© ® N O o A~ W N =

22

23
24
25
26
27
28
29
30
31
32

33
34
35

Efficient Reasoning Through Suppression of
Self-Affirmation Reflections in Large Reasoning
Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

While recent advances in large reasoning models have demonstrated remarkable
performance, efficient reasoning remains critical due to the rapid growth of output
length. Existing optimization approaches highlights a tendency toward "overthink-
ing", yet lack fine-grained analysis. In this work, we focus on Self-Affirmation
Reflections: redundant reflective steps that affirm prior content and often occurs
after the already correct reasoning steps. Observations of both original and op-
timized reasoning models reveal pervasive self-affirmation reflections. Notably,
these reflections sometimes lead to longer outputs in optimized models than their
original counterparts. Through detailed analysis, we uncover an intriguing pattern:
compared to other reflections, the leading words (i.e., the first word of sentences) in
self-affirmation reflections exhibit a distinct probability bias. Motivated by this in-
sight, we can locate self-affirmation reflections and conduct a train-free experiment
demonstrating that suppressing self-affirmation reflections reduces output length
without degrading accuracy across multiple models (R1-Distill-Models, QwQ-32B,
and Qwen3-32B). Furthermore, we also improve current train-based method by
explicitly suppressing such reflections. In our experiments, we achieve length
compression of 18.7% in train-free settings and 50.2% in train-based settings for
R1-Distill-Qwen-1.5B. Moreover, our improvements are simple yet practical and
can be directly applied to existing inference frameworks, such as vVLLM. We believe
that our findings will provide community insights for achieving more precise length
compression and step-level efficient reasoning.

1 Introduction

Recent advancements [23} 43|12, [17]] in large language models have delivered remarkable performance
across various tasks [10} 4], yet they still struggle with complex reasoning tasks demanding advanced
mathematical [15} 22] and formal logical deduction [33] abilities. Works [[18, 17} [12} 38} [36]] like
Deepseek-R1 [[12] have driven progress in reasoning models via reinforcement learning. However,
current large reasoning models are troubled by high token usage and computational costs due to
generating lengthy reasoning chains. Researchers have been delving into different technical strategies
to enhance reasoning efficiency, like refining latent representations [[14} 33} 7] and combining small
models [27,[11]. In order to directly optimize the model itself, several approaches have emerged as
promising methods, using supervised fine-tuning (SFT) [41 [13}[25]], direct preference optimization
(DPO) [32], and reinforcement learning (RL) [13 24} 3, [1}, [44].

Although these methods have yielded impressive results, such as producing more semantically
efficient or direct solutions, we observed that redundant reflection persists in the optimized models
[13,124]]. Rather than attributing this phenomenon to the more general "overthink" issue (defined in

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



36
a7
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92

work [34]] as the generation of excessively detailed or unnecessary lengthy reasoning steps by large
reasoning models during inference, which undermines reasoning efficiency), we conducted a more
detailed examination of these examples (for more details, refer to Section E]) As illustrated in Figure
[I] we have identified a common phenomenon: affirming prior content typically occurs following
correct steps, which we refer to as Self-Affirmation Reflection. In some cases, this superfluous
reflection even leads to longer answers for certain problems in the optimized models.

Since thls_ phenomenon is also w1despread_ m ( How many ways can we put 3 math books and 5 English books )
the optlmlzed models [3} 24], such reflection on a shelf if all the math books must stay together and all the
essentially originates from the base models. English books must also stay together? (The math books are all

A . . .. \_different and so are the English books.) )
Therefore, we investigate scenarios where origi-

; (" Oka i : i A
2 y, so | have this problem here: | need to figure out how many
nal reasoning models frequently execute self ways | can arrange 3 math books and 5 English books on a shelf.

affirmation reflection. Empirical analysis re- | The catch is that all the math books have to stay together, and -
veals a notable phenomenon: During repeated

. . Wait, let me double-check my reasoning. So, treating the math
rollout processes at reflection points, models y 5 ?

books as one block and the English books as another block, we

do not consistently engage in reflection behav- have 2 blocks. The number of...
ior, as illustrated in th.e yellow b(?X of Flg_ure t, but in the first approach, the math block can be placed in 6
m In fact, after generating correct intermediate different starting positions, and the English block is placed in
steps, models often exhibit ambiguity in transi- the--

L. . S0,6 x 3! x 51 = 6 x 6 x 120 = 4320. Yes, that's correct
tioning between problem-solving steps and re- | )
flection initiation. Since prior works [31} 26] (Rollout 1] Wat, lot me double-check- N
havg estabhshqd thgt certain kpywords, termed v V7 | [Rollout 2] Let me double-check-
leading words in this paper, significantly influ- {b [Rollout 3] But wait, let me double-check:.
ence a model’s decision to trigger the reflection [Rollout 4] Just to make sure | didn't make a
mechanism. To characterize the self-affirmation mistake, let me think through it again... )

reflection type, we conduct statistical analysis
comparing its leading word distribution to those
of other reflection categories. As shown in Sec-
tion 4} self-affirmation reflection exhibits sta-
tistically significant divergence in leading word
distribution patterns.

[Rollout 1] Wait, but in the first approach, the -
[Rollout 2] So, 6 x 6 x 120 = 4320.

[Rollout 3] Therefore, 6 x 3! x 51 = 6 x 6 x 120 =
4320.

[Rollout 4] Thus, 6 x 3! x 51 = 6 x 6 x 120 = 4320. |

Figure 1: Self-Affirmation Reflection phe-
Building on this insight, we identify conditions nomenon. We investigate the characteristics when
under which self-affirmation reflections occur the reflection occurs by performing multiple roll-
during model reasoning and present a straight- outs at reflection points (marked by the colored
forward yet effective method that explicitly sup- "Wait"). As illustrated in the figure below, the
presses rethinking confidence at these crucial model sometimes consistently performs a reflec-
confusion points. Notably, our approach entails tion (marked in ), while at other times
no extra cost and is extremely simple to imple- it takes different actions (marked in ).
ment. It can be seamlessly integrated into cur- Since the latter reflections generally serve to reaf-
rent inference frameworks such as vLLM [[19]]. firm previous content, we refer to this behavior as
Under a train-free experimental setup, while the self-affirmation reflection.

maintaining nearly the same performance level,

we have achieved length reductions of 18.7%, 14.3%, 11.1%, 9.1%, and 8.4% for R1-Distill-Qwen-
1.5B/7B/32B, QwQ-32B, and Qwen3-32B respectively, and in some cases, even better performance
is obtained. Furthermore, we apply our method to a representative train-based approach [3]], which
generates responses of varying lengths by model self-sampling. Correct responses are prioritized,
with shorter lengths receiving higher rewards. Our method complements this strategy by explicitly
suppressing self-affirming reflections within positive samples and achieve significantly shorter outputs
with competitive performance. Extensive experiments in Section [5|across different settings validate
the feasibility and significance of the findings in this paper.

Our work offers three key benefits: (1) We provides the first focused analysis of the Self-Affirmation
Reflection phenomenon and provides actionable insights for improving reasoning models. (2)
We present a simple yet practical intervention strategy: suppressing crucial leading tokens.
This directly lessens Self-Affirmation Reflection, achieving efficient output compression without
modifying the model architecture or training process. (3) Extensive experiments across diverse
models and datasets in both train-free and train-based settings demonstrate that mitigating Self-
Affirmation Reflection can effectively reduce output length while preserving or even enhancing
performance.



94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135

137

139
140
141
142

143
144
145

2 Related Work

Recent surveys [29] 39} 34] have summarized ao.o% Al Longer Responses

progress in efficient reasoning. In this section, 2% tonger Responses due to SelFAffmation Reflection
we highlight representative methods to provide
a concise overview of key developments in this
area.

The first category of methods [13| 42} 20] aim .

to obtain some information from the input to 52.2%
estimate the cost in advance. Some methods -
[[13} 42} 20] choose to estimate the reasoning

cost. For example, TokenBudget [13] instructs 2%
models to estimate the token count required to

solve a problem upfront, compelling them to ™ ovemmer  m@-005  m@ion | f@oz  Emaos
generate concise responses within a predefined . . .

budget. Other methods [27, 5 [0 [8] estimate Figure 2: The ratio of questlons with longer av-
the model size. Approaches like RouterLLM ©Tag€ response lengths in MATHS00 [22] when
[27] and Sot [3] pre-train classifiers to route Festmg released checkpoints from EfficientReason-
problems to the most suitable LLM based on 118 [3] and O1-Pruner [24](marked as )-
task complexity. In contrast, router-free methods 1 hrough manual inspection, we additionally show
such as Self-ReF [9] and Seek-Router [§] predict the proportion of responses that are longer due to
the necessity of invoking additional LLMs by output self-affirmation reflections (marked as |
analyzing internal uncertainty scores. However, ). Moreover, the accuracy on MATHS00 is la-
how to accurately determine the optimal costis Peled at the top of each bar.

still a problem.

