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Abstract
Numerical reasoning is an essential ability for001
NLP systems to handle numeric information.002
Recent research indicates that fine-tuning a003
small-scale model to learn generating reason-004
ing processes alongside answers can signifi-005
cantly enhance performance. However, current006
methods have the limitation that most methods007
generate reasoning processes with large lan-008
guage models (LLMs), which are “unreliable”009
since such processes could contain information010
unrelated to the answer. To address this lim-011
itation, we introduce Enhancing NumeriCal012
reasOning with Reliable procEsses (ENCORE),013
which derives the reliable reasoning process014
by decomposing the answer formula, ensuring015
which fully supports the answer. Nevertheless,016
models could lack enough data to learn the rea-017
soning process generation adequately, since our018
method generates only one single reasoning019
process for one formula. To overcome this dif-020
ficulty, we present a series of pre-training tasks021
to help models learn the reasoning process gen-022
eration with synthesized data. The experiments023
show that ENCORE yields improvement on all024
five experimental datasets with an average of025
1.8%, proving the effectiveness of our method1.026

1 Introduction027

Numerical reasoning is an essential ability for NLP028

systems to handle arithmetic questions in real sce-029

narios, which refers to generating answers to nu-030

merical questions with given evidence (Geva et al.,031

2020). The evidence is employed to support rea-032

soning in cases where the question does not furnish033

all the necessary contextual information, as seen in034

passages and tables in numerical data (Zhu et al.,035

2021b,a; Chen et al., 2021). The answer gener-036

ated encompasses a range of elements, including037

values (Dua et al., 2019), programs (Chen et al.,038

2021), and formulas (Zhu et al., 2021a)2.039

1Our data and code will be released after review.
2For the sake of conciseness in this paper, we collectively

refer to these elements as formulas.

Rationale
Find the difference between the 
total amount in 2018 and 2017, 
which is divided by 2017. 
Additionally, the text mentions 
a change in goodwill allocation 
in the third quarter of 2018, 
which should be considered.

Operand
{Col8, Row2}, {Col8, Row1}, 
{Col8, Row1}
Operator
(x1 - x2) / x3
Located Formula
({Col8, Row2} - {Col8, Row1}) / 
{Col8, Row1}

Table

Text
During the third quarter of 2018, we made an organizational change to 
combine … approximately $480 million of goodwill was reallocated.

Question
What is the percentage change of total goodwill from 2018 to 2019?

Answer
(24,513 - 24,389) / 24,389

Formula DecompositionLLM Generation

Year Data Group (Col1) Mobileye (Col2) … Total (Col8)
2018 (Row1) $5,421 $10,278 … $24,389
2019 (Row2) $5,424 $10,290 … $24,513

Figure 1: The reasoning processes generated by
gpt-3.5-turbo and ENCORE. The left process is de-
scribed with natural language, where bold words are
unrelated to the answer. The right process contains three
parts designed in ENCORE that fully support the answer.

Currently, although LLMs have demonstrated 040

great performance on the numerical reasoning 041

(Chen et al., 2022a; Gao et al., 2022), we ar- 042

gue that it is still valuable to study and employ 043

the small-scale model (e.g., BARTLARGE (Lewis 044

et al., 2020)) since their low computational effi- 045

ciency and decent performance, which still have ap- 046

plication value in real scenarios. Previous research 047

has demonstrated that teaching small-scale models 048

to generate reasoning processes during fine-tuning 049

can make the prediction more accurate and explain- 050

able (Cobbe et al., 2021; Ho et al., 2023; Magister 051

et al., 2023). For example, SCOTT (Wang et al., 052

2023) employs LLMs to generate reasoning pro- 053

cesses based on questions and answers, which are 054

used to fine-tune small-scale models. However, the 055

reasoning processes of the current methods could 056

be unreliable since most methods employ LLMs to 057

generate the processes, where such processes could 058

contain information that does not support the an- 059

swer (e.g., bold words in the left part of Figure 1). 060
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To address this issue, we present a novel numeri-061

