
Under review as a conference paper at ICLR 2023

PARTIAL ADVANTAGE ESTIMATOR FOR PROXIMAL POL-
ICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimation of value in policy gradient methods is a fundamental problem. Gen-
eralized Advantage Estimation (GAE) is an exponentially-weighted estimator of
an advantage function similar to λ-return. It substantially reduces the variance
of policy gradient estimates at the expense of bias. In practical applications, a
truncated GAE is used due to the incompleteness of the trajectory, which results
in a large bias during estimation. To address this challenge, instead of using the
entire truncated GAE, we propose to take a part of it when calculating updates,
which significantly reduces the bias resulting from the incomplete trajectory. We
perform experiments in MuJoCo and µRTS to investigate the effect of different
partial coefficient and sampling lengths. We show that our partial GAE approach
yields better empirical results in both environments.

1 INTRODUCTION

In reinforcement learning, an agent judges its state according to its environment, then selects an ac-
tion, and iterates these steps, constantly learning from the environment. Let S be the set of states and
A the set of actions. The selection process is quantified by the transition probability P . When the
agent makes the choice to execute an action, it will receive feedback rewards from the environment,
that is, r : S × A → [Rmin, Rmax]. In this way, the model will produce a trajectory sequence τ ,
that is τ : (s1, a1, ..., sT , aT). This trajectory will have a cumulative return,

∑T
t=1 γ

t−1rt, where γ
is the discount factor and T is the number of steps performed. The goal of reinforcement learning
is to find an optimal policy π, so that an agent can obtain the maximum cumulative expected cumu-
lative reward using this policy. Policy refers to the probability of specifying an action in each state,
π(a|s) = p(At = a|St = s). Under this policy, the cumulative return follows a distribution, and the
expected value of the cumulative return at state s is defined as a state-value function:

vπ(s) = Eπ[

∞∑
k=0

γkrt+k+1|St = s] (1)

Accordingly, at state s, the expected value of cumulative return after executing action a is defined
as a state action value function:

qπ(s) = Eπ[

∞∑
k=0

γkrt+k+1|St = s,At = a] (2)

Often the temporal difference (TD) algorithm or a Monte Carlo (MC) method is used to estimate
the value function. However, each of these methods has its advantages and disadvantages. The
TD algorithm value estimator has the characteristics of high bias and low variance. In contrast, the
estimator of the MC algorithm has low bias and high variance. Kimura et al. (1998) put forward
a method to skillfully find a balance between bias and variance, which is called λ return. TD(λ)
proposed by Sutton (1988) is a variant of the λ return that provides a more balanced value estimation.

Generalized Advantage Estimation (GAE) is a method proposed by Schulman et al. (2015b) to es-
timate the advantage value function. In fact, it is a method to apply the lambda return method to
estimate the advantage function. As proposed in the PPO paper Schulman et al. (2017), in prac-
tical applications, due to the incompleteness of the trajectory, truncated GAE is used, which leads
to large bias in the estimation process. For this, we propose partial GAE that uses partially cal-
culated GAEs, rather than the entire truncated GAEs, to significantly reduce the bias that caused

1

Under review as a conference paper at ICLR 2023

by incomplete trajectories. In addition to experiments in common MuJoCo environments, we also
conduct experiments in the complex and challenging µRTS environment. Our methods have been
empirically successful in these environments.

2 VALUE ESTIMATOR

The gradient in the policy gradient algorithm is generally written in the following form:

g = E

[∞∑
t=0

Ψt∇θlogπθ(at|st)

]
(3)

where Ψt is used to control the update amplitude of the the policy update in the gradient direction. In
the basic policy gradient algorithm, the action value function qπ(s, a) is used as Ψt, and qπ(s, a) is
estimated by cumulative return Gt. One of the most direct methods of estimating the value function
is the Monte Carlo (MC) method. MC starts directly from the definition of the value function, and
takes the accumulation of return values as the estimator of the value function. The accumulation
of the discounted reward

∑N
n=0 γ

nRt+n of a reward sequence (rt, rt+1, ..., rt+N) is taken as the
estimator of the state value under state st. The state value estimator of the MC algorithm is unbiased
estimator. In addition, because the random variables in the estimator are all the returns after time t,
and the dimensions are high, the estimator has the characteristic of high variance.