83.3%

73.3%

Recent advances in the second category of methods have focused on refining the output of optimization
models. As demonstrated in [28]], simply adding intermediate "thinking" tokens, or even nonsensical
fillers like "......", can lead to satisfactory performance. Subsequent works, such as those in [14}133L[7],
have explored treating the last layer hidden states of LLMs as "continuous thinking" to replace
traditional discrete markers. These approaches optimize latent representations through training.
However, such methods may render parts of the thought chain invisible, potentially introducing
security risks. In addition to optimizing the output sequence, there are also methods to choose to
switch the model during output, such as RSD [21] integrating multiple LLMs to achieve dynamic
reasoning. These methods demand precise determination of when to switch models and which model
to switch to.

The third category of methods centers on fine-tuning LLM itself to directly address redundancy in
the output of the original model. Generally, these methods [24} 13} 3| [1} |44]] first obtain responses of
varying lengths via model self-sampling. Then, they design a length-based reward conditioned on
correctness, with shorter correct answers receiving higher rewards. However, balancing accuracy
and output length remains a significant challenge. Although these methods reduce average response
length of the entire datasets, they do not guarantee shorter outputs across all instances. Specifically,
the figure 2] highlights that at the instance level, some outputs (depicted in ) remain longer than
those from the original model. Our train-based experiments in Section[5.2]is closely related to these
methods but differs in focus. Rather than focusing on reward function design, our objective is to
directly optimize sampling outcomes, thereby refining the quality of the constructed data pairs and
achieving more succinct responses.

3 Observation

Our observation begins with experiments evaluating two representative open-source works [24} [3].
We tested R1-Distill-Qwen-1.5B [[12] and QwQ-Preview [37] on the MATH500 dataset [22]] alongside
their compressed counterparts (EfficientReasoning [3]] and O1-Pruner [24]). For each question, three
responses were sampled, with average response length recorded.

As shown in Figure [2] results exhibit a counterintuitive trend: certain ratio of instance-level questions
elicit longer responses, yet most of these extended responses remain correct (e.g., 91.6% in QwQ-
Preview settings). This pattern persists across varying compression levels. For instance, the parameter



146
147
148
149

150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166

167
168
169
170
171

172

173

174
175
176

« in EfficientReasoning[3] balances brevity and accuracy. Larger « values shorten outputs at the cost
of reduced accuracy. As shown in Figure[2] even at mild compression (o = 0.05), 6% of questions
generated longer responses. Aggressive compression (o = 0.4) still failed to resolve this behavior,
though the trade-off led to a significant drop in accuracy.

To gain deeper insights into the optimized models, we conducted a manual examination and analyzed
their qualitative behaviors, as shown in Figure 3] Two key characteristics consistently emerge: (1) the
model tends to produce more concise steps during the problem-solving phase. For instance, the brown
text in Figure [3]illustrates how the optimized model succinctly summarizes the problem background.
(2) certain questions have been solved using more direct approaches. This arises because, during the
self-sampling process, the model generates multiple potential problem-solving methods. By favoring
shorter solution ideas, the model discards superfluous strategies.

However, we also observe that the model frequently engages in prolonged reflections even after
executing correct reasoning steps or arriving at the correct answer, resulting in excessively lengthy
outputs. Figure [3]illustrates this issue: compared to the baseline R1-Distill-Qwen-1.5B model [12],
the optimized EfficientReasoning model (o = 0.05) [3] achieves the correct solution more rapidly
but produces lengthier responses due to increased self-reflections. These reflections often show a
tendency to affirm the previous content. Quantitative results in Figure 2] further confirm that this
pattern is prevalent across current efficient reasoning models [3,24]. Overall, these findings suggest
that naively optimizing for solution-level simplicity is not enough to effectively compress the model’s
outputs. This indicates that existing frameworks may still have opportunities to enhance output
simplicity by suppressing step-level self-affirmation reflections.

Notably, while this phenomenon was widely summarized as an overthink problem in previous works
[291139134], its persistence in optimized reasoning models underscores the need for targeted solutions.
Therefore, we formally define this behavior as self-affirmation reflection, as introduced in Section
[T] and focus on it in this paper. To address this issue fundamentally, we analyze how to locate and
suppress self-affirmation reflection in the original model, as detailed in the subsequent Section ]

Question from MATH500

Jim and Martha are standing together at the corner of a rectangular field. Jim walks diagonally across the field. Martha gets to the same location by walking along its length and width. The field is 300 feet wide
and 400 feet long. How many feet less than Martha does Jim walk?

Response from original reasoning model from d model

Okay, 50 Jim and Martha are standing at the same corner of a rectangular field. The field is 300 feet
wide and 400 feet long. Jim is walking diagonally across the field, while Martha is walking along the
length and width. | need to find out how many feet less than Martha does Jim walk

Alright, so I've got this problem here: Jim and Martha are standing together at the corner of a
rectangular field. Jim walks diagonally across the field, and Martha walks along the length and width.
The field is 300 feet wide and 400 feet long. | need to figure out how many feet less than Martha
does Jim walk.

Hmm, let me visualize this. The field s a rectangle, so it has two dimensions: length and width. Length

is 400 feet, and width is 300 feet. So, if | imagine this, the field is longer in the length direction
Martha is walking along the length and width. | think that means she goes along one side and then
the adjacent side. So, she would walk the length of the field plus the width. That makes sense
because walking along the edges would cover the two sides she’s not walking diagonally. Jim, on the
other hand, is walking diagonally across the field. That means he's taking the straight line from one
corner to the opposite corner. In a rectangle, the diagonal can be calculated using the Pythagorean
theorem because the diagonal forms a right triangle with the length and width. Alright, so to find out
how much less Jim walks compared to Martha, | need to calculate the length of the diagonal (Jim’s
path) and the total distance Martha walks (length + width), then subtract the diagonal from the sum
to find the difference. [294 tokens][Original model use more tokens to describe the problem
background.]

Subtracting 500 from 700 gives 200. So, yes, Jim walks 200 feet less. [743 tokens][Original model get
the answer for the first time.]

Is there another way to approach this problem? Maybe by using triangles or something else?

Hmm, | don‘t think so. It's straightforward with the Pythagorean theorem and simple addition.
Alternatively, | could have thought about the difference in their paths. Martha's path is the sum of
length and width, while Jim's path is the hypotenuse

The difference is the amount by which Martha’s path exceeds Jim's. So, 700 - 500 = 200.

Yes, | think that's solid. | don't see any errors in my reasoning. [First Reflection.]

**Final Answer**

Jim walks \boxed{200} feet less than Martha. [1011 tokens][The thinking stage is over.]
</think>

Jim and Martha are standing at the same corner of a rectangular field.

Thus, Jim walks \boxed{200} feet less than Martha. [1241 token]

Hmm, okay, let me visualize this. There's a rectangular field, so it has length and width. Jim is taking
the diagonal path, which would be the straight line from one corner to the opposite corner. Martha is
walking along the length and then the width, which means she’s taking the two sides to get to the
same point. So, the question is asking about the difference in distance between Jim's diagonal path
and Martha’s path along the length and width. That means | need to calculate both distances and
subtract them to find out how much less Jim walks. [190 tokens][The description of the problem
background is more concise.]

Wait a second, let me double-check that. So, if Jim walks 500 feet diagonally, and Martha walks 700
feet, then the difference is 700 - 500, which is 200 feet. So, Jim walks 200 feet less than Martha. [678
tokens][The answer was obtained for the first time with shorter tokens.]

But let me just make sure | didn't make a mistake in my calculations.

S0, yes, that's correct. So, the difference is 700 - 500, which is 200 feet. Therefore, Jim walks 200 feet
less than Martha. [First Reflection.]

. [Second Reflection.]

Therefore, Jim walks 200 feet less than Martha. **Final Answer** Jim walks \boxed{200} feet less
than Martha. [1110 token][The thinking stage is over.]