cal reasoning method called Enhancing NumeriCal062

reasOning with Reliable procEsses (ENCORE).063

Our method decomposes the operands and oper-064

ators from the answers as the reasoning process,065

which we concatenate with the answer as the output066

of the model. The generated reasoning process of067

ENCORE is reliable since the process entirely de-068

rives from decomposing the answer, ensuring that069

the process does not contain answer-unrelated in-070

formation and fully supports the answer, as shown071

in the right part of Figure 1. However, our method072

could lack enough data to enable the model to learn073

the reasoning process generation adequately, as for074

one answer, our method generates only one rea-075

soning process, while methods based on LLMs076

can generate multiple processes (Ho et al., 2023).077

To overcome this difficulty, we present a series of078

pre-training tasks to help models learn the process079

generation with synthesized data.080

To evaluate the effectiveness of ENCORE, we081

adopt it on five mainstream numerical reasoning082

datasets with various settings. Compared with base-083

line models, ENCORE brings performance improve-084

ment on all datasets and leads an average boost085

of 1.8%, showing the effectiveness and general-086

ization of ENCORE. Moreover, in comparison to087

fine-tuning with the reasoning process generated by088

gpt-3.5-turbo, our method is superior by about089

10%, which proves that the reasoning process gen-090

erated by ENCORE has higher quality.091

Our contributions can be summarized as follows:092

• To ensure that generated reasoning processes093

fully support answers, we propose ENCORE,094

which generates reliable reasoning processes by095

decomposing answer formulas.096

• To alleviate the difficulty of the insufficient data097

scale of ENCORE, we introduce a series of pre-098

training tasks, which enhance the generation of099

the reasoning process with synthesized data.100

• To prove the effectiveness of ENCORE, we eval-101

uate it with five mainstream numerical reason-102

ing datasets, which yield performance improve-103

ment on all experimental datasets with an average104

boost of 1.8% compared with baselines.105

2 Background106

The numerical reasoning task is to generate single107

or multiple formulas as answers based on the given108

question as well as the textual and tabular evidence.109

About the input, textual evidence contains several110

paragraphs, and tabular evidence consists of one 111

or more tables, where the first row and column 112

are called table headers, which describe informa- 113

tion about the cells of the corresponding rows or 114

columns. About the output, one formula consists 115

of operators and operands (e.g., 2 + 1 × 3). The 116

operands refer to the values manipulated or pro- 117

cessed in the formula (e.g., 2, 1, 3). The operators 118

are arithmetic symbols or functions that are to be 119

performed on the operands (e.g., +, ×). 120

However, in practical applications, answers 121

could not be annotated with formulas. We also 122

try to apply our method to such data without formu- 123

las. For the questions with simple calculations (e.g., 124

DROP (Dua et al., 2019)), we can directly generate 125

the formulas following the previous work3. For the 126

more complex calculations (e.g., GSM8K (Cobbe 127

et al., 2021)), we employ LLMs with in-context 128

learning, which can generate answers with a few 129

samples without fine-tuning, to prove the effective- 130

ness of the reasoning process we designed. 131

3 Methodology 132

In this section, we present our numerical reason- 133

ing method called ENCORE. First, we introduce 134

the pipeline of ENCORE, which generates reliable 135

reasoning processes fully supporting the answers 136

(§ 3.1). Then, we propose three pre-training tasks 137

based on ENCORE to enhance the generation per- 138

formance of the reasoning process (§ 3.2). 139

3.1 ENCORE 140

In this section, we introduce ENCORE, which en- 141

hances numerical reasoning by generating reliable 142

reasoning processes decomposed from answers. 143

The illustration of ENCORE is shown in Figure 2. 144

3.1.1 Retrieve 145

Because evidence irrelevant to the question could 146

mislead the model, causing performance degrada- 147

tion, we employ a retriever to retrieve the question- 148

relevant evidence. We concatenate each text para- 149

graph and table column with questions, then feed 150

it into a binary classification model to generate cor- 151

relation confidence. The classification model is 152

trained with the ground evidence annotated by the 153

dataset or the headers in the located formulas ob- 154

tained in § 3.1.2. Then, we sort each text paragraph 155

and table column with the correlation confidence 156

3https://github.com/allenai/
allennlp-reading-comprehension
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Fine-Tuning Input
<Q> What is the average… |
<T> … | Federal | NR 2018 | … |
<P> …

Candidate Evidence
Our contract assets consist of capitalized…

Year Current: Federal
(Col1)

State
(Col2)

Deferred: Federal
(Col3)

State
(Col4)

 2018 (Row1) 1.1 0.43 0.034 0.016
 2019 (Row2) 1.3 0.42 0.47 0.033

Retrieved Evidence
<None Used>

Year Current: Federal
(Col1)

 2018 (Row1) 1.1
 2019 (Row2) 1.3

1. Retrieve

Fine-Tuning Output
<V> {Col1, Row1} | {Col1, Row2} |
<D> ( x1 + x2 ) / 2 |
<A> ({Col1,Row1}+{Col1,Row2})/2

Answer
(1.1+1.3) / 2

Operators
( x1 + x2 ) / 2

Operands
{Col1, Row1}, {Col1, Row2}

Located Formula
({Col1, Row1} + {Col1, Row2}) / 2

2. Locate 3. Decompose

4. Fine-Tune

Figure 2: The illustration of ENCORE, which takes the question “What is the average current federal of 2018-2019?”
as the example. ENCORE consists of four steps: 1.Retrieve question-related evidence. 2.Locate the table heads of
each value in the formula. 3.Decompose the located formula into operators and operands. 4.Fine-tune the model
with the input and the generated output.

of the model output. We select the top-k evidence157

as the retrieval result, where k is determined by the158

input length limit, and then we concatenate such159

evidence with the question as the model input.160

3.1.2 Locate161

This step is designed to reduce the difficulty of162

value memory and table understanding by changing163

the value format in answers. In prior work, it has164

been observed that current models struggle to accu-165

rately retain complex floating-point values present166

in the evidence (Thawani et al., 2021). Besides,167

the table understanding ability of most models is168

limited, as linearized input disrupts the structural in-169

formation of the table (Jin et al., 2022). To alleviate170

the challenge of extracting numerical values from171

tables, we propose substituting values in the answer172

by locating their respective headers in the table,173

which we call the located formula. For instance, as174

illustrated in Figure 2, instead of directly using the175

value “1.1”, we use “{Col1, Row1}” correspond-176

ing to its cell headers in the table. Consequently,177

the model only needs to recall the headers asso-178

ciated with relevant cells, lowering the difficulty179

of specific value memory and table understanding,180

thereby enhancing the reasoning performance.181

We use string matching to locate the cell corre-182

sponding to each value in the formula, which could183

not handle the cells with the same value. An exam-184

ple of our labeling method is shown in Appendix B185

However, how to detect the question-related en-186

tities in the evidence is a long-studied problem,187

which has been discussed in detail by the previous 188

works (Liu et al., 2021; Kumar et al., 2023; Wu 189

et al., 2023). Therefore, to focus on the main topic 190

of this paper, we will discuss how to merge the 191

detecting methods with ENCORE in the future. 192

3.1.3 Decompose 193

The designed motivation for this step is to reduce 194

the complexity of reasoning through multi-step gen- 195

eration. Current methods, which ask models to gen- 196

erate formulas in one step, often lead to challenges 197

in establishing a clear correspondence between the 198

answer and the input information. For example, 199

most operands in the formula of the answer are typ- 200

ically extracted from evidence, while the majority 201

of operators are determined by the semantics of the 202

question (e.g., “ratio” in the question leads to the 203

division operator). Moreover, some formulas are 204

too complex to generate correctly in one step. To 205

address these issues, we design a multi-step genera- 206

tion process for the model to achieve the numerical 207

reasoning results. We decompose the formula into 208

operators and operands, which are used to ask the 209

model to generate before located formulas. By first 210

generating the more straightforward operators and 211

operands and then generating the complete formula, 212

we can reduce the difficulty in generating formulas, 213

thereby enhancing accuracy. 214

3.1.4 Fine-tune 215

After constructing the located formulas and cor- 216

responding operators and operands, we take them 217

with answers as output and use the question and 218
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the retrieved evidence as input to fine-tune the219

