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Abstract

A Large Language Model (LLM) tends to gen-001
erate inconsistent and sometimes contradictory002
outputs when presented with a prompt that has003
equivalent semantics but is expressed differ-004
ently from the original prompt. To achieve005
semantic consistency of an LLM, one of the006
key approaches is to finetune the model with007
prompt-output pairs with semantically equiv-008
alent meanings. Despite its effectiveness, a009
data-driven finetuning method incurs substan-010
tial computation costs in data preparation and011
model optimization. In this regime, an LLM012
is treated as a “black box”, restricting our013
ability to gain deeper insights into its inter-014
nal mechanism. In this paper, we are moti-015
vated to enhance the semantic consistency of016
LLMs through a more interpretable method017
(i.e., model editing) to this end. We first018
identify the model components (i.e., attention019
heads) that have a key impact on the semantic020
consistency of an LLM. We subsequently inject021
biases into the output of these model compo-022
nents along the semantic-consistency activation023
direction. It is noteworthy that these modifi-024
cations are cost-effective, without reliance on025
mass manipulations of the original model pa-026
rameters. Through comprehensive experiments027
on the constructed NLU and open-source NLG028
datasets, our method demonstrates significant029
improvements in the semantic consistency and030
task performance of LLMs. Additionally, our031
method exhibits promising generalization capa-032
bilities by performing well on tasks beyond the033
primary tasks.034

1 Introduction035

The field of Natural Language Processing (NLP) is036

experiencing a paradigm shift with the advent of037

Large Language Models (LLMs). These models038

have demonstrated remarkable capabilities in var-039

ious tasks such as sentiment classification (Wang040

et al., 2023), machine translation (Hendy et al.,041

2023), and summarization (Pu et al., 2023). How-042
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Figure 1: Inconsistency arises when prompts sharing
equivalent semantics produce different outcomes, while
consistency is achieved when their outputs remain con-
sistently identical, irrespective of their accuracy.

ever, an LLM tends to generate inconsistent and 043

sometimes contradictory outputs when presented 044

with a prompt that has equivalent semantics but 045

is expressed differently from the original prompt. 046

Such behavior is referred to as the issue of “seman- 047

tic consistency” (Gan and Mori, 2023; Rabinovich 048

et al., 2023; Raj et al., 2022), largely limiting the 049

application of LLMs to real-world scenarios. For 050

specific instances of inconsistency and consistency, 051

please refer to Figure 1. 052

Current mainstream solutions involve prompt 053

engineering or data-driven methods to handle the 054

problem of semantic consistency. For example, 055

Raj et al. (2023) proposed a prompt strategy called 056

‘Ask-to-Choose’ (A2C) to improve the semantic 057

consistency of LLMs, but this method requires care- 058

fully designed prompts. Applying a data-driven su- 059

pervised fine-tuning method (SFT) (Ouyang et al., 060

2022) to finetune an LLM with prompt-output pairs 061

with semantically equivalent meanings is another 062

effective approach. Despite their effectiveness, 063
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these methods incur substantial computation costs064