</think>

Jim and Martha are standing together at the corner of a rectangular field.

Thus, Jim walks \boxed{200} feet less than Martha. [1374 tokens][Ultimately more tokens were used.]

Figure 3: Qualitative analysis of responses from original and optimized R1-Distill-Qwen-1.5B. The
colored text represents the original response contents of the two models, and the black text indicates
our description of the progress of solving the problem. Provide the number of tokens that have been
used when necessary.

4 Analysis

4.1 Locate Self-Affirmation Reflections

To investigate the self-affirmation reflection, we first randomly sampled 500 training instances from
the MATH dataset. For each problem, we generated a single solution using R1-Distill-1.5B [12]. The
generated reasoning steps were split using the "\n\n" delimiter.



177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199

201
202
203
204

205
206
207
208

210
211

Then, we utilized the Qwen2.5-72B-Instruct [43]] to classify each step as either a reasoning reflection
or non-reflective reasoning. To improve the accuracy, we further combine the previous method [6] to
assist in judgment. For steps identified as reasoning reflections, we invoked the Qwen2.5-72B-Instruct
again to determine whether the reflection affirmed the preceding reasoning, i.e., whether it constituted
a self-affirmation reflection. The specific prompts used for classification are detailed in Appendix [A3]
To validate this automated classification, we manually annotated self-affirmation reflections in all
responses of 20 problems to form a test set. Evaluation revealed the Qwen2.5-72B-Instruct achieved
an accuracy of 80.6%. This is primarily because while most self-affirmation reflections contain
explicit signal words such as "that’s correct" in Figure[3] some self-affirmation reflections merely
repeat previous conclusions to indicate affirmation of prior content, making these more challenging

to detect.

Q ion from MATH500

How many 4-letter words with at least one consonant can be constructed from the letters SAS, $BS, $C$, $DS, and SES? (Note that $BS, $CS, and $D$ are consonants, any word is valid, not just English language
words, and letters may be used more than once.)

from model The first “wait”: the model is not sure whether it is necessary to conduct a check.
Okay, so | have this problem: | need to find how many 4-letter words can be made from the letters A, [Wait, 0.38] , let me make sure | understand the problem correctly. The letters we can use:
B, C, D, and E. The catch is that each word must have at least one consonant. Hmm, okay. Let me [Altight, 0.21]) lets break it downi Thelletters w have are A\ B\, D) E OUt of thess) Al E are

think about how h this.
X SOOUL oW S0 8PPIaach S [Let, 0.21] me break it down. The letters we have are A, B, C, D, E. Out of these, A, E are~

[That, 0.04] makes sense because it's easier to calculate the total number of words and then
So, maybe | can calculate the total number of 4-letter words possible and then subtract the number [But, 0.03] wait, let me make sure | understand the problem correctly. The letters given are-
of 4-letter words that consist entirely of vowels. [Given, 0.019] that, let me figure out how many vowels and consonants

Wait, let me make sure | understand the problem correctly. The letters we can use are A, B, C, D, E. [Right,0.016]),Sollet's break it down-The lstters we have are A\B,C,ID,E

So, that's five letters in total. Among these, B, C, and D are consonants, and A and E are vowels. So, [The, 0.014) letters given are A, B, C, D, E. Let me identify which are vowels

vowels are A and E, and consonants are B, C, D.

The second “wait”: the model determines that he must conduct the reflection

[Wait, 0.83] , hold on. Let me double-check that. Is there another way to-
[Hold, 0.05] on, let me double-check that. So, total words: 544 = 625. All-
[But, 0.04] wait, let me double-check that. S, 54 is 625. 24 -

Wait, hold on. Let me double-check that. Is there another way to approach this problem? Maybe by [Hmm, 0.03] , wait a second. Let me double-check that. So, total words-
directly calculating the number of words with at least one consonant? Hmm, that might [Let, 0.017] me just double-check my reasoning. Total words:-

Therefore, the number of 4-letter words with at least one consonant is the total number of words
minus the number of all-vowel words. That would be 625 - 16 = 609.

@ o ) i [Is, 0.007] that the final answer? Wait, let me double-check my reasoning--
Alternatively, | can think of it as the number of words with at least one consonant is equal to the total S0, 0.002] , is 609 th 2 L SR -

number of words minus the number of words with no consonants, which is exactly what | did first. So, [So. . is 609 the answer? Let me double-check my reasoning
625-16 =609, Dust, 0.001] to double-check, let me think if there's another way to--

The third "wait": the model is not sure whether it is necessary to conduct a check.
Wait, another thought: sometimes when | do these problems, | might forget that letters can be i

repeated, but in this case, the problem says letters may be used more than once, so repetition is [Wait, 0.20] , another thought: sometimes when | do these problems, | might forget that -
allowed. So, that's why it's 584 and 244, which is correct. 1, 0.13] think that's solid. So, yeah, 609 is the answer.

[Another, 0.12] way to think about it is using the concept

[Alternatively, 0.08] , if | think in terms of probability, the probability that a word -

**Final Answer** [So, 0.08] , yeah, I think that's solid. | don't see any mistakes in my reasoning.

The number of 4-letter words with at least one consonant is \boxed{609}. [1s, 0.06] there a chance | made a mistake in calculating 5742 Let me compute 5/4 again:
</think> 5+5=25, 25+5=125, 125+5=625. Yes, that's correct.

To determine how many 4-letter... § .
heref 1 think h
Thus, the number of 4-letter words with at least one consonant is \(\boxed{609}\). GCLE 0059.] i 60? s the °°T’“‘ answer ;
[Yeah, 003] , | think that's solid. So, | think the answer is 609.

So, yeah, | think I'm confident that 609 is the correct answer.

Figure 4: A qualitative analysis result of self-affirmation reflections and other reflections. At the
beginning of each reflective sentence, we save the top 8 high-probability words and continue rollout
based on these words. We also marked the first word and the corresponding confidence level. For
more details, please refer to Section @

Based on the results of classification, our anal-

Other Reflections

ySiS prOCCeded from two Complementary per- w000 Self-Affirmation Reflections .

—e— Other Reflectioyfs

spectives to identify patterns in self-affirmation

reflection occurrence. First, prior researches ool
[31, 26l has established that language patterns . Oﬁj
are critical in determining whether models ac- ¢, s
tivate specific reflection mechanisms during %
decision-making. Therefore, we sampled 20 055

self-affirmation reflections and other reflection
types, then performed multiple rollout iterations
from their contextual positions. We hope to . Togens
explore whether models can elicit distinct be- F1gure 5: The frequency (via bar chart) and average
havioral responses by producing diverse leading f:onﬁdence scores (via line plot) of the first words
words. As shown in Figure @] we found that in all reﬂegtlve sentences. The top five words are
self-affirmation reflections exhibit significantly Presented in our results. We found that when the
greater diversity in behavior-guiding continua- model engages in self-affirmation reflections, it

tion patterns compared to other reflection types. exhibits a ce.rtain level of uncertainty compared to
other reflections.

0
Wait Alternatively But So First

Specifically, during the initial reflection (Self-

Affirmation Reflection), the model attempts to verify its understanding of the problem context.
Examining the top 8 predicted word continuations, we observe the model’s indecision between
further reflection and progressing toward a solution, as evidenced by suggestions such as "break it
down". In the second reflection (Other Reflection), the trajectories of the model show a high degree
of consistency. Here, the top 8 predicted words uniformly advocate for continued reflection, such
as "double-check". The final reflection (Self-Affirmation Reflection) occurs after the model has



212
213

214
215
216
217
218
219
220
221
222
223
224

225
226
227
228

229

230
231
232
233
234

236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259

261

262
263
264

already provided the correct answer. Similar to the first reflection, we observe the model confronting
uncertainty, contemplating whether to terminate the task or initiate another round of reflection.

Second, we conducted an additional analysis of the quantity and probability of the leading words
across all reflections. It is worth noting that, for simplicity, we only selected the first word as leading
words, but a typical leading word is sometimes not necessarily a single word. For example, when
sentences start with "But", we found that the next word is "wait" in 38% of self-affirmation reflections.
In this case, "But wait" is more suitable to be used as a unique leading word. During statistical
processing, we excluded repetitive tail-end reflections from model outputs. Because self-affirmation
reflections sometimes exhibited recurring patterns where incremental reinforcement of leading-word
probabilities led to closed-loop generation. These loops could skew statistical accuracy. While this
phenomenon warrants further study, it falls outside the scope of this work. For an illustrative example
of such looping behavior and comprehensive results including looped sentences, refer to Appendix

The final result is shown in Figure[5] We present the top 5 high-frequency words in self-affirmation
reflection. To our surprise, the confidence level of leading words in self-affirmation reflection appears
to be lower than that in other Reflections. This finding echoes the results from the Figure[d] indicating
that when the model is uncertain about its actions, the output leading words also lack confidence.

