azshue/AdvBN.

1 Introduction

(a) ImageNet
99.9%  goldfinch
0.05%  bulbul
0.02%  house finch

(b) ImageNet-Instagram
89.6%  goldfinch
  7.4%  sulphur butterfly
  0.5%  hummingbird

 (c) ImageNet-C
57.4%  goldfinch
11.8%  brambling
  8.8%  guillotine

(d) ImageNet-Sketch
51.4%  black grouse
  6.7%  jay
  6.2%  coucal

(e) Stylized ImageNet
16.2%  gong
  8.8%  bolete
  4.5%  fox squirrel

(f) ImageNet-AdvBN
10.3%  hen-of-the-woods
  5.1%  Ibizan hound
  4.0%  flamingo

Figure 1: Images from ImageNet variants along with classification scores by a pre-trained
ResNet-50. The image of column (a) is from ImageNet validation set. Dataset of column (d)
is collected independently of the ImageNet dataset. Dataset of Column (f) is generated by our
Adversarial Batch Normalization module. Details on how we generate column (f) can be found in
Section 3.

Robust optimization for neural networks has been a major focus of recent research. A mainstream
approach to reducing the brittleness of classifiers is adversarial training, which solves a min-max
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optimization problem in which an adversary makes perturbations to images to degrade network
performance, while the network adapts its parameters to resist degradation [9, 18, 25]. The result is a
hardened network that is no longer brittle to small perturbations to input pixels. While adversarial
training makes networks robust to adversarial perturbations, it does not address other forms of
brittleness that plague vision systems. For example, shifts in image style, lighting, color mapping,
and domain shifts can still severely degrade the performance of neural networks [12].

We propose adapting adversarial training to make neural networks robust to changes in image style
and appearance, rather than small perturbations at the pixel level. We formulate a min-max game in
which an adversary chooses adversarial feature statistics, and network parameters are then updated to
resist these changes in feature space that correspond to appearance differences of input images. This
game is played until the network is robust to a variety of changes in image space including texture,
color, brightness, etc.

The idea of adversarial feature statistics is inspired by the observation that the mean and variance
of feature maps encode style information, and thus enable the transfer of style information from a
source image to a target image through normalization [15, 40]. Unlike standard approaches that rely
on feature statistics from auxiliary images to define an image style, we use adversarial optimization
of feature statistics to prepare classifiers for the worst-case style that they might encounter.

We propose training with Adversarial Batch Normalization (AdvBN) layers. Before each gradient
update, the AdvBN layer performs an adversarial feature shift by re-normalizing with the most
damaging mean and variance. By using this layer in a robust optimization framework, we create
networks that are resistant to various domain shifts representable by shifts in feature statistics. An
advantage of this method is that it does not require additional auxiliary data from new domains. We
show that robust training with AdvBN layer hardens classifiers against changes in image appearance
and style [6, 45], as well as common image corruptions [12]. Besides classification, the effectiveness
of AdvBN is also shown in the task of semantic segmentation, where it improves cross-domain
generalization.

2 Related work

Adversarial training. Adversarial training and its variants [7, 25, 32, 49] have been widely studied
for producing models that are robust to adversarial examples [26, 36] through solving min-max
optimization problems. Besides defending against adversarial attacks, recent work has shown that
adversarial training can be effectively applied to many other tasks [8, 17, 30, 53, 55]. Adversarial data
augmentation [34, 42, 54] proposes to generate worst-case unseen domains using data augmentation
and an adversarial loss, thus improving the generalization of neural networks. Another work [46]
interprets the original formula of adversarial training as a type of data augmentation and reveals the
distributional discrepancy between the feature representations of adversarial examples and clean
data. The combination of adversarial training and feature statistics has been studied in previous work
[24, 27], where it has been used to defend against adversarial attacks [27], or to generate feature
distributions [24]. Our method differs from previous work in both the target of perturbation and the
objective function. We craft adversarial feature distributions by directly perturbing the mean and
variance of feature maps instead of through a variational auto-encoder [24], and our objective does
not include regularization terms.

