
Beyond Numeric Rewards: In-Context Dueling Bandits with LLM Agents

Anonymous ACL submission

Abstract001

In-Context Reinforcement Learning (ICRL) is002
a frontier paradigm to solve Reinforcement003
Learning (RL) problems in the foundation004
model era. While ICRL capabilities have been005
demonstrated in transformers through task-006
specific training, the potential of Large Lan-007
guage Models (LLMs) out-of-the-box remains008
largely un-explored. This paper investigates009
whether LLMs can generalize cross-domain010
to perform ICRL under the problem of Duel-011
ing Bandits (DB), a stateless preference-based012
RL setting. We reveal that our top-performing013
LLM exhibits notable zero-shot ability in rel-014
ative decision-making, achieving low short-015
term weak regret across all the DB environ-016
ment instances by quickly including the best017
arm in duels. However, an optimality gap ex-018
ists between LLMs and classic DB algorithms019
in terms of strong regret. LLMs struggle to020
converge and consistently exploit even when021
explicitly prompted to do so, and are sensi-022
tive to prompt variations. To bridge this gap,023
we propose an agentic flow framework: LLM024
with Enhanced Algorithmic Dueling (LEAD),025
which integrates off-the-shelf DB algorithm026
support with LLM agents through fine-grained027
adaptive interplay. We show that LEAD has028
theoretical guarantees inherited from classic029
DB algorithms on both weak and strong re-030
gret. We validate its efficacy and robustness031
even with noisy and adversarial prompts. The032
design of such an agentic framework sheds033
light on how to enhance the trustworthiness034
of general-purpose LLMs generalized to in-035
context decision-making tasks.036

1 Introduction037

Transformers pretrained with interactive datasets038

have led to the emergence of In-Context Rein-039

forcement Learning (ICRL) (Laskin et al., 2022;040

Lee et al., 2024), where models can infer Rein-041

forcement Learning (RL) tasks from interaction042
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Figure 1: In-context reinforcement learning of an LLM
agent in a Multi-Armed Bandit (MAB) environment
and a Dueling Bandit (DB) environment.

histories as context and make effective decisions 043

without parameter updates. Through trial and 044

error, these models can self-improve their poli- 045

cies purely in-context. Recent investigations into 046

LLMs’ ICRL capabilities in environments with nu- 047

meric rewards have reported notable failure cases, 048

e.g., LLM agents being vulnerable to adversarial 049

loss functions and suffering from high regret com- 050

pared to classic algorithms such as Follow-The- 051

Regularized-Leader (FTRL) (Park et al., 2024), 052

and exhibiting failures in exploration within Multi- 053

Armed Bandit (MAB) problems (Krishnamurthy 054

et al., 2024). Even with inference-time algo- 055

rithm guidance, an optimality gap persists between 056

LLMs and classic MAB algorithms (Nie et al., 057

2024). These results highlight the need for further 058

research in non-trivial algorithmic interventions to 059

elicit desirable ICRL behavior in LLM agents. 060

The failure cases encountered by LLMs may be 061

attributed to intrinsic difficulties in processing nu- 062

meric rewards, especially in tasks where patterns 063

are difficult to express in natural language. Recent 064

findings have pointed out that LLMs often struggle 065

with simple numerical comparisons (e.g., incor- 066

rectly judging 13.11 to be larger than 13.8), and 067

there has been a notable lack of emphasis on evalu- 068

ating the relative comparisons among the decisions 069

they generate. Figure 1 shows a toy example illus- 070

trating the in-context interaction between an LLM 071

agent and different environment settings. To dis- 072

entangle the complexities introduced by numerical 073

rewards, this paper focuses on the problem of Du- 074

eling Bandits (DB) (Yue et al., 2012; Zoghi et al., 075
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2014b), a stateless preference-based reinforcement076