4.2 Suppress Self-Affirmation Reflections

Other Reflections (Histogram)
elf-Affirmation Refiections (Histogram)

Up to now, our analysis highlights a critical insight: e e tecns isgom)
leading tokens in self-affirmation reflections exhibit — I A et S Ot
significantly lower generation probabilities compared 2
to other reflection types. Our objective is to sup-
press self-affirmation reflections in order to achieve
shorter outputs while maintaining performance. Con- .,
sequently, we propose a straightforward intervention:
when the model assigns a low probability to gener-
ating leading words, we set their probability to zero
to suppress self-affirmation reflections. Given the " oy
statistical significance of the "Wait" token, we first
focus on it in this paper.

Figure 6: The distribution of "Wait" in the

two types of reflections.
To validate our method, we analyze the probability

density of the "Wait" token across two reflection types in Figure [f] Though their distributions exhibit
partial overlap, they remain distinguishable through thresholding. We acknowledge that suppressing
low-probability "Wait" instances may inadvertently filter out other reflections. However, empirical
results show that even when such instances are suppressed, other high-probability tokens can still
facilitate emergence of necessary reflections via compensatory mechanisms, as exemplified by the
second reflection in Figure [d] We also recognize the limitation of exclusively targeting the "Wait"
token, which relates to balancing interventions across multiple leading words. In practical results,
we found that since "wait" frequently follows "But", suppressing this token also partially mitigates
self-affirmation reflections. Consequently, we intervene on both "Wait" and "wait" (collectively
referred to as the "wait" tokens hereafter). More discussions of other interfered tokens appear in

Appendix

Our results also demonstrate that suppressing low-probability "wait" tokens maintains performance
integrity and produces shorter outputs. In train-free settings (e.g., R1-Distill-Qwen-1.5B in Table
[I), output lengths shorten while performance improves when thresholds decrease below 0.5. For
training-based scenarios, ablation studies identify optimal performance at a threshold of 0.3. These
findings curiously align with the probability distributions in Figure[6] suggesting that thresholds < 0.3
effectively suppress self-affirmation reflections while having minimal impact on other reflection

types.

S Experiments

We first assess the impact of removing Self-Affirmation Reflections in Section[5.1] Subsequently, in
Section[5.2] we integrate a representative train-based approach to verify whether explicitly suppressing
self-affirmation reflections can lead to improved results.



265

266

267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284

285

286
287

289
290
291
292
293
294
295
296
297
298

300

301
302
303

305
306
307
308
309

311

5.1 Train-free Experiments
5.1.1 Settings

We hypothesize that removing low-probability self-affirmation reflection will not degrade model
performance. To test this hypothesis, we conducted experiments across several prominent reasoning
models: R1-Distill-Qwen-1.5B/7B/32B [12], QwQ-32B [37] and Qwen3-32B [38]]. We also addition-
ally compared Underthink [40]], which intervened with logits within a certain window length. For
more details and our discussion on this work, please refer to Appendix[A.2] Similar to the previous
approaches [6, [3, 24, [32]], our experiments are conducted on four datasets: (1) MATHS00 [22],
comprising 500 problems across seven mathematical domains (algebra, geometry, number theory,
etc.) that challenge both humans and LLMs; (2) AIME24, featuring 2024 American Invitational
Mathematics Examination problems to test advanced mathematical competition problem-solving
skills; (3) AMC23 [[L5]], with problems from the 2023 American Mathematics Competitions covering
secondary school mathematics; and (4) GSMS8K [10]], containing 8.5K linguistically diverse elemen-
tary school math problems to evaluate simple arithmetic reasoning. Regarding the results of the
out-of-domain dataset, please refer to the Appendix[A.6|

For AIME24 and AMC23, we sampled eight responses per question. For MATH500 and GSMS8K, we
collected one response per problem. The maximum allowed output length was 32k tokens. In order
to evaluate Qwen3-32B [38], we utilized the latest vVLLM implementation [19] in zero-shot inference
settings. We report the average accuracy (Acc) and average token count (LEN) per response across
all datasets. All experiments were conducted on NVIDIA L20 GPUs.

5.1.2 Results

As shown in Table[I] we evaluated the impact of different thresholds on performance. Our results
indicate that an appropriate threshold can effectively reduce output length without compromising
performance, and in some cases, even enhances performance with shorter outputs, which is consistent
with our previous analysis in Figure[6] However, as the threshold increases, high-probability "wait"
tokens are also filtered out, leading to a noticeable decline in performance due to the removal of some
necessary reflections. Despite its simple implementation, our method achieves a significant reduction
in output length with almost no performance loss. Specifically, it reduces average length by 18.7%,
14.3%, 11.1%, 9.1% and 8.4% for R1-Distill-Qwen-1.5B (Threshold-0.9), R1-Distill-Qwen-7B
(Threshold-0.7), R1-Distill-Qwen-32B (Threshold-0.7), QwQ-32B (Threshold 0.7) and Qwen3-32B
(Threshold 0.9), respectively. Moreover, we were surprised to find that the compression ratio adapts
dynamically across different datasets. For instance, AIME24 demonstrates a lower compression ratio
than MATHS500. This aligns with the intuition that AIME24, being more challenging, inherently
possesses less compressible structure compared to MATHS500.

5.2 Train-based Experiments

5.2.1 Settings

In this section, we incorporate our approach into a representative training-based method. We
utilize EfficientReasoning [3]], which assigns positive rewards to correct responses and zero rewards
to incorrect ones, with longer correct responses receiving smaller rewards. A penalty intensity
coefficient « is included to fine-tune the compressive intensity. Owing to resource constraints
inherent in training reinforcement learning (RL) models, we restrict our evaluation to the Deepseek-
R1-Distill-Qwen-1.5B checkpoint [12]. All other experimental configurations are inherited from
the EfficientReasoning [3l], with rollout budgets specifically set at 10 for AIME24, 3 for MATHS500,
and 1 for GSMS8K. Our intervention is confined to the rollout phase during training. For testing,
we rigorously adhere to the original implementation details: environments are constructed using
the provided Dockerfile, and inference is conducted with the officially released checkpoints when
evaluating EfficientReasoning [3][]_] While the performance on specific datasets showed minor

'Owing to variations in experimental settings, R 1-Distill-Qwen-1.5B exhibits slight performance differences
between train-free and train-based experiments. This discrepancy aligns with findings reported in prior studies
[16]. We present our results as measured truthfully. Notably, when evaluating the average performance across
the three datasets, the outcomes from both experimental environments demonstrate remarkable consistency.



312
313

314
315
316
317
318
319

321

322

323
324
325
326
327
328
329
330

331

332
333

discrepancies, the average performance across the three datasets aligned closely with the results
reported in the EfficientReasoning [3].

During the rollout phase, we filter out all "wait" tokens that have confidence scores below 0.3.
Reinforcement learning (RL) requires generating samples of varying lengths to strengthen shorter
responses. However, indiscriminate intervention across all samples may compromise the learning
of negative samples. Negative samples do not need to be shortened in length by suppressing self-
affirmation reflections. Therefore, our objective is to suppress self-affirmation reflections in positive
samples only. Yet, determining in advance which responses are correct and should be intervened is
challenging. Therefore, we adopt an approximate method and intervene with a 25% probability each
time.

