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Abstract

We introduce a Masked Segmental Language001
Model (MSLM) for joint language model-002
ing and unsupervised segmentation. While003
near-perfect supervised methods have been de-004
veloped for segmenting human-like linguis-005
tic units in resource-rich languages such as006
Chinese, many of the world’s languages are007
both morphologically complex, and have no008
large dataset of “gold” segmentations for su-009
pervised training. Segmental Language Mod-010
els offer a unique approach by conducting un-011
supervised segmentation as the byproduct of012
a neural language modeling objective. How-013
ever, current SLMs are limited in their scalabil-014
ity due to their recurrent architecture. We pro-015
pose a new type of SLM for use in both unsu-016
pervised and lightly supervised segmentation017
tasks. The MSLM is built on a span-masking018
transformer architecture, harnessing a masked019
bidirectional modeling context and attention,020
as well as adding the potential for model scal-021
ability. In a series of experiments, our model022
outperforms the segmentation quality of recur-023
rent SLMs on Chinese, and performs similarly024
to the recurrent model on English.025

1 Introduction026

Outside of the orthography of English and lan-027

guages with similar writing systems, natural lan-028

guage is rarely overtly segmented into meaningful029

units. Languages such as Chinese, are written with030

no spaces in between characters, and Chinese Word031

Segmentation remains an active field of study (e.g.032

Tian et al., 2020). Running speech is also highly033

fluent with no meaningful pauses existing between034

“words” like in orthography.035

Tokenization schemes for large modern lan-036

guage models are now largely passed off to greedy037

information-theoretic algorithms like Byte-Pair038

Encoding (Sennrich et al., 2016) and the subse-039

quent SentencePiece (Kudo and Richardson, 2018),040

which create subword vocabularies of a desired size041

by iteratively joining commonly co-occuring units. 042

However, these segmentations are usually not sen- 043

sical to human readers (Park et al., 2021). Given 044

the current performance of models using BPE-type 045

tokenization, the nonsensical nature of these seg- 046

mentations does not necessarily seem to inhibit the 047

success of neural models. 048

Nevertheless, BPE does not necessarily help 049

in situations where knowing a sensical segmen- 050

tation of linguistic-like units is important, such as 051

attempting to model the ways in which children 052

acquire language (Goldwater et al., 2009), segment- 053

ing free-flowing speech (Kamper et al., 2016; Rasa- 054

nen and Blandon, 2020), creating linguistic tools 055

for morphologically complex languages (Moeng 056

et al., 2021), or studying the structure of an endan- 057

gered language with few or no current speakers 058

(Dunbar et al., 2020). 059

While near-perfect supervised models have been 060

developed for resource-rich languages like Chinese, 061

most of the world’s languages do not have large 062

corpora of training data (Joshi et al., 2020). Es- 063

pecially for morphologically complex languages, 064

large datasets containing “gold” segmentations into 065

units like morphemes are very rare. 066

To help mitigate this problem, we propose a 067

novel variant of the unsupervised Segmental Lan- 068

guage Model (Sun and Deng, 2018; Kawakami 069

et al., 2019). Segmental Language Models (SLMs) 070

function as neural LMs that can also be used for un- 071

supervised segmentation correlating with units like 072

words and morphemes (Kawakami et al., 2019). 073

Traditional (recurrent) SLMs provide a good 074

tradeoff between language-modeling performance 075

and segmentation quality. However, in order to em- 076

brace a fully bidirectional modeling context, atten- 077

tion, and the scalability afforded by parallelization, 078

we present a Masked Segmental Language Model 079

(MSLM), built on a span-masking transformer ar- 080

chitecture (Vaswani et al., 2017). As far as we are 081

aware, we are the first to introduce a non-recurrent 082
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architecture for segmental modeling.083