learning setting (Wirth et al., 2017; Pacchiano077

et al., 2021) that extends the classic MAB model078

by querying for preference feedback between se-079

lected pairs of arms to identify the best one. In080

DB, the agent learns through binary outcome (win081

or lose) of a noisy comparison between the two082

selected arms. This setup is particularly useful083

when eliciting explicit feedback is challenging or084

when the feedback is inherently comparative, like085

taste of food and product attractiveness (Yue et al.,086

2012). DB has attracted significant attention due to087

its applicability in information retrieval (Yue and088

Joachims, 2009), recommendation systems (Sui089

et al., 2017), and online ranker evaluation (Zoghi090

et al., 2014b). We frame our investigation with the091

following question:092

Are LLMs effective in-context agents for solving093

the problem of dueling bandits?094

The DB problem poses distinctive challenges as095

a relative decision-making instance, particularly096

due to the sparse nature of the relative rewards.097

This sparsity complicates the in-context decision-098

making process, as it restricts the feedback ob-099

tained from interactions, introducing a level of100

difficulty not typically seen in conventional ban-101

dit problems. Even though reduction from DB102

to standard MAB exists (Ailon et al., 2014; Saha103

and Gaillard, 2022), it remains unclear how LLMs104

would perform in DB with preference feedback105

rather than numeric rewards. There are conceptual106

differences between them, similar to those between107

Reinforcement Learning from Human Feedback108

(RLHF) (Stiennon et al., 2020) and standard RL,109

where impossibility results can be found in (Wang110

et al., 2024b).111

While task-specific training of large sequence mod-112

els can yield promising ICRL results, it is often113

impractical due to the substantial computational114

resources required. Similar to the settings in (Kr-115

ishnamurthy et al., 2024; Nie et al., 2024; Mirchan-116

dani et al., 2023; Chen et al., 2024), we evaluate the117

emergent zero-shot abilities (Wei et al., 2022) of118

ICRL in general-purpose LLMs under the dueling119

bandit problem, without re-training or fine-tuning.120

We summarize our main results below.121

Evaluation of LLMs’ emergent zero-shot abili-122

ties of in-context DB. We go beyond numeric re-123

wards to evaluate the performance of LLM agents124

in terms of both strong and weak regret for mak-125

ing decisions in DB by comparing against various 126

baseline DB algorithms via a case study. We found 127

that the top-performing general-purpose LLMs has 128

the zero-shot relative decision-making ability suf- 129

ficient to achieve low weak regret in DB, which 130

significantly differs from that in classic MAB set- 131

tings (Krishnamurthy et al., 2024). Notably, GPT- 132

4 TURBO can serve as an effective decision-maker 133

for dueling bandits in terms of weak regret, quickly 134

selecting the best arm in duels with low variance 135

across a range of instances. However, consistent 136

with (Nie et al., 2024), we found that an optimality 137

gap exists between LLMs and classic DB algo- 138

rithms in terms of strong regret. LLMs’ perfor- 139

mance is hindered by over-estimation bias in the 140

exploration stage and lack of convergence criterion 141

in the exploitation stage. This highlights the need 142

for non-trivial algorithmic interventions to achieve 143

cross-domain generalization. 144

Effective and robust agentic flow framework 145

for in-context DB. To address the identified op- 146

timality gap and enhance the trustworthiness of 147

in-context LLM agents in DB tasks, in Section 4.1, 148

we propose an agentic flow framework, LLM with 149

Enhanced Algorithmic Dueling (LEAD) that inte- 150

grates off-the-shelf Explore-then-Exploit DB algo- 151

rithms with LLM agents. This framework enables 152

the fine-grained adaptive interplay between DB 153

algorithms and in-context LLM agents, pushing 154

forward from the naive algorithm-guided support 155

used in (Nie et al., 2024). As an illustrative exam- 156

ple, we demonstrate how Interleaved Filter2 (IF2) 157

algorithm can be incorporated with LLM agents in 158

this framework. We show that LEAD has theoreti- 159

cal guarantees, with experiments demonstrating its 160

efficacy and robustness across various prompting 161

scenarios. 162

2 Preliminaries 163

In this section, we briefly introduce the problem of 164

dueling bandits (DB) and establish the necessary 165

notation for this paper. Additional useful defini- 166

tions can be found in Appendix B.3.1. 167

Dueling bandits. In a fundamental context-free 168

K-armed dueling bandit problem setting (Yue et al., 169

2012), a learner interacts with the environment by 170

selecting two arms Arm1(t) and Arm2(t) from a 171

set of K arms {b1, . . . ,bK} for a noisy comparison 172

(a duel), at each round t ∈ {1, . . . ,T} as Figure 1 il- 173

lustrates. The outcome of a duel between two arms 174
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(i, j) is probabilistic. More precisely, the event that175