in data preparation and model optimization. Fur-065

thermore, these methods treat an LLM as a “black066

box”, restricting our ability to gain deeper insights067

into its underlying causes of the semantic consis-068

tency problem.069

To address the limitations of previous methods070

to enhance the semantic consistency of LLMs, we071

propose a method based on model editing that can072

locate the internal model components (i.e., atten-073

tion heads) responsible for generating semantic in-074

consistency. We subsequently inject biases into the075

outputs of these model components along seman-076

tic consistency activation directions. This strategy077

aims to shift the outputs of the key model compo-078

nents toward a direction resilient to variations of079

synonymous prompts.080

In order to comprehensively evaluate our pro-081

posed method under varying prompts, we have con-082

structed relevant NLU-task datasets in addition to083

utilizing existing evaluation datasets for NLG-task.084

We leveraged the paraphrasing capability of GPT-085

41 to construct the RobustSST2, RobustMRPC, and086

RobustBOOLQ datasets. These datasets cover a087

wide range of tasks, including the sentiment clas-088

sification dataset SST2 (Socher et al., 2013), the089

text similarity dataset MRPC (Dolan and Brockett,090

2005), and the question-answering dataset BOOLQ091

(Clark et al., 2019).092

Our method has shown significant enhancements093

in both semantic consistency and task performance094

on publicly available NLG datasets and our con-095

structed NLU datasets. Furthermore, our method096

also achieved positive results in out-of-domain ex-097

periments, demonstrating a solid generalization ca-098

pability. In summary, our contributions are two-099

fold:100

• To the best of our knowledge, we are the first101

to use a model editing approach to address102

the issue of prompt semantic inconsistency.103

Through this interpretability-oriented method,104

we can precisely diagnose the internal com-105

ponents contributing to semantic consistency.106

By directly injecting biases into the model,107

our method avoids mass-manipulating model108

parameters, resulting in a significant saving in109

GPU hour (around 18 times faster) in a typical110

task compared to a traditional SFT approach.111

1https://platform.openai.com/docs/
api-reference/chat

• We have curated three datasets, designed to 112

address the absence of NLU semantic con- 113

sistency evaluation benchmark. The datasets 114

will be released to the community to foster 115

research along this line. 116

2 Related Work 117

Semantic Consistency. The study of semantic con- 118

sistency originated from investigations into Masked 119

Language Models (MLMs) like BERT and Roberta. 120

Elazar et al. (2021) revealed significant semantic 121

inconsistency in the factual information extracted 122

from these MLMs when subjected to paraphras- 123

ing. Building on this, Fierro and Søgaard (2022) 124

extended the examination of semantic consistency 125

to a multilingual context, finding that inconsistency 126

issues are not confined to English but are preva- 127

lent across various other languages. Despite the 128

significant shift in the Natural Language Process- 129

ing (NLP) paradigm instigated by Large Language 130

Models (LLMs) (Brown et al., 2020), the issue 131

of semantic inconsistency remains (Gan and Mori, 132

2023). Rabinovich et al. (2023) developed a bench- 133

mark dataset of high-quality paraphrases specif- 134

ically for factual questions, serving as a testbed 135

for evaluating semantic consistency in a QA con- 136

text. Existing methods mainly address this issue 137

through prompt engineering and data-driven SFT. 138

For example, Raj et al. (2023) proposed an Ask- 139

to-Choose (A2C) prompting method that can en- 140

hance both accuracy and semantic consistency in 141

LLMs. Zhou et al. used an unsupervised finetuning 142

method. They took advantage of the fact that mul- 143

tiple prompts can be used to specify a single task 144

and proposed to regularize prompt consistency, en- 145

couraging consistent predictions across this diverse 146

set of prompts. Compared to previous methods, we 147

use a model editing method to modify the output 148

of specific model components in an LLM. This 149

method is both transparent and computationally 150

lightweight. 151

Model Editing. The goal of model editing is to 152

modify specific knowledge or control model behav- 153

iors without affecting the model’s performance on 154

other tasks (Yao et al., 2023). There are mainly 155

three types of editing methods: external memory- 156

based methods, constrained fine-tuning methods, 157

and locate-then-edit methods. 158

Among them, (1) External memory-based meth- 159

ods use new parameters to update knowledge or 160

change model behavior. An example is SERAC 161

(Mitchell et al., 2022), which uses edit memory to 162
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Figure 2: The flowchart of our method. Our method has three main steps: (1) We first construct the prompt pairs
[p, q] with consistency evaluation label c. (2) Based on these pairs, we perform key-components locating, which
selects the top-K (accuracy) components by training and evaluating classifiers based on these components’ output
hidden states and related consistency evaluation labels. If a classifier has high accuracy, the component and LLM
will behave very similarly (compatible), which suggests that the component is highly likely to be responsible for the
inconsistency errors, as mentioned previously. (3) For the selected top-K components, we add biases to the hidden
states of these components, which will shift the original activations of these components toward more semantically
consistent directions.