Table 1: The influence of different thresholds on the original model. The degradation and improvement
of performance are marked with and

Models AIME24 AMC23 GSM8K MATH500 Average Average
Acct LENJ Acct LENJ Acct LENJ | AccT LEN| Acct LENJ

R1-Distill-1.5B | 31.7 16415.7 | 69.7 10370.1 | 75.7 676.7 | 82.7 5488.0 64.9 8237.6
Underthink 275 16866.6 | 71.3 9907.1 | 75.8 639.5 | 82.0 56419 | 64.1 8263.8
Threshold 0.1 325 154689 | 71.9 94125 | 753 7348 | 84.6 5268.1 | 66.1 7721.1
Threshold 0.3 275 161433 | 725 91015 | 77.6 6674 | 83.0 4893.7 | 65.2 7701.5
Threshold 0.5 279 141538 | 65.6 8370.6 | 76.0 587.0 | 82.0 49249 | 62.9 7009.1
Threshold 0.7 26.7 14989.6 | 69.7 7679.0 | 753  635.6 | 80.6 4549.0 | 63.1 6963.3
Threshold 0.9 283 141212 | 71.6 77655 | 752 6989 | 81.6 41913 | 64.2 6694.2
R1-Distill-7B 50.8 13781.8 | 89.7 62583 | 92.1 15332 | 92.6 4096.8 81.3 6417.5
Underthink 534 12964.6 | 89.7 62198 | 92.8 14053 | 93.2 41014 | 82.3 6172.8
Threshold 0.1 52.1 141112 | 90.3  6205.8 | 91.1 15044 | 914 4319.6 | 81.2 6535.3
Threshold 0.3 57.1 128522 | 89.1 64714 | 91.8 1373.6 | 93.2 3760.5 | 82.8 6114.4
Threshold 0.5 50.8 12652.2 | 884 6009.2 | 91.7 13974 | 924 3747.2 | 80.8 5951.5
Threshold 0.7 533 115483 | 89.7 54269 | 927 12913 | 924 3720.1 | 82.0 5496.6
Threshold 0.9 47.1 114773 | 87.8 51452 | 922 1261.5 | 93.6 3365.2 | 80.2 5312.3
RI-Distill-32B | 70.4 11363.4 | 95.0 5679.6 | 93.6 6444 | 93.8 36409 88.2 5332.1
Underthink 70.9 107443 | 953 5849.0 | 940 633.0 | 948 3498.7 | 88.7 5181.3
Threshold 0.1 704 109559 | 96.6 5783.8 | 93.6 6634 | 93.6 36534 | 88.6 5264.2
Threshold 0.3 72.1  11170.5 | 953  5929.7 | 940 6294 | 944 3456.5 | 89.0 5296.5
Threshold 0.5 68.8 10350.5 | 947 5788.8 | 94.1 6284 | 93.6 3239.2 | 87.8 5001.7
Threshold 0.7 70.0 97475 | 969 52321 | 935 6255 | 92.6 3339.2 | 88.2 4736.1
Threshold 0.9 66.3 101934 | 944 47744 | 942 5934 | 93.8 31639 | 87.2 4681.3
QwQ-32B 783 13709.0 | 98.8  7591.2 | 96.5 1646.4 | 954 4267.6 92.2 6803.5
Underthink 719 135799 | 97.5 77982 | 964 15405 | 96.0 4319.5 | 92.0 6809.5
Threshold 0.1 79.6 132394 | 988 76833 | 96.2 1617.6 | 952 4405.7 | 924 6736.5
Threshold 0.3 775 132963 | 99.1 73928 | 964 15753 | 95.8 4241.1 | 92.2 6626.4
Threshold 0.5 77.1 132418 | 95.6  7490.8 | 96.5 15464 | 95.6 42259 | 91.2 6626.2
Threshold 0.7 77.1  12547.0 | 984  6693.0 | 96.5 14913 | 96.2 40184 | 92.1 6187.4
Threshold 0.9 76.7 126133 | 97.5 66525 | 964 14569 | 944 3883.9 | 91.2 6151.6
Qwen3-32B 804 13369.1 | 969 70922 | 963 1704.2 | 964 4570.0 92.5 6683.9
Underthink 79.6 125795 | 972 70823 | 96.1 16049 | 96.0 4667.7 | 92.2 6483.6
Threshold 0.1 80.4 130544 | 97.8 73965 | 955 17235 | 956 46659 | 92.3 6710.1
Threshold 0.3 82.1 12601.8 | 95.6  7131.1 | 964 1627.6 | 952 46534 | 92.3 6503.5
Threshold 0.5 81.7 12571.7 | 972 6898.0 | 96.2 1607.7 | 95.0 4535.1 | 92.5 6403.1
Threshold 0.7 81.2 12751.7 | 984 65312 | 96.1 1601.2 | 958 4316.8 | 92.9 6300.2
Threshold 0.9 78.8 121522 | 972 65108 | 96.1 1561.5 | 95.6 42775 | 91.9 6125.5

5.2.2 Results

The main results as shown in Table [2} As anticipated, our method achieved substantially shorter
average lengths while maintaining comparable performance. It should be noted that text length and
accuracy are inherently conflicting objectives. The results from EfficientReasoning [3]] demonstrate
that the stronger the emphasis on shorter text, the more severe the drop in accuracy. The model
pursues shorter positive responses at the same intensity, which is approximately equivalent to using
a stronger compression intensity. This explains the slight dip in accuracy. However, as shown in
Table@], the accuracy decrease is minimal and still surpasses the baseline (R1-Distill-Qwen-1.5B).
Moreover, at the same text length, our method delivers superior performance.

5.2.3 Ablation Study

In this section, we compared the different thresholds for filtering "wait" tokens and the impact of the
probability of intervention responses. All ablation experiments were conducted based on o = 0.05.



334
335
336
337
338
339

340
341
342
343

344

345
346
347
348

350
351

Table 2: The results of EfficientReasoning [3]] combines our method. ER is the abbreviation of
EfficientReasoning [3]. * denote the results from EfficientReasoning [3]] paper. The degradation and

improvement of performance are marked with and

Models ACC?IM]iZéN 1 A(I:\(/:I?THSEIO\I 1 ACSTSMEIEN 1 Average Acct  Average LEN|
R1-Distill-1.5B | 28.7 15651.0 | 85.1 5274.0 | 759 709.0 63.2 7211.3
SFT* 243 13805.5 | 77.8 37012 | 77.6 508.2 59.9 6004.9
DPO* 28.7 151458 | 83.3 4478.6 | 76.3 831 62.8 6818.4
ER(a = 0.05) 30.3 9452.9 842 26483 | 852 7769 66.6 4292.7
ER(a = 10.1) 30.7 12071.2 | 82.2 2652.0 | 82.1 628.0 65.0 5117.1
ER(ax = 0.2) 29.0 10043.7 | 83.3 2378.6 | 80.3 297.3 64.2 4239.9
ER(a = 0.4) 26.3 8767.6 733  1869.8 | 68.1 138.6 55.9 3592.0
Ours(a = 0.05) | 27.7 7712.6 83.6 2366.2 | 85.7 760.1 65.7 3613.0
Ours(a = 0.1) 30.0 8312.5 81.1 2103.8 | 79.8 368.3 63.6 3594.8
Ours(a = 0.2) 26.3 7807.4 80.1 1798.0 | 80.9 341.9 62.4 3315.8
Ours(a = 0.4) 29.1 7268.0 759 16144 | 782 184.8 61.1 3022.4

Table 3: Impact of different thresholds for filtering "wait" tokens. The baseline represent Efficien-
tReasoning [3](ac = 0.05).

Models ACC?IME‘ZI;‘N 1 Ai\gﬁTHfgg 1 ACCGTSMEIEN 1 Average AccT  Average LEN|
R1-Distill-1.5B | 28.7 15651.0 | 85.1 5274.0 | 759 709.0 63.2 7211.3
Baseline 303 94529 | 842 26483 | 8.2 7769 66.6 4292.7
Threshold-0.1 29.7 122499 | 80.8 3031.8 | 81.3 5385 63.9 5273.4
Threshold-0.3 273 79189 | 825 2269.1 | 85.8 7034 65.2 3630.5
Threshold-0.5 29.0 9457.8 | 80.5 2241.6 | 822 4788 63.9 4059.4
Threshold-0.7 303 8695.8 | 80.7 23582 | 83.4 632.0 64.8 3895.3
Threshold-0.9 303  9609.1 | 83.5 2883.2 | 825 6769 65.5 4389.8

Impact of different threshold: In this experiment, the probability of intervention responses is fixed
on 50%. As shown in Table[3] when the threshold is below 0.9, the model’s performance initially
increases but then decreases. This indicates that excessive filtering of self-affirmation reflections can
significantly degrade performance. However, when the threshold is set to 0.9, performance improves
due to increased length. Overall, there is no linear relationship between the threshold and length. We
attribute this to the uncontrollable attribute of the RL training process.

Table 4: Impact of different the probability of intervention responses. The baseline represent
EfficientReasoning [3](a = 0.05).