an arm bi wins against b j is a Bernoulli random176

variable with a parameter denoted by Pr(bi ≻ b j).177

For notational convenience, we normalize Pr(bi ≻178

b j) such that Pr(bi ≻ b j) = ε(bi,b j)+1/2, where179

εi j :− ε(bi,b j) ∈ (−1/2,1/2) is a measure of the180

distinguishability between arms bi and b j, which181

is stationary over time and is symmetric such that182

εi j = −ε ji for all i, j ∈ [K] :− {1, . . . ,K}. Finally,183

for notational convenience, we define a preference184

matrix P = [εi j]i, j∈[K].185

In-context LLM agents for dueling bandits. We186

consider an LLM agent with policy π interacting187

with a K-armed dueling bandit environment in-188

context. At each round t ∈ {1, . . . ,T}, the LLM189

agent selects a pair of arms (Arm1(t),Arm2(t))190

from the set {b1, . . . ,bK} based on a natural lan-191

guage instruction Prompt(C,Ht ,R) (see Figure 5),192

consisting of three parts:193

• Problem Description P: a natural language de-194

scription of the DB problem, including the num-195

ber of arms K, the time horizon T , and the task196

objective.197

• History Ht : an externally summarized interac-198

tion history (Krishnamurthy et al., 2024) up to199

round t, which includes a sequence of pairwise200

dueling results and the empirical probabilities.201

• Reasoning R: the zero-shot chain-of-thought202

(CoT) reasoning (Kojima et al., 2022) that en-203

courages the LLM agent to reason about the204

problem in a structured manner.205

The LLM agent’s policy can be represented as:206

(Arm1(t),Arm2(t)) = π (Prompt(P,Ht ,R)) . (1)207

208
The goal is to maximize the cumulative reward209

over some time horizon T , where the reward is210

the sum of the unknown probabilities of the two211

chosen arms beating the best arm (Condorcet win-212

ner). We can quantify performance as minimizing213

the cumulative regret, either in the strong or weak214

sense (see Eq.(3) and Eq.(4)).215

Strong and weak regret. Throughout this paper,216

we assume the standard setting that a Condorcet217

winner (CW) exists (Sui et al., 2017; Wu and Liu,218

2016; Zoghi et al., 2014b; Yue et al., 2012). The219

CW denoted as b∗ is an arm that is preferred over220

all the other arms, i.e., b∗ = bi if εi j > 1/2 for all221

j ∈ [K]\{i}. We consider two performance metrics:222

(i) strong regret (SR), which evaluates the total223

preference gap between b∗ and both selected arms; 224

(ii) weak regret (WR), which compares b∗ only 225

with the better of the two arms. Detailed definitions 226

and settings are provided in Appendix B.3.1. 227

Related works. Our work contributes to the grow- 228

ing community of intersection between LLMs and 229

decision-making. We summarize the detailed re- 230

lated works about dueling bandits, LLM agents for 231

bandits, and LLMs for in-context decision-making 232

in the Appendix A. 233

3 LLMs as Standalone In-Context 234

Decision-Makers 235

To evaluate the LLMs’ efficacy for solving DB 236

problems in-context, in this section, we use LLMs 237

as standalone decision-making agents and compare 238

them with classic DB algorithms. Our evaluation 239

is two-fold: First, in Figures 2 and 7, we compare 240

the performance of LLMs and classic algorithms 241

in terms of the strong and weak regret (see Eq.(3) 242

and Eq.(4), with standard deviation). Second, we 243

delve into the experimental results and analyze the 244

success and failure modes of LLM agents. 245

3.1 Experimental results 246

Implementation details of experiments. In Ap- 247

pendix C, we provide the following implemen- 248

tation details: (i) The LLM configurations and 249

prompting templates; (ii) The baseline algorithms 250

used for comparison; (iii) The DB environments, 251

including transitive and intransitive cases; (iv) The 252

scale setup of our experiments. 253

For brevity, we present our initial analysis fo- 254

cused on the Transitive-Easy instance (Fig- 255

ure 2). The analysis is qualitatively similar for 256

the Transitive-Hard instance (see Figure 7 in 257

Appendix). We analyze the results in terms of 258

the strong and weak regret defined in Section 2. 259

In the following sections, we will mainly focus on 260

GPT-4 TURBO, which is our top-performing LLM, 261

highlighting its success and failure modes. 262

Emergence of in-context DB abilities. While 263

GPT-3.5 TURBO and GPT-4 fail to solve the DB 264

problem, GPT-4 TURBO consistently outperforms 265

