
Under review as a conference paper at ICLR 2021

SANDWICH BATCH NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Sandwich Batch Normalization (SaBN), a frustratingly easy improve-
ment of Batch Normalization (BN) with only a few lines of code changes. SaBN
is motivated by addressing the inherent feature distribution heterogeneity that one
can be identified in many tasks, which can arise from model heterogeneity (dy-
namic architectures, model conditioning, etc.), or data heterogeneity (multiple in-
put domains). A SaBN factorizes the BN affine layer into one shared sandwich
affine layer, cascaded by several parallel independent affine layers. Its variants
include further decomposing the normalization layer into multiple parallel ones,
and extending similar ideas to instance normalization. We demonstrate the pre-
vailing effectiveness of SaBN (as well as its variants) as a drop-in replacement in
four tasks: neural architecture search (NAS), image generation, adversarial train-
ing, and style transfer. Leveraging SaBN immediately boosts two state-of-the-art
weight-sharing NAS algorithms significantly on NAS-Bench-201; achieves better
Inception Score and FID on CIFAR-10 and ImageNet conditional image genera-
tion with three state-of-the art GANs; substantially improves the robust and stan-
dard accuracy for adversarial defense; and produces superior arbitrary stylized
results. We also provide visualizations and analysis to help understand why SaBN
works. All our codes and pre-trained models will be released upon acceptance.

1 INTRODUCTION

This paper presents a simple, light-weight, and easy-to-implement modification of Batch Normal-
ization (BN) (Ioffe & Szegedy, 2015), yet strongly motivated by various observations (Zając et al.,
2019; Deecke et al., 2018; Xie et al., 2019; Xie & Yuille, 2019) drawn from a number of application
fields, that BN has troubles standardizing hidden features with very heterogeneous structures, e.g.,
from a multi-modal distribution. We call the phenomenon feature distribution heterogeneity. Such
heterogeneity of hidden features could arise from multiple causes, often application-dependent:

• One straightforward cause is due to input data heterogeneity. For example, when training a deep
network on a diverse set of visual domains, that possess significantly different statistics, BN is
found to be ineffective at normalizing the activations with only a single mean and variance (Deecke
et al., 2018), and often needs to be re-set or adapted (Li et al., 2016).

• Another intrinsic cause could arise from model heterogeneity, i.e., when the training is, or could
be equivalently viewed as, on a set of different models. For instance, in neural architecture search
(NAS) using weight sharing (Liu et al., 2018; Dong & Yang, 2019), training the super-network
during the search phase could be considered as training a large set of sub-models (with many over-
lapped weights) simultaneously. As another example, for conditional image generation (Miyato
et al., 2018), the generative model could be treated as a set of category-specific sub-models packed
together, one of which would be “activated” by the conditional input each time.

The vanilla BN (Figure 1 (a)) fails to perform well when there is data or model heterogeneity. Recent
trends split the affine layer into multiple ones and leverage input signals to modulate or select be-
tween them (De Vries et al., 2017; Deecke et al., 2018) (Figure 1 (b)); or even further, utilize several
independent BNs to address such disparity (Zając et al., 2019; Xie et al., 2019; Xie & Yuille, 2019;
Yu et al., 2018) (Figure 1 (c)). While those relaxations alleviate the data or model heterogeneity, we
suggest that they might be “too loose” in terms of the normalization or regularization effect.

Let us take adversarial training (AT) (Madry et al., 2017) as a concrete motivating example to illus-
trate our rationale. AT is by far the most effective approach to improve a deep model’s adversarial
robustness. The model is trained by a mixture of the original training set (“clean examples”) and

1

Under review as a conference paper at ICLR 2021

Norm! . . . Norm"Normalization

Affine

Normalization

Af'ine! . . . Af'ine"

Meta Affine

Af'ine! . . . Af'ine"

Feature map Feature map Conditional
information

Feature map Conditional
information

(a) Batch Norm (b) Categorical Conditional
Batch Norm

(d) Meta Batch Norm

Meta Affine

Af'ine! . . . Af'ine"

Norm! . . . Norm"

Feature map Conditional
information

(e) Meta Batch Norm++

Normalization

Af'ine! . . . Af'ine"

Feature map Conditional
information

(c) Auxiliary Batch Norm

Normalization

Affine

Normalization

Af'ine! . . . Af'ine"

Feature map Feature map Conditional
information

(a) Batch Norm (b) Categorical Conditional
Batch Norm

Sandwich Affine

Af'ine! . . . Af'ine"

Feature map

(c) Sandwich Batch Norm

Normalization

Conditional
information

Figure 1: Illustration of (a) the original batch normalization (BN), composed of one normalization layer and
one affine layer; (b) Categorical Conditional BN, composed of one normalization layer following a set of inde-
pendent affine layers to intake conditional information; (c) our proposed Sandwich BN, sequentially composed
of one normalization layer, one shared sandwich affine layer, and a a set of independent affine layers.

its attacked counterpart with some small perturbations applied (“adversarial examples”). Yet, latest
works (Xie et al., 2019; Xie & Yuille, 2019) pointed out that clean and adversarial examples behave
like two different domains with distinct statistics on the feature level (Li & Li, 2017; Pang et al.,
2018). Such data heterogeneity puts vanilla BN in jeopardy for adversarial training, where the two
domains are treated as one. (Xie et al., 2019; Xie & Yuille, 2019) demonstrated a helpful remedy to
improve AT performance by using two separate BNs for clean and adversarial examples respectively,
which allows either BN to learn more stable and noiseless statistics over its own focused domain.

But what may be missing? Unfortunately, using two separate BNs ignores one important fact that the
two domains, while being different, are not totally independent. Considering that all adversarial
images are generated by perturbing clean counterparts only minimally, it is convincing to hypoth-
esize the two domains to be largely overlapped at least (i.e., they still share some hidden features
despite the different statistics). To put it simple: while it is oversimplified to normalize the two
domains as “same one”, it is also unfair and unnecessary to treat them as “disparate two”.

More application examples can be found that all share this important structural feature prior, that
we (informally) call as “harmony in diversity”. For instance, weight-sharing NAS algorithms (Liu
et al., 2018; Dong & Yang, 2019; Yu et al., 2018) train a large variety of child models, constituting
model heterogeneity; but most child architectures inevitably have many weights in common since
they are sampled from the same super net. Similarly, while a conditional GAN (Miyato et al., 2018)
has to produce diverse images classes, those classes often share the same resolution and many other
dataset-specific characteristics (e.g., the object-centric bias for CIFAR images); that is even more
true when the GAN is trained to produce classes of one super-category, e.g., dogs and cats.