store updated knowledge and a classifier to route163

between the edit memory and the pre-trained model.164

(2) Constrained fine-tuning methods typically in-165

volve specific fine-tuning restrictions to regulate166

parameter updates, thus maintaining the model’s167

performance on unedited knowledge. For example,168

the method proposed by (Zhu et al., 2020) updates169

all model parameters but restricts the norm of pa-170

rameters before and after updating to preserve old171

knowledge. (3) Locate-then-edit methods try to172

first identify relevant model weights or represen-173

tations that store knowledge or steer model behav-174

ior, and then edit these weights or representations175

to achieve desirable outputs. Meng et al. (2022)176

used causal analysis to find that factual knowledge177

is mainly stored in the intermediate MLP layer178

weights and then used rank-one editing to modify179

model weights related to factual knowledge. Li180

et al. (2023) demonstrated that by identifying spe-181

cific attention heads and editing their activations,182

the likelihood of the model producing truthful out-183

put can be significantly enhanced. We adopt the184

“locate-then-edit” paradigm, with the main moti-185

vation being that we not only want to improve the186

semantic consistency of the model but also want to187

analyze which components in an LLM are related188

to this consistency.189

3 Preliminary190

LLM representation. The currently prevalent191

LLM structure adopts the decoder-only paradigm.192

According to Elhage et al. (2021), this type of LLM193

mainly consists of three parts: Token embedding,194

a sequence of decoder blocks, and token unem- 195

bedding. Among them, token embedding is the 196

process of mapping a token index to an embedding 197

vector, while token unembedding is the reverse op- 198

eration that maps the embedding back to the proba- 199

bility space of tokens, and then samples to obtain 200

the index of the next token. The vast majority of 201

parameters in LLM are composed of stacked de- 202

coder blocks, with each decoder block consisting of 203

the components of multi-head attention and MLP, 204

which can be represented by: 205

ai = xi +
∑

j=1,...,J

hi,j (1) 206

xi+1 = ai +mi, (2) 207

where xi is the i-th decoder layer hidden states. hi,j 208

is the hidden output of the j-th attention head in the 209

i-th layer. ai is the residual output after multi-head 210

attention. mi is the i-th MLP layer output. xi+1 211

is the hidden output of the i-th decoder block and 212

also the input of the i+1-th decoder block. 213

4 Methodology 214

We use GPT-4 to construct prompt pairs that have 215

the same semantics, and the target LLM outputs 216

of these prompt pairs should ideally be consis- 217

tent. However, when we use the target LLM to 218

predict these prompt pairs, we obtain both consis- 219

tent and inconsistent results. These inconsistent 220

results are errors made by the target LLM. To lo- 221

cate the sources of these errors, we assume that if 222
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the model components (i.e. attention heads) behave223