state-of-the-art DB baselines in weak regret on 266

Transitive Case (see Figures 2 and 7). This reveals 267

that the in-context DB abilities emerge as the gen- 268

eral capabilities grow in general-purpose LLMs. 269

Figure 11 (Left) illustrates the fraction of duels 270

including the best arm across different time inter- 271
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Figure 2: Comparisons between LLM agents and DB algorithms. Left and Right: strong and weak regret for the
Transitive-Easy instance. Results for Transitive-Hard are in Figure 7.

vals. GPT-4 TURBO outperforms other LLMs and272

the DB baselines throughout the entire timeline.273

These findings suggest that GPT-4 TURBO can ef-274

fectively process the preference feedback obtained275

from duels and make informed decisions to quickly276

identify and include the best arm in its duels.277

Stable performance across different instances.278

GPT-4 TURBO demonstrates low variance com-279

pared to other LLMs and DB baselines across vary-280

ing levels of difficulty. As shown in Figure 12,281

GPT-4 TURBO exhibits the lowest average gener-282

alized variance of strong and weak regret in both283

instances. This highlights its ability to maintain a284

stable decision-making process in DB.285

Best Arm Identification: LLMs’ in-context
dueling bandits abilities emerge as the general
capabilities grow. The Condorcet Winner is
consistently selected in duel via GPT-4 TURBO,
leading to exceptional weak regret performance
with minimal variance on Transitive Case.286

Exploration vulnerability. In the exploration287

stage, we observe that GPT-4 TURBO tends to288

quickly narrow down to a small subset of arms (al-289

though usually containing the Condorcet Winner)290

and repeatedly compare these arms. In contrast, the291

baselines exhibit more diverse and explicit explo-292

ration patterns. This behavior suggests that GPT-293

4 TURBO may overestimate the quality of arms294

that win their initial comparisons based on lim-295

ited historical data. Based on these observations,296

we hypothesize that if GPT-4 TURBO happens to297

sample a sequence of comparisons that favors sub-298

optimal arms early on, it can get stuck comparing299

these arms indefinitely. To test this hypothesis, we300

conducted experiments using noisy prompts with301

biased history. Our results in Figure 15 confirm302

that GPT-4 TURBO’s exploration strategy is in-303

deed vulnerable to biased history initialization and 304

can converge to local optima. 305

Exploitation inability. Despite GPT-4 TURBO’s 306

outstanding weak regret performance, it fails to 307

consistently converge to a single best arm to duel 308

against itself, even when the prompt setting ex- 309

plicitly calls for it. Unlike baselines with explicit 310

stopping conditions, GPT-4 TURBO relies on its 311

inherent language modeling capabilities to deter- 312

mine when to stop exploring. Consequently, in 313

the later exploitation stage, GPT-4 TURBO keeps 314

comparing the same top arms without committing 315

to a single winner (see Figure 13). This suggests 316

that the language modeling objective alone may 317

not be sufficient for LLMs to generalize effectively 318

in complex decision-making tasks like DB. 319

Lack of Robust Strategy: LLMs’ perfor-
mance can be hindered by noisy and adversarial
prompts due to overestimation bias in the explo-
ration stage and the lack of convergence criteria
in the exploitation stage.

320

Biased understanding of DB problem during 321

pretraining. Our two best-performing LLMs, 322

GPT-4 TURBO and O1-PREVIEW, exhibit system- 323

atic biases regarding the DB problem, likely due to 324

a lack of exposure to similar tasks during pretrain- 325

ing. Specifically, they incorrectly assume that an 326

arm cannot duel with itself (the convergence case), 327

even when explicitly prompted to do so (see exam- 328

ples in Appendix C.2.3). This misunderstanding 329

makes the DB problem as an out-of-distribution 330

(OOD) task for LLMs, and in-context instructions 331

fail to fully override this internal bias. Conse- 332

quently, LLM agents cannot completely align with 333

problem descriptions due to the inherent limita- 334

tions of in-context learning, which cannot really 335

generalize to OOD tasks (Wang et al., 2024a). Fig- 336
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ure 11 supports these observations: O1-PREVIEW337