Models Acc?IMIizéN 1 Ai\fTATHEEO(IiI 1 AcSTSMEIéN 1 Average AccT  Average LEN]
RI1-Distill-1.5B 287 15651.0 | 85.1 5274.0 | 759 709.0 63.2 7211.3
Baseline 303 94529 | 842 26483 | 852 7769 66.6 4292.7
Probability-25% 277 77126 | 83.6 2366.2 | 857 760.1 65.7 3613.0
Probability-50% 273 79189 | 825 2269.1 | 858 7034 65.2 3630.5
Probability-75% 293 122994 | 824 31146 | 828 6108 64.8 5341.6
Probability-100% | 24.0  8136.7 | 81.5 21447 | 81.6 497.6 62.3 3593.1

Impact of different probability: In this experiment, the thresholds for filtering "wait" tokens fixed
on 0.3. As shown in Table[d] as the probability increases, performance exhibits a gradual decline.
Overly aggressive intervention in the rollout process may generate shorter negative samples, thereby
undermining the model’s adversarial learning capabilities.

6 Conclusion

Our paper delves into the distinctive features of self-affirmation reflections in the distribution of
leading words and their correlation with confidence. Leveraging these insights, we introduce a strategy
to suppress critical leading words. Experimental results demonstrate that this method effectively
reduces output length in both training-free and training-based scenarios while sustaining or even
elevating model performance. While we acknowledge certain limitations (see Appendix[A.T), we aim
for this study to offer a fresh viewpoint on achieving more precise length compression at step-level
efficient reasoning and to improve the efficiency of large reasoning models.



352

353
354

355

356

357
358
359

360
361

362
363
364

365
366

367
368
369
370

371
372
373

374
375

377

378
379
380

381
382
383

384
385

386
387
388

389
390
391

392
393
394

395
396
397

References

[1] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

[2] Al@Meta. Llama 3 model card. 2024.
[3] Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[5] Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning
with adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

[6] Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steer-
able reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986,
2025.

[7] Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning
through dense representations. arXiv preprint arXiv:2412.13171, 2024.

[8] Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang
Sui, Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based
on-device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428,
2025.

[9] Yu-Neng Chuang, Helen Zhou, Prathusha Sarma, Parikshit Gopalan, John Boccio, Sara Bolouki,
and Xia Hu. Learning to route 1lms with confidence tokens. arXiv preprint arXiv:2410.13284,
3,2025.

[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[11] Jared Fernandez, Clara Na, Vashisth Tiwari, Yonatan Bisk, Sasha Luccioni, and Emma Strubell.

Energy considerations of large language model inference and efficiency optimizations. arXiv
preprint arXiv:2504.17674, 2025.

[12] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[13] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[14] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

[15] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[16] Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu,
and Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths
to reproducibility. arXiv preprint arXiv:2504.07086, 2025.

[17] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

10



398
399
400

401
402
403
404

406

407
408
409

410
411
412

413
414
415

416
417
418

419
420

421
422
423

424
425
426

427
428

429
430
431

432
433
434

435

437

438
439
440

441
442
443

444
445
446

[18] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

[19] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

[20] Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-
thought? a token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

[21] Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo,
and Caiming Xiong. Reward-guided speculative decoding for efficient Ilm reasoning. arXiv
preprint arXiv:2501.19324, 2025.

[22] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[23] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[24] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naigiang Tan, Xiaochun
Cao, and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning
pruning. arXiv preprint arXiv:2501.12570, 2025.

[25] Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve:
Length-compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

[26] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[27] Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data,
2024.

[28] Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

[29] Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

[30] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[31] Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani,
Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, et al. Rethinking reflection
in pre-training. arXiv preprint arXiv:2504.04022, 2025.

[32] Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang,
Kai Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025.

[33] Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi:
Compressing chain-of-thought into continuous space via self-distillation. arXiv preprint
arXiv:2502.21074, 2025.

[34] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

11



447
448
449
450

451
452
453

454

455

456
457

459
460
461

462

464
465

466
467
468

470

[35] Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[36] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[37] Qwen Team. Qwqg-32b: Embracing the power of reinforcement learning, March 2025.
[38] Qwen3 Team. Qwen3, 2025.

[39] Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu,
Derek Fai Wong, Heng Ji, and Kam-Fai Wong. Harnessing the reasoning economy: A survey of
efficient reasoning for large language models. arXiv preprint arXiv:2503.24377, 2025.

[40] Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian
Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
ol-like llms. arXiv preprint arXiv:2501.18585, 2025.

[41] Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

[42] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

[43] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[44] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

12



471

472

473
474
475
476
477
478

479
480
481
482
483

484

485

487
488
489
490
491

492
493
494

496
497

A Technical Appendices and Supplementary Material

A.1 Limitations

Two core challenges persist. First, methods for systematically identifying candidate tokens for
intervention remain underdeveloped. Second, developing principles to balance dependencies among
multiple intervened words represents an open research question. Consequently, our intervention
framework in this work focuses solely on the most salient specific tokens. Future research will explore
strategies to generalize token intervention approaches, addressing both identification scalability and
multi-word coordination.

We further recognize that the foundational mechanisms governing the model’s reasoning process,
as well as the emergence of redundant reflections during generation, are not yet fully understood.
These knowledge gaps persist within the large reasoning model community. As the field matures, we
anticipate opportunities to integrate insights from complementary work and conduct more in-depth
analyses of these phenomena in subsequent studies.

uuuuuuuuuuuuuuuuuuu

A.2 Comparison with concurrent works

Figure 7: Results of t-SNE visualization of different reasoning thoughts in the SEAL [6]. We
additionally visualized "reflection thoughts" and "transition thoughts" with confidence levels below
the threshold.

We analyze two concurrent excellent works:

SEAL [6]: SEAL focuses on modifying activation values to convert reflective steps (termed "reflection
thoughts" and "transition thoughts" in their paper) into executive steps (termed "execution thoughts").
For more details, please refer to the SEAL [6]. In contrast, our work identifies which reflective
steps can be preserved and which should be removed. We extend SEAL’s t-SNE visualization
by highlighting reflective steps with low confidence (see Figure[A.2)), successfully distinguishing
ambiguous reflective steps overlapping with executive steps that typically indicate model confusion.

It is important to note that SEAL only attempts a maximum output length of 10,000 tokens. This
limitation arises because SEAL requires intervention on activation values during the "think" phase
(between "<think>" and "</think>"), which presents significant implementation challenges, such as
integration with vLLM. In contrast, our method achieves a maximum output length of 32,000 tokens,
consistent with DeepSeek’s testing configuration. This advancement is attributed to our approach’s
ability to directly integrate with vLLM.

13



498
499
500

502
503
504
505
506

507
508
509
510
511
512
513
514
515
516

517

518
519
520

521

522

523

524

525

526
527

528

Table 5: Comparison of Underthink [40]] and our method. « and (3 represent the intensity and length
of the intervention respectively. For more details, please refer to Underthink [40].

Models AIME24 AMC23 GSMS8K MATHS00 Average Average
Acct LENJ Acct LENJ Acct LENJ | Acct LENJ Acct LEN|
R1-Distill-1.5B 31.7 1641577 | 69.7 10370.1 | 75.7 676.7 | 827 5488.0 64.9 8237.6

Threshold 0.1 325 154689 | 71.9 94125 | 753 7348 | 84.6 5268.1 66.1 7721.1
Threshold 0.3 275 161433 | 725 91015 | 77.6 667.4 | 83.0 4893.7 65.2 7701.5
Threshold 0.5 279 141538 | 65.6 8370.6 | 76.0 587.0 | 82.0 49249 62.9 7009.1
Threshold 0.7 26.7 14989.6 | 69.7 7679.0 | 753 635.6 | 80.6 4549.0 63.1 6963.3
Threshold 0.9 283 141212 | 71.6 77655 | 752 6989 | 81.6 41913 64.2 6694.2

a=1,8=200 28.8  16689.0 | 68.1 103152 | 76.9 7299 | 84.0 5375.0 64.4 8277.3
a=1,5=:600 254 177093 | 725  9776.8 | 754 736.6 | 86.6 5117.2 65.0 8335.0
a=1,3=1000 31.3  16736.7 | 70.3 103134 | 75.8 601.9 | 84.8 5404.9 65.5 8264.2
a=1,8=+o0 29.6 15053.0 | 71.9 8445.1 | 751 615.6 | 83.8 4804.9 65.1 7229.6
a= 3,3 =200 279 16278.8 | 70.6  9100.6 | 76.1 7487 | 842 5433.1 64.7 7890.3
a=3,8=:600 275 16866.7 | 71.3  9907.1 | 75.8 639.5 | 82.0 5641.9 64.1 8263.8
a=3,5=1000 279 16497.6 | 68.4 10085.1 | 743 671.0 | 81.8 55334 63.1 8196.8
a=3,5=+0c0 28.8 134903 | 684 71673 | 752 6025 | 834 45753 63.9 6458.8
o =10,8 =200 28.8 17063.6 | 67.8  9989.1 | 75.7 692.8 | 83.8 5612.0 64.0 8339.4
a = 10,5 =600 304 157336 | 669 9917.3 | 750 6359 | 824 56333 63.7 7980.0
a=10,8=1000 | 329 167089 | 70.6 9649.2 | 755 566.9 | 83.2 5214.8 65.6 8035.0
a=10,8=+o0c0 | 292 13938.6 | 719 72762 | 759 648.0 | 82.0 4405.8 64.7 6567.2