similarly to the target LLM, then these components224

are actually the causes of the semantic consistency225

problems in the target LLM. On the other hand,226

those components that have large behavioral differ-227

ences from the target LLM indicate that they are228

less relevant to the semantic consistency problems229

of the prompt pairs. Based on this assumption, we230

use the linear probing technique (Alain and Bengio,231

2016) to identify the relevant components.232

Next, we add semantic consistency biases to the233

identified components to correct their erroneous234

behavior. These biases are obtained by calculating235

the difference between the mass mean of the consis-236

tency samples and the mass mean of all samples on237

the corresponding components. These biases will238

shift the original activations of these components239

toward more semantically consistent directions.240

As shown in Figure 2, our method mainly con-241

sists of three steps, which are consistent prompt242

pairs construction, key components locating, and243

consistent-aware editing respectively. We will pro-244

vide detailed explanations of these steps in the fol-245

lowing sections.246

4.1 Consistent Prompt Pairs Construction247

We need to construct consistent prompt pairs for248

locating and editing an LLM. Specifically, we first249

construct a prompt pair set D, whose element is250

represented as [p, q]. Here, p represents the input251

prompt, and q is a synonym or rephrased version252

of p, which can be generated using existing large-253

scale models like GPT-4.254

Based on D, we need the consistency evaluation255

label c from the target LLM for key components lo-256

cating and editing. So we augment the consistency257

evaluation label c to [p, q] forming ([p, q], c). In258

the case of NLU tasks, we determine consistency259

labels based on whether the predicted results are260

the same. For NLG tasks, we can utilize GPT-4 to261

assess the consistency. Subsequently, we add c to262

each prompt pair in D, obtaining the set D′263

4.2 Key Components Locating264

With the constructed prompt pairs, we use linear265

probing (Alain and Bengio, 2016) to identify which266

components have similar behavior to the LLM267

that determine the prompts’ semantic consistency.268

Specifically, we divide the dataset D′ into probe269

set D′
probe and locate set D′

locate following a 4:1270

ratio.271

For each component, either an attention head or 272

an MLP in any layer, we train a classifier that takes 273

the concatenated hidden states as input and uses the 274

consistency label c as the ground truth label. These 275

hidden states are the output hidden states of the 276

component with respect to p and q. The training 277

data for this classifier comes from D′
probe, and the 278

testing data for this classifier comes from D′
locate. 279

If the classifier achieves a high score on the lo- 280

cate set D′
locate, it implies that the component and 281

the overall LLM behave very similarly. On the 282

other hand, a low score indicates that this com- 283

ponent is less important for semantic consistency 284

problems. We locate the top K components by 285

ordering the classification accuracy. 286

More specifically, given a sample ([p, q], c), the 287

linear classifier training feature for candidate MLP 288

and attention head are f(mi, p, q) and f(hi,j , p, q), 289

respectively. 290

f(mi, p, q) = [mplast

i ;mqlast

i ], (3) 291

f(hi,j , p, q) = [hp
last

i,j ; hq
last

i,j )], (4) 292

where plast and qlast indicates the last token of p 293

and q, and mplast

i is the hidden output of the MLP 294

layer in the i-th decoder block and hp
last

i,j is the 295

hidden output of the j-th attention head in the i-th 296

decoder block, all correspond to the last token. The 297

reason why we only use the last token of p and q is 298

that for a decoder-only architecture, the last token 299

has visibility over all preceding tokens. Therefore, 300

the hidden states corresponding to the last token 301

can be considered a summary representation of the 302

entire prompt. In this manner, we can construct 303

training sets S(mi) and S(hi,j) for training linear 304

classifiers for mi and hi,j , respectively. 305

S(mi)={f(mi, p, q), c}([p,q],c)∈D′
probe

(5) 306

S(hi,j)={f(hi,j , p, q), c}([p,q],c)∈D′
probe

, (6) 307

where S(mi) and S(hi,j) are mapped from 308

D′
probe. 309

We train linear classifiers with S(mi) or S(hi,j), 310

and then evaluate these classifiers on D′
locate. The 311

top K components in LLM with the highest classifi- 312

cation accuracy are used for model editing, as these 313

components strongly affect the prompts’ semantic 314

consistency. 315

4.3 Consistent-aware Model Editing 316

Inspired by the work from (Li et al., 2023; Jor- 317

gensen et al., 2023), we make specific adjustments 318
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to the hidden states of the top-K components, align-319