The TD algorithm uses rt + γVθ(st+1) as the estimator of value function V π(st). There is a certain
error, denoted as eθ, between the approximate value function and the real value function. Equation
4 can be obtained, and the bias γESt+1 [eθ(St+1)] can be obtained by using the TD algorithm. In
addition, because there are fewer dimensions of random variables in the estimator, the variance of
the estimator remains low.

E(rt,St+1)[rt + γVθ(St+1)] = V π
St

+ γESt+1
[eθ(St+1)] (4)

Compared with the TD and MC methods, the λ-return method seeks to find a balance between bias
and variance. In Equation 6, if λ is 0, it is the estimator of the TD method, and if λ is 1, it is the
estimator of the MC method.

G
(n)
t = γnV (st+n) +

n−1∑
l=0

γlrt+l (5)

Gλ
t = λN−1G

(N)
t + (1− λ)

N−1∑
n=1

λn−1G
(n)
t (6)

One disadvantage of using qπ(s, a) is that has a large variance, which can be reduced by introducing
the baseline b(t),

g = E

[∞∑
t=0

(qπ(s, a)− b(t))∇θlogπθ(at|st)

]
(7)

Using the average incomes from the sample as a baseline offers some improvement. However, for the
Markov process, the baseline should change according to the state, and the state baseline which has
large value for all actions should be larger, and vice versa. While the A2C and A3C algorithms use
Vt as the baseline, qπ(s, a)− Vt is called the advantage, Q(S,A) can be approximated as R+ γV ′,
and the advantage is A(st, at) = rt + γV (st+1) − V (st). In the Generalized Advantage (GAE)
paper Schulman et al. (2015b), a TD(λ)-like method is proposed, in which the weighted average of
the estimated values of different lengths provides the estimated value. This method to calculate the
advantage is adopted by powerful reinforcement learning algorithms such as TRPO Schulman et al.
(2015a) and PPO Schulman et al. (2017).

δVt+l = rt+l + γV (st+l+1)− V (st+l) (8)

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l (9)

2

Under review as a conference paper at ICLR 2023

When the parameter γ is introduced to estimate the policy gradient, gγ is biased from g. Such a
policy gradient estimation problem actually aims at discounted cumulative reward. In the later part
of this paper, the GAE is mainly discussed.

In addition to the above method for calculating Ψt, there are different methods for estimating the
value function Bertsekas et al. (2011). In general, the value loss LV F

t is calculated with squared-
error (Vθt − V target

t)2. The GAE paper Schulman et al. (2015b) uses the trust region method to
optimize the value function in each iteration of the batch optimization process.

minimize
ϕ

∑N
n=1 ∥ Vϕ(sn)− V̂n ∥

subject to 1
N

∑N
n=1

∥Vϕ(sn)−Vϕold
(sn)∥

2σ ≤ ϵ
(10)

And, in most implementations, Vθt is clipped around the value estimates on both sides Vθt−1 and
Vθt+1 .

LV F
t = max[(Vθt − V target

t)2, clip(Vθt , (Vθt−1
+ ϵ, Vθt+1

+ ϵ)− V target
t)2] (11)

The work of Tucker et al. (2018) proposes normalizing the advantage, which is shown to improve
the performance of the policy gradient algorithm. After the GAE calculates advantages in a batch,
the mean and standard deviation of are computed. Then for each advantage, one subtracts the mean
and divides by the standard deviation. In Eq. 12, Anorm

i is normalized advantage, Ai is advantage,
Amean is mean of advantages, Astd is standard deviation of advantages

Anorm
i =

Ai −Amean

Astd
(12)

It is very important for the policy gradient algorithm to estimate a more instructive value function.
In the following section, we will mainly discuss the practical application of GAE and how it can be
improved.

3 PARTIAL GAE

In the actual environment, a task often has terminal states, which result in a finite trajectory length.
For the trajectory terminus at time D, one performs an iterative calculation from back to front to
compute the GAE. Denote complete trajectory GAE Â

GAE(γ,λ,D)
t as Eq. 13. ÂGAE(γ,λ,∞)

t can be
generalized as ÂGAE(γ,λ,D)

t , when D →∞.