Our Contributions: Recognizing the need to address feature normalization with “harmony in di-
versity”, we propose a new SaBN as illustrated in Fig 1 (c). SaBN modifies BN in a “frustratingly
simple” way: it is equipped with two cascaded affine layers: a shared unconditional sandwich affine
layer, followed by a set of independent affine layers that can be conditioned. Compared to Cate-
gorical Conditional BN, the new sandwich affine layer is designed to inject an inductive bias, that
all re-scaling transformations will have a shared factor, indicating the commodity. Experiments on
the applications of NAS and conditional generation demonstrate that SaBN addresses the model
heterogeneity issue elegantly, and improves their performance in a plug-and-play fashion.

To better address the data heterogeneity altogether, SaBN could further integrate the idea of
split/auxiliary BNs (Zając et al., 2019; Xie et al., 2019; Xie & Yuille, 2019; Yu et al., 2018), to
decompose the normalization layer into multiple parallel ones. That yields the new variant called
SaAuxBN. We demonstrate it using the application example of adversarial training. Lastly, we ex-
tend the idea of SaBN to Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017), and
show the resulting SaAdaIN to improve arbitrary style transfer.

2 RELATED WORK

2.1 NORMALIZATION IN DEEP LEARNING

Batch Normalization (BN) (Ioffe & Szegedy, 2015) made critical contributions to training deep
convolutional networks and nowadays becomes a cornerstone of the latter for numerous tasks. BN
normalizes the input mini-batch of samples by the mean and variance, and then re-scale them with
learnable affine parameters. The success of BNs was initially attributed to overcoming internal co-

2

Under review as a conference paper at ICLR 2021

variate shift (Ioffe & Szegedy, 2015), but later on raises many open discussions on its effect of im-
proving landscape smoothness (Santurkar et al., 2018); enabling larger learning rates (Bjorck et al.,
2018) and reducing gradient sensitivity (Arora et al., 2018); preserving the rank of pre-activation
weight matrices (Daneshmand et al., 2020); decoupling feature length and direction (Kohler et al.,
2018); capturing domain-specific artifacts (Li et al., 2016); reducing BN’s dependency on batch
sizeIoffe (2017); Singh & Krishnan (2020); Preventing model from elimination singularities Qiao
et al. (2019) ; and even characterizing an important portion of network expressivity (Frankle et al.,
2020). Inspired by BN, a number of task-specific modifications are proposed by exploiting different
normalization axes, such as Instance Normalization (IN) (Ulyanov et al., 2016) for style transfer;
Layer Normalization (LN) (Ba et al., 2016) for recurrent networks; Group Normalization (GN)
(Wu & He, 2018) for tackling small batch sizes; StochNorm Kou et al. (2020) for fine-tuning task;
Passport-aware NormalizationZhang et al. (2020) for model IP protection; and Li et al. (2019a);
Wang et al. (2020); Zheng et al. (2020) for image generation.

Several normalization variants have been proposed by modulating BN parameters, mostly the affine
layer (mean and variance), to improve the controlling flexibility for more sophisticated usage. For
example, Harm et al.(De Vries et al., 2017) presents Conditional BN, whose affine parameters are
generated as a function of the input. Similarly, Conditional IN (Dumoulin et al., 2016) assigns
each style with independent IN affine parameters. In (Miyato et al., 2018), the authors developed
Categorical Conditional BN for conditional GAN image generation, where each generated class
has its independent affine parameters. Huang & Belongie (Huang & Belongie, 2017) presented
Adaptive IN (AdaIN), which used the mean and variance of style image to replace the original
affine parameter, achieving arbitrary style transfer. Spatial adaptivity (Park et al., 2019) and channel
attention (Li et al., 2019b) managed to modulate BN with higher complexities.

A few latest works investigate to use multiple normalization layer instead of one in BN. (Deecke
et al., 2018) developed mode normalization by employing a mixture-of-experts to separate incoming
data into several modes and separately normalizing each mode. (Zając et al., 2019) used two separate
BNs to address the domain shift between labeled and unlabeled data in semi-supervised learning.
Very recently, (Xie & Yuille, 2019; Xie et al., 2019) reveal the two-domain issue in adversarial
training and find improvements by using two separate BNs (AuxBN).

2.2 BRIEF BACKGROUNDS FOR RELATED APPLICATIONS

We leverage four important applications as test beds. All of them appear to be oversimplified by
using the vanilla BN, where the feature homogeneity and heterogeneity are not properly handled.
We briefly introduce them below, and will concretely illustrate where the heterogeneity comes from
and how our methods resolve the bottlenecks in Sec. 3.

Generative Adversarial Network Generative adversarial networks (GANs) have been prevailing
since its origin (Goodfellow et al., 2014a) for image generation. Many efforts have been made
to improve GANs, such as modifying loss function (Arjovsky et al., 2017; Gulrajani et al., 2017;
Jolicoeur-Martineau, 2018), improving network architecture (Zhang et al., 2018; Karras et al., 2019;
Gong et al., 2019) and adjusting training procedure (Karras et al., 2017). Recent works also tried to
improve the generated image quality by proposing new normalization modules, such as Categorical
Conditional BN and spectral normalization (Miyato et al., 2018).

Neural Architecture Search (NAS) The goal of NAS is to automatically search for an optimal
model architecture for the given task and dataset. It was first proposed in (Zoph & Le, 2016) where
a reinforcement learning algorithm iteratively samples, trains and evaluates candidate models from
the search space. Due to its prohibitive time cost, weight-sharing mechanism was introduced (Pham
et al., 2018) and becomes a popular strategy to accelerate the training of sampled models (Liu
et al., 2018). However, weight-sharing causes performance deterioration due to unfair training (Chu
et al., 2019). In addition, a few NAS benchmarks (Ying et al., 2019; Dong & Yang, 2020; Zela
et al., 2020) were recently released, with ground-truth accuracy for candidate models pre-recorded,
enabling researchers to evaluate the performance of search method more easily.

Adversarial Robustness Deep networks are notorious for the vulnerability to adversarial attacks
(Goodfellow et al., 2014b). In order to enhance adversarial robustness, countless training approaches
have been proposed. (Dhillon et al., 2018; Papernot & McDaniel, 2017; Xu et al., 2017; Meng &
Chen, 2017; Liao et al., 2018; Madry et al., 2017). Among them, adversarial training (AT) (Madry
et al., 2017) are arguably the strongest, which train the model over a mixture of clean and perturbed
data. Overall, the normalization in AT has, to our best knowledge, not been studied in depth. A

3

Under review as a conference paper at ICLR 2021

pioneer work (Xie et al., 2019) introduce an auxiliary batch norm (AuxBN) to improve the clean
image recognition accuracy.