ing their hidden states toward greater semantic con-320

sistency.321

Specifically, we add biases to these components,322

and the biases are obtained by calculating the dif-323

ference between the mass mean of the consistency324

samples and the mass mean of all samples on the325

corresponding components. All of these samples326

are from D′
probe. Formally, the biases for the can-327

didate MLP and attention head are calculated by:328

b(mi)=
∑
p,c=1

mplast

i

N
−
∑
p

mplast

i

M
,

b(hi,j)=
∑
p,c=1

hp
last

i,j

N
−
∑
p

hp
last

i,j

M
,

(7)329

where N is the number of the prompts in D′
probe330

with c = 1, and M is the number of all the in-331

stances in D′
probe. After that, these biases are332

added to the hidden states of the selected Top-K333

components, obtaining m̂i and ĥi,j for the K se-334

lected components.335

m̂i = mi + α · b(mi) (8)336

ĥi,j = hi,j + α · b(hi,j). (9)337

Here, α is the hyperparameter that adjusts the338

strength of the activations shift.339

5 NLU Benchmark Construction340

Currently, there are some NLG benchmarks related341

to the semantic consistency of LLM (Rabinovich342

et al., 2023). However, there is a relative scarcity343

of NLU benchmarks specifically designed for se-344

mantic consistency research. To address this gap,345

we propose a benchmark dataset for evaluating346

semantic consistency in NLU tasks. This bench-347

mark comprises RobustSST2, RobustMRPC, and348

RobustBOOLQ, which are derived from the sen-349

timent classification dataset SST2 (Socher et al.,350

2013), the text similarity dataset MRPC (Dolan and351

Brockett, 2005), and the yes/no question-answering352

dataset BOOLQ (Clark et al., 2019), respectively.353

Our primary objective is to assess the semantic354

consistency of LLMs under synonymous task in-355

structions for these datasets.356

More specifically, we first generate 30 synony-357

mous task instructions for each task dataset. For358

example, we feed the following prompt (bold font)359

to GPT-4 to generate the synonymous task instruc- 360

tions used for RobustSST2. 361

Rephrase the following sentence in 30 ways, while
retaining the same meaning.
Measure the polarity of this sentence and
respond with either ’positive’ or ’negative’,
give me one word.

Then, we slice the generated task instructions 362

according to an 8:2 ratio, meaning the training set 363

uses 24 instructions, while the test set uses 6 in- 364

structions. 365

For the training set, we constructed 24 syn- 366

onymous prompts for each training instance, 367

i.e., prompti = [instructioni, instancetrain]
24
i=1, 368

and each prompti has a label answeri, which is 369

consistent across these 24 prompts. 370

Additionally, to create consistent prompt pairs 371

for model editing, we generated C2
24 prompt pairs 372

by iterating through all possible combinations of 373

these 24 prompts for each training instance. Then, 374

we utilized the target LLM to assess whether the 375

predictions generated for each prompt pair were 376

consistent and obtain the relevant consistency eval- 377

uation label c. Lastly, we sampled 250 instances 378

from both the c = 0 and c = 1 categories, yielding 379

a total of 500 instances used for model editing. 380

The instance in the test set is different from the 381

instance in the training set. Each instance in the 382

test set includes a constructed prompt along with 383

its corresponding answer [prompttest, answertest]. 384

In specific, we first use the left 6 task instruc- 385

tion to construct relevant prompts i.e., {prompti = 386

[instructioni, instancetest]}30i=25. Subsequently, We 387

perform sample selection for these 6 prompts to 388

construct a test instance. The selection rule is that 389

if these 6 prompts yield the same result, we ran- 390

domly choose 1 prompt to construct the sample. 391

However, if they predict N different outcomes, we 392

select 1 prompt from each of the N distinct results 393

from N samples. By employing this approach, we 394

can select hard negative samples while retaining 395

examples that the LLM could originally predict 396

correctly, thereby enhancing the diversity of our 397

test data. 398

6 Experiments 399

6.1 Datasets 400

To verify the effectiveness of the model editing 401

method for addressing the issue of prompt semantic 402

consistency, we conducted tests on both NLU and 403
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NLG tasks. For NLU evaluation, we utilized the404

specially constructed RobustMRPC, RobustSST2,405

and RobustBOOLQ datasets. For NLG evalua-406

tion, we selected the sport and capital categories407

from the PopQA question-answering dataset as de-408

scribed by (Rabinovich et al., 2023). Detailed data409

statistics are shown in Table 1.410

Task Category Datasets Number of test cases

NLU RobustMRPC 408
NLU RobustSST2 872
NLU RobustBOOLQ 1000

NLG PopQA_sport 3829
NLG PopQA_capital 4515

Table 1: Data statistics of Evaluation Datasets.