Underthink [40]: This paper aims to address the lack of path exploration capability in models
by adjusting the logits of certain reflective leading words within a fixed window. This approach
encourages models to explore current reasoning paths more thoroughly during the exploration process.
Our focus differs. We aim to suppress self-affirmation reflections in the whole output to achieve
more concise reasoning. Whether it is during the exploration process (self-affirmation reflection after
already correct steps) or after the completed exploration (self-affirmation reflection after outputting
correct answers). Notably, while this work provides a preliminary analysis of underthinking, our
work offers a more in-depth and specific analysis of self-affirmation reflections, presenting a fresh
perspective on efficient reasoning area.

We also compared our method with Underthink [40], and the results are presented in Table [5] and
Table[T] To ensure a fair comparison, we only intervened on the same tokens (all "wait" tokens) as
described in the main text. In this context, a and 8 denote the intensity and window length of the
intervention, respectively. Underthink [40]] recommends parameters of & = 3 and 8 = 600, which
are also the default parameters in Table[I] As shown in Table[5] the phenomenon identified in this
paper also contributes to the improvement of Underthink [40]]. For instance, when the intervention
window length § in Underthink [40] is set to +o0, the performance remains nearly unchanged and
sometimes even improves, while the outputs become shorter. However, compared with Underthink
[40]], we consider that intervening based on probability is more straightforward and better aligned
with the analysis in our paper. Therefore, we ultimately chose not to directly intervene in the logits.

A.3 Template

There are the templates we use. During the second judgment phase, the current reflection and the
sequence of steps spanning from current reflection step to the subsequent reflection step are processed
simultaneously.

The first judgment template

Current step: {strl}

Please help me determine the function of the current step.
Is the current step a reflective behavior?

Output the answer directly to <answer></answer>, for example, <answer>Yes</answer> or <an-
swer>No</answer>.

nn

14



529

530

531

532

533

535
536
537
538

539

540

541
542
543
544
545
546
547

548

550
551
552
553
554
555

556
557
558
559
560

[Wait, 0.301
[Wait, 0.419
[Wait. 0.416), but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.
[Wait, 0.529], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.
[Wait, 0.602], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.
[Wait, 0.669], but 343 is 7 » 49, which is 343, and 343 is less than 349, so 49 is correct.

], but hold on, 343 is 7 * 49, but 343 is less than 349, so 49 is correct.

i
)
1.
i
i

[Wait, 0.769], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.

1
1
1
i
]
i

but 343 is 7 * 49, which is 343, and 343 is less than 349, so 49 is correct.

The second judgment template =

nn

The previous steps: { strl } [Wait, 0.811], but 343 is 7 » 49, which is 343, and 343 isless than 349, 50 49 is correct.

[Wait, 0.855], but 343 is 7 * 49, which is 343, and 343 is less than 349, so 49 is correct.

The initial step of reflection: { str2 } [Wait, 0.881], but 343 is 7 * 49, which is 343, and 343 is less than 349, s 49 is correct.
= v [Wait, 0.907], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.
@' [Wait, 0.916], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.

[Wait, 0.919], but 343 is 7 = 49, which is 343, and 343 is less than 349, so 49 is correct.

The subsequent steps of reflection: {str3}

Please help me judge the role of the reflection
Steps. Is the I‘esu]t Of the reﬂection afﬁrms Figure 8: An example Where Output gets trapped
the previous content? Output your answer di- ip a loop.

rectly to <answer></answer>, for example, <an-

swer>Yes</answer> or <answer>No</answer>.

nn

A.4 Influence of the tail repeated reflections

Figure [§]illustrates a case where the model becomes trapped in a loop. The correct answer is 49,
yet the model repeatedly performs self-affirmation reflection and enhances the probability of the
leading word. As demonstrated in Figures [9] and [T0} the repeated steps filtered to the end of the
output significantly impact the statistical results. This presents an intriguing phenomenon worth
in-depth investigation. Moreover, the intervention proposed in this paper can partially address this
issue. Notably, despite this issue, Self-affirmation reflections still retains significantly confidence bias
in leading tokens compared to other reflections. This proves the generalization of our discovery.

Other Reflections 0.85
Self-Affirmation Rgflections

14000 1 “Wait" in Other Reflections (Histogram)
“Wait" in Self-Affirmation Reflections (Histogram)
0.80 —— "Wait" in Other Reflections (Smoothed Distribution)

—o— Self-Affirmation/Rgflections 12 { — "Wait" in Self-Affirmation Reflections (Smoothed Distribution)

12000

10000

8000

Count

Density

6000

4000

2000

Wait Alternatively But So First
Tokens o

0.0 02 04 06 08 10
Probability

Figure 9: The frequency (via bar chart) and average

confidence scores (via line plot) of the first words Figure 10: The distribution of "Wait" in the two
in all reflective sentences before filtering out the types of reflections before filtering out the repeti-
repetitive reflections at the tail. tive reflections at the tail.

A.5 Discussion on interfered tokens

In this section, we evaluate the impact of intervening on different tokens for R1-Distill-Qwen-
1.5B [12]. Results in Table [f] demonstrate consistent patterns across settings. When threshold
values are small, all results align with our hypothesis in Section[5.1} removing the Self-Affirmation
Reflection does not significantly degrade performance but generates shorter outputs. This behavior is
observed in interventions targeting "wait" tokens (Threshold=0.9), "wait" + "alternatively" tokens
(Threshold=0.5), and "wait" + "alternatively" + "but" tokens (Threshold=0.5). Increasing threshold
values shorten outputs at the cost of reduced performance.

For fixed thresholds, output length decreases progressively as the number of intervened tokens
increases. However, addressing dependencies between multiple tokens remains challenging due
to combinatorial complexity. Notably, "wait" tokens exhibits statistically significant effects in our
analysis. Given these factors, we defer exploration of multi-token interactions to future work and
focus primarily on "wait" tokens in this paper.

15



561

562
563
564
565
566
567
568
569
570

571

572
573

574

576
577
578
579
580
581
582
583
584
585

Table 6: Comparison of different interfered tokens. Baseline represent the results of R1-Distill-Qwen-
1.5B [12].

Models AIME24 AMC23 GSMSK MATHS00 Average Average
AccT LENJ Acct LENJ Acct LENJ | Acct LENJ Acct LENJ]
Baseline 31.7 16415.7 | 69.7 10370.1 | 75.7 676.7 | 82.7 5488.0 64.9 8237.6

"wait" tokens
Threshold 0.1 | 32.5 15468.9 | 71.9 9412.5 | 753 7348 | 84.6 5268.1 66.1 7721.1
Threshold 0.3 | 27.5 161433 | 72.5 91015 | 77.6 667.4 | 83.0 4893.7 65.2 7701.5
Threshold 0.5 | 27.9 14153.8 | 65.6 8370.6 | 76.0 587.0 | 82.0 49249 62.9 7009.1
Threshold 0.7 | 26.7 14989.6 | 69.7 7679.0 | 753 635.6 | 80.6 4549.0 63.1 6963.3
Threshold 0.9 | 28.3 14121.2 | 71.6  7765.5 | 752 6989 | 81.6 4191.3 64.2 6694.2

"wait" + "alternatively" tokens
Threshold 0.1 | 25.8 16756.1 | 669 10206.1 | 74.6 679.0 | 83.4 5458.2 62.7 8274.8
Threshold 0.3 | 30.0 163939 | 69.4 8903.5 | 754 703.0 | 83.8 4944.0 64.6 7736.1
Threshold 0.5 | 29.2 14704.1 | 72.8 76069 | 76.0 567.2 | 84.0 4443.0 65.5 6830.3
Threshold 0.7 | 29.2 133023 | 69.7 6983.7 | 75.8 5959 | 81.8 4012.1 64.1 6223.5
Threshold 0.9 | 26.7 12735.7 | 70.0  6708.7 | 76.0 595.7 | 82.4 4086.4 63.8 6031.6

"wait" + "alternatively" + "but" tokens
Threshold 0.1 | 28.3 16280.2 | 71.9 97704 | 77.1 652.8 | 81.8 54274 64.8 8032.7
Threshold 0.3 | 30.4 142832 | 69.4 79734 | 75.1 6194 | 82.8 4546.2 64.4 6855.5
Threshold 0.5 | 26.7 12117.4 | 72.8 62875 | 76.1 528.8 | 828 3672.2 64.6 5651.5
Threshold 0.7 | 27.1  9525.1 | 68.1 5459.7 | 76.1 5189 | 804 33577 62.9 47154
Threshold 0.9 | 24.6 94325 | 68.4 52595 | 76.0 509.4 | 80.6 3221.1 62.4 4605.6

Table 7: The influence of different thresholds on the original model in out-of-domain dataset.