In this paper, we seek to compare our model084

to recurrent baselines across two standard word-085

segmentation datasets in Chinese and English, with086

the hope of expanding to more languages and do-087

mains (such as speech) in future work. We con-088

strain the scope of our work to comparison with089

recurrent SLMs both because standard Bayesian090

models have been compared to SLMs elsewhere091

(Kawakami et al., 2019, Section 2), and because092

SLMs have different use cases from Bayesian algo-093

rithms, which tend to be weaker language models094

and lack continuous character representations that095

are invaluable in settings such as transfer learning.096

In what follows, we overview baselines in unsu-097

pervised segmentation as well as other precursors098

to SLMs (Section 2), provide a formal character-099

ization of SLMs in general, as well as the archi-100

tecture and modeling assumptions that make the101

MSLM distinct (Section 3), present our experimen-102

tal method comparing recurrent and masked SLMs103

(Section 4), and finally show that the MSLM out-104

performs its recurrent counterpart on Chinese seg-105

mentation, and performs similarly to the recurrent106

model on English (Sections 5-6). Section 7 lays107

out directions for future work.108

2 Related Work109

Segmentation Techniques and SLM Precursors110

An early application of machine learning to unsu-111

pervised segmentation is Elman (1990), who shows112

that temporal surprisal peaks in RNNs provide a113

heuristic for inferring word boundaries. Subse-114

quently, Minimum Description Length (MDL) (Ris-115

sanen, 1989) was widely used. The MDL model116

family underlies well-known segmentation tools117

such as Morfessor (Creutz and Lagus, 2002) and118

other notable works (de Marcken, 1996; Goldsmith,119

2001).120

More recently, Bayesian models have proved121

some of the most accurate in their ability to model122

word boundaries. Some of the best examples are123

Hierarchical Dirichlet Processes (Teh et al., 2006),124

e.g. those applied to natural language by Goldwater125

et al. (2009), as well as Nested Pitman-Yor (Mochi-126

hashi et al., 2009; Uchiumi et al., 2015). However,127

Kawakami et al. (2019) notes most of these do not128

adequately account for long-range dependencies in129

the same capacity as modern neural LMs.130

Segmental Language Models follow a variety of131

recurrent models proposed for finding hierarchi-132

cal structure in sequential data. Influential among 133

these are Connectionist Temporal Classification 134

(Graves et al., 2006), Sleep-Wake Networks (Wang 135

et al., 2017), Segmental RNNs (Kong et al., 2016), 136

and Hierarchical Multiscale Recurrent Neural Net- 137

works (Chung et al., 2017). 138

In addition, SLMs draw heavily from character 139

and open-vocabulary language models. For exam- 140

ple, Kawakami et al. (2017) and Mielke and Eisner 141

(2019) present open-vocabulary language models 142

in which words are represented either as atomic 143

lexical units, or built out of characters. While the 144

hierarchical nature and dual-generation strategy of 145

these models did influence SLMs (Kawakami et al., 146

2019), both assume that word boundaries are avail- 147

able during training, and use them to form word 148

embeddings from characters on-line. In contrast, 149

SLMs usually assume no word boundary informa- 150

tion is available in training. 151

Segmental Language Models The next section 152

has a more technical description of SLMs; here we 153

give a short overview of related work. The term 154

Segmental Language Model seems to be jointly 155

due to Sun and Deng (2018) and Kawakami et al. 156

(2019). Sun and Deng (2018) demonstrate strong 157

results for Chinese Word Segmentation using an 158

LSTM-based SLM and greedy decoding, competi- 159

tive with and sometimes exceeding state of the art 160

for the time. This study tunes the model for seg- 161

mentation quality on a validation set, which we will 162

call a “lightly supervised” setting (Section 4.3). 163

Kawakami et al. (2019) use LSTM-based SLMs 164

in a strictly unsupervised setting in which the 165

model is only trained to optimize language- 166

modeling performance on the validation set, and is 167

not tuned on segmentation quality. Here they report 168

that “vanilla” SLMs give sub-par segmentations 169

unless combined with one or more regularization 170

techniques, including a character n-gram “lexicon” 171

and length regularization. 172

Finally, Wang et al. (2021) very recently intro- 173

duce a bidirectional SLM based on a Bi-LSTM. 174

They show improved results over the unidirectional 175

SLM of Sun and Deng (2018), test over more su- 176

pervision settings, and include novel methods for 177

combining decoding decisions over the forward and 178

backward directions. This study is most similar to 179

our own work, though our transformer-based SLMs 180

utilize a bidirectional context in a qualitatively dif- 181

ferent way, and do not require an additional layer 182

to capture the reverse context. 183
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3 Model184