6.2 Evaluation Metrics411

For NLU tasks, we evaluate its task performance412

by testing the overall accuracy of classification re-413

sults across different instruction templates. To as-414

sess semantic consistency, we measure the standard415

deviation of the accuracy across these various in-416

struction templates. For the NLG task, accuracy417

and mean pairwise cosine similarity metrics intro-418

duced by (Rabinovich et al., 2023) are employed419

to evaluate the model’s task performance and its420

semantic consistency respectively. It is worth not-421

ing that lower standard deviation and higher mean422

pairwise cosine similarity are both indicative of423

better semantic consistency.424

6.3 Key Components Locating Result425

We utilize the LLama2-7B chat-version model426

(Touvron et al., 2023) as the target LLM to ana-427

lyze the impact of candidate model components,428

such as attention heads and MLPs, on LLM’s se-429

mantic consistency problem. Next, we visualize the430

locating results of these components, with brighter431

squares (i.e. yellow squares) highlighting areas432

of high locating accuracy, indicative of a strong433

correlation with semantic consistency.434

As the visualization result shown in Figure 3,435

we find that there exists a notable concentration of436

yellow squares between layers 11 and 32, suggest-437

ing that attention heads and MLPs in the mid to438

final LLM’s decoder blocks are highly relevant to439

semantic consistency.440

Furthermore, our findings suggest that model441

components in the initial layers of transformer442

blocks exert negligible influence on semantic con-443

sistency. Their locating accuracy for synonymous444

samples hovers around 50%, equivalent to random 445

chance, indicating these samples are treated as iden- 446

tical by these components. This distinction under- 447

scores the nuanced role of the model components 448

across different layers in influencing LLM’s seman- 449

tic consistency. 450

(a) Visualization Result on RobustSST2.

(b) Visualization Result on PopQA_capital.

Figure 3: The visualization experiments on the Ro-
bustSST2 (NLU) and PopQA_capital (NLG) dataset.
The horizontal axis represents the attention heads and
the MLP in certain layer, while the vertical axis indi-
cates the layer number. The column on the right shows
the locating accuracy of attention heads or the MLPs.
Brighter Squares indicate high locating accuracy.

6.4 Model Editing Experimental Result 451

Our comprehensive analysis, as presented in Ta- 452

ble 2, and Table 3, demonstrates that our editing 453

method can significantly enhance both semantic 454

consistency and task performance across a variety 455

of NLU and NLG tasks. Specifically, we observed 456

notable reductions in the standard deviation for 457

semantic consistency assessments on the RobustM- 458
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Method RobustMRPC RobustSST2 RobustBOOLQ

LLama2-7B 67.15±5.36 85.66±4.88 46.40±10.55

+Editing 68.62±4.47 89.90±4.54 57.50±5.10

Table 2: Main experiment result is on NLU datasets.
The notation 67.15±5.36 indicates an average test set
accuracy of 67.15 with a standard deviation of ±5.36.

Method PopQA_sport PopQA_capital

LLama2-7B 50.83/0.79 73.33/0.73
+Editing 53.20/0.80 74.36/0.77

Table 3: Main experiment on NLG Tasks. The nota-
tion 50.83/0.79 indicates an average test set accuracy of
50.83 with a mean pairwise cosine similarity of 0.79.