seq2seq model. During the construction of inputs220

and outputs, we use tags like the form “<A>” to221

distinguish different parts. We also add other infor-222

mation in the output sequence to meet the require-223

ments of different datasets, such as value scales224

(e.g., “billion” and “percentage” in TAT-QA) and225

spans (e.g., span-type answers in DROP).226

3.2 Pre-Training227

With the reasoning process generated by ENCORE,228

the model could still struggle to learn how to pro-229

duce such processes because of the limit of the230

training data scale. To aid the model in learning to231

generate the reasoning process, in this section, we232

introduce three pre-training tasks. We synthesize233

questions, answers, and reasoning processes based234

on different templates, then pre-train the model235

with all these data as the multi-task training. The236

template and example of each pre-training task are237

shown in Appendix A.238

We primarily design pre-training tasks for tabu-239

lar evidence rather than textual evidence, for two240

reasons: (1) Most current pre-trained language241

models are trained on textual data, ensuring their242

proficiency in generating text-related reasoning pro-243

cesses. (2) Direct linearization of the tabular ev-244

idence during input disrupts the structural infor-245

mation, making it challenging for the model to246

generate table-related reasoning processes.247

Table Location Prediction is designed to help248

the model better locate operands in the formula by249

learning the correspondence between the cell and250

the corresponding table headers. Given the row251

and column headers of one cell, the model should252

predict the value of this cell.253

Table Calculation Prediction is designed to en-254

hance operator generation. About the tabular evi-255

dence, many calculation formulas involve all values256

in one column as the operands, such as the average257

or total value of a column. We help models learn258

the generation of these formulas with the given259

column and the calculation type.260

Hierarchical Table Prediction is designed for261

models to perform better operand extraction by262

comprehending the hierarchical table structure with263

multi-level headers (Zhao et al., 2022), where the264

whole table can be seen as several sub-tables. For265

this task, models should predict the name of the266

first level of each given table header.267

4 Experiments 268

4.1 Experiment Setup 269

Datasets We apply ENCORE on five datasets 270

with various settings: FinQA (Chen et al., 2021), 271

ConvFinQA (Chen et al., 2022b), TAT-QA (Zhu 272

et al., 2021a), MathQA (Amini et al., 2019) and 273

DROP (Dua et al., 2019), which cover different 274

types of evidence and answers. More detailed in- 275

formation can be found in Appendix C. 276

Metrics For MathQA, FinQA, and ConvFinQA, 277

we employ execution accuracy as our evaluation 278

metrics (Chen et al., 2021). About DROP and TAT- 279

QA, we evaluate methods with the exact match 280

(EM) (Zhu et al., 2021a). For TAT-QA, we addi- 281

tionally use Arithmetic EM to represent the EM on 282

numerical reasoning questions. The definition of 283

these metrics can be found in Appendix D. 284

Baselines We adopt BERTBASE (Devlin et al., 285

2019) as our baseline retrieval model. We use 286

BARTLARGE (Lewis et al., 2020) and T53B (Raf- 287

fel et al., 2020) as our baseline seq2seq models. 288

Settings All experimental models are imple- 289

mented with PyTorch (Paszke et al., 2019), Hug- 290

gingface transformers (Wolf et al., 2020), and 291

Fairseq (Ott et al., 2019). We adopt the pre-training 292

tasks to TAT-QA, FinQA, and ConvFinQA since 293

they contain tabular evidence. More detailed set- 294

tings are shown in Appendix E. 295

4.2 Main Results 296

The main experiment results are summarized in 297

Table 1, where the detailed results on each dataset 298

are shown in Appendix F. ENCORE brings per- 299

formance improvement on all experiment datasets 300

with all used baseline models and achieves SOTA 301

or near-SOTA results on most datasets, which 302

proves the efficiency and generalizability of our 303

method. Compared to BARTLARGE, our method 304

exhibits more obvious improvements on T53B, sug- 305

gesting that larger-scale models can more effec- 306

tively learn the generation of reasoning processes 307

and apply the associated capabilities to answer gen- 308

eration. However, our method exhibits an obvious 309

discrepancy with the current SOTA on DROP. This 310

is attributed to the low quality of the synthesized 311

formulas, where the synthesized results could be 312

incorrect, which subsequently misleads the model 313

into erroneous reasoning processes, resulting in 314

poor generation performance. 315
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Method FinQA ConvFinQA TAT-QA MathQA DROP
Dev Test Dev Test Dev Test Dev Test Dev Test

Published SOTA 69.7 68.0 76.5 76.0 N/A† 76.8 N/A† 83.0 N/A† 90.0

BARTLARGE 62.5 58.8 67.4 71.5 68.5 − 77.4 78.0 68.6 67.4
+ ENCORE 64.0 62.3 68.9 74.4 71.0 − 77.7 78.8 69.2 68.4
∆ +1.5 +3.5 +1.5 +2.9 +2.5 − +0.3 +0.8 +0.6 +1.0

T53B 66.9 65.0 73.3 79.6 73.8 − 78.1 78.6 77.3 77.1
+ ENCORE 71.6 69.4 76.0 79.8 75.6 71.5 80.0 80.6 77.6 77.1
∆ +4.7 +4.4 +2.7 +0.2 +1.8 − +1.9 +2.0 +0.3 +0.0

Table 1: The main experiment results of ENCORE. † denotes the model does not report the corresponding metric
result. The experiments on TAT-QA lack results on the test set due to it is not public, where only periodic submissions
are allowed for evaluation, so we only evaluate the model that performs best on the dev set. On FinQA, ConvFinQA,
and MathQA, the previous SOTA results are achieved by APOLLO (Sun et al., 2022). The best results on TAT-QA
and DROP are Code and MindOpt Copilot respectively, which papers have not been published. The best results of
our methods are marked in bold. The best results of all methods are marked in underline.

Setting EM Arithmetic EM

ENCORE 74.1 78.6
w/o. Operand 72.7 (−1.4) 75.5 (−3.1)
w/o. Located Formula 73.9 (−0.2) 77.3 (−1.6)
w/o. Operator 73.1 (−1.0) 78.3 (−0.3)

Table 2: The performance of BARTLARGE under differ-
ent settings on TAT-QA using golden evidence without
pre-training. The Arithmetic EM denotes the EM of the
arithmetic questions.

It is noteworthy that, in comparison to datasets316

that solely utilize textual evidence (e.g., MathQA,317

DROP), our method exhibits a more significant im-318

provement on datasets with both textual and tabular319

evidence (e.g., TAT-QA, FinQA). This is because320

our designed located formula addresses the chal-321

lenge of cell location, where textual evidence does322

not involve this challenge. Besides, our designed323

pre-training tasks mainly focus on tabular evidence,324

so the improvement of textual evidence is less ob-325

vious when compared to tabular evidence.326

4.3 Ablation Studies327

In this section, we perform ablation studies to fur-328

ther evaluate the performance of ENCORE. We use329

TAT-QA as our study dataset since it covers various330

types of evidence and answers, which can compre-331

hensively reflect the performance of the model.332

4.3.1 Reasoning Process Studies333

To verify that each designed part of the reasoning334

process in ENCORE is effective, we perform ab-335

lation experiments on each part separately, which336

is shown in Table 2. We can see that each part of337

the reasoning process contributes the performance338

improvement, which proves the effectiveness of the339

Setting EM Arithmetic EM

ENCORE 75.7 81.2
w/o. Table Location 75.2 (−0.5) 79.8 (−1.4)
w/o. Table Calculation 74.6 (−1.1) 79.4 (−1.8)
w/o. Hierarchical Table 75.3 (−0.4) 80.5 (−0.7)
w/o. All 74.1 (−1.6) 78.6 (−2.6)

Table 3: The performance of ENCORE after removing
different pre-training tasks of BARTLARGE on TAT-
QA with golden evidence.