demonstrates better reasoning capabilities by tran-338

sitioning from exploration to exploitation effec-339

tively and achieving lower strong regret than GPT-340

4 TURBO. However, its inference-time CoT mecha-341

nism reinforces its internal biased understanding of342

DB, resulting in bad weak regret performance due343

to the selection of two suboptimal arms in duels.344

Systematic Biases: LLMs out-of-the-box lack
a fundamental understanding of the DB problem
and instead intuitively choose the next pair of
arms to compare based on dueling history.

345

Scalability. To evaluate whether LLMs can gen-346

eralize their exceptional weak regret performance,347

we conduct experiments from two perspectives:348

(i) Removing transitivity in preference structures:349

we change from transitive cases to intransitive350

cases that violate SST and STI (see Figures 8351

and 9). The analysis of Intransitive-Easy352

and Intransitive-Hard is qualitatively similar:353

LLMs fail to replicate their long-term weak regret354

performance in transitive cases when faced with355

intransitive instances. However, their short-term356

weak regret performance remains exceptional; (ii)357

Increasing the number of arms: as illustrated in Fig-358

ure 10, from K = 5 to K = 10, GPT-4 TURBO’s359

performance exhibits a noticeable long-term de-360

cline with the increase in K. While LLMs still beat361

all the DB baselines in the initial steps, they strug-362

gle to effectively infer the relative strengths among363

a larger number of arms in the long run. These364

findings suggest that while LLMs exhibit emer-365

gent abilities for relative decision-making rooted366

in linguistic knowledge, their effectiveness is only367

generalized to short-term scenarios. The long-term368

performance is hindered by larger number of arms369

and LLMs’ lack of fundamental understanding of370

intransitive cyclic structures.371

Success of short-term generalization: Al-
though LLMs’ long-term strong and weak regret
performance degrades when introducing intran-
sitive preference structures or large number of
arms, their short-term weak regret performance
remains surprisingly exceptional across all in-
stances (see subfigures in 2, 7, 8, 9, 10).