Â
GAE(γ,λ,D)
t =

D−t∑
l=0

(γλ)lδVt+l (13)

In practical applications, the length of one sample is fixed in order to carry out parallel computing
more efficiently. In another case, it takes a long time to sample a complete trajectory. In order to
make the training more efficient, only a part of the complete trajectory will be sampled at a time.
As it is discussed in the PPO paper Schulman et al. (2017), a truncated GAE is used for fixed-length
trajectory segments, which is shown in Figure 1. Calculation of the GAE of an incomplete trajectory
with length T is represented as:

Â
GAE(γ,λ,T)
T = δVT = rT + γ · 0− V (sT) (14)

Â
GAE(γ,λ,T)
t =

T−t∑
l=0

(γλ)lδVt+l (15)

Following the GAE paper Schulman et al. (2015b), denote sum of k of δ terms as Â(k)
t . Let Â(k)

t be
an estimator of the advantage function. When k = 1, Â(1)

t = δVt , which has a large bias and low
variance. The bias becomes smaller as k becomes larger.

Â
(k)
t =

k−1∑
l=0

γlδVt+l = −V (st) + γkV (sk+t) +

k−1∑
l=0

γlrt+l (16)

3

Under review as a conference paper at ICLR 2023

Figure 1: In practical application, considering parallel computing and avoiding episodes that are
too long, a fixed sampling length is used. Since the last step of the sampling trajectory is not the
termination of the complete trajectory, we have to use the truncated GAE as the estimator. For all
of the calculated truncated GAE Â

GAE(γ,λ,T)
t , we propose to use Â

GAE(γ,λ,T)
t for updating in case

t ≤ ϵ and discard Â
GAE(γ,λ,T)
t in case t > ϵ as it shown in red part of this figure.

Since ÂGAE(γ,λ,T) is the sum of exponentially-weighted Â
(k)
t , as T − t increases, the number of

cumulative terms increases, and the bias decreases.

Â
GAE(γ,λ,T)
t = (1− λ)

T−t+1∑
k=1

λk−1Â
(k)
t (17)

Consider two exceptional cases of ÂGAE(γ,λ,T)
t : T = D and t = T . When T = D, ÂGAE(γ,λ,T)

t is
the same as ÂGAE(γ,λ,D)

t , and its bias is the minimum, that is, bias of ÂGAE(γ,λ,T)
t will not be less

than bias of ÂGAE(γ,λ,D)
t . For a specific trajectory, when t = T and T ̸= D, ÂGAE(γ,λ,T)

t has the
maximum bias, .

Â
GAE(γ,λ,D)
t = (1− λ)

D−t+1∑
k=1

λk−1Â
(k)
t (18)

Â
GAE(γ,λ,T)
T = rt + γV (st+1)− V (st) (19)

Truncated GAE, similar to infinite ÂGAE(γ,λ), balances between bias and variance with λ.
ÂGAE(γ,1,T) has low bias and large variance, while ÂGAE(γ,0,T) has low variance and large bias.
When λ < 1, with cost of bias, the variance is substantially reduced. Compared with infinite GAE,
truncated GAE has larger bias and lower variance. Relatively, it is more important to reduce bias,
which means for a specific trajectory as the step t reduced, ÂGAE(γ,λ,T)

t will become more instruc-
tive.

Compared with a GAE of a complete trajectory Â
GAE(γ,λ,D)
t , denote the difference between trun-

cated Â
GAE(γ,λ,T)
t and GAE Â

GAE(γ,λ,D)
t as Bt:

Bt = Â
GAE(γ,λ,D)
t − Â

GAE(γ,λ,T)
t =

D−t∑
l=T−t

(γλ)lδVt+l (20)

BT is a constant for a specific trajectory of length T . As shown in Equation 21, in the case of 0 <

γ < 1, Bt decreases exponentially with step t. As Bt reduced, the deviation between Â
GAE(γ,λ,T)
t

4

Under review as a conference paper at ICLR 2023

and Â
GAE(γ,λ,D)
t is reduced. Since Â

GAE(γ,λ,T)
t has larger bias than Â

GAE(γ,λ,D)
t , reduce Bt can

reduce the bias of ÂGAE(γ,λ,T)
t .