Neural Style Transfer Style transfer is a technique generating a stylized image, by combining the
content of one image with the style of another. Various improvements are made on the normalization
methods in this area. Ulyanov et al. (2016) proposed Instance Normalization, improving the styl-
ized quality of generated images. Conditional Instance Normalization (Dumoulin et al., 2016) and
Adaptive Instance Normalization (Huang & Belongie, 2017) are proposed, enabling the network to
perform arbitrary style transfer.

3 SANDWICH BATCH NORMALIZATION

Formulation: Given the input feature x ∈ RN×C×H×W (N denotes the batch size, C the number
of channels, H the height, and W the width), the vanilla Batch Normalization (BN) works as:

h = γ(
x− µ(x)
σ(x)

) + β, (1)

where µ(x) and σ(x) are the running estimates (or batch statistics) of input x’s mean and variance
along the (N , H , W) dimension. γ and β are the learnable parameters of the affine layer, and both
are of shape C. However, as the vanilla BN only has a single re-scaling transform, it will simply
treat any latent heterogeneous features as a single distribution. As an improved variant, Categorical
Conditional BN (CCBN) (Miyato et al., 2018) is proposed to remedy the heterogeneity issue in
the task of conditional image generation, boosting the quality of generated images. Categorical
Conditional BN has a set of independent affine layers, whose activation is conditioned by the input
domain index. It can be expressed as:

h = γi(
x− µ(x)
σ(x)

) + βi, i = 1, ..., C, (2)

where γi and βi are parameters of the i-th affine layer. Concretely, i is the expected output class in
the image generation task (Miyato & Koyama, 2018). However, we argue that this “separate/split”
modification might be “too loose”, ignoring the fact that the distributions of the expected generated
images overlap largely (due to similar texture, appearance, illumination, object location, scene lay-
out, etc.). Hence to better handle both the latent homogeneity and heterogeneity in x, we present
Sandwich Batch Normalization (SaBN), that is equipped with both a shared sandwich affine layer
and a set of independent affine layers. SaBN can be concisely formulated as:

h = γi(γsa(
x− µ(x)
σ(x)

) + βsa) + βi, i = 1, ..., C. (3)

As depicted in Fig. 1 (d), γsa and βsa denote the new sandwich affine layer, while γi and βi are the
i-th affine parameters, conditioned on categorical inputs. Implementation-wise, SaBN only takes a
few lines of code changes compared to vanilla BN: please see appendix Fig. 6 for pseudo codes.

3.1 UNIFYING HOMOGENEITY & HETEROGENEITY FOR CONDITIONAL IMAGE GENERATION

Table 1: The best Inception Scores (“IS”, ↑) and FIDs (↓)
achieved by conditional SNGAN, BigGAN, and AutoGAN-top1,
using CCBN and SaBN on CIFAR-10 and ImageNet (dogs & cats).

CIFAR-10 ImageNet (dogs & cats)

Model IS FID IS FID

AutoGAN-top1 8.43 10.51 - -
BigGAN 8.91 8.57 - -
SNGAN 8.76 10.18 16.75 79.14

AutoGAN-top1-SaBN 8.72(+0.29) 9.11(−1.40) - -
BigGAN-SaBN 9.01(+0.10) 8.03(−0.54) - -
SNGAN-SaBN 8.89(+0.13) 8.97(−1.21) 18.31(+1.56) 60.38(−18.76)

As one of the state-of-the-art GANs,
SNGAN (Miyato et al., 2018) suc-
cessfully generate high quality im-
ages in conditional image generation
tasks with Categorical Conditional
BN (CCBN). Intuitively, it uses in-
dependent affine layers to disentan-
gle the image generation of different
classes. Thus the generative model
could be treated as a set of category-
specific sub-models in one model,
one of which would be “activated”
by the conditional class input each time, incurring the model heterogeneity. However, only lever-
aging separate affine layers ignores the fact that the expected generated domains are not totally inde-
pendent with each other. These classes share the same image resolution, similar illumination, object
location, and some intrinsic dataset-specific characteristics, which suggest strong homogeneity.

4

Under review as a conference paper at ICLR 2021

Figure 2: The CAPV value of γ (left) and the shared sandwich
parameter γSa’s value (right) along the network depth.

This motivates us to unify both ho-
mogeneity and heterogeneity for condi-
tional image generation with SaBN. We
choose three representative GAN mod-
els, SNGAN, BigGAN (Brock et al.,
2018) and AutoGAN-top1 (Gong et al.,
2019), as our backbones. SNGAN and
BigGAN are equipped with Categorical
Conditional BN. AutoGAN-top1 orig-
inally has no normalization layer and
was designed for unconditional image
generation, we manually insert Categorical Conditional BN into its generator to adapt it to the con-
ditional image generation task. We then construct SNGAN-SaBN, BigGAN-SaBN and AutoGAN-
SaBN, by replacing all Categorical Conditional BN in the above baselines with our SaBN.

We test all the above models on CIFAR-10 dataset (Krizhevsky et al., 2009) (10 categories, resolu-
tion 32×32). Furthermore, we test SNGAN and SNGAN-SaBN on high resolution image generation
task on ImageNet (Deng et al., 2009), using the subset of all 143 classes belonging to the dog and cat
super-classes, cropped to resolution 128× 128) following (Miyato et al., 2018)’s setting. Inception
Score (Salimans et al., 2016) (the higher the better) and FID (Heusel et al., 2017) (the lower the bet-
ter) are adopted as evaluation metrics. We summarize the best performance the models has achieved
during training into Table 1. We find that SaBN can consistently improve the generative quality
of all three baseline GAN models. We also visualize the image generation results of all compared
GANs in Fig. 21, 22, 23 and 24 at appendix.

Figure 3: We depict two consecutive layers in
the super-network. By default, a BN is inte-
grated into each operation in vanilla DARTS,
except Zero and Skip-connection operation.
The output of each layer is the sum of all opera-
tion paths’ output, weighted by their associated
architecture parameter α. Model heterogene-
ity is introduced during the summation process,
due to the difference among each parallel oper-
ations. In the meanwhile, different operations
still maintain an intrinsic homogeneity and are
not completely independent, as they all share
the same original input, and their gradient is
also estimated from the same loss function.

Understanding SaBN by Visualization. One might
be curious about the effectiveness of SaBN, since at the
inference time, the shared sandwich affine layer can be
multiplied/merged into the independent affine layers,
making the inference form of SaBN completely the
same as Categorical Conditional BN. Hence to better
understand how SaBN benefits the conditional image
generation task, we dive into the inductive role played
by the shared sandwich affine parameter.