Feature Perturbation. Feature perturbation has been an effective approach to generate novel data
distributions from a given source domain [14, 19, 22, 39]. Feature perturbations can be applied in
different ways, such as adding spatial noise to the feature maps [37] or transforming feature maps
using classical signal processing [22]. We will specifically discuss feature perturbation through
re-normalization. While feature normalization [16, 40] is first proposed to accelerate neural network
training [1], the mean and variance of deep feature representations have been shown to effectively
capture image style information, and style transfer can be realized through feature re-normalization
[15]. The idea of feature re-normalization has also been adopted to help neural networks adapt from
the source domain to a target domain, using feature statistics obtained from the latter [21, 31]. Recent
work [20] also proposes to use re-normalization for feature interpolation to improve the generalization
capability of neural networks. Instead of re-normalizing features with statistics of other samples or
from other domains, we simulate the worst-case scenario, encouraging models to be less sensitive to
style information and thus to generalize better to images of varying appearances.
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Robustness to distribution shifts. The definition of “distribution shifts” varies from one topic
to another. For example, distribution shifts in the meta-learning literature[19, 37] often refer to the
discrepancy in discriminatory feature distributions of novel tasks from different domains. Another
definition is the subtle difference between training and testing data that are sampled from the same
underlying distribution [38, 50]. This work mainly focuses on distribution shifts across image
data that amount to major “style” discrepancy, including variations in illumination [6, 45], weather
condition [29], and image quality degradation [12]. Various methods have been proposed to produce
neural networks that generalize well to this type of distribution shift, including test time training
[35], test time adaptation [43], training with noise [30], and novel network architectures [28], etc.
Data augmentation is a popular method which is designed to increase the diversity of training data
and prevent neural networks from over-fitting. Recent studies in data augmentation have proposed
to use novel augmentation operations [6, 13, 48, 51], policy searching [3, 10, 23], and adversarial
approaches [17, 42, 55], etc. However, the potency of data augmentation can be limited by the choice
of applicable augmentations [2, 5]. Feature space augmentation through feature interpolation [20, 41],
on the other hand, is not restricted to the family of image transformations. Our method also works in
feature space, but instead of interpolating, we perturb feature statistics adversarially.

3 Adversarial Batch Normalization

We propose Adversarial Batch Normalization (AdvBN), a module that adversarially perturbs deep
feature distributions such that the features confuse CNN classifiers. We iteratively compute adversarial
directions in feature space by taking PGD steps on batch statistics. In the next section, we will train
on these perturbed feature distributions in order to produce models robust to domain shifts.

Consider a pre-trained classification network, g, with L layers. We divide g into two parts, g1,l and
gl+1,L, where gm,n denotes layersm through n. Now, consider a batch of data, x, with corresponding
labels, y. Formally, the AdvBN module is defined by

BNδadv(x; g,l, y) = δ′σ · σ(f) ·
(
f − µ(f)
σ(f)

)
+ δ′µ · µ(f), where f = g1,l(x), (1)

(δ′µ, δ
′
σ) = argmax

(δµ,δσ)

L
[
gl+1,L

(
δσ · (f − µ(f)) + δµ · µ(f)

)
, y

]
,

subject to ‖δµ − 1‖∞ ≤ ε, ‖δσ − 1‖∞ ≤ ε,
(2)

where L is the cross-entropy loss, and the maximization problem is solved with projected gradient
descent. Note that the feature input of gl+1,L is a simplified form of the AdvBN formulation in Eq (1),
where the two σ(f)’s cancel out. Simply put, the AdvBN module is a PGD attack on batch norm
statistics which can be inserted inside a network. δµ, δσ are vectors with length equal to the number
of channels in the output of layer l, and we multiply by them entry-wise, one scalar entry per channel,
similarly to Batch Normalization. Additionally, note that this module acts on a per-batch basis so that
features corresponding to the same image are perturbed differently across training epochs as training
samples are randomly shuffled between epochs during training.