Bt =

D−T∑
l=0

(γλ)l+T−tδVT+l = (γλ)T−tBT (21)

In conclusion, in practical applications, due to the fixed length sampling trajectory, the calculation of
GAE is truncated, which will lead to a large bias in the calculated GAE when t is near the end of the
trajectory. Instead, we propose to intercept a part of the GAE for use and drop the remainder of the
trajectory with large bias. We propose a PPO algorithm with partial GAE as described in Algorithm
1, with partial coefficient ϵ and sample length T . In each iteration, each sampler collects T samples
and calculates T truncated GAE. We take part of a GAE if t > ϵ, the advantage estimates at time
t in the trajectory are discarded in the training. Then we construct the surrogate loss as Schulman
et al. (2017) on these N(T − ϵ) data, and optimize the policy with minibatch Adam for K epochs.
For algorithm 1 according to Equation 17, as T − t increases, the bias of ÂGAE(γ,λ,T)

t decreases.
As partial coefficient decreases, the bias of Â1, ..., Âϵ decreases.

Algorithm 1 PPO with partial GAE
for iteration=1, 2, . . . do

for actor=1, 2, . . . , N do
Run policy πθold in environment, get samples (s1, a1, ..., sT , aT)
Compute advantage estimates Â1, ..., ÂT

if T is not done then
only use Â1, ..., Âϵ for updating
keep (sϵ, aϵ, ..., sT , aT) as (s1, a1, ..., sT−ϵ, aT−ϵ)

else if T is done then
use Â1, ..., ÂT for updating

end if
end for
for epoch K do

Optimize surrogate L wrt θ, with minibatch size
θ ← θold

end for
end for

4 EXPERIMENTS

We conducted a set of experiments to verify the effect of our proposed method, and conducted more
detailed investigations:

• As we discussed above, can smaller partial coefficients reduce the bias of GAE for im-
proved training?

• Can a larger sampling length reduce the bias of GAE to improve training?

We evaluated our method in MuJoCo OpenAI (2022) and µRTS Villar (2017). MuJoCo is a physical
simulation environment. We mainly conducted experiments in Ant-v3 and complementary experi-
ments in Halfcheetah-v3, Hopper-v3, Swimmer-v3, Walker2d-v3. µRTS is a simplified RTS game
environment. Unlike MuJoCo, it has discrete states and discrete actions, and has a large number of
game steps.

In the experiments with MuJoCo, we use Version 1.31 of MuJoCo (distributed with an MIT License).
We use common values in applications to set Hyper-parameters. The discount factor γ is 0.99, λ for
the GAE is 0.95, the clip coefficient of PPO is 0.2, the value coefficient is 1, the learning rate of the
optimizer is 2.5e-4, the number of environments is 64, and the number of epochs is 2. To represent
to policy, we use a three layer fully connected MLP (Multi-layer Perceptron) with a 64 unit hidden
layer, and there are two additional noise layers after the MLP for exploration during training. The

5

Under review as a conference paper at ICLR 2023

(a) Halfcheetah-v3 (b) Hopper-v3

(c) Swimmer-v3 (d) Walker2d-v3

Figure 2: training curve in different MuJoCo environment

number of steps in a game of Ant-v3 is 1000, experiments were performed for sample length T from
128 to 1024 and coefficient ϵ from 64 to 512.

In the experiments with µRTS, we experimented in the 16×16 map against CoacAI which won the
2020 µRTS competition. In this experiment, the discount factor γ is 0.99, λ for the GAE is 0.95,the
clip coefficient of PPO is 0.2, the entropy regularization coefficient is 0.01, the value coefficient is
1, the learning rate of the optimizer is 2.5e-4, the number of environments is 64, and the number of
epochs is 2. To represent to policy, we use a two layer convolutional neural network connected to a
three layer fully connected MLP with a 512 unit hidden layer.