We choose SNGAN and SNGAN-SaBN on ImageNet
as our testbed. Specifically, we propose a new mea-
surement called Class-wise Affine Parameters Vari-
ance (CAPV), which aims to indicate how much class-
specific heterogeneity is introduced with the set of in-
dependent affine parameters. For Categorical Con-
ditional BN (CCBN), we define its CAPV for γ as
VCCBN(γ) = Var([γ̄1, γ̄2, · · · , γ̄C]), where γ̄i rep-
resents the channel-wise average value of γi. Simi-
larly, the CAPV of SaBN is defined as VSaBN(γ) =
Var([γSa · γ1,γSa · γ2, · · · ,γSa · γC]). A larger
CAPV value implies more heterogeneity.

We plot the CAPV values for both SNGAN and
SNGAN-SaBN at each layer in Fig. 2 (left). The solid
blue line (SaBN) is lower than orange line (CCBN) in the shallow layers, but soon surpasses the
latter at the deeper layers. We additionally plot a dashed blue line, obtained by removing the shared
sandwich affine layer from the SaBN parameters (i.e., only independent affine). Their comparison
indicates that the shared sandwich affine layer helps inject an inductive bias: compared to using
Categorical Conditional BN, training with SaBN will enforce to shallow layers to preserve more
feature homogeneity, while encouraging the deeper layer to introduce more class-specific feature
heterogeneity. In other plain words, SaBN seems to have shallower and deeper layers more “fo-
cused" on each dedicated role (common versus class-specific feature extractors). We also plot the
value of shared sandwich affine parameters γSa (averaged across channel) along the network depth,
in the right figure in Fig.2. It is also aligned with our above observation.

5

Under review as a conference paper at ICLR 2021

3.2 ARCHITECTURE HETEROGENEITY IN NEURAL ARCHITECTURE SEARCH (NAS)

Recent NAS works formulate the search space as a super-network which contains all candidate
operations and architectures, and the goal is to find a sub-network of a single path that of the optimal
performance. To support the search over the architectures in the super-network, DARTS (Liu et al.,
2018) assigns each candidate operation a trainable parameter α, and the search problem is solved by
alternatively optimizing the architecture parameters α and the model weights via stochastic gradient
descent. The architecture parameters α can be treated as the magnitude of each operation, which
will help rank the best candidates after the search phase.

Figure 4: Results of architecture search on CIFAR-100 and
ImageNet16-120, based on DARTS. At the end of each searching
epoch, the architecture is derived from current α values. The x-axis
is the searching epoch. The y-axis is the ground truth test accuracy
of current epoch’s architecture, obtained via querying NAS-Bench-
201. Each experiment is run for three times with different random
seeds. Each curve in the figure is averaged across them.

In Fig. 3, we concretely illustrate the
origin of the model heterogeneity
in the supernet. To disentangle the
mixed model heterogeneity during
search process and still maintain the
intrinsic homogeneity, we replace
the BN in each operation path with a
SaBN in the second layer (same for
the first layer if it is also downstream
of layers ahead). Ideally, the number
of independent affine layers shall be
set to the total number of unique ar-
chitectures in the search space, en-
abling the architecture-wise disen-
tanglement. However, it would be
impractical as the search space size
(number of unique architecture) is
usually larger than 104. Thus we adopt a greedy way that we only consider to disentangle pre-
vious layer’s architecture (operations). Specifically, the number of independent affine layers in the
SaBN equals to the total number of candidate operation paths of the connected previous layer. The
categorical index i of SaBN during searching is obtained by applying a multinomial sampling on the
softmax of previous layers’ architecture parameters: softmax([α0, α1, α2, ...αn−1]).

To validate the efficacy of our SaBN, we conduct ablation study of four settings: 1) no affine
(i.e., γ = 1,β = 0, as in vanilla DARTS), where by default the learning of affine parame-
ters of BN in each operation path is disabled (Liu et al., 2018); 2) homogeneity only (“DARTS-
affine”), where the learning of affine parameters of BN are enabled in each operation path in
“DARTS”; 3) heterogeneity only (“DARTS-CategoricalCBN”), where the BN in each operation
path of “DARTS” are replaced by the Categorical Conditional BN (Miyato et al., 2018); 4) ho-
mogeneity and heterogeneity (“DARTS-SaBN”), where all operation paths’ BNs in “DARTS” are
replaced by SaBN. Following the suggestion by Dong & Yang (2020), all experiments use batch
statistics instead of keeping running estimates of the mean and variance in the normalization layer.

Table 2: The searched results top-1 accuracy of the four meth-
ods on NAS-Bench-201. Our proposed approach achieves the
highest accuracy, with the lowest standard deviation.

Method CIFAR-100 ImageNet

DARTS 44.05 ± 7.47 36.47 ± 7.06
DARTS-affine 63.46 ± 2.41 37.26 ± 7.65
DARTS-CCBN 62.16 ± 2.62 31.25 ± 6.20
DARTS-SaBN (ours) 71.56 ± 1.39 45.85 ± 0.72

We conduct our experiments on CIFAR-
100 (Krizhevsky et al., 2009) and
ImageNet16-120 (Chrabaszcz et al.,
2017) using NAS-Bench-201 (Dong &
Yang, 2020) (Fig. 4). Early stopping is
applied for the searching phase as sug-
gested in (Liang et al., 2019). We can
observe that SaBN dominates on both
CIFAR-100 and ImageNet cases. Sur-
prisingly, we also notice that by simply
turning on the affine in the original DARTS, DARTS-affine gains fairly strong improvements. The
performance gap between DARTS-affine and DARTS-SaBN demonstrate the effectiveness of the
independent affine layers in SaBN.

Experiments also shows that CCBN does help improve search performance. However, it falls largely
behind SaBN, indicating the shared sandwich affine layer to also be vital. In Fig. 15 at appendix, we
can observe the shared sandwich affine layer helps to preserve more homogeneity. The ground-truth
accuracy of the final searched architecture is summarized in Tab. 2. Besides, we also find SaBN

6

Under review as a conference paper at ICLR 2021

works well on another weight-sharing search method, GDAS (Dong & Yang, 2020). The results are
shown in Sec. A.2.3 at appendix.
3.3 SANDWICH AUXILIARY BATCH NORM IN ADVERSARIAL ROBUSTNESS

AdvProp (Xie et al., 2019) successfully utilized adversarial examples to boost network Standard
Testing Accuracy (SA) by introducing Auxiliary Batch Norm (AuxBN). The design is quite simple:
an additional BN is added in parallel of the original BN, where the original BN (clean branch) takes
the clean image as input, while the additional BN (adversarial branch) is fed with only adversarial
examples during training. That intuitively disentangles the mixed clean and adversarial distribution
(data heterogeneity) into two splits, guaranteeing the normalization statistics and re-scaling are
exclusively performed in either domain.