372

As a summary, in-context LLM agents’ linguistic373

prior allows them to quickly identify the Condorcet374

Winner from the dueling history in the short-term375

(for both Transitive Case and Intransitive Case),376

but it is vulnerable. To further investigate the algo-377

rithmic behavior of LLMs and develop more robust 378

and effective in-context decision-making strategies, 379

we seek to answer the following questions: 380

[Q1] Can we develop an Algorithm-Enhanced in- 381

context DB agent with a theoretical guarantee? 382

383[Q2] How does it perform compared to standalone 384

LLM agents and classic DB algorithms? 385

4 Algorithm-Enhanced LLMs for 386

Dueling Bandits 387

Classic DB algorithms based on the Explore-then- 388

Exploit framework, such as Interleaved Filter 2 389

(IF2) (Yue et al., 2012), are known to be near- 390

optimal, with matching regret upper and lower 391

bounds up to multiplicative constants. To ad- 392

dress the challenges identified in Section 3.1 of 393

using standalone LLM agents for DB, we pro- 394

pose an algorithm-enhanced approach: LLM 395

with Enhanced Algorithmic Dueling (LEAD) to 396

demonstrate the possibility of integrating off-the- 397

shelf DB algorithm support with LLM agents 398

through fine-grained adaptive interplay. Our frame- 399

work, LEAD, enjoys both a regret guarantee and 400

strong empirical performance. 401

4.1 Algorithmic Design of LEAD 402

In this section, we present the design intuitions of 403

LEAD. We begin by discussing the desirable prop- 404

erties for an effective Algorithm-Enhanced LLM 405

framework. Based on these considerations, we pro- 406

pose an agentic framework design LEAD, where 407

we can incorporate any Explore-then-Exploit DB 408

algorithms (Zoghi et al., 2014b) during inference. 409

As an illustrative example, we use IF2 (Yue et al., 410

2012) to demonstrate how off-the-shelf algorithms 411

can be integrated within LEAD and provide a de- 412

tailed description. 413

Desirable properties for LLM augmentation. To 414

address [Q1], we seek an algorithmic framework 415

with the following properties: (i) A clear, sym- 416

bolic logical structure that allows for easy integra- 417

tion with LLM & Algorithm suggestions; (ii) A 418

well-defined exploration-exploitation trade-off that 419

leverages the LLMs’ exploration behavior while 420

ensuring convergence; (iii) Strong theoretical guar- 421

antees to maintain robustness with various prompt- 422

ing scenarios. 423

Therefore, the Explore-Then-Exploit structure 424

is particularly well-suited for LLMs (see Ap- 425
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Figure 3: Main components of the proposed LEAD agent in Algorithm 1 are illustrated: (i) The blue-colored part
represents the LLM phase. (ii) The grey-colored part indicates the DB phase. (iii) The Algorithmic Procedures are
detailed in Appendix B.2. (iv) The black arrows denote shared interactions between components. (v) The dotted
arrows represent the input and output.

pendix B.1 for a detailed illustration). By selecting426

an Explore-Then-Exploit DB algorithm for LEAD,427

we address [Q1]. As an example, we use IF2 (Yue428

et al., 2012) as a base algorithm to illustrate the429

theoretical guarantee and empirical performance.430

This approach can be applied similarly to other431

algorithms in the Explore-Then-Exploit family.432

Algorithmic framework. The procedures of the433

LEAD are illustrated in Figure 3 and presented in434

Algorithm 1 (see more details in Appendix B.2).435

LEAD (IF2 base) maintains a confidence parame-436

ter δ and a threshold parameter ε that control the437

algorithm’s confidence of matches between arms.438

The key components of LEAD (IF2 base) are:439

• Phase 1 (LLM Phase): Utilization of LLM recom-440

mended arms. The agentic framework maintains441

a set of candidate arms B. Given two arms sug-442

gested by an LLM agent, the framework begins443

with finding a winner between them, denoted by444

bLLM. The winning arm bLLM is then matched with445

each remaining arm b ∈ B. This phase continues446

until bLLM is defeated or all arms in B have been447

matched. The variable TrustLLM controls the exe-448

cution of the LLM phase, and is set to False when449

bLLM is defeated by another arm, indicating the450

LLM’s suggestions are no longer trusted.451

• Phase 2 (DB Phase): Roll back to IF2. If bLLM452

is defeated, the framework switches to implement-453

ing one round of IF2 with an incumbent arm bIF2454

selected from an estimated preference matrix P̂.455

After Phase 2, the algorithm-enhanced agent re-456

peats Phase 1 until B only contains the best arm.457

Algorithm 1 and Figure 3 summarize the phases458

above, with details delegated to Appendix B.2.459

4.2 Theoretical Guarantees for LEAD 460

In this section, we begin by identifying the vulner- 461

ability of using standalone LLM agents for dueling 462

bandits in Theorem 4.1. Then we provide the the- 463

oretical guarantees of LEAD in Theorem 4.2 and 464

4.3, demonstrating its efficacy and convergence. 465

Theorem 4.1 (Vulnerability). For the dueling ban- 466

dits problem with K arms and time horizon T , there 467

exists a preference structure and an attacker strat- 468

egy with budget Φ(T ), such that any standalone 469

LLM agent, whose policy is represented by Eq.(1) 470

and whose worst-case behavior under the origi- 471

nal prompt satisfying Assumption 4, will suffer an 472

expected regret of Ω(min{Φ(T ),T/K}). 473

The proof of Theorem 4.1 is provided in Ap- 474

pendix B.3.2. This vulnerability highlights the 475

need for a more robust approach to use in-context 476

LLM agents while offering theoretical guarantees 477

under diverse prompting scenarios. 478

Regret Bounds. Following the algorithmic de- 479

sign of LEAD in Section 4.1, LEAD (IF2 base) 480

inherits the theoretical guarantees of IF2 (see Ap- 481

pendix B.3.1), while nontrivially leveraging the 482

benefits of LLMs’ exceptional weak regret perfor- 483

mance for exploration across a range of instances. 484

Specifically, LEAD (IF2 base) has the following 485

theoretical guarantee: 486

Theorem 4.2 (Expected Regret). Suppose for t ≥ 487

TLLM, the arms recommended by an LLM agent 488

contain the best arm b∗. Under Assumptions 1-3, 489

the expected strong regret of LEAD (IF2 base) 490

satisfies E [SR(LEAD)]≤ Õ((K logT )/ε1,2) , and 491

the expected weak regret can be bounded by 492
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E [WR(LEAD)]≤min
{