In this paper, we use the training curve within a certain training time to evaluate the algorithm,
rather than a fixed number of steps. This is because different algorithms and parameters will lead to
differences in update time and training time. In practical applications, in addition to training effects,
training time also should be considered. In the MuJoCo environment, we take the total reward of
average 100 episodes episode after a certain training time as the performance score. In µRTS, we
take the winning rate of recent 100 episodes after a certain training time as the evaluation index. For
each set of variables, we used 3 random seeds for the experiment. We use an Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz for our experiments.

4.1 WHAT IS THE EMPIRICAL EFFECT OF PARTIAL LENGTH AND SAMPLE LENGTH

As discussed above, the smaller the value of t in truncated GAE Â
GAE(γ,λ,T)
t , the smaller the bias

of the estimate, and the larger the variance. However, the variance of ÂGAE(γ,λ,T)
t is always smaller

than that of Â
GAE(γ,λ,D)
t , so theoretically, the partial coefficient should be as small as possible.

In practical applications, small partial coefficients will lead to an increase in the number of GAE
calculations, while a larger sampling length will lead to a longer sequence to be processed in a
single GAE calculation, which will increase the calculation time.

6

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 3: (a): training curve with different partial coefficient in Ant-v3, sample length T = 512. (b)
training curve with different sample length in Ant-v3, partial coefficient ϵ = 64.

Figure 4: The performance after 1 hour training in Ant-v3. Since sample time T is greater than or
equal to partial coefficient ϵ, the white part has no data. T = ϵ means not to discard any GAE, which
is the baseline.

We compare common PPO as baseline with partial GAE PPO in Ant-v3, Halfcheetah-v3, Hopper-
v3, Swimmer-v3, walker2d-v3, and we compare the effect of different partial coefficient and sample
length in Ant-v3. Our implementation does not require the tricks of Engstrom et al. (2020) such as
value clipping and an advantage normal.

The experimental results is shown in Figure 2 and Figure 3. In Figure 2 and Figure 3(a), using
partial GAE can achieve better performance than the baseline, and improved performance can be
obtained by using smaller partial coefficients. In Figure 3(b), using larger sample length improves
performance. Figure 4 shows the performance after one hour training as T and ϵ are varied. It can
be seen that the highest performance score is with the partial coefficient ϵ ∈ [384, 512] and sample
length T ∈ [64, 128], in Ant-v3.

7

Under review as a conference paper at ICLR 2023

Figure 5: Winning rate during training in µRTS 16x16 map against CoacAI.

Note that when the partial coefficient is small or the sampling length is large, the performance does
not improve by continuing to increase the partial coefficient or reduce the sampling length. As shown
in Equation 21, when (T − t) is large enough, Bt will become very small, and the change brought
by continuing to increase (T − t) is very small. Although GAE significantly reduces variance by
sacrificing bias, and the variance of truncated GAE is smaller than that of the complete trajectory,
this does not mean that bias should be minimized while ignoring the impact of variance. In practical
applications, the median of partial coefficient ϵ and sample length T should be found to balance
bias and variance. There is an intermediate value that makes the training effect the best, rather than
maximizing (T − ϵ).

We conducted additional experiments in the 16x16 map of µRTS. This is a sparsely rewarded en-
vironment with long game steps. In this task, agents need to learn how to win in real-time strategy
(RTS) games: collect resources, build units, and destroy enemy units and bases. The sample length
T is 512 in the experiments.

4.2 TRUNCATED ADVANTAGE ESTIMATOR VARIANCE INVESTIGATION

In the discussion in the above experiments, we supposed that blindly reducing the partial coefficient
ϵ will lead to an increase in the variance of truncated GAE and make the training effect worse. In the
MuJoCo environment, we recorded the 2000 GAE Ât to calculate standard deviation under different
t when the sampling length T is 500, as shown in the Figure 6, red curve is the standard deviation
of truncated GAE. As a whole, it can be seen from the figure that when t is small, GAE has a larger
standard deviation (or variance). However, unlike the previously mentioned theory, the variance
does not completely decrease with the increase of t, especially at the end of a sampling sequence,
the variance increases with the increase of t.