In Eq (1), we re-normalize the feature by adding adversarial statistics δµ · µ(f), rather than simply
δµ, so that `∞ bounds and steps size do not need to depend on µ(f). Intuitively, we permit the mean
of adversarial features to vary more when the clean features have a mean of higher magnitude.

Visualizing feature shifts. We adopt the VGG [33] based autoencoder from AdaIN [15], in which
the encoder is the first few layers of a pre-trained VGG-19 image classification network. The decoder
is trained to restore the input image from the output of the encoder. After we obtain an autoencoder
that can perform the identity mapping on input images, we plug in an AdvBN module after the
encoder. To compute cross-entropy loss for the AdvBN module, the remaining downstream layers of
the aforementioned VGG-19 classifier are used, which takes the encoded feature as input and outputs
the class prediction. The features perturbed by AdvBN are then fed into the decoder to create our
visualizations.

In Figure 2, images with adversarial feature distributions exhibit differences in color, texture, and
edges. We draw two major conclusions from these visualizations which highlight the adversarial
properties of these domains. The first one concerns textures: CNNs have been shown to rely heavily
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(a) (b)  (c) (d) (e) (f) (g) (h)

Figure 2: Examples of ImageNet images with adversarial feature distributions shifted by Ad-
vBN, visualized through a decoder. For each pair, the original image is on the top.

on image textures for classification [6]. Images from the adversarial domain, on the other hand,
have inconsistent textures across samples. For example, the furry texture of a dog is smoothed in
Figure 2 (b), and the stripes disappear from a zebra in Figure 2 (d), whereas visible textures appear
in (f) and (g) of Figure 2. The second conclusion pertains to color. Previous study [52] suggests
that colors serve as important information for CNNs. In the adversarial domain, we find suppressed
colors (Figure 2 (a), (c)) and unnatural hue (Figure 2 (e), (g)). Figure 3 illustrates how the appearance
of reconstructed images shifts as adversarial perturbations to feature statistics become larger. See
Appendix B for additional examples.

Original m = 0 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Figure 3: The effect of adversarial strength on visualized examples. m denotes the number of
PGD steps. m = 0 corresponds to images reconstructed by our autoencoder without AdvBN.

We use this visualization technique to process the entire ImageNet validation set and denote it as
ImageNet-AdvBN in Figure 1. By evaluating different methods on this dataset, we observe that
performance on ImageNet-AdvBN is consistently degraded, which validates the adversarial property
of features generated by AdvBN. Experiments concerning performance on ImageNet-AdvBN are
listed in Appendix B.

4 Training with Adversarial Batch Normalization

In this section, we use the proposed AdvBN module to train networks on the perturbed features. The
goal is to produce networks that generalize well to unseen domains while maintaining performance
on the training distribution, all without having to obtain auxiliary data from new domains.

We start with a pre-trained model, g = gl+1,L ◦ g1,l, and we fine-tune the subnetwork, gl+1,L, on
clean and adversarial features simultaneously. To this end, we solve the following min-max problem,

min
θ

E(x,y)∼D

[
max
δ
L(gl+1,L

θ ◦ BNδadv ◦ g1,l(x), y) + L(g
l+1,L
θ ◦ g1,l(x), y)

]
, (3)

where L denotes cross-entropy loss, andD is the distribution of batches of size n. In order to maintain
the network’s performance on natural images, we adopt a similar approach to Xie et al. [46] by
using auxiliary batch normalization in gl+1,L for adversarial features; we use the original BNs when
propagating clean features, and we use auxiliary ones for adversarial features. See Algorithm 1 for a
detailed description of our method.
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Since we start with pre-trained models, we only need to fine-tune for 20 epochs, yielding improved
robustness with little additional computation. Moreover, we only modify the parameters of later
layers, so we do not need to backpropagate through the first half of the network. See Appendix C
for an analysis of the training budget using our method. In the following section, we measure the
performance, on several datasets, of our model fine-tuned using adversarial training with AdvBN.