3.1 Recurrent SLMs185

A schematic of the original Recurrent SLM can be186

found in Figure 1. Within an SLM, a sequence of187

symbols or time-steps x can further be modeled as188

a sequence of segments y, which are themselves189

sequences of the input time-steps, such that the190

concatenation of segments π(y) = x.191

SLMs are broken into two levels: a Context En-192

coder and a Segment Decoder. The Segment De-193

coder estimates the probability of the jth character194

in the segment starting at index i, yij , as:195

p(yij |yi0:j , x0:i) = Decoder(hij−1, y
i
j−1)196

where the indices for xi:j are [i, j). The Context197

Encoder encodes information about the input se-198

quence up to index i. The hidden encoding hi is199

hi = Encoder(hi−1, xi)200

Finally, the Context Encoder “feeds” the Seg-201

ment Decoder: the initial character of a segment202

beginning at i is decoded using (transformations203

of) the encoded context as initial states (gh(x) and204

gstart(x) are single feed-forward layers):205

p(yi0|x0:i) = Decoder(hi∅, start
i)206

hi∅ = gh(hi−1)207

start i = gstart(hi−1)208

For inference, the probability of a segment yi:i+k209

(starting at index i and of length k) is modeled as210

the log probability of generating yi:i+k with the211

Segment Decoder given the left context π(y
0:i
) =212

x0:i. Note that the probability of a segment is213

not conditioned on other segments / segmentation214

choice, but only on the unsegmented input time-215

series. Thus, the probability of the segment is216

p(yi0|hi∅, start
i)

k∏
j=1

p(yij |hij−1, yij−1)217

where yik is the end-of-segment symbol.218

The probability of a sentence is thus modeled219

as the marginal probability over all possible seg-220

mentations of the input, as in equation (1) below221

(where Z(|x|) is the set of all possible segmenta-222

tions of an input x). However, since there are 2|x|−1223

possible segmentations, directly marginalizing is224

intractable. Instead, dynamic programming over225

a forward-pass lattice can be used to recursively 226

compute the marginal as in (2) given the base con- 227

dition that α0 = 1. The maximum-probability seg- 228

mentation can then be read off of the backpointer- 229

augmented lattice through Viterbi decoding. 230

p(x) =
∑

z∈Z(|x|)

∏
i

p(yi:i+zi) (1) 231

p(x0:i) = αi =
L∑

k=1

p(yi−k:i|x0:i−k)αi−k (2) 232

Figure 1: Recurrent Segmental Language Model

3.2 New Model: Masked SLM 233

We present a Masked Segmental Language Model, 234

which leverages a non-directional transformer as 235

the Context Encoder. This reflects recent ad- 236

vances in bidirectional (Schuster and Paliwal, 1997; 237

Graves and Schmidhuber, 2005; Peters et al., 2018) 238

and adirectional language modeling (Devlin et al., 239

2019). Such modeling contexts are also psycholog- 240

ically plausible: Luce (1986) shows that in acoustic 241

perception, most words need some following con- 242

text to be recognizable. 243

A key difference between our model and stan- 244

dard Masked LMs like BERT is that the latter pre- 245

dict single tokens based on the rest, while for SLMs 246

we must predict a segment of tokens based on all 247

other tokens outside the segment. For instance, to 248

predict the three-character segment starting at xt, 249

the modeled distribution is p(xt:t+3|x<t, x≥t+3). 250

Some recent pre-training techniques for trans- 251

formers, such as MASS (Song et al., 2019) and 252
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BART (Lewis et al., 2020) mask out spans to be253