reasoning process designed by our method. Accord- 340

ing to the arithmetic EM, we can see that extracting 341

operands has the most apparent impact on model 342

performance. This is because the model regards the 343

values in the answer as part of the formula structure, 344

lacking the awareness of extracting values from ev- 345

idence. The effect of the located formula is also 346

apparent, which proves that it is hard for models 347

to map the table headers to the corresponding cell 348

value. The improvement of introducing operators is 349

not significant since the formula operator is similar 350

to that in the answer. 351

To verify the impact of generation orders of dif- 352

ferent parts of the reasoning process, we also adopt 353

the ablations of the reasoning process format under 354

two settings: generate operands first and operators 355

first. Generating operands first leads to 74.1% on 356

EM, and generating operators first is 73.6% in our 357

experiment, showing that generating operands first 358

is better, which is the order we used in ENCORE. 359

4.3.2 Pre-Training Studies 360

To prove that all designed pre-training tasks are 361

effective, we conduct ablation experiments on them. 362

Table 3 shows the experiment results of ENCORE 363

with different pre-training settings. 364
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From Table 3, we can observe that: (1) the abla-365

tion of each pre-training task leads to a drop in366

performance, which proves the effectiveness of367

all pre-training tasks; (2) the performance incre-368

ment of Arithmetic EM is much higher than EM369

of all types of questions, which proves that the pre-370

training does improve model performance by im-371

proving numerical reasoning capabilities; (3) Table372

Calculation Prediction task leads to the most signif-373

icant improvement for the model, proving that the374

ability to handle operator generation of the baseline375

is weak, while our method effectively improves the376

ability to handle such a reasoning process.377

4.4 Analysis378

Does ENCORE generate better reasoning pro-379

cesses than using LLMs? To compare the qual-380

ity of the reasoning processes generated by EN-381

CORE and by LLMs, we fine-tune models us-382

ing reasoning processes produced by both meth-383

ods. We employ gpt-3.5-turbo to generate384

reasoning processes given the question and the385

answer with zero-shot inference. The perfor-386

mance of different process sources is shown in387

Table 5. From the table, we can see that the model388

fine-tuned with the reasoning process generated389

by using ENCORE markedly outperforms using390

gpt-3.5-turbo. Therefore, the reasoning process391

synthesized by our method can better help small392

models generate correct results.393

Does ENCORE work well on various answer394

formats? To prove our method can handle data395

from multiple scenes at the same time, we adapt396

ENCORE to the unified setting by merging multi-397

ple datasets. We transfer the answer formats of398

MathQA, FinQA, and numerical reasoning ques-399

tions of TAT-QA into the domain-specific language400

format (Amini et al., 2019) to unify the answer401

format (e.g., 2+ 1× 3→ add(2,multiple(1, 3))).402

Then, we train the models in this unified setting and403

evaluate them on the unified and divided datasets404

respectively to evaluate the performance.405

The experimental results are shown in Table 6,406

from which we can observe that: (1) compared with407

single training, the unified setting achieves much408

better performance since more training examples409

make the model learn more numerical reasoning410

knowledge; (2) ENCORE can further improve the411

performance under the unified setting by 1.5% com-412

pared with the baselines, demonstrating the gener-413

alizability under different answer types.414

Is the reasoning process format of ENCORE still 415

effective for in-context learning? Although EN- 416

CORE brings great performance improvement, it 417

cannot handle the questions annotating answers 418

without formulas (e.g., GSM8K). Considering the 419

brilliant in-context learning ability of the current 420

LLMs, we conduct experiments to verify whether 421

the reasoning process format of ENCORE can still 422

improve the performance without fine-tuning. 423

We compare our method with two prompt meth- 424

ods: generate directly and with Chain-of-Thought 425

(CoT) (Wei et al., 2022), where CoT asks LLMs 426

to generate answers with the prompt “think it step 427

by step” using 8-shot prompt following Fu et al. 428

(2023). The detailed prompts we used are shown 429

in Appendix G. We evaluate ENCORE on the arith- 430

metic subset of TAT-QA, FinQA under the 3-shot 431

setting and GSM8K with 8-shot since the ques- 432

tions of GSM8K are harder than the above two 433

datasets. As shown in Table 7, compared with CoT, 434

ENCORE brings an average performance improve- 435

ment of 8.9% on all datasets and LLMs, which 436

shows that our method is still effective under the 437

in-context learning setting. 438

What is the performance of ENCORE on dif- 439

ferent answer types? We categorize the predic- 440

tions based on answer types and sources, which 441

are shown in Table 4. About the performance of 442

different question types, compared with the base- 443

line model, ENCORE improves the performance of 444

arithmetic questions with 4.9%, showing that our 445

method does improve the numerical reasoning abil- 446

ity. Furthermore, our method also shows enhance- 447

ments for other types of answers, indicating that 448

the reasoning process generation can elevate the 449

reasoning for various answer types to some extent. 450

About the results of different evidence sources, EN- 451

CORE increases the performance of table-source 452

and hybrid-source questions, showing that generat- 453

ing located formulas indeed lowers the difficulty of 454

the table understanding. 455

However, ENCORE suffers from performance 456

degradation on the text-source and span-type, 457

which are mainly span extraction questions. There 458

are two reasons for this result. Firstly, there are 459

no fixed rules for annotating span-type answers, 460

which leads to performance fluctuations during the 461

prediction. Besides, our method focuses on im- 462

proving the numerical reasoning ability, and the 463

additionally generated information (e.g., operands, 464

operators) could reduce the span extraction ability. 465
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Method Type Source Total
Span Spans Arithmetic Count Text Table Hybrid

BARTLARGE 73.0 77.0 73.7 37.5 58.9 73.1 82.4 72.6
+ ENCORE 71.6 77.9 78.6 46.9 56.3 76.2 84.6 74.1
∆ −1.4 +0.9 +4.9 +9.4 −2.6 +3.1 +1.8 +1.5

Table 4: The exact match of BARTLARGE with and without ENCORE on TAT-QA, which uses the golden evidence
and is without pre-training. Type denotes the types of dataset questions. Source denotes the evidence type that
contains the answer-related information, whereas hybrid includes both text and table.

Method Arithmetic EM

BARTLARGE 73.7
+ gpt-3.5-turbo† 74.7
+ ENCORE 78.6

Table 5: The performance on TAT-QA with different
reasoning process sources. † denotes fine-tuning with
the rationale generated by gpt-3.5-turbo. The best
performance is marked in bold.

Dataset BARTLARGE + ENCORE

Single Unified Single Unified

MathQA 79.3 82.7 79.5 84.4
TAT-QA∗ 73.7 79.5 78.6 79.8
FinQA 63.1 66.1 65.0 68.0
Mixture† - 79.5 - 81.0

Table 6: The execution accuracy on the single and the
unified dataset with golden evidence. ∗ denotes the nu-
merical reasoning questions. The best of each method
is highlighted in bold. The best of each dataset is high-
lighted in underline. † denotes the result on the dev set
mixture of all three datasets.