However, one thing missed is that the domains of clean and adversarial images overlap largely, as
adversarial images are generated by perturbing clean counterparts minimally. This inspires us to
present a novel SaAuxBN, by leveraging domain-specific normalizations and affine layers, and also
a shared sandwich affine layer for homogeneity preserving, SaAuxBN can be defined as:

h = γi(γsa(
x− µi(x)

σi(x)
) + βsa) + βi, i = 0, 1. (4)

µi(x) and σi(x) denote the i-th (moving) mean and variance of input, where i = 0 for adversarial
images and i = 1 for clean images. We use independent normalization layer to decouple the data
from two different distributions, i.e., the clean and adversarial.

For a fair comparison, we follow the settings in Madry et al. (2017). In the adversarial training,
we adopt `∞ based 10 steps Projected Gradient Descent (PGD) (Madry et al., 2017) with step size
α = 2

255 and maximum perturbation magnitude ε = 8
255 ; As for assessing RA, PGD-20 with the

same configuration is adopted.

We replace AuxBN with SaAuxBN in AdvProp (Xie et al., 2019) and find it can further improve
SA of the network with its clean branch. The experiments are conducted on CIFAR-10 (Krizhevsky
et al., 2009) with ResNet-18 (He et al., 2016) backbone, and the results are presented in Tab. 3.

Table 3: Performance (SA) of different BN settings on clean branch.

Evaluation BN AuxBN (clean branch) ModeNorm SaAuxBN (clean branch)

Clean (SA) 87.25 94.38 86.10 94.47

We further conduct an experiment to test the SA and Robust Testing Accuracy (RA) of the network
using the adversarial branch of AuxBN and SaAuxBN. The comparison results are presented in Tab.
4.

Table 4: Performance (SA&RA) of different BN settings. During evaluation, only the adversarial path is
activated in AuxBN and SaAuxBN.

Evaluation BN AuxBN (adv branch) ModeNorm SaAuxBN (adv branch)

Clean (SA) 87.25 85.08 86.10 87.07
PGD-10 (RA) 42.82 43.30 44.60 45.72
PGD-20 (RA) 40.84 41.98 42.81 44.23

Tab. 4 shows that BN still achieves the highest performance on SA, but falls a lot on RA compared
with other methods. Our proposed SaAuxBN is on par with the vanilla BN in terms of SA, while
has significantly better results on RA than any other approaches. Compared with SaAuxBN, AuxBN
suffers from worse SA and RA, indicating that both the shared sandwich affine layer are key to the
disentanglement of adversarial domain from the clean domain, with their shared statistics properly
preserved. The behaviors of AuxBN and SaAuxBN are visualized in Fig. 20 at appendix, which
suggests that the sandwich affine layer here mainly encourages to enhance feature homogeneity.

We additionally include ModeNorm (Deecke et al., 2018) as an ablation in our experiments, which
was proposed to deal with multi-modal distributions inputs, i.e., data heterogeneity. It shares some
similarity with AuxBN as both consider multiple independent norms. ModeNorm achieves fair

7

Under review as a conference paper at ICLR 2021

performance on both SA and RA, while still lower than SaAuxBN. The reason might be the output
of ModeNorm is a summation of two features weighted by a set of learned gating functions, which
still mixes the statistics from two domains, leading to inferior performance in the attack scenario.

3.4 STYLE TRANSFER WITH SANDWICH ADAPTIVE INSTANCE NORMALIZATION

Huang & Belongie (Huang & Belongie, 2017) achieves arbitrary style transfer by introducing Adap-
tive Instance Norm (AdaIN). The AdaIN framework is composed of three parts: Encoder, AdaIN
and Decoder. Firstly, the Encoder will extract content feature and style feature from content and
style images. Then the AdaIN is leveraged to perform style transfer on feature space, producing
a stylized content feature. The Decoder is learnt to decode the stylized content feature to stylized
images. This framework is trained end-to-end with two loss terms, a content loss and a style loss.

Concretely, AdaIN firstly performs a normalization on the content feature, then re-scale the normal-
ized content feature with style feature’s statistic. It can be formulated as:

h = σ(y)(
x− µ(x)
σ(x)

) + µ(y), (5)

where y is the style input, x is the content input. Note that µ and σ here are quite different from BN,
which are performed along the spatial axes (H,W) for each sample and each channel. Obviously,
style-dependent re-scale may be too loose and might further amplify the intrinsic data heterogeneity
brought by the variety of the input content images, undermining the network’s ability of maintaining
the content information in the output. In order to reduce the data heterogeneity, we propose to
insert a shared sandwich affine layer after the normalization, which introduce homogeneity for the
style-dependent re-scaling transformation. Hereby, we present SaAdaIN:

h = σ(y)(γsa(
x− µ(x)
σ(x)

) + βsa) + µ(y), (6)

Figure 5: The content loss and the style loss of using AdaIN, ILM+IN
and SaAdaIN. The noisy shallow-color curves are the original data.
The foreground smoothed curves are obtained via applying exponential
moving average on the original data.

Besides AdaIN, we also in-
clude Instance-Level Meta Nor-
malization with Instance Norm
(ILM+IN) proposed by Jia et al.
(2019) as a task-specific com-
parison baseline. Its style-
independent affine is not only
conditioned on style informa-
tion, but also controlled by the
input feature. Our training set-
tings for all models are kept iden-
tical with (Huang & Belongie,
2017). We depict the loss curves
of the training process in Fig. 5.
We can notice that both the content loss and style loss of the proposed SaAdaIN is lower than that
of AdaIN and ILM+IN. This observation demonstrates that the shared sandwich affine layer in our
SaAdaIN is beneficial for the network to preserve the semantic information of the original input
content, while also better migrating and merging style information.

Furthermore, the qualitative visual results are demonstrated in Fig. 26 at appendix (Better zoomed
in and viewed in color). The leftmost column displays content images and referenced style images.
The next three columns are the stylized outputs using AdaIN, ILM+IN and SaAdaIN, respectively.

4 CONCLUSION

We present SaBN and its variants as plug-and-play normalization modules, which are motivated
by addressing model & data heterogeneity issues. We demonstrate their effectiveness on several
tasks, including neural architecture search, adversarial robustness, conditional image generation and
arbitrary style transfer. Our future work plans to investigate the performance of SaBN on more
applications, such as semi-supervised learning (Zając et al., 2019), slimmable models, and once-for-
all training (Yu et al., 2018).