Â
GAE(γ,λ,T)
t = Âr

t + Âv
t (22)

Âr
t =

T−t∑
l=0

(γλ)lrt+l (23)

Âv
t = γ(γλ)T−t−1V (sT)− V (st) + γ(1− λ)

T−t−1∑
l=0

(γλ)lV (st+l+1) (24)

8

Under review as a conference paper at ICLR 2023

(a) Ant-v3 (b) Swimmer-v3

(c) Hopper-v3 (d) HalfCheetah-v3

Figure 6: During Baseline training, the standard deviation under different sample time t. 2000
truncated GAE for a sample time t after one million time steps are recorded to calculate standard
deviation.

Write the truncated GAE in the form of the Eq. 22, which can be divided into two parts:accumulated
reward part Âr

t and value estimate part Âv
t . It can be seen from the Figure 2 that the variance is more

affected by the value estimate part Âv
t . And because of the uncertainty caused by the deviation of the

value function fitting to the actual value, the variance of the truncated GAE does not only decrease
with the increase of t. As shown in the Figure 6, empirically, smaller t will result in larger variance
of truncated GAE. It is necessary to select an intermediate value of partial coefficient ϵ to balance
the variance and bias of the truncated GAE to obtain better training effect.

5 CONCLUSION

How to estimate the value function is particularly important in policy gradient algorithms. GAE
provides a method to balance the bias and variance of the estimation of the value function. However,
in practical applications, truncated GAE is often used, and will lead to excessive bias of value
estimation. We propose to use partial GAE in training to discard truncated GAE with excessive bias,
which can reduce the bias and make value estimation more instructive.

We conducted experiments in MuJoCo environment. The experimental results show that using par-
tial GAE will always achieve improved training results. For partial GAE related parameters, sam-
pling length T and partial coefficient ϵ, although theoretically increasing (T − ϵ) can reduce bias,
there is an intermediate value for the best training effect due to the influence of comprehensive vari-
ance. How to adjust sampling length T and partial coefficient ϵ adaptively may be a direction for
future research. We conducted additional experiments in µRTS. In this sparse environment with
coefficient rewards and long game steps, partial GAE also performed well.

9

Under review as a conference paper at ICLR 2023

6 ETHICS STATEMENT

We note that our method does not introduce new potential societal harms as it is an improvement
of value estimation; however it inherits any potential societal harms of deep reinforcement learning
methods, which are well documented in Whittlestone et al. (2021). Note that the policy of an agent
trained by deep reinforcement learning is highly dependent on its explored state and training envi-
ronment, which causes the agent to perform unexpected actions when it encounters a state it has not
seen before. It is not reliable to rely on the generalization of neural network to solve problems. It is
necessary to consider how to deal with unexpected actions of agents, especially when DRL agents
are applied to the real world.

7 REPRODUCIBILITY STATEMENT

Our experiments were repeated three times with different random seeds. We will upload our code in
the supplemental materials for verification.

REFERENCES

Dimitri P Bertsekas et al. Dynamic programming and optimal control 3rd edition, volume ii. Bel-
mont, MA: Athena Scientific, 2011.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo. International Conference on Learning Representations, 2020.

Hajime Kimura, Shigenobu Kobayashi, et al. An analysis of actor/critic algorithms using eligibility
traces: Reinforcement learning with imperfect value function. In ICML, volume 98, 1998.

OpenAI. Gym-mujoco. https://www.gymlibrary.ml/environments/mujoco/,
2022. Accessed: 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In nternational conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahramani, and Sergey
Levine. The mirage of action-dependent baselines in reinforcement learning. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5015–5024. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/tucker18a.html.

Santi Ontañón Villar. microrts. https://github.com/santiontanon/microrts, 2017.
Accessed: 2017-07-13.

Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. The societal implications of deep rein-
forcement learning. Journal of Artificial Intelligence Research, 2021.

10

https://www.gymlibrary.ml/environments/mujoco/
https://proceedings.mlr.press/v80/tucker18a.html
https://github.com/santiontanon/microrts

	Introduction
	Value Estimator
	partial GAE
	experiments
	What is the empirical effect of partial length and sample length
	Truncated advantage estimator variance investigation

	conclusion
	Ethics Statement
	Reproducibility Statement