RPC, RobustSST2, and RobustBOOLQ datasets,459

with decreases of 0.89, 0.34, and 5.45, respectively.460

Moreover, the accuracy of model performance ex-461

perienced substantial improvements, showing in-462

creases of 1.47%, 4.24%, and 11.1% across these463

datasets, respectively. For NLG tasks, we noted im-464

provements in semantic consistency score by 1.0%465

and 4.0%, respectively, while the accuracy in these466

tasks rose by 2.37% and 1.03%, respectively.467

The findings from these experiments clearly sup-468

port the conclusion that adjustments to the outputs469

of the top-K model components can significantly470

enhance the model’s semantic consistency and task471

performance. Importantly, these advancements are472

achieved without the need for altering the model’s473

underlying parameters.474

6.5 Ablation Study475

6.5.1 The Influence of Hyperparameter Top-K476

We investigate the impact of the K-value477

on the experimental setting, selecting the Ro-478

bustSST2 dataset for our analysis, with the k ∈479

{5, 15, 25, 35, 45, 55}. As demonstrated in Figure480

4, it is observed that the edited model achieves481

the highest accuracy when the K-value is equal482

to 25. Conversely, when the K-value is equal to483

or greater than 35, a decline in model accuracy is484

noted. These experimental findings underscore the485

critical importance of selecting an appropriate num-486

ber of editing heads. Excessive model editing can487

result in its collapse.488

6.5.2 The Influence of the Model Components489

Selecting Strategy and Editing Direction490

To validate the effectiveness of our located model491

components and editing directions, we carried out492

Figure 4: The performance of different K-values.

two ablation studies. The first one is to randomly 493

pick a number of model components equivalent 494

to our editing method, with the goal of evaluating 495

the effectiveness of our components selection strat- 496

egy based on locating accuracy. The second study 497

involved altering the editing directions to random 498

directions based on a normal distribution. 499

Method RobustMRPC

LLama2-7B 67.15±5.36

+Editing 68.62±4.47

w/ random components 61.51±10.86

w/ random direction 64.46±6.20

Table 4: Ablation studies for the influence of model
components selecting strategy and effectiveness of the
editing direction. "random components" indicates the
strategy of randomly selecting an equivalent number
of components as our method employs. The "random
direction" is the approach of randomly selecting editing
directions.

Table 4 demonstrates that on the RobustMRPC 500

dataset, both semantic consistency and the task per- 501

formance of the model suffer when random model 502

components or random direction editing are ap- 503

plied. Compared to the unedited LLama2-7B chat- 504

version model, semantic consistency experiences a 505

decline of 5.5 and 0.84 points, while accuracy drops 506

by 5.64% and 2.69%, respectively. These results 507

highlight the critical role of specific model com- 508

ponents and editing direction in enhancing model 509

semantic consistency and task performance. 510

6.5.3 Out-of-domain Experiment Result 511

We evaluate the performance of the edited LLama2- 512

7B chat-version model on out-of-domain datasets. 513

Specifically, after editing the model on the MRPC 514

dataset, we test its performance on four OOD 515
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Model AG News IMDB

LLama2-7B 70.00 88.60
+Editing 70.20 89.40

Table 5: Evaluation of OOD performance on AG News
and IMDB datasets using a subset of 500 instances from
each.

Model CNN/Daily Mail XSum

LLama2-7B 21.36 14.28
+Editing 21.14 14.45

Table 6: Experiment results on OOD performance with
500 instances from CNN/Daily Mail and XSum.