Õ
(

TLLM +
K logK

ε1,2

)
,493

Õ
(

K logT
ε1,2

)}
. (2)494

where Õ(·) hides poly-logarithmic factors of T .495

Note that Theorem 4.2 is general such that we do496

not assume any specific adversarial behaviors of497

the LLM agent, including Assumption 4. The proof498

of Theorem 4.2 is provided in Appendix B.3.2.499

The required assumptions are precisely stated in500

Appendix B.3.1. Theorem 4.2 establishes a best-501

of-both-worlds result in terms of the efficacy and502

robustness of LEAD.503

Efficacy. As illustrated in Figures 2, 13, and504

7, LEAD has the potential to identify the505

best arm after a short exploration stage. This506

results in strong and weak regret bounds of507

Õ(TLLM +(K/ε1,2) logK) and O(TLLM), respec-508

tively, that are independent of the horizon length509

T , provided the LLM agent suggests a pair of arms510

that includes the best arm b∗. Furthermore, when511

the prompt contains extra textual context that can512

infer the relative preferences between arms, TLLM513

will become smaller, further enhancing the best-514

case performance. We consider it an important515

direction for future work within the Contextual516

Dueling Bandit framework (Dudík et al., 2015).517

Guaranteed convergence. Additionally, both518

the strong and weak regret for LEAD are519

guaranteed to satisfy a worst-case upper bound520

of Õ((K/ε1,2) logT ), which is only worse521

than the information-theoretic lower bound of522

Ω((K/ε1,2) logT ) in (Yue et al., 2012) by a poly-523

logarithmic factor of T . The worst-case upper524

bounds on the strong and weak regret hold re-525

gardless of the specific prompting scenario, en-526

suring that LEAD maintains its theoretical guar-527

antees even in the presence of noisy or adversarial528

prompts, as considered in Theorem 4.1. This safety529

guarantee is particularly important in practical ap-530

plications, where the prompts provided to the LLM531

agent may not always be optimal.532

The following theorem indicates that the additional533

term (K logK)/ε1,2 in (2) is almost tight. Its proof534

is provided in Appendix B.3.2.535

Theorem 4.3 (Converse). Given any algorithm536

ALG for dueling bandits, there exists an LLM537

agent recommending arms such that if ALG sat-538

isfies E [WR(ALG)] ≤ TLLM (here, TLLM is de-539

fined in Theorem 4.2.), then it must hold that 540

E [SR(ALG)]≥ E [WR(ALG)] = Ω(T ). 541

4.3 Empirical Evaluation of LEAD 542

Regarding [Q2], we design a two-fold evaluation 543

to assess efficacy and robustness. The evaluation 544

is conducted on the Transitive-Easy instance, 545

which provides higher distinguishability, allowing 546

us to observe convergence and regret differences 547

within a practical number of steps. First, we com- 548

pare the strong and weak regret of LEAD against 549

state-of-the-art baseline algorithms to validate its 550

efficacy. Second, we investigate the robustness of 551

LEAD with noisy and adversarial prompts. 552

4.3.1 Efficacy Evaluation: Strong Regret and 553

Weak Regret 554

Hyperparameters. In our implementation of 555

LEAD (see Algorithm 1), there are two hyper- 556

parameters: the threshold parameter t, which con- 557

trols the maximum number of comparisons be- 558

tween arms, and the confidence parameter δ , which 559

determines the confidence level for pruning sub- 560

optimal arms. For the threshold parameter t, we 561

considered values from the set {50,100,200}, and 562

for the confidence parameter δ , we explored values 563

from {0.1,0.2,0.4}. After fine-tuning, we found 564

that setting t = 50 and δ = 0.4 provided the best 565

performance in terms of cumulative regret. 566

We evaluate the cumulative strong and weak regret 567

performance of the proposed LEAD with different 568

confidence parameter settings (δ = 0.1,0.2,0.4) 569

and t = 50: Figure 4 (Left and Middle) demon- 570

strates that LEAD exhibits competitive perfor- 571

mance across different δ values. For strong regret, 572

δ = 0.1 results in more conservative exploration, 573

leading to slightly higher regret compared to base- 574

lines. As δ increases (δ = 0.2 or 0.4), LEAD 575

achieves lower cumulative strong regret, outper- 576