predicted. A key difference between our model and254

these approaches is that the pre-training data for255

large transformer models is usually large enough256

that only about 15% of training tokens are masked,257

while we need to estimate the generation probabil-258

ity for every possible segment of x. Since the usual259

method for masking is to replace the masked to-260

ken(s) with a special symbol, only one span can be261

predicted with each forward pass. However, each262

sequence contains O(|x|) possible segments, so re-263

placing each one with a mask token and recovering264

it would require as many forward passes.265

These design considerations motivate our Seg-266

mental Transformer Encoder, and the Segmen-267

tal Attention Mask around which it is based. Each268

forward pass of the encoder generates an encoding269

for every possible start-position in x, for a segment270

of up to length k. The encoding at timestep t− 1271

corresponds to every possible segment whose first272

timestep is at index t. Thus with maximum seg-273

ment length of k and total sequence length n, the274

encoding at each index t− 1 will approximate275

p(xt:t+1, xt:t+2, ...xt:t+k|x<t, x≥t+k)276

This encoder leverages an attention mask that277

conditions predictions only on indices outside the278

predicted segment. An example of this mask with279

k = 3 is shown in Figure 2. For max segment280

length k, the mask is given by:281

αi,j =

{
−∞ if 0 < j − i ≤ k
0 else

282

Figure 2: Segmental Attention Mask with segment-
length (k) of 3. Blue squares are equal to 0, orange
squares are equal to −∞. This mask blocks the posi-
tion encoding the segment in the Queries from attend-
ing to segment-internal positions in the Keys.

This solution is similar to that of Shin et al.283

(2020), developed independently and concurrently284

with our work, which uses a custom attention mask 285

to “autoencode” each position without needing a 286

special mask token. One key difference is that their 287

masking scheme is used to predict single tokens, 288

rather than spans. In addition, their mask runs di- 289

rectly along the diagonal of the attention matrix, 290

rather than being offset. This means that to pre- 291

serve self-masking in the first layer, the Queries are 292

the “pure” positional embeddings. 293

To prevent information leaking “from under the 294

mask”, our encoder uses a different configuration 295

in its first layer than in subsequent layers. In the 296

first layer, Queries, Keys, and Values are all learned 297

from the original input embeddings. In subsequent 298

layers, the Queries come from the hidden encod- 299

ings output by the previous layer, while Keys and 300

Values are learned directly from the original em- 301

beddings. If Queries and either Keys or Values both 302

come from the previous layer, information can leak 303

from positions that are supposed to be masked for 304

a particular query position. Shin et al. (2020) come 305

to a similar solution to preserve their auto-encoder 306

masking. 307

The encodings learned by the segmental encoder 308

are then input to an SLM decoder in exactly the 309

same way as previous models (Figure 3). 310

Figure 3: Masked Segmental Language Model, k = 2.

To tease apart the role of an adirectional model- 311

ing assumption itself, vs the role of attention, we 312

additionally define a Directional MSLM, which 313

uses a directional (“causal”) mask instead of the 314

span masking type. Using the directional mask, the 315

encoder is still attention-based, but the language 316

modeling context is strictly “directional”, in that 317
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positions are only allowed to attend over a mono-318