8

Under review as a conference paper at ICLR 2021

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normal-
ization. In Advances in Neural Information Processing Systems, pp. 7694–7705, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of
weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. The-
oretical understanding of batch-normalization: A markov chain perspective. arXiv preprint
arXiv:2003.01652, 2020.

Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C
Courville. Modulating early visual processing by language. In Advances in Neural Information
Processing Systems, pp. 6594–6604, 2017.

Lucas Deecke, Iain Murray, and Hakan Bilen. Mode normalization. arXiv preprint
arXiv:1810.05466, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1761–1770,
2019.

Xuanyi Dong and Yi Yang. Nas-bench-102: Extending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326, 2020.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic
style. arXiv preprint arXiv:1610.07629, 2016.

Jonathan Frankle, David J Schwab, and Ari S Morcos. Training batchnorm and only batchnorm: On
the expressive power of random features in cnns. arXiv preprint arXiv:2003.00152, 2020.

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture search
for generative adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 3224–3234, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014b.

9

Under review as a conference paper at ICLR 2021

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in neural information processing systems, pp.
5767–5777, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pp. 6626–6637, 2017.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance nor-
malization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–
1510, 2017.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. In Advances in neural information processing systems, pp. 1945–1953, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Songhao Jia, Ding-Jie Chen, and Hwann-Tzong Chen. Instance-level meta normalization. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 4865–4873,
2019.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard
gan. arXiv preprint arXiv:1807.00734, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410, 2019.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas Hof-
mann. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. arXiv preprint arXiv:1805.10694, 2018.

Zhi Kou, Kaichao You, Mingsheng Long, and Jianmin Wang. Stochastic normalization. Advances
in Neural Information Processing Systems, 33, 2020.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Boyi Li, Felix Wu, Kilian Q Weinberger, and Serge Belongie. Positional normalization. In Advances
in Neural Information Processing Systems, pp. 1622–1634, 2019a.

Xilai Li, Wei Sun, and Tianfu Wu. Attentive normalization. arXiv preprint arXiv:1908.01259,
2019b.

Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5764–
5772, 2017.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normaliza-
tion for practical domain adaptation. arXiv preprint arXiv:1603.04779, 2016.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and
Zhenguo Li. Darts+: Improved differentiable architecture search with early stopping. arXiv
preprint arXiv:1909.06035, 2019.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
adversarial attacks using high-level representation guided denoiser. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1778–1787, 2018.

10

Under review as a conference paper at ICLR 2021

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 135–147, 2017.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial exam-
ples. In Advances in Neural Information Processing Systems, pp. 4579–4589, 2018.

Nicolas Papernot and Patrick McDaniel. Extending defensive distillation. arXiv preprint
arXiv:1705.05264, 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2337–2346, 2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Rethinking normalization and
elimination singularity in neural networks. arXiv preprint arXiv:1911.09738, 2019.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pp. 2234–2242, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch nor-
malization help optimization? In Advances in Neural Information Processing Systems, pp. 2483–
2493, 2018.

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch de-
pendence in the training of deep neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11237–11246, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Yi Wang, Ying-Cong Chen, Xiangyu Zhang, Jian Sun, and Jiaya Jia. Attentive normalization for
conditional image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5094–5103, 2020.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

Cihang Xie and Alan Yuille. Intriguing properties of adversarial training. arXiv preprint
arXiv:1906.03787, 2019.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, and Quoc V Le. Adversarial
examples improve image recognition. arXiv preprint arXiv:1911.09665, 2019.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks. arXiv preprint arXiv:1704.01155, 2017.

11

Under review as a conference paper at ICLR 2021

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. arXiv preprint arXiv:1902.09635,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Michał Zając, Konrad Żołna, and Stanisław Jastrzębski. Split batch normalization: Improving semi-
supervised learning under domain shift. arXiv preprint arXiv:1904.03515, 2019.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-
shot neural architecture search. arXiv preprint arXiv:2001.10422, 2020.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai Yu. Passport-aware
normalization for deep model protection. Advances in Neural Information Processing Systems,
33, 2020.

Heliang Zheng, Jianlong Fu, Yanhong Zeng, Jiebo Luo, and Zheng-Jun Zha. Learning semantic-
aware normalization for generative adversarial networks. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Pan Zhou, Caiming Xiong, Richard Socher, and Steven Chu Hong Hoi. Theory-inspired path-
regularized differential network architecture search. Advances in Neural Information Processing
Systems, 33, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 IMPLEMENTATION DETAILS

def BatchNorm(x, gamma, beta, running_mean, running_var, eps=1e-5,
momentum=0.1):
x: input features with shape [N,C,H,W]
gamma, beta: scale factors with shape [1,C,1,1]
mean, var = tf.nn.moments(x, [0, 2, 3], keep dims = True)

running_mean = (1 - momentum) * running_mean + momentum * mean
running_var = (1 - momentum) * running_var + momentum * var
x = (x - running_mean) / tf.sqrt(running_var + eps)
return x * gamma + beta

def SaBatchNorm(x, sa_gamma, sa_beta, gammas, betas, index,
running_mean, running_var, eps=1e-5, momentum=0.1):
x: input features with shape [N,C,H,W]
sa_gamma, sa_beta: shared scale factor with shape [1,C,1,1]
gammas, betas: a list of scale factors with shape [1,C,1,1]
mean, var = tf.nn.moments(x, [0, 2, 3], keep_dims = True)
running_mean = (1 - momentum) * running_mean + momentum * mean
running_var = (1 - momentum) * running_var + momentum * var

x = (x - running_mean) / tf.sqrt(running_var + eps)
x = x * sa_gamma + sa_beta
return x * gammas[index] + betas[index]

def SaAuxBatchNorm(x, sa_gamma, sa_beta, gammas, betas, index,
running_means, running_vars, eps=1e-5, momentum=0.1):
x: input features with shape [N,C,H,W]
sa_gamma, sa_beta: shared scale factors with shape [1,C,1,1]
gammas, betas: a list of scale factors with shape [1,C,1,1]
mean, var = tf.nn.moments(x, [0, 2, 3], keep dims = True)
running_means[index] = (1 - momentum) * running_means[index]

+ momentum * mean
running_vars[index] = (1 - momentum) * running_vars[index]

+ momentum * var

x = (x - running_means[index]) / tf.sqrt(running_vars[index]
+ eps)

x = x * sa_gamma + sa_beta
return x * gammas[index] + betas[index]

Figure 6: Pseudo Python code of BN, SaBN and SaAuxBN with TensorFlow. We highlight the main difference
between our approaches with vanilla BN.