What are the main error types of ENCORE? To466

better understand how our method improves the nu-467

merical reasoning performance of models and to468

better observe the direction of future improvement,469

we study the current error distribution on numerical470

reasoning questions. We categorize the error cases471

into three types: (1) operand denotes that the ex-472

tracted operators is incorrect; (2) operator means473

that the model makes mistakes in the operator gen-474

eration; (3) other is the error other than the above475

two categories. We randomly select 256 numerical476

questions and then analyze them manually, which477

is shown in Figure 3.478

From Figure 3, we can observe that: (1) with479

ENCORE, the model makes fewer mistakes on all480

error types, showing that our method can signif-481

icantly improve the model performance on both482

operator generation and operand extraction; (2) the483

most significant error drop is in the operand error484

Method TAT-QA∗ FinQA GSM8K

code-davinci-002 36.2 12.8 19.3
+ CoT 45.4 19.8 60.3
+ ENCORE 46.0 35.1 66.3

gpt-3.5-turbo 25.2 9.9 7.9
+ CoT 38.2 28.2 63.1
+ ENCORE 55.2 39.8 71.3

Llama2-70b 18.5 13.7 16.0
+ CoT 41.9 21.6 54.4
+ ENCORE 49.2 35.1 55.3

Table 7: The execution accuracy of in-context learning
with different prompt methods and LLMs. ∗ denotes the
numerical reasoning questions. The best performances
of different datasets and LLMs are marked in bold.

type since the operand extraction and the located 485

formula make the model not need to memorize spe- 486

cific values, lowering the difficulty of reasoning; 487

(3) the operand error types still account for the 488

main part of the bad cases with ENCORE, which 489

requires follow-up work to continue to improve the 490

operand extraction ability of models. 491

4.5 Case Study 492

To better understand how ENCORE improves the 493

numerical reasoning ability, we show an example 494

case of TAT-QA in Figure 4, which requires lo- 495

cating the cell value based on the column name 496

and the row name. The baseline model generates a 497

wrong number 754, which does not exist in the ta- 498

ble, showing that the baseline method makes it hard 499

to detect the question-related value in the table. 500

With ENCORE, the model correctly corresponds 501

the header names in the question to {col10, row2}, 502

and then extracts the corresponding value 774 by 503

locating the header without model reasoning. That 504

is because our method obviates the need for the 505

model to memorize specific values and reduces the 506

complexity of table understanding, thereby decreas- 507

ing the difficulty of the operand extraction. 508
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Figure 3: The number of bad cases of numerical reason-
ing questions on TAT-QA using BARTLARGE with and
without ENCORE under different error types. #Cases
denotes the number under different error types.

Question
What was the percentage change in the amount for Appliances in 2019 
from 2018?

Output
Baseline: … | <D>  | <V>  | <A> ( 680 - 754 ) / 754

Encore: … | <D> ( x1 - x2 ) / x3 | <V> {Col10, Row1} | {Col10, Row2} | 
{Col10, Row2} | <A> ( {Col10, Row1} - {Col10, Row2} ) / {Col10, Row2}

Evidence

Year … Data and devices
(Col9)

Appliances
(Col10)

Total
(Col11) …

2019
(Row1) … 993 680 13,448 …

2018
(Row2) … 1,068 774 13,988 …

Figure 4: An example of TAT-QA dev set of
BARTLARGE with and without ENCORE. The correct
entities are highlighted in green. The incorrect entities
are highlighted in red.

5 Related Work509

Numerical Reasoning Numerical reasoning is a510

widely researched topic to handle questions about511

documents with rich numerical information. Previ-512

ous works have found that it is hard for the model513

to generate the numerical answers directly and ex-514

plore generating reasoning processes for enhancing515

interpretability and extra supervision for answer516

generation (Ling et al., 2017). Based on this find-517

ing, many researchers have designed model struc-518

tures to generate reasoning processes implicitly519

(Ling et al., 2017; Zhu et al., 2021a; Lei et al.,520

2022; Shao et al., 2022; Zhang and Moshfeghi,521

2022). Considering the powerful few-shot infer-522

ence ability of LLMs without fine-tuning, Wei et al.523

(2022) presents the chain-of-thought to generate the524

reasoning process by LLMs themselves, attracting525

much attention (Wang et al., 2022; Ye and Durrett,526

2022; Kojima et al., 2022; Chen et al., 2022a).527

Although LLMs have demonstrated impressive 528

performance in the numerical reasoning task, their 529

substantial computational overhead hinders their 530

deployment in practical applications. To address 531

this issue, we explore the use of small-scale mod- 532

els with low computation for numerical reasoning, 533

enhancing their reasoning capabilities by training 534

them to generate reasoning processes. 535

Answering with Reasoning Processes Previous 536

research has indicated that concurrently generating 537

reasoning processes while producing answers can 538

significantly enhance the accuracy of the responses 539

(Wei et al., 2022; Chu et al., 2023). Subsequent 540

studies have revealed that LLMs exhibit varying 541

performance when generating different types of 542

reasoning processes (Chen et al., 2022a; Gao et al., 543

2022; Ziqi and Lu, 2023). Apart from LLMs, re- 544

searchers also find that fine-tuning small-scale mod- 545

els using reasoning processes generated by LLMs 546

can also improve performance (Cobbe et al., 2021; 547

Ho et al., 2023; Wang et al., 2023; Magister et al., 548

2023). Considering the lower computational over- 549

head and acceptable performance of small-scale 550

models, such works remain worthy of research. 551

However, the aforementioned methods confront 552

the challenge wherein the reasoning process gener- 553

ated by LLMs could not fully support the answers. 554

To address this limitation, our method directly ob- 555

tains the reliable reasoning process by decompos- 556

ing operators and operands from the answers. Our 557

method enhances the quality of the generated rea- 558

soning process, thereby improving the accuracy of 559

the generated answers. 560

6 Conclusion 561

We propose a novel numerical reasoning method 562

called ENCORE to address the limitations of the 563

reasoning process generation. Compared with pre- 564

vious methods, ENCORE can guarantee to generate 565

reliable reasoning processes that fully support the 566

answer and aim models to learn to generate the pro- 567

cess with pre-training. According to experiments, 568

ENCORE brings significant performance improve- 569

ment over all five experimental datasets, leading to 570

an average improvement of 1.8% compared with 571

baselines, which shows the effectiveness and gener- 572

alization of our method. Meanwhile, our method is 573

superior by about 10% in comparison to the reason- 574

ing process generated by gpt-3.5-turbo, which 575

proves the higher quality of the reasoning processes 576

generated by ENCORE. 577
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Limitations578

ENCORE has two limitations, including: 1. About579

the operand extraction, we directly check whether580

each operand appears in the evidence, which could581

lead mistake. For future work, we will adapt bet-582

ter grounding methods, enhancing the extraction583

accuracy. 2. It is required that the training data584

be labeled with formulas, demanding high label585

overhead. In future work, we will employ LLMs to586

synthesize formulas, thereby reducing label cost.587

Ethics Statement588

All datasets and models used in this paper are pub-589

licly available, and our usage follows their licenses590

and terms.591
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A Template and Example of Pre-Training788