tonic “leftward” context (Figure 4).319

Finally, to add positional information to the en-320

coder, we use static sinusoidal encodings (Vaswani321

et al., 2017) and additionally employ a linear map-322

ping f to the concatenation of the original and323

positional embeddings to learn the ratio at which324

to add the two together.325

g = 1.0 + ReLU (f([embedding , position]))326

embedding ←− g ∗ embedding + position327

4 Experiments328

Our experiments assess SLMs across three dimen-329

sions: (1) network architecture and language mod-330

eling assumptions, (2) evaluation metrics, specifi-331

cally segmentation quality and language-modeling332

performance, and (3) supervision setting (if and333

where gold segmentation data is available).334

4.1 Architecture and Modeling335

To analyze the importance of the self-attention ar-336

chitecture versus the bidirectional conditioning con-337

text, we test SLMs with three different encoders:338

the standard R(ecurrent)SLM based on an LSTM,339

the M(asked)SLM introduced in 3.2 with a seg-340

mental or “cloze” mask, and a D(irectional)MSLM,341

with a “causal” or directional mask. The RSLM342

is thus (+recurrent context, +directional), the DM-343

SLM is (-recurrent context, +directional), and the344

MSLM is (-recurrent context, -directional).345

Figure 4: Directional MSLM

For all models, we use an LSTM for the segment346

decoder, as a control and because the decoded se-347

quences are relatively short and may not benefit348

as much from an attention model. See also Chen 349

et al. (2018) for hybrid models with transformer 350

encoders and recurrent decoders. 351

4.2 Evaluation Metrics 352

Part of the motivation for SLMs is to create strong 353

language models that can also be used for segmen- 354

tation (Kawakami et al., 2019). Because of this, 355

we report both segmentation quality and language 356

modeling performance. 357

For segmentation quality, we get the word-F1 358

score for each corpus using the script from the 359

SIGHAN Bakeoff (Emerson, 2005). Following 360

Kawakami et al. (2019), we report this measure 361

over the entire corpus. For language modeling per- 362

formance, we report the average Bits Per Character 363

(bpc) loss over the test set. 364

4.3 Supervision Setting 365

Because previous studies have used SLMs both in 366

“lightly supervised” settings (Sun and Deng, 2018) 367

and totally unsupervised ones (Kawakami et al., 368

2019), and because we expect SLMs to be deployed 369

in either use case, we test both. For all model types, 370

we conduct a hyperparameter sweep and select both 371

the configuration that maximizes the validation seg- 372

mentation quality (light supervision) and the one 373

that minimizes the validation bpc (unsupervised). 374

4.4 Datasets 375

We evaluate our SLMs on two datasets used in 376

Kawakami et al. (2019). For each, we use the same 377

training, validation, and test split. The sets were 378

chosen to represent two relatively different writing 379

systems: Chinese (PKU) and English (PTB). Statis- 380

tics for each are in Table 1. One striking difference 381

between the two writing systems can be seen in the 382

character vocabulary size: phonemic-type writing 383

systems like English have a much smaller vocabu- 384

lary of tokens, with words being built out of longer 385

sequences of characters that are not meaningful on 386

their own.

Corpus PKU PTB

Tokens/Characters 1.93M 4.60M
Words 1.21M 1.04M
Lines 20.78k 49.20k
Avg. Characters per Word 1.59 4.44
Character Vocabulary Size 4508 46

Table 1: Statistics for the datasets
387
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Peking University Corpus (PKU) PKU has388

been used as a Chinese Word Segmentation bench-389

mark since the International Chinese Word Seg-390

mentation Bakeoff (Emerson, 2005). One minor391

change we make to this dataset is to tokenize En-392

glish, number, and punctuation tokens using the393

module from Sun and Deng (2018), to make our394

results more comparable to theirs. Unlike them, we395

do not pre-split sequences on punctuation.396

Penn Treebank (PTB) For English, we use397

the version of the Penn Treebank corpus from398

(Kawakami et al., 2019; Mikolov et al., 2010).399

4.5 Parameters and Trials400

For all models, we tune among six learning rates on401

a single random seed. After the parameter sweep,402

the configuration that maximizes validation seg-403

mentation quality and the one that minimizes vali-404

dation bpc are run over an additional four random405

seeds. All models are trained using Adam (Kingma406

and Ba, 2015) for 8192 steps.407

All models have one encoder layer and one de-408

coder layer, as well as an embedding and hidden409

size of 256. The transformer-based encoder has a410

number of trainable parameters less than or equal411

to the number in the LSTM-based encoder.1412

One important parameter for SLMs is the max-413

imum segment length k. Sun and Deng (2018)414

tune this as a hyperparameter, with different val-415

ues for k fitting different CWS standards more or416

less well. In practice, this parameter can be chosen417

empirically to be an upper bound on the maximum418

segment length one expects to find, so as to not419

rule out long segments. We follow Kawakami et al.420

(2019) in choosing k = 5 for Chinese and k = 10421

for English. For a more complete characterization422

of our training procedure, see Appendix A.2423

5 Results424

5.1 Chinese425

For PKU (Table 2), Masked SLMs yield better seg-426

mentation quality in both the lightly-supervised427

and unsupervised settings, though the advantage428

in the former setting is much larger (+12.4 median429

F1). The Directional MSLM produces similar qual-430

ity segmentations to the MSLM, but it has worse431

language modeling performance in both settings432

1592,381 trainable parameters in the former, 592,640 in
the latter

2The code used to build SLMs and conduct these experi-
ments can be found at (url redacted)