datasets: AG News for news categorization (Zhang516

et al., 2015), IMDB for movie reviews senti-517

ment classification (Maas et al., 2011), and both518

CNN/Daily Mail (See et al., 2017) and XSum519

(Narayan et al., 2018) for news summarization,520

drawing a sample of 500 instances from each521

for evaluation. For AG News and IMDB, accu-522

racy serves as the evaluation metric, while for523

CNN/Daily Mail and XSum, we apply the ROUGE-524

L metric (Lin, 2004) for assessment. According525

to Table 5 and Table 6, the results indicate that526

the model’s performance remains consistent across527

most datasets, with a slight increase on the IMDB528

dataset. This suggests that the editing method not529

only achieves significant improvements in targeted530

tasks but also maintains performance across OOD531

tasks.532

6.5.4 Comparison with the SFT Method533

To compare our method with the STF approach,534

we also employ the LLama2-7B-Chat model as the535

base model. Specifically, we generate training sam-536

ples with various expressions that have the same537

semantic meaning as the fine-tuning data. The num-538

ber of training samples is identical to that of our539

model editing method (500 for each relevant task).540

As the experiment result shown in Tables 7 and541

8, while our method enhances both semantic consis-542

tency and task performance, the magnitude of im-543

provement is not as pronounced as that achieved by544

SFT. Notably, SFT outperforms our editing method545

on RobustMRPC, RobustSST2, RobustBOOLQ,546

and PopQA_sport. The only exception is the NLG547

task’s PopQA_capital dataset, where our method548

slightly surpasses SFT (74.36 vs. 70.89). SFT549

achieves superior performance by precisely adjust-550

ing model parameters using backpropagation (BP).551

Method RobustMRPC RobustSST2 RobustBOOLQ

LLama2-7B 67.15±5.36 85.66±4.88 46.40±10.55

+Editing 68.62±4.47 89.90±4.54 57.50±5.10

+SFT 80.14±2.40 91.39±1.94 81.80±3.87

Table 7: Comparison of performance and consistency
between the SFT and our method on NLU datasets.

Method PopQA_sport PopQA_capital

LLama2-7B 50.83/0.79 73.33/0.73
+Editing 53.20/0.80 74.36/0.77
+SFT 74.03/0.95 70.89/0.91

Table 8: Comparison of the performance and con-
sistency between the SFT and our method on NLG
datasets.

In contrast, our editing method prioritizes model 552

components interpretability, adjusting the output 553

of the key components coarsely. Thus substan- 554

tial optimization potential remains. From the per- 555

spective of computational resource consumption, 556

our method exhibits a significant advantage over 557

SFT, as shown in Table 9. For instance, on the Ro- 558

bustSST2 dataset, SFT requires 2.02 GPU hours, 559

while our method only needs 0.11 GPU hours. 560

Method +SFT +Editing

RobustSST2 2.02 0.11
RobustMRPC 2.80 0.12
RobustBOOLQ 1.68 0.14
PopQA_sport 1.87 0.10
PopQA_captial 1.93 0.10

Table 9: The comparison of the computational cost
between SFT and our method in terms of GPU hour.

7 Conclusion 561

This paper presents the first analysis of the internal 562

mechanism aspects of an LLM that contribute to 563

the problem of semantic inconsistency. We can pre- 564

cisely diagnose the key components that contribute 565

to a model’s semantic consistency. Based on this 566

finding, we propose a model editing method that 567

directly injects biases into the model components 568

of an LLM without mass-manipulating model pa- 569

rameters. The proposed method can significantly 570

improve both semantic consistency and the per- 571

formance of LLMs on the constructed NLU and 572

open-source NLG datasets. Also, our methods ex- 573

hibit promising generalization capabilities on four 574

OOD task datasets. 575
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Limitations576

Our study reveals that semantic consistency is cor-577

related with both attention heads and MLPs in an578

LLM. However, attention heads tend to have a more579

predominant influence on an LLM than MLPs with580

the majority of editing operations focusing on them.581

Future research will focus on exploring the role of582

MLPs in the semantic consistency of LLMs.583

Despite achieving comparable results on OOD584

settings, our editing method is not sufficiently val-585

idated in terms of other metrics, like locality and586

portability (Yao et al., 2023). Therefore, more rig-587

orous and effective testing methods are required to588

evaluate the performance of the proposed method.589

We aim to develop an interpretability-oriented590

approach to enhance the semantic consistency of591

LLMs. Despite our model editing method being592

comparably transparent and computationally effi-593

cient, it still lags behind an SFT approach in terms594

of performance. In the future, we plan to extend595

our research to identify the circuits (Elhage et al.,596

2021) related to semantic consistency and under-597

stand their causal mechanisms. In this way, we598

can further advance the development of effective599

techniques that improve the semantic consistency600

of LLMs while prioritizing interpretability and effi-601

ciency.602
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