13

Under review as a conference paper at ICLR 2021

A.2 ADDITIONAL RESULTS IN NAS

A.2.1 SEARCH SPACE OF NAS-BENCH-201

Figure 7: The search space of NAS-Bench-201.

Our experiments of NAS are conducted on NAS-Bench-201, which adopts a cell-based search space,
shown in Fig. 7. The whole search space is composed by stacking several cells. Each cell consists
of several layers Lk

j , which is composed of several parallel operation paths as illustrated in Fig. 2
in our paper. Lk

j denotes the k-th layer which take featurej as input. In Sec. 3.1 of our paper, we
have concretely illustrate the detailed implementation of the SaBN under the circumstance a layer
only has one connected previous layer. However, we can observe there is layer having multiple
connected previous layers. Take L1

3 as an example, it is connected with L2
1 and L1

2. In this case,
the number of independent affine parameter in SaBN at L1

3 would be n2, where n is the number of
parallel operation paths in each layer.

A.2.2 THE ADDITIONAL RESULTS OF SABN IN DARTS

Visualization of architecture parameters in DARTS

We visualize the searching curves of the architecture parameters on each edge of the cell, in Fig. 8, 9,
10, for DARTS, DARTS-CCBN and DARTS-SaBN respectively. In the case of DARTS (Fig. 8), we
can see that “skip_connect” dominates on most of edges during the search, yielding bad architectures
when search ends. DARTS-CCBN is in favor of both “skip_connect” and “none” operations at last,
in Fig. 9. For our DARTS-SaBN in Fig. 10, the weight of “skip_connect” in architecture parameters
climbs at first, but drops immediately after a few epochs, whereas the “nor_conv_3x3” takes the lead
in most of edges.

Visualization of discovered architectures in DARTS

We visualize the discovered architectures of DARTS, DARTS-CCBN and DARTS-SaBN in Fig.
11. It shows the architecture that discovered by DARTS is fully dominated by “skip_connect”.
We further analyze the operator composition of searched architectures of DARTS and DARTS-
SaBN in Fig. 12, based on their final searched architecture parameters. We can clearly see that
“skip_connect” is highly preferred by DARTS, where DARTS-SaBN favors “nor_conv_3x3”.

14

Under review as a conference paper at ICLR 2021

Darts bn

Figure 8: Architecture parameters (after softmax) on each edge in DARTS.

Darts ccbn

Figure 9: Architecture parameters (after softmax) on each edge in DARTS-CCBN.

Darts sabn

Figure 10: Architecture parameters (after softmax) on each edge in our DARTS-SaBN.

15

Under review as a conference paper at ICLR 2021

node_0
(input)

node_1

nor_conv_3x3

node_2

nor_conv_3x3

node_3
(output)

skip_connectnor_conv_3x3

nor_conv_3x3

nor_conv_3x3

(a) DARTS’ searched architecture (c) DARTS-SaBN’s searched architecture(c) DARTS-CCBN’s searched architecture

Figure 11: The architectures searched by DARTS are dominated by “skip_connect” and the architecture
of DARTS-CCBN is full of both “skip_connect” and “none”. In contrast, DARTS-SaBN highly prefers
“nor_conv_3x3”.

Figure 12: The operation statistics of the searched architecture from DARTS and DARTS-SaBN.

Analysis of Optimization and Generalization Ability

We found SaBN benefits NAS w.r.t. both the generalization ability and the optimization. In DARTS,
the goal is to learn the architecture parameter α and the model weights ω jointly. Specifically, α is
optimized to minimize the architecture loss Lval(ω, α) using validation dataset, where the weights ω
is optimized to minimize the weight loss Ltrain(ω, α) with training dataset.

In our experiment, we first visualize the architecture loss as well as weight loss in Fig. 13. Compared
with DARTS, the loss value of DARTS-CCBN is larger in the first several epochs, but becomes
similar in the later. This indicates that the independent affine layers slow the optimization at the
beginning, due to the additional parameters. Compared DARTS-SaBN with DARTS-CCBN, we
can observe the losses of DARTS-SaBN is lower than DARTS-CCBN at early stage, indicating the
additional sandwich affine layer is beneficial to the optimization of the model. This is achieved by
the injected inductive bias of commodity for features from different operations, leading to easier
optimization. However, the losses of both DARTS and DARTS-CCBN become lower than DARTS-
SaBN in the later stage. This is caused by the architecture collapse in the later searching stage,
which can be observed in Fig. 8, 9, where the supernet starts to be dominated by skip connections
in DARTS and DARTS-CCBN, leading to a easier optimization Zhou et al. (2020).

We further visualize the gap between the Lval(ω, α) and Ltrain(ω, α) in Fig. 14, with the setting
of DARTS, DARTS-CCBN and DARTS-SaBN. The gap in DARTS-SaBN is lower than that of
DARTS and DARTS-CCBN, indicating SaBN can also help to improve the generalization ability
of the supernet.The inserted shared sandwich affine layer also serves as a regularization term here,
since it is updated by data from all previous operations, thus improving the model generalization
ability.

CAPV of SaBN in DARTS

16

Under review as a conference paper at ICLR 2021

Figure 13: The architecture loss Lval(ω, α) and the weight loss Ltrain(ω, α) of DARTS, DARTS-CCBN and
DARTS-SaBN.

Figure 14: The architecture-weight loss gap of DARTS, DARTS-CCBN and DARTS-SaBN.

We use CAPV as the measurement to analyze the behavior of SaBN in DARTS, which is introduced
in Sec. 3.1. We compare our proposed DARTS-SaBN with DATRS-CCBN, w.r.t. their CAPV at
each layer, in Fig 15.

Figure 15: The CAPV for DARTS-CCBN and DARTS-SaBN. The shared sandwich affine layer is learned to
reduce the feature heterogeneity across the whole network.

A.2.3 THE RESULTS OF GDAS

GDAS (Dong & Yang, 2019) is an advantaged extension of DARTS (Liu et al., 2018) where the
forward activation of all paths during search is replaced by the activation of a sampled single
path. This is achieved by introducing Gumbel-softmax to construct a differentiable one-hot vec-
tor [α∗0, α

∗
1, α
∗
2, ...α

∗
n−1], α

∗
i ∈ {0, 1}, from weight vector [α0, α1, α2, ...αn−1].

17

Under review as a conference paper at ICLR 2021

Table 5: Comparison of four variants of GDAS on NAS-
Bench-201. Our GDAS-SaBN achieves the highest top-1 ac-
curacy.