(+0.23 bpc for lightly supervised and +0.11 bpc 433

for unsupervised); the RSLM produced the second- 434

best bpc in the unsupervised setting. 435

The RSLM gives the best bpc in the lightly- 436

supervised setting. However for this setting, the 437

strict division of the models that maximize segmen- 438

tation quality and those that minimize bpc can be 439

misleading. In between these two configurations, 440

many have both good segmentation quality and low 441

bpc, and if the practitioner has gold validation data, 442

they will be able to pick a configuration with the 443

desired tradeoff. 444

In addition, there is some evidence that “under- 445

shooting” the objective in the unsupervised case 446

with a slightly lower learning rate may lead to 447

more stable segmentation quality. The unsuper- 448

vised MSLM in the table was trained at rate 2e-3, 449

and achieved 5.625 bpc (validation). An MSLM 450

trained at rate 1e-3 achieved only a slightly worse 451

bpc (5.631) and resulted in better and more stable 452

segmentation quality (69.4 ± 2.0 / 70.4). 453

5.2 English 454

Results for English (PTB) can also be found in 455

Table 2. By median, results remain comparable be- 456

tween the recurrent and transformer-based models, 457

but the RSLM yields better segmentation perfor- 458

mance in both settings (+4.0 and +4.7 F1). How- 459

ever, both types of MSLM are slightly more sus- 460

ceptible to random seed variation, causing those 461

means to be skewed slightly lower. The DMSLM 462

seems more susceptible than the MSLM to outlier 463

performance based on random seeds, as evidenced 464

by its large standard deviation. Finally, the RSLM 465

gives considerably better bpc performance in both 466

settings (-0.29 and -0.31 bpc). 467

6 Analysis and Discussion 468

6.1 Error Analysis 469

We conduct an error analysis for our models based 470

on the overall Precision and Recall scores for each 471

(using the character-wise binary classification task, 472

i.e. word-boundary vs no word-boundary). 473

As can be seen in Table 3, all model types trained 474

on Chinese have a Precision that approaches 100%, 475

meaning almost all boundaries that are inserted 476

are true boundaries. On first glance the main dif- 477

ference in the unsupervised case seems to be the 478

RSLM’s relatively higher Recall. However, the 479

higher Precision of both MSLM types seems to 480

be more important for the overall segmentation 481
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Dataset Model
Tuned on Gold Unsupervised

F1 Mean / Median BPC F1 Mean / Median BPC

PKU
RSLM 61.2 ± 3.6 / 60.2 5.67 ± 0.01 59.4 ± 1.9 / 58.7 5.63 ± 0.01
DMSLM 72.2 ± 2.0 / 72.7 6.08 ± 0.31 62.9 ± 2.6 / 63.4 5.67 ± 0.03
MSLM 72.3 ± 0.7 / 72.6 5.85 ± 0.12 62.9 ± 2.8 / 64.1 5.56 ± 0.01

PTB
RSLM 77.4 ± 0.7 / 77.6 2.10 ± 0.04 75.7 ± 2.6 / 76.2 1.96 ± 0.00
DMSLM 70.6 ± 6.4 / 73.3 2.36 ± 0.07 67.9 ± 10.6 / 73.8 2.27 ± 0.04
MSLM 71.1 ± 5.6 / 73.6 2.39 ± 0.06 69.3 ± 5.6 / 71.5 2.27 ± 0.01

Table 2: Results on the Peking University Corpus and English Penn Treebank (over 5 random seeds)

performance.3 In the lightly-supervised case, the482

MSLM variants learn to trade off a small amount483

of Precision for a large gain in Recall, allowing484

them to capture more of the true word boundaries485

in the data. Given different corpora have different486

standards for the coarseness of Chinese segmenta-487

tion, this reinforces the need for studies on a wider488

selection of datasets.489

Because the English results (also in Table 3)490

are similar between supervision settings, we only491

show the unsupervised variants. Here, the RSLM492

shows a definitive advantage in Recall, leading to493

overall better performance. The transformer-based494

models show equal or higher Precision, but tend to495

under-segment, i.e. produce longer words. Exam-496

ple model segmentations for PTB can be found in497

Table 4. Some intuitions from our error analysis498

can be seen here: the moderate Precision of these499

models yields some false splits like be + fore500

and quest + ion, but all models also seem to501

pick up some valid morphological splits not present502

in the gold standard (e.g. +able in questionable).503

Predictably, rare words with uncommon structure504

remain difficult to segment (e.g. asbestos).505

6.2 Discussion506

For Chinese, the transformer-based SLM exceeds507

the recurrent baseline for segmentation quality, by a508

moderate amount for the unsupervised setting, and509

by a large amount when tuned on gold validation510

segmentations. The MSLM also gives stronger511

language modeling. Given the large vocabulary512

size for Chinese, it is intuitive that the powerful513

transformer architecture may make a difference514

3This table also shows that though character-wise segmen-
tation quality (i.e. classifying whether a certain character has
a boundary after it) is a useful heuristic, it does not always
scale straightforwardly to word-wise F1 like is traditionally
used (e.g. by the SIGHAN script).