Algorithm 1: Training with Adversarial Batch Normalization

Input: Training data, pretrained network g = gl+1,L
θ ◦ g1,l, learning rate α, PGD bound ε, and PGD step

size τ , loss function L
Result: Updated network parameters, θ, of subnetwork gl+1,L

θ
for each training step do

Sample mini-batch x with label y;
Obtain feature map f = g1,l(x);
Initialize perturbation: δ = (δµ, δσ);
Let fadv = f ;
for adversarial step = 1, . . . , m do

fadv ← δσ · (f − µ(f)) + δµ · µ(f);
Update δ:
δ ← δ + τ · sign(∇δL(gl+1,L

θ (fadv), y));
δ ← clip (δ, 1− ε, 1 + ε);

end
fadv ← δσ · (f − µ(f)) + δµ · µ(f);
Update θ using gradient descent:
θ ← θ − α · ∇θL(gl+1,L

θ (fadv), y) + L(gl+1,L
θ (f), y);

end
return θ

5 Experiments

In section 5.1, we evaluate our method on image classification. We measure the generalization of
models on ImageNet variant datasets that features different distributional shifts. We provide ablation
studies of our method in Section 5.2. A feature divergence analysis is presented in Section 5.3 that
validates the effectiveness of our method from a different perspective. In section 5.4, we evaluate our
method on semantic segmentation. We conduct cross-domain evaluations on traffic scene datasets
with different weather conditions and traffic scenes.

5.1 Evaluation on ImageNet Variants

In this section, we evaluate our method in the context of image classification on ImageNet variant
datasets. We first evaluate the standalone performance of our method. We also include other baseline
methods, including image space adversarial training adapted from the standard PGD adversarial
training [25]. MoEx [20] is another related method that performs feature space augmentation through
feature re-normalization. SIN [6] is trained on both Stylized ImageNet and original ImageNet, which
uses AdaIN [15] as the style transfer method.

In addition, we examine AdvBN as a feature space augmentation method by showing its potential
to be complementary to image space augmentation. We consider state-of-the-art data augmentation
methods, including AutoAugment[3], Fast AutoAugment (AA)[23], CutMix[48], AugMix[13] and
AdvProp[46]. We show that our method can further improve the generalization of models trained
with advanced data augmentations. Results of all methods included in this section are based on the
ResNet-50 model architecture. Our method also works well on other architectures, and we provide
results in Appendix A.

Implementation details. Our model begins with an ImageNet pre-trained ResNet-50 [11]. We
insert the AdvBN module at the end of the 2nd convolutional stage (conv2_3). We then fine-tune
the model with our method following Algorithm 1 for 20 epochs. The learning rate starts at 0.001
and decreases by a factor of 10 after 10 epochs. Our batch size is set to 256. We use SGD with a
momentum of 0.9 and weight decay coefficient 10−4. We search for the optimal number of adversarial
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steps m by increasing m while fixing the step size to be τ = 0.2, and we bound the perturbation with
ε = m · τ − 0.1. The optimal m we find through this procedure is m = 6. When using AdvBN to
improve a given data augmentation method, we apply this fine-tuning procedure on a model trained
with the data augmentation, except for AA. Due to the absence of a pre-trained AA model, we
manage to fine-tune a base model jointly with a fixed AA policy and AdvBN, and we compare it to a
model solely fine-tuned with AA. All models trained with AdvBN that appeared in this subsection are
obtained by following the same training routine and hyperparameter settings that we specified above.

Datasets. To measure the generalization ability of image classification models, we evaluate our
models on four variants of ImageNet [4]:

• ImageNet-C [12] (under the Apache License 2.0) contains distorted images with 15 categories
of common image corruption applied, each with 5 levels of severity. Performance on this
dataset is measured by mean Corruption Error (mCE), the average classification error over a
total of 75 combinations of corruption type and severity level, weighted by their difficulty.

• ImageNet-Instagram (ImageNet-Ins.) [45] is composed of ImageNet images processed with
a total of 20 different Instagram aesthetic image filters. Filters are applied separately, and
the dataset contains 20 sub-datasets, each corresponding to one type of image filter.