The templates and examples of our pre-training789

method are shown in Table 8.790

B Example of Automatically Labeling791

Take Table 9, the question “I want to know the792

balance sum from 2018 to 2020” and the label-793

ing answer “(113, 246 − 18, 967) + (120, 523 −794

19, 786) + (125, 843− 21, 355)” as an example.795

The grammar of the answer formula format is796

shown in Table 10, where we omit the specific de-797

scriptions of Operator and Operand. Following798

this grammar, the given answer can be parsed as “(799

Operand Operator Operand ) Operator ( Operand800

Operator Operand ) Operator ( Operand Oper-801

ator Operand )”. We replace all Operand with802

x1, x2, ..., and keep all Operator as the original803

symbols. Then, we can get the formula structure804

“(x1 − x2) + (x3 − x4) + (x5 − x6)”.805

About the operands, we can directly extract the806

values corresponding to the operands. In this exam-807

ple, they are “113, 246, 18, 967, 120, 523, 19, 786,808

125, 843, and 21, 355”, which are also the extracted809

values. After that, we employ the string match810

method and locate their positions in the table and811

get {Col2, Row1}, {Col1, Row1}, {Col2, Row2},812

{Col1, Row2}, {Col2, Row3}, {Col1, Row3},813

which are the extracted entities. Although the814

method above is sample yet effective, how to detect815

the question-related entities in the evidence com-816

pletely correct should be carefully studied (e.g.,817

MITQA (Kumar et al., 2023), TACR (Wu et al.,818

2023)). Considering the complexity of this issue,819

we leave how to solve it as future work.820

Correspondingly, the ENCORE output821

of this example is “<V> {Col2, Row1} |822

{Col1, Row1} | {Col2, Row2} | {Col1, Row2}823

| {Col2, Row3} | {Col1, Row3} | <D>824

(x1 − x2) + (x3 − x4) + (x5 − x6) |825

<A> ({Col2, Row1} − {Col1, Row1}) +826

({Col2, Row2} − {Col1, Row2}) +827

({Col2, Row3} − {Col1, Row3}) ”.828

C Experiment Datasets829

In this section, we discuss the detailed information830

on the datasets of the experiments. The settings of831

these datasets are shown in Table 11832

FinQA A financial HybridQA dataset while it833

only contains numerical reasoning questions, just834

like MathQA. The operations of FinQA are fewer835

and more straightforward than MathQA, which 836

only includes less than ten elementary operations. 837

Following the settings of TAT-QA, we also locate 838

the program values’ positions as extracted entities. 839

FinQA contains 8,281 examples and is released as 840

training (6,251), validation (883), and test (1,147) 841

following a 75%/10%/15% split. 842

ConvFinQA A context-dependent version of 843

FinQA, which decomposes the complex numeri- 844

cal reasoning questions into multiple steps. During 845

the validation, it evaluates the model predictions of 846

all steps. 847

TAT-QA A financial HybridQA dataset contain- 848

ing textual as well as tabular evidence and four 849

types of answers including span, multi-span, count, 850

and arithmetic. We follow the origin derivation 851

format of the dataset and extract all values in the 852

derivation, then locate the positions of the values 853

in the table as extracted entities. TAT-QA consists 854

of 16,552 question-answer pairs and is split into 855

the training set (80%), development set (10%), and 856

test set (10%). 857

MathQA A numerical reasoning dataset contain- 858

ing DSL-format questions involves more than one 859

hundred scientific operations. Because the maxi- 860

mum step number of one answer is 66, which is too 861

long for the model to generate, we only train the 862

model on the example with the number of answer 863

program steps less than ten that have covered the 864

93% dataset questions. MathQA consists of 37k 865

problems, split into (80/12/8)% training/dev/test 866

sets. We do not add the values to the inputs of 867

MathQA since we do not design the alias for the 868

text. 869

DROP A reading comprehension dataset con- 870

tains three types of answers, including spans, date 871

and number, where number questions only require 872

+ and - operations. Considering that it does not 873

annotate the calculation process, we first extract all 874

numbers in the evidence, calculate the similarity 875

between the question and the words around every 876

number, then select the legal calculation formula 877

with maximum similarity. DROP includes a total 878

of 96,567 question-answer pairs and is partitioned 879

into training (80%), development (10%), and test 880

(10%) sets. 881

GSM8K The GSM8K is a collection of 8,500 882

meticulously created and linguistically varied math 883

word problems suitable for grade school levels, 884
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Pre-Training Task Question Answer

Table Location Prediction What is { Col_i , Row_j } ? The cell value of the headers.
What is { Col3 , Row2 } ? 0.47

Table Calculation Prediction What is the max/min/sum/average of Col_i ? The formula of the column.
What is the sum of Current : Federal ? { Col1 , Row1 } + { Col1, Row2 }

Hierarchical Table Prediction What is the { Col_i , Row_j } belong to ? The first-level header of the cell.
What is the { Col2 , Row2 } belong to ? Current

Table 8: Templates and examples of pre-training data. In each block, the first line is the template, and the second line
is the example marked with the italics. All answers to the examples are extracted from Figure 2. The replaceable
parts are highlighted in bold.

Year Outcome (Col1) Income (Col2)

2018 (Row1) 18,967 113,246

2019 (Row2) 19,766 120.523

2020 (Row3) 21,355 125,843

2021 (Row4) 22,312 130,725

Table 9: An example of tabular evidence.

Rules

Formula → Formula Operator Formula
Formula → ( Formula )

Formula → Operand

Table 10: An example of answer formula grammar.

crafted by professional problem writers. This885

dataset is divided into two sections: 7,500 problems886

for training and 1,000 for testing. Each problem is887

designed to be solved in 2 to 8 steps, predominantly888

involving a series of basic arithmetic operations889

(addition, subtraction, multiplication, division) to890

attain the ultimate solution. These problems are891

intended to be solvable by middle school students892

and are ideal for enhancing multi-step mathemati-893

cal reasoning skills.894

D Evaluation Metrics895

Exact Match measures the percentage of predic-896

tions that match the ground truth answers. Usually,897

two arithmetic answers are considered equal if their898

four decimal places are equal, following the rule of899

rounding function.900

Numeracy-Focused F1 Score measures the av-901

erage token-level overlap between the predictions902

and the ground truth answers, which can reduce903

false negative labeling. When an answer has mul-904

tiple spans, the numeracy-focused F1 performs a905

Dataset Domain Evidence Answer

FinQA Finance Hybrid Formula
ConvFinQA Finance Hybrid Formula
TAT-QA Finance Hybrid Span
MathQA MWP Text Choice
DROP Wikipedia Text Span
GSM8K MWP Text Formula

Table 11: The settings of the experimental datasets.
ConvFinQA is the only context-dependent dataset.