Method CIFAR-100 ImageNet

GDAS 67.52 ± 0.06 39.16 ± 0.32
GDAS-affine 64.79 ± 5.22 42.57 ± 1.05
GDAS-CCBN 57.62 ± 12.22 32.52 ± 11.48
GDAS-SaBN (ours) 68.67 ± 1.02 43.47 ± 2.01

We conducted four experiments, the
original GDAS, GDAS-affine, GDAS-
CategoricalCBN and GDAS-SaBN,
which are quite similar to DARTS experi-
ments settings. The only difference is that
the category index in CCBN and SaBN
is obtained by using Gumbel-softmax
instead of multinomial sampling. For
all experiments we use batch statistics
instead of running mean and variance(Dong & Yang, 2020).

The experiments results are shown in Fig. 16. On CIFAR-100, only GDAS-SaBN outperforms
the original GDAS. On ImageNet16-120, Both GDAS-SaBN and GDAS-affine improve the search
results, while GDAS-SaBN takes the lead finally. The comparative results of GDAS-SaBN and
GDAS-CCBN indicate the importance of the shared sandwich affine layer. The ground-truth accu-
racy of the final searched architecture is summarized in Tab. 5.

Figure 16: Results of architecture search on CIFAR-100 and ImageNet16-120, based on GDAS. Each curve is
the average result of three runs using different random seeds.

A.3 ADDITIONAL RESULTS OF ADVERSARIAL ROBUSTNESS

A.3.1 ANALYSIS OF OPTIMIZATION AND GENERALIZATION ABILITY

Our experiments also indicate that SaAuxBN benefits the model on both optimization and general-
ization. We mainly focus on two losses in our experiments, clean branch loss L(fclean(xclean), y) and
adversarial branch loss L(fadv(xadv), y), where f denotes the model and x, y denotes the input data,
label respectively. We visualize the clean branch loss L(fclean(xclean), y) and adversarial branch loss
L(fadv(xadv), y) of SaAuxBN and AuxBN on training set and test set in Fig. 17, 18. The above
two figures show that SaAuxBN leads to lower training and testing loss, demonstrating SaAuxBN is
beneficial to the model optimization. This is achieved by the injected inductive bias of commodity
for features from different domain (clean and adversarial), leading to easier optimization.

Besides, we also show the train-test loss gap of both losses in Fig. 19. For adversarial branch loss
L(fadv(xadv), y) in the left side, we can observe SaAuxBN has significantly smaller loss gap com-
pared with AuxBN. The train-test loss gaps of clean branch loss L(fclean(xclean), y) for SaAuxBN
and AuxBN in the right are quite similar. These evidence prove that SaAuxBN also benefits the
model in generalization ability. The inserted shared sandwich affine layer also serves as a regular-
ization term, since it is updated by data from both adversarial domain as well as clean domain, thus
improving the generalization ability.

A.3.2 CAPV OF SABN OF SABN IN ADVERSARIAL ROBUSTNESS

We visualize the CAPV of model with AuxBN and SaAuxBN which is trained under AdvProp
framework in Fig. 20.

18

Under review as a conference paper at ICLR 2021

Figure 17: The adversarial branch loss L(fadv(xadv), y) and clean branch loss L(fclean(xclean), y) on training
set. f, x, y denote model, input and label respectively. The model with SaAuxBN has lower training loss.

Figure 18: The adversarial branch loss L(fadv(xadv), y) and clean branch loss L(fclean(xclean), y) on testing set.
The model with SaAuxBN has lower test loss.

Figure 19: The train-test loss gap for adversarial branch loss L(fadv(xadv), y) and clean branch loss
L(fclean(xclean), y).

19

Under review as a conference paper at ICLR 2021

Figure 20: The CAPV value for models with AuxBN and SaAuxBN. We can observe the shared sandwich
affine layer is learned to reduce CAPV, i.e., the feature heterogeneity.

20

Under review as a conference paper at ICLR 2021

A.4 ADDITIONAL RESULTS OF IMAGE GENERATION

A.4.1 VISUAL RESULTS

SNGAN Vs SNGAN-SaBN

(a) SNGAN’s results (b) SNGAN-SaBN’s results

Figure 21: The image generation results of SNGAN and SNGAN-SaBN on ImageNet. Each column is corre-
sponding to a specific image class.

(a) SNGAN’s results (b) SNGAN-SaBN’s results

Figure 22: The image generation results of SNGAN and SNGAN-SaBN on CIFAR-10.

21

Under review as a conference paper at ICLR 2021

AutoGAN Vs AutoGAN-SaBN

(a) AutoGAN’s results (b) AutoGAN-SaBN’s results

Figure 23: The image generation results of AutoGAN and AutoGAN-SaBN on CIFAR-10.

BigGAN Vs BigGAN-SaBN

(a) BigGAN’s results (b) BigGAN-SaBN’s results

Figure 24: The image generation results of BigGAN and BigGAN-SaBN on CIFAR-10.

A.4.2 ANALYSIS OF OPTIMIZATION

We found that SaBN makes optimization easier. We’ve visualized the generator training loss of both
SNGAN (originally with CCBN) and SNGAN-SaBN on ImageNet dataset in Fig. 25. It can be
clearly observed that SNGAN-SaBN has lower generator training loss, yielding better optimization.

A.5 VISUAL RESULTS OF NEURAL STYLE TRANSFER

22

Under review as a conference paper at ICLR 2021

Figure 25: The generator loss of SNGAN and SNGAN-SaBN on ImageNet. SNGAN-SaBN achieves lower
loss value.

SaAdaIN (ours)AdaINContent ILM+IN

Figure 26: The visual results of style transfer. An ideally stylized output should be semantically similar to the
content image, while naturally incorporate the style information from the referenced style image.

23

	Introduction
	Related Work
	Normalization in deep learning
	Brief backgrounds for related applications

	Sandwich Batch Normalization
	Unifying homogeneity & heterogeneity for conditional image generation
	Architecture heterogeneity in Neural Architecture Search (NAS)
	Sandwich Auxiliary Batch norm in Adversarial robustness
	Style transfer with Sandwich Adaptive Instance Normalization

	Conclusion
	Appendix
	Implementation details
	Additional results in NAS
	Search space of NAS-Bench-201
	The additional results of SaBN in DARTS
	The results of GDAS

	Additional Results of Adversarial Robustness
	Analysis of Optimization and Generalization Ability
	CAPV of SaBN of SaBN in Adversarial Robustness

	Additional results of image generation
	Visual results
	Analysis of Optimization

	Visual results of Neural style transfer