• ImageNet-Sketch [44] (under the MIT License) is a dataset of black and white sketches. The
dataset includes 50,000 images in total, falling into 1,000 ImageNet categories, with 50
images per category. Images in this dataset are collected independently from the original
ImageNet validation set through Google Image queries. Details concerning the construction
of this dataset can be found in Section 4.4 of Wang et al. [44].

• Stylized ImageNet (ImageNet-Style) [6] (under the MIT License) consists of images from
the ImageNet dataset, each stylized using AdaIN [15] with a randomly selected painting.
Textures and colors of images in this dataset differ heavily from the originals.

Table 1: Evaluation on ImageNet variants. All methods are implemented based on ResNet-50.
Performance on ImageNet-C is measured by mean Corrupted Error (mCE)[13].

Method ImageNet-C ImageNet-Ins. ImageNet-Sketch.. ImageNet-Style
mCE ↓ Top-1 acc. ↑ Top-1 acc.↑ Top-1 acc.↑

Standard Training 76.7 67.2 24.1 7.4
Adv. Training 73.7 68.2 25.3 9.1
MoEx (w/ Cutmix) 74.8 70.0 24.0 5.0
SIN 73.8 68.5 26.9 10.4
AdvBN 72.7 69.5 27.9 11.9

AdvProp 70.7 69.2 18.0 9.0
AdvProp + AdvBN 69.5 69.3 28.7 12.6

Cutmix 74.7 70.3 23.8 5.3
Cutmix + AdvBN 72.1 70.9 27.2 8.2

AutoAugment∗(AA) 72.1 70.1 26.7 8.2
AA + AdvBN 68.6 71.1 30.3 14.1
Fast AA 68.7 71.1 27.2 8.3
Fast AA + AdvBN 68.7 71.3 28.6 11.4

Augmix 68.4 70.4 28.5 11.2
Augmix + AdvBN 64.6 71.1 28.7 13.6

Model details. Models trained using other methods that we include in this section are ResNet-50
models released by the authors of the original work, except for methods of which an official ResNet-
50 is not available. The released MoEx model is trained collaboratively with CutMix. The “Adv.
Training” baseline is adapted from PGD adversarial training, for which we adopt auxiliary batch
normalization to alleviate the performance degradation on non-adversarial images, and the model is
obtained through fine-tuning on a standard trained model. AdvProp does not provide a ResNet-50
model, and we use the open source implementation1, and our reproduced model matches the accuracy
reported in the aforementioned implementation. Our reported performance using AA, denoted as

1https://github.com/tingxueronghua/pytorch-classification-advprop (MIT License)
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“AA∗”, is obtained through fine-tuning a pre-trained base model for the same number of epochs as
AdvBN, using a fixed set of augmentation operations found by AA, which is included as a reference
to the performance of “AdvBN + AA”. The augmentation policy that we use is from the original
work and can be found in the open source implementation2.

Results. In Table 1, we evaluate the performance of models on the four variant datasets. The stan-
dalone AdvBN improves the generalization of a standard model on every dataset and is competitive
with alternative methods. Additionally, we find that our method is complementary to input space data
augmentation, consistently boosting the performance of state-of-the-art data augmentation methods.
Note that our model has auxiliary BN layers, so its performance on the original ImageNet is well
maintained, as will be shown in the next subsection. Details concerning inference are in Appendix A.

5.2 Ablation Study

Where should the AdvBN module be placed within a network? The proposed AdvBN module
can be inserted after any layer in a network. In this section, we try AdvBN after other layers, namely
conv3_4 and conv4_6. For the ablation study, all of our models are obtained by following the
same fine-tuning setting found in subsection 5.1, but with a fixed AutoAugment policy as data
augmentation. In Table 2, we observe that conv4_6 yields the worst performance among all three
ImageNet variants, indicating that using AdvBN at such deep layer is not as helpful as at shallower
layers. We hypothesize two possible explanations for this phenomenon: (1) there are fewer trainable
parameters when only very deep layers are fine-tuned; (2) features are more abstract at deeper layers,
and perturbing these high-level features can lead to extremely chaotic feature representations that are
harmful for classification.