Method Dev Test

EM F1 EM F1

Discriminative Methods

NumNet+ (Ran et al., 2019) 81.1 84.4 81.5 84.8
QDGAT (Chen et al., 2020) 84.1 87.1 84.5 87.6

Generative Methods

GPT-3.5∗ (OpenAI, 2023) - - - 64.1
GPT-4∗ (OpenAI, 2023) - - - 80.9
BART (Lewis et al., 2020) 68.6 71.7 67.4 70.7
BART w. ENCORE 69.2 72.2 68.4 71.4

Table 12: The performance of different methods of
DROP. ∗ denotes the few-shot setting. The best results
are marked in bold.

one-to-one alignment greedily based on the bag- 906

of-word overlap on the set spans to ensure every 907

current span can get the highest F1 value, then com- 908

pute micro-average F1 over each span. 909

Program Accuracy measures the accuracy of 910

operands and operators between the predicted pro- 911

grams and the golden programs. 912

Execution Accuracy measures the accuracy of 913

the execution result of the predicted programs. 914

E Hyper-Parameter Settings 915

Our model is implemented with PyTorch (Paszke 916

et al., 2019), transformers (Wolf et al., 2020) and 917

Fairseq (Ott et al., 2019). About the retrieval model, 918

we set the learning rate as 2e-5 and the dropout as 919
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Method Exe Prog

FinQANet (Chen et al., 2021) - 79.2
ELASTIC (Zhang and Moshfeghi, 2022) - 83.0

BART (Lewis et al., 2020) 79.6 78.0
BART w. ENCORE 80.5 78.8
T5 (Raffel et al., 2020) 81.8 78.6
T5 w. ENCORE 82.9 80.6

Table 13: The performance of different methods of
MathQA test set. Exe denotes the execute accuracy, and
Prog denotes the program accuracy. The best results are
marked in bold.

Method Dev Test

EM F1 EM F1

TagOp (Zhu et al., 2021a) 55.2 62.7 50.1 58.0
TaCube (Zhou et al., 2022a) 57.1 65.6 - -
KIQA (Nararatwong et al., 2022) - - 58.2 67.4
UniRPG (Zhou et al., 2022b) 70.2 77.9 67.4 75.5
RegHNT (Lei et al., 2022) 73.6 81.3 70.3 78.0
AeNER (Yarullin and Isaev, 2023) 78.5 86.0 75.0 83.2

BART (Lewis et al., 2020) 65.7 73.0 - -
BART w. ENCORE 71.0 78.9 - -
T5 (Raffel et al., 2020) 73.8 80.9 - -
T5 w. ENCORE 75.8 82.8 71.5 79.5

Table 14: The performance of different publicly avail-
able methods of TAT-QA. The best results are marked
in bold.

0.1. We select three negative examples for every920

positive instance, set batch size as 16, and max921

epoch as 20, which takes 10 hours for training. For922

every question, we retrieve the top 5 as candidate923

evidence. About the generation models of PLMs,924

we consider it a Seq2Seq task with label-smoothed925

cross-entropy loss. We set the learning rate as 1e-926

5, dropout as 0.1, and weight decay as 0.05. We927

use max tokens as 8192 during every step, update928

the model parameter every four updates, and warm929

up with 5000 updates. We set the max epoch as 1930

for pre-training, 100 for BARTLARGE, and 20 for931

T53B, save the model every ten epochs during fine-932

tuning and use early-stop checkpoints. Any other933

hyper-parameters following the default settings of934

the package. To lower the difficulty of table un-935

derstanding, we mark the numerical order of each936

column in the table. About the LLMs generation937

models, we set top_p as 0.95 and temperature as 0.938

We employ one NVIDIA A100 40G GPU as939

our experiment device. The retrieval model takes940

around 6 hours for training. The PLMs genera-941

tion model takes around 1 hour for pre-training, 12942

hours for BARTLARGE fine-tuning, and 48 hours943

for T53B fine-tuning. The LLMs generation model944

takes about 1.5 hours to infer for 1k examples.945

Model FinQA ConvFinQA
Exe Prog Exe Prog

FinQANet (Chen et al., 2021) 61.2 58.9 68.9 68.2
DyRRen (Li et al., 2022) 63.3 61.3 - -
APOLLO (Sun et al., 2022) 68.0 65.6 76.0 74.6
TabT5† (Andrejczuk et al., 2022) 70.8 68.0 - -

BART (Lewis et al., 2020) 58.8 54.4 71.5 69.5
BART w. ENCORE 62.3 57.2 74.4 72.2
T5 (Raffel et al., 2020) 65.0 58.3 79.6 77.3
T5 w. ENCORE 69.4 63.7 79.8 77.9

Table 15: The performance of different methods of
FinQA and ConvFinQA private test sets. Exe denotes
the execute accuracy, and Prog denotes the program
accuracy. † denotes results with ensemble. The best
results are marked in bold. The best results of methods
without ensemble are marked in underline.

F Detailed Experiment Results 946

In this section, we show the detailed results of each 947

experiment dataset in Table 12, Table 13, Table 14 948

and Table 15. 949

G Prompts of ENCORE with LLMs 950

In this section, we present the prompts we used 951

with LLMs in § 4.4 in Table 16, Table 17 and Ta- 952

ble 18. 953
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Answer the given question based on the given evidence.
You should generate an formula to answer the arithmetic question.
When answering the question, you should firstly generate the used entities.
Then you generate the formula structure.
Finally you generate the answer formula based on the entities and the formula structure.

Read the following text and table, and then answer a question:
17. Income Taxes
Income before income taxes for the Company’s domestic and foreign operations was as follows:
— | — | Years Ended June 30, | —
($ in millions) | 2019 | 2018 | 2017
Domestic | $204.2 | $140.3 | $56.0
Foreign | 11.8 | 19.9 | 14.2
Income before income taxes | $216.0 | $160.2 | $70.2
Quesetion: What was the change in Foreign in 2019 from 2018?
Entities: 11.8 | 19.9
Formula: x0 - x1
Answer: 11.8 - 19.9

Read the following text and table, and then answer a question:
Effective Income Tax Rate
A reconciliation of the United States federal statutory income tax rate to our effective income tax rate is as follows:
In 2019 and 2018 we had pre-tax losses of $19,573 and $25,403, respectively, which are available for carry forward
to offset future taxable income. We made determinations to provide full valuation allowances for our net deferred tax
assets at the end of 2019 and 2018, including NOL carryforwards generated during the years, based on our evaluation
of positive and negative evidence, including our history of operating losses and the uncertainty of generating future
taxable income that would enable us to realize our deferred tax.
— | Year Ended | Year Ended
— | December 31, 2018 | December 31, 2019
United States federal statutory rate | 21.00% | 21.00%
State taxes, net of federal benefit | 1.99% | -0.01%
Valuation allowance | -21.96% | -24.33%
Cumulative effect of accounting change | — | 2.07%
R&D Credit | 1.34% | 1.53%
Other | -0.38% | -0.27%
Effective income tax rate | 1.99% | -0.01%
Question: What was the 2019 percentage change in pre-tax losses?
Entities: 19,573 | 25,403 | 25,403
Formula: (x0 + x1) / x2
Answer: (19573 + 25403) / 25403