in this difficult language-modeling task. Further, 515

though the DMSLM achieves similar segmentation 516

quality, the bidirectional context of the MSLM does 517

seem to be the source of the best bpc modeling 518

performance. 519

In English, on the other hand, recurrent SLMs 520

seem to retain a slight edge. By median, segmen- 521

tation quality remains fairly similar between the 522

three model types, but the RSLM holds a major 523

language-modeling advantage in our experiments. 524

Our main hypothesis for the disparity in modeling 525

performance between Chinese and English comes 526

down to the nature of the orthography for each. As 527

noted before, Chinese has a much larger charac- 528

ter vocabulary. This is because in Chinese, almost 529

every character is a morpheme itself (i.e. it has 530

some meaning). English, on the other hand, has a 531

roughly phonemic writing system, e.g. the letter c 532

has no inherent meaning outside of a context like 533

cat. 534

Intuitively, one can see why this might pose a 535

limitation on transformers. Without additive or 536

learned positional encodings, they are essentially 537

adirectional. In English, cat is completely differ- 538

ent from act, but this might be difficult to model 539

for an attention model without robust positional 540

information. To try to counteract this, we added 541

dynamic scaling to our static positional encodings, 542

but without deeper networks or more robust po- 543

sitional information, the discrepancy in character- 544

based modeling for phonemic systems may remain. 545

7 Conclusion 546

This study provides strong proof-of-concept for 547

the viability of transfomer-based Masked Segmen- 548

tal Language Models as an alternative to recurrent 549

SLMs in their ability to perform joint language 550

modeling and unsupervised segmentation. MSLMs 551

7



Dataset Model Avg. Word Length Precision Recall

PKU

Gold 1.59 - -
RSLM (unsup.) 1.93 ± 0.02 98.2 ± 0.1 80.8 ± 0.6
DMSLM (unsup.) 1.99 ± 0.04 98.6 ± 0.1 78.5 ± 1.8
MSLM (unsup.) 2.00 ± 0.05 98.5 ± 0.1 78.1 ± 1.9
RSLM (sup.) 1.92 ± 0.02 98.2 ± 0.1 81.3 ± 0.7
DMSLM (sup.) 1.83 ± 0.04 97.5 ± 0.5 84.6 ± 1.5
MSLM (sup.) 1.83 ± 0.01 97.6 ± 0.1 84.5 ± 0.4

PTB

Gold 4.44 - -
RSLM (unsup.) 4.02 ± 0.08 86.1 ± 1.9 95.5 ± 0.1
DMSLM (unsup.) 4.27 ± 0.17 85.4 ± 5.4 88.9 ± 4.6
MSLM (unsup.) 4.29 ± 0.12 86.2 ± 1.5 89.5 ± 3.5

Table 3: Error analysis statistics (over 5 random seeds)

Examples

Gold we ’re talking about years ago before anyone heard of asbestos having any questionable...

RSLM Median we’re talking about years ago be fore any one heard of as best os having any question able
DMSLM Median we’re talking about years ago be fore any one heard of as bestos having any quest ion able
MSLM Median we’re talking about years ago be fore any one heard of as bestos having any quest ion able