Table 2: Ablation studies on the positioning of AdvBN. The base model is ResNet-50.

Model ImageNet ImageNet-C ImageNet-Ins. ImageNet-Sketch. ImageNet-Style
top1 acc. ↑ mCE. ↓ top1 acc. ↑ top1 acc. ↑ top1 acc. ↑

Base model 76.1 76.7 67.2 24.1 7.4

l = conv2_3 76.5 68.6 71.1 30.3 14.1
l = conv3_4 76.2 70.0 70.2 33.2 19.5
l = conv4_6 75.3 75.0 68.5 26.1 11.0
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Figure 4: The effects of adversarial strength. The y-axis of (b) ImageNet-C is the mean Corrupted
Error (mCE), and the others are top-1 accuracies. X-axes are the number of PGD steps m.

Adversarial strength. The strength of the adversarial attack in the adversarial training framework
has a major impact on model performance [25]. We test a range of PGD parameters to demonstrate
how the strength of AdvBN affects model performance. We measure strength by the perturbation
number of PGD steps m, where we fix τ to be 0.2 for all settings and fix the perturbation bound
ε = [m · τ ]− 0.1 for different m’s.

Results concerning the impact of adversarial strength are shown in Figure 4. We can see that the
clean accuracy on ImageNet decreases as the number of steps m grows. On the other datasets, we can
observe a turning point, where the performance reaches optimality. This behavior is expected because
small perturbations cause small changes to features which may help maintain the clean accuracy but
cannot help improve a model’s generalization to other domains; overly large perturbations are also
less beneficial as the resulting features can be too noisy.

2https://github.com/DeepVoltaire/AutoAugment (MIT License)
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5.3 Feature Divergence Analysis

We compare the features extracted by our network to those of a standard ResNet-50 trained on
ImageNet. Following Pan et al. [28], we model features from each channel using a normal distribution
with the same mean and standard deviation, and we compute the symmetric KL divergence between
the corresponding distributions on the two datasets (A and B). For two sets of deep features, FA and
FB , each with C channels, the divergence D(FA||FB) is computed using the formula,

D(FA||FB) =
1

C

C∑
i=1

(KL(F iA||F iB) +KL(F iB ||F iA)), (4)

KL(F iA||F iB) = log
σiB
σiA

+
σi

2

A + (µiA − µiB)2

2σi
2

B

− 1

2
, (5)

where F i denotes the features of i-th channel with mean µi and standard deviation σi.
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Figure 5: Feature divergence between pairs of datasets. Features are extracted by a standard and
an AdvBN fine-tuned ResNet50.

In Figure 5, we compare the baseline model with our own on three pairs of datasets in the fine-tuned
layers. Since ImageNet-Instagram contains 20 filter versions, we use the “Toaster” filter found in
[45] to cause the sharpest drop in classification performance.

Feature divergence in our network trained with AdvBN is substantially smaller in the deeper layers of
the fine-tuned subnetwork. In other words, the distribution of deep features corresponding to shifted
domains is very similar to the distribution of deep features corresponding to standard ImageNet data.
The small divergence between feature representations explains the effectiveness of AdvBN from a
different angle and explains why our model generalizes well across datasets.

5.4 Generalization on Semantic Segmentation

Datasets. We present domain generalization results on the Synthia video sequences dataset3 [29],
consisting of multiple sub-datasets featuring traffic situations under different weather, illumination,
and season conditions. We conduct experiment on 10 sub-datasets that include two different road
scenes: “Highway” and “New York-like City”, each one with 5 different domain shifted variants:
“dawn”, “fog”, “night”, “spring” and “winter”. Figure 6 shows sample images from each of the 10
sub-datasets. We use the left-front view images of each sub-dataset, and split dataset by randomly
selecting 900 images for training and 500 for validation. We separately train two sets of models on
the “Highway/ Dawn” and “New York-like City/ Spring” datasets and evaluate them on all the 10
sub-datasets within the two road scenes.