R1-Distill-1.5B | RI1-Distill-7B | R1-Distill-32B QwQ-32B Qwen3-32B
Acct LENJ Acct LENJ] | Acct LENJ | Acct LENJ | Acct LENJ
Baseline 33.8 103289 | 50.9 9264.1 | 60.0 67232 | 62.7 9103.7 | 67.7 8086.5

Threshold 0.1 | 35.6  9288.1 | 483 89274 | 609 6761.1 | 649 89345 | 68.0 8270.6
Threshold 0.3 | 36.5 9411.5 | 50.7 84625 | 60.6 6539.8 | 649 8610.2 | 68.7 7973.7
Threshold 0.5 | 33.7 9083.3 | 47.1 8055.1 | 60.5 6123.7 | 63.1 8355.0 | 68.8 7826.6
Threshold 0.7 | 349  8896.1 | 46.5 8637.6 | 60.6 62458 | 63.6 79872 | 674 77714
Threshold 0.9 | 32.6 108509 | 51.0 94983 | 589 6953.1 | 634 7597.0 | 68.0 7571.6

A.6 Results of out-of-domain dataset

We additionally evaluate our model on out-of-domain test data using the GPQA-Diamond benchmark
[30]. GPQA-Diamond serves as a rigorous evaluation dataset designed to assess models’ capacity for
deep reasoning and domain expertise. This dataset represents the highest-quality resource within the
GPQA series, comprising 198 graduate-level or competition-level multiple-choice questions. The
questions primarily focus on core STEM disciplines including biology, physics, and chemistry, pre-
senting complex problems that require sophisticated reasoning abilities. We sampled four responses
for each question and restricted the output length to 32k tokens. We report the average accuracy
(Acc) and average token count (LEN) per response. As shown in Table|/| our method generates
significantly shorter outputs on out-of-domain dataset while maintaining competitive performance.

A.7 TImplementation in vLLM [19]

from transformers import AutoTokenizer, AutoModelForCausallLM

from vllm import LLM, SamplingParams

import torch

from functools import partial

import os

os.environ["VLLM_USE_V1"] = "0" # we use latest vLLM version for
testing (wen3. In order to use
logits_processors, we need to set
this to O

def prob_adjustment (token_ids, logits, adjust_ids, values, threshold):

assert len(logits.shape) == 1
probs = torch.softmax(logits, dim=-1)

16



586

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

849

648
649

logits[adjust_ids.to(logits.device)] = torch.where(probs[
adjust_ids.to(logits.device)] <
threshold, values, logitsl|[
adjust_ids.to(logits.device)])
return logits

# load the tokenizer and the model

deepseek_1_5b_path="your path"

tokenizer = AutoTokenizer.from_pretrained(deepseek_1_5b_path)
1lm = LLM(model=deepseek_1_5b_path, tensor_parallel_size=4)

# prepare the model input

Question = "Carlos went to a sports store to buy running shoes.
Running shoes were on sale, with
prices reduced by $20\%$ on every
pair of shoes. Carlos also knew
that he had to pay a $7.5\%$ sales
tax on the discounted price. He had

$$43$ dollars. What is the
original (before discount) price of
the most expensive shoes he could
afford to buy?"

Template = ’<|begin_of_sentence|><|User|>Please reason step by step,
and put your final answer within \\
boxed{{}}. Question: {inputl}<|
Assistant |><think>\n’ # from
EfficientReasoning

Input_text = Template.format(input=Question)

# prepare the sampling params, just for a example without any
randomness. During the formal test,
we strictly adhered to the
official configuration of Deepseek.
ori_sampling_params = SamplingParams(
max_tokens=32768,
n=1,
)
our_sampling_params = SamplingParams (
max_tokens=32768,
n=1,
logits_processors=[
partial(
prob_adjustment,
adjust_ids=torch.tensor ([11489, 3783, 14190, 13824]),
values=float (’-inf’),
threshold=0.3

)

# test
ori_output

1lm.generate (Input_text, sampling_params=
ori_sampling_params)

our_output = 1llm.generate(Input_text, sampling_params=
our_sampling_params)

len(tokenizer.encode (ori_output [0].outputs[0].text,
add_special_tokens=False))

len(tokenizer.encode (our_output [0].outputs[0].text,
add_special_tokens=False))

print ("original length:", ori_length)

print ("our length:", our_length)

ori_length

our_length

We provide the simplest implementation method in vLLM [19]. However, for a perfect running speed,
we suggest achieving it by directly creating a new CustomSampler class. For example,

17




650
651

652

8s%

1lm.11lm_engine.model_executor.driver_worker.model_runner .model.sampler
= CustomSampler (...). # when
tensor_parallel_size = 1

18




655

656

657
658

659

660
661

662
663
664
665
666
667
668
669
670
671

672

673

674

675

676

677

678

679
680
681
682
683
684
685
686
687
688
689
690

692

693
694

695

697
698
699
700
701
702

704
705

706

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of our work in Section[A]l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

19



707

708

709
710
71
712
713
714
715
716
717
718

719

720
721
722

723

724
725

726

727
728
729
730
731
732
733
734
735

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

758

760
761

Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper in Section and Section[5.2.1]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20



762

763

764

765

766
767

769
770
771

772
773
774

775
776

777
778
779

780
781

782
783
784

785
786
787

788

790

791

792
793

794
795

797
798

799

800
801

802

803
804
805
806
807
808
809
810
811
812

Answer: [Yes]
Justification: We provide the necessary code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We describe the implementation in detail to make it reproductiive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report other appropriate information about the statistical significance of
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

21


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

813
814

815
816
817

818
819
820

821
822
823

824
825
826

827

828
829

830

831

832
833

834
835

836
837
838

839

840
841

842

843
844

845

847
848

849
850

852
853

854

855

856

857

858
859

860

862
863

8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided our employed open-source models and the hardware environ-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We conduct research in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper has no social impact of either positive or negative.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22


https://neurips.cc/public/EthicsGuidelines

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

879

880
881
882

883

884

885

886

887
888
889
890

891
892

893
894
895

896

897
898
899

900

902

903

904
905

906
907
908
909
910
911
912
913
914
915
916

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data and models are open-source that have a no risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are the creators or original owners of assets used in the paper, properly
credited, and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23


paperswithcode.com/datasets

917
918

919

920
921

922

923

924

925
926
927
928
929
930
931
932

933

934
935
936

937

938

939

940

941

942
943
944
945
946
947

948
949

950
951
952
953

954

955

956

957

958
959
960
961
962
963
964
965
966

967

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We release no new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We didn’t employ any human crowd-sourcing projects in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The contents of our paper have no risk of leaking out or disclosing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

24



968
969
970
971

972

973

974

975
976
977
978

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We describe the usage of LLMs in Section
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Observation
	Analysis
	Locate Self-Affirmation Reflections
	Suppress Self-Affirmation Reflections

	Experiments
	Train-free Experiments
	Settings
	Results

	Train-based Experiments
	Settings
	Results
	Ablation Study


	Conclusion
	Technical Appendices and Supplementary Material
	Limitations
	Comparison with concurrent works
	Template
	Influence of the tail repeated reflections
	Discussion on interfered tokens
	Results of out-of-domain dataset
	Implementation in vLLM vllm