Read the following text and table, and then answer a question:
Year Ended May 31 | Expected life (in years) | risk-free interest rate | Volatility | Dividend yield | Weighted-average
fair value per share
2019 | 4.6 | 2.7% | 24% | 1.7% | $10.77
2018 | 4.7 | 2.0% | 22% | 1.5% | $9.34
2017 | 4.8 | 1.0% | 23% | 1.5% | $8.18
Question: What was the average dividend yield for the 3 years from 2017 to 2019?
Entities: 1.7% | 1.5% | 1.5%
Formula: (x0 + x1 + x2) / 3
Answer: (1.7 + 1.5 + 1.5) / 3

Table 16: The prompt of TAT-QA.
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Solve the following questions with the programs.
The program consists of a sequence of operations.
Each operation takes a list of arguments.
There are 6 mathematical operations: $add$, $subtract$, $multiply$, $divide$, $greater$, $exp$.
And 4 table aggregation operations: $table-max$, $table-min$, $table-sum$, $table-average$.
The mathematical operations take arguments of either numbers from the given text and table, or a numerical result
from a previous step.
The table operations take arguments of table row names.
We use the special token #n to denote the result from the nth step.
The given information is enough to solve the question.

Read the following text and table, and then answer a question:
$ in millions | year ended december 2014 | year ended december 2013 | year ended december 2012
fixed income currency and commodities client execution | $ 8461 | $ 8651 | $ 9914
equities client execution1 | 2079 | 2594 | 3171
commissions and fees | 3153 | 3103 | 3053
securities services | 1504 | 1373 | 1986
total equities | 6736 | 7070 | 8210
total net revenues | 15197 | 15721 | 18124
operating expenses | 10880 | 11792 | 12490
pre-tax earnings | $ 4317 | $ 3929 | $ 5634
Question: what was the percentage change in pre-tax earnings for the institutional client services segment between
2012 and 2013?
Entities: 3929, 5634, 5634
Formula: divide(subtract(x0, x1), x2)
Answer: divide(subtract(3929, 5634), 5634)

Read the following text and table, and then answer a question:
during the year ended march 31 , 2012 , the company has recorded $ 3.3 million in stock-based compensation
expense for equity awards in which the prescribed performance milestones have been achieved or are probable of
being achieved .
- | number of shares ( in thousands ) | weighted average grant date fair value ( per share )
restricted stock and restricted stock units at beginning of year | 407 | $ 9.84
granted | 607 | 18.13
vested | -134 ( 134 ) | 10.88
forfeited | -9 ( 9 ) | 13.72
restricted stock and restricted stock units at end of year | 871 | $ 15.76
Question: during the 2012 year , did the equity awards in which the prescribed performance milestones were
achieved exceed the equity award compensation expense for equity granted during the year?
Entities: 607, 18.13, 1000, 3.3, 1000000
Formula: greater(multiply(multiply(x0, x1), x2), multiply(x3, x4))
Answer: greater(multiply(multiply(607, 18.13), const_1000), multiply(3.3, const_1000000))

Read the following text and table, and then answer a question:
- | september 24 2005 | september 25 2004 | september 27 2003
beginning allowance balance | $ 47 | $ 49 | $ 51
charged to costs and expenses | 8 | 3 | 4
deductions ( a ) | -9 ( 9 ) | -5 ( 5 ) | -6 ( 6 )
ending allowance balance | $ 46 | $ 47 | $ 49
Question: what was the highest ending allowance balance, in millions?
Entities: ending allowance balance
Formula: table_max(x0, none)
Answer: table_max(ending allowance balance, none)

Table 17: The prompt of FinQA.

15



Answer the given question.
You firstly generate the used values, which must be mentioned in the question.
Then you generate the formula structure.
Finally you generate the answer formula based on the values and the formula structure.
You only need to generate the formula without any other words, not to calculate the answer.

Question: An aquarium holds an equal number of clownfish and blowfish. 26 of the blowfish stay in their own tank,
and the remaining blowfish swim into a display tank. An equal number of clownfish join the blowfish in the display
tank, but then a third of these clownfish swim back into their own tank. If the aquarium holds a combined total of
100 fish, how many clownfish are now in the display tank?
Entities: total_fish = 100 | blowfish_in_own_tank = 26
Formula: total_blowfish_fish = total_fish / 2 | blowfish_in_display_tank = total_blowfish_fish - blow-
fish_in_own_tank | clownfish_in_display_tank = blowfish_in_display_tank | ans = clownfish_in_display_tank
* 2 / 3
Answer: (100 / 2 - 26) * 2 / 3

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?
Entities: total_eggs = 16 | eaten_eggs = 3 | baked_eggs = 4 | dollars_per_egg = 2
Formula: sold_eggs = total_eggs - eaten_eggs - baked_eggs | ans = sold_eggs * dollars_per_egg
Answer: (16 - 3 - 4) * 2

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Entities: bolts_of_blue_fiber = 2
Formula: bolts_of_white_fiber = num_of_blue_fiber / 2 | ans = bolts_of_blue_fiber + bolts_of_white_fiber
Answer: 2 + (2 / 2)

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs.
This increased the value of the house by 150%. How much profit did he make?
Entities: cost_of_original_house = 80000 | cost_of_repair = 50000 | increase_rate = 1.5
Formula: value_of_house = (1 + increase_rate) * cost_of_original_house | ans = value_of_house - cost_of_repair -
cost_of_original_house
Answer: ((1 + 1.5) * 80000) - 50000 - 80000

Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate meals. In
the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her chickens another 25
cups of feed. How many cups of feed does she need to give her chickens in the final meal of the day if the size of
Wendi’s flock is 20 chickens?
Entities: numb_of_chickens = 20 | cups_for_each_chicken = 3 | cups_in_the_morning = 15 | cups_in_the_afternoon
= 25
Formula: cups_for_all_chicken = num_of_chickens * cups_for_each_chicken | ans = cups_for_all_chicken -
cups_in_the_morning - cups_in_the_afternoon
Answer: (20 * 3) - 15 - 25

Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the
next two miles. If she wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need
to walk the remaining distance?
Entities: average_mile_per_hour = 4 | total_trail_miles = 12
Formula: remaining_miles = total_trail_miles - 4 - 2 | total_hours = total_trail_miles / average_mile_per_hour |
remaining_hours = total_hours - 2 | ans = remaining_miles / remaining_hours
Answer: (12 - 4 - 2) / ((12 / 4) - 2)

(Ignore two examples because the whole prompt exceeds the length of one single page.)

Table 18: The prompt of GSM8K.
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