Implementation details. The segmentation model we use is a ResNet-50 based segmentation
network with dilated convolutions [47]. Our baseline models are trained for 80 epochs following
the training protocol from [28]. We apply AdvBN by placing it after layer conv2_3 of the baseline
model and fine-tuning on a given sub-dataset for 30 epochs, with adversarial training parameters
τ = 0.2, ε = 0.5, and 3 repeats.

3http://synthia-dataset.net/, subject to Attribution-NonCommercial-ShareAlike 3.0.
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Dawn Fog Night Spring Winter

Figure 6: Example images from the Synthia video sequences dataset. The top row contains traffic
scenes of the “Highway” subset, and the bottom row is the “New York-like City”.

Table 3: Segmentation results on the Synthia dataset. Evaluation metric is mean IoU (Intersection
over Union). The first column denotes the dataset used for training.

New York-like City Highway

Dawn Fog Night Spring Winter Dawn Fog Night Spring Winter

baseline 52.7 49.5 49.7 65.9 48.2 18.6 21.0 16.9 21.6 15.3
+ Adv. Training 54.6 50.7 50.2 65.8 49.7 21.2 28.0 20.4 26.3 21.4

NY.Like C./ Spring AdvProp 52.3 48.9 48.0 71.9 48.2 18.9 22.0 13.8 24.3 17.5
MoEx 54.7 53.2 51.8 71.1 49.0 21.3 24.3 19.4 27.6 18.7

+ AdvBN 57.5 55.1 55.4 66.5 52.7 23.8 26.6 25.9 29.8 23.5

baseline 32.6 29.0 25.4 24.2 24.8 64.2 55.5 53.1 59.0 49.2
+ Adv. Training 33.5 30.7 27.9 27.5 26.7 64.0 56.4 54.0 59.5 50.3

Highway/ Dawn AdvProp 30.8 24.1 20.3 23.2 21.4 64.6 53.5 47.2 59.0 47.6
MoEx 32.0 27.5 27.6 29.6 26.7 64.6 57.2 57.0 61.0 51.1

+ AdvBN 34.0 31.6 29.6 30.7 29.1 64.5 57.2 56.4 61.2 53.2

We also include the results of several alternative methods from Section 5.1. For the image space
adversarial training, we adopt the same training settings as we do for AdvBN, except for the
adversarial training parameters (perturbation size and bound). We find the optimal perturbation size
for adversarial training through grid search and report the best results. The optimal hyperparameters
we find are τ = 1, ε = 1. Auxiliary BNs are not used for either method at inference time. For
MoEx and AdvProp, we train them for 110 epochs to match the number of optimization steps with
our AdvBN fine-tuned model. Note that we do not include other data augmentation methods from
Section 5.1 because they are originally designed for the image classification problems, which include
operations that can be tricky to be applied to dense prediction problems like semantic segmentation.

We evaluate the performance of semantic segmentation using the mean IoU (Intersection over Union)
metric. In table 3, over 20 source-target domain pairs, we show that AdvBN achieves the best
cross-domain generalization performance. Our method also improves in-domain performance over
standard training, while AdvProp achieves the highest performance under in-domain settings. Results
in this section are consistent with our observation on image classification in Section 5.1.

6 Conclusion and Discussion
Our work studies how perturbing feature statistics simulate distribution shifts in image data. We
find that fine-tuning on images with adversarially shifted feature distributions improves a model’s
robustness towards various domain shifts without using auxiliary data. As AdvBN operates purely in
feature space, it is complementary to existing input space data augmentation methods, and can further
improve the generalization of state-of-the-art methods. Future work will be to adapt our method to
tasks beyond vision. It is known that adversarial perturbations in input space boost performance for
language [55] and graph [17] models, and these data modalities may benefit from more structured
feature-space perturbations.

Limitations and Impact. While AdvBN can offer impactful improvements for domain generaliza-
tion, it may in some cases trade off performance on non-shifted in-distribution testing data. Moreover,
real-world datasets and distributional shifts vary dramatically, and practitioners should be cautious
rather than expecting that the performance seen on benchmark datasets, such as ImageNet variants,
will translate to performance boosts in their own settings.
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