Table 4: Example model segmentations from the Penn Treebank

provide the advantage of a parallelizable architec-552

ture, and have several open avenues for extending553

their utility. To close, we lay out directions for554

future work.555

The most obvious next step is evaluating556

MSLMs on additional segmentation datasets. As557

mentioned, the criteria for “wordhood” in Chi-558

nese are not agreed upon, thus more experiments559

are warranted using corpora with different stan-560

dards. Prime candidates include the Chinese Penn561

Treebank (Xue et al., 2005), as well as those in-562

cluded in the SIGHAN segmentation bakeoff: Mi-563

crosoft Research, City University of Hong Kong,564

and Academia Sinicia (Emerson, 2005).565

The sets used here are also relatively formal566

orthographic datasets. An eventual use of SLMs567

may be in speech segmentation, but a smaller step568

in that direction could be using phonemic tran-569

script datasets like the Brent Corpus, also used in570

Kawakami et al. (2019). This set consists of phone-571

mic transcripts of child-directed English speech572

(Brent, 1999). SLMs could also be applied to the573

orthographies of more typologically diverse lan-574

guages, especially ones with complicated systems575

of morphology (e.g. Swahili, Turkish, Hungarian,576

Finnish).577

Further, though we only test shallow models578

here, one of the main advantages of transformers 579

is their ability to scale to deep architectures due to 580

their short derivational chains. Thus, extending seg- 581

mental models to “deep” settings would be more 582

feasible using MSLMs than RSLMs. 583

Lastly, Kawakami et al. (2019) propose regular- 584

ization techniques for SLMs due to low segmen- 585

tation quality from their “vanilla” models. They 586

report good findings using a character n-gram “lex- 587

icon” jointly with expected segment length regu- 588

larization based on Eisner (2002) and Liang and 589

Klein (2009). Both techniques are implemented 590

in our codebase, and we have tested them in pilot 591

settings. Oddly, neither has given us any gain in 592

performance over our “vanilla” models. A more ex- 593

haustive hyperparameter search with these methods 594

may produce a future benefits as well. 595

In conclusion, the present study shows strong 596

potential for the use of MSLMs. They show par- 597

ticular promise for writing systems with a large in- 598

ventory of semantic characters (e.g. Chinese), and 599

we believe that they could be stable competitors of 600

recurrent models in phonemic-type writing systems 601

given some mitigation of the relative weakness of 602

the positional information available in transform- 603

ers. 604
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A Training Details860

A.1 Data861

The datasets used here are sourced from862

Kawakami et al. (2019), and can be downloaded863

at https://s3.eu-west-2.amazonaws.864

com/k-kawakami/seg.zip. Our PKU data865

is tokenized slightly differently, and all data used866

in our experiments can be found in our project867

repository (url redacted).868

A.2 Architecture869

A dropout rate of 0.1 is applied leading into both870

the encoder and the decoder. Transformers use 4871

attention heads and a feedforward size of 509 (cho-872

sen to come out less than or equal to the number873

of parameters in the standard LSTM). This also874

includes a 512-parameter linear mapping to learn875

the combination proportion of the word and sinu-876

soidal positional embeddings. The dropout within877

transformer layers is 0.15.878

A.3 Initialization879

Character embeddings are initialized using CBOW880

(Mikolov et al., 2013) on the given training set for881

32 epochs, with a window size of 5 for Chinese and882

10 for English. Special tokens like <eoseg> that883

do not appear in the training corpus are randomly884

initialized. These pre-trained embeddings are not885

frozen during training.886

A.4 Training887

For PKU, the learning rates swept are {6e-4, 7e-4,888

8e-4, 9e-4, 1e-3, 2e-3}, and for PTB we use {6e-889

4, 8e-4, 1e-3, 3e-3, 5e-3, 7e-3}. For Chinese, we890

found a linear warmup for 1024 steps was useful,891

followed by a linear decay. For English, we apply892

simple linear decay from the beginning. Check-893

points are taken every 128 steps. A gradient norm894

clip threshold of 1.0 is used. Mini-batches are sized895

by number of characters rather than number of se-896

quences, with a size of 8192 (though this is not897

always exact since we do not split up sequences).898

The five random seeds used are {2, 3, 5, 8, 13}.899

Each model is trained on an Nvidia Tesla M10900

GPU with 8GB memory, with the average per-batch901

runtime of each model type listed in Table 5.902

A.5 Optimal Hyperparameters903

The optimal learning rate for each model type,904

dataset, and supervision setting are listed in the905

Table 6. Parameters are listed by the validation906

Model
s / step

PKU PTB

RSLM 2.942 2.177
DMSLM 2.987 2.190
MSLM 2.988 2.200

Table 5: Average runtime per batch in seconds

objective they optimize: segmentation MCC or 907

language-modeling BPC. 908

Dataset Model by MCC by BPC

PKU
RSLM 6e-4 9e-4

DMSLM 6e-4 2e-3
MSLM 6e-4 2e-3

PTB
RSLM 7e-3 3e-3

DMSLM 1e-3 8e-4
MSLM 1e-3 6e-4

Table 6: Optimum learning rates
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