forming all the baselines at δ = 0.4 due to more 577

aggressive exploration to identify the optimal arm 578

sooner. Similarly, for weak regret, LEAD con- 579

sistently achieves superior performance. When 580

δ = 0.2 and δ = 0.4, LEAD effectively identi- 581

fies and includes the optimal arm in comparisons. 582

These hyper-parameter values strike a balance be- 583

tween the number of comparisons required to iden- 584

tify the best arm and the confidence level for prun- 585

ing suboptimal arms, enabling LEAD to efficiently 586

explore and exploit the available arms in-context 587

for the dueling bandits setting. 588
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Figure 4: Comparisons between LEAD, GPT-4 TURBO, and baseline algorithms (IF2, SELF-SPARRING and
DTS). Left and Middle: strong and weak regret on the Transitive-Easy instance. Right: robustness evaluation
under prompt perturbations (prompts are in Appendix C.2.2).

4.3.2 Robustness Evaluation: Noisy and589

Adversarial Prompts590

Recent studies (Loya et al., 2023; Krishnamurthy591

et al., 2024) have emphasized the importance of592

varying prompts to elicit the desired behavior from593

LLMs in decision-making tasks, highlighting the594

potential limitations of prompt quality. Results595

obtained from a single prompt template may lead596

to unreliable conclusions that cannot generalize to597

real-world situations where optimal prompts are598

often unavailable. Thus, we evaluate the robust-599

ness of LEAD by employing two types of prompt600

perturbations (see Figure 6) along with the original601

prompt (see Figure 5). Across all scenarios, LEAD602

demonstrates superior performance and robustness603

compared to standalone GPT-4 TURBO.604

Original prompt. Under the initial prompt,605

LEAD leverages the LLM’s ability to quickly iden-606

tify the best arm through exploration. As shown in607

Figure 17 (Top Row), we observe that LEAD ben-608

efits from the LLM’s exploration ability by initial-609

izing with the best arm as the incumbent when en-610

tering the DB phase. Compared to GPT-4 TURBO,611

convergence to the Condorcet winner is guaranteed612

for LEAD with high probability.613

Biased history. We inject an incorrect history into614

the prompt, where each non-optimal arm initially615

wins against the best arm 10 times, while keeping616

the underlying preference matrix unchanged. LLM617

agents are observed to get trapped in local optima,618

where LEAD overcomes this by employing uni-619

form comparisons in the DB phase to escape such620

suboptimal exploration modes.621

Reversed goal. When the prompt is adversarially622

modified from maximizing reward to minimizing,623

the LLM consistently recommends non-optimal624

arms after its exploration stage. Even with adver-625

sarial prompts, LEAD still achieves near-optimal626

cumulative strong regret. Since the LLM’s explo- 627

ration capability is used within the bounded length 628

of the MATCH ARMS procedure, the impact of this 629

adversarial attack is mitigated. 630

Figure 4 (right) presents the cumulative strong re- 631

gret results comparing LEAD against standalone 632

LLM agents and the IF2 algorithm across three 633

prompt designs. It is worth noting that LEAD 634

with δ = 1/(T K2) (consistent with IF2) achieves 635

near-optimal cumulative regret with low variance 636

even with noisy and adversarial prompts, validat- 637

ing the regret guarantee in Theorem 4.2. LEAD 638

and IF2 converge to the best arm within 2000 steps, 639

while GPT-4 TURBO’s cumulative expected regret 640

continues to increase, revealing the instability of 641

standalone in-context LLM agents. 642

5 Conclusion 643

This paper evaluates LLMs as in-context decision- 644

makers for context-free dueling bandits (DB) with 645

a Condorcet Winner, offering the first systematic 646

insights into their strengths and limitations. Our 647

findings reveal that LLMs’ decision-making in 648

DB, driven by linguistic priors, achieves excep- 649

tional weak regret performance across both tran- 650

sitive and intransitive environment instances in 651

the short-term. However, LLMs lack the neces- 652

sary criteria for convergence and long-term gen- 653

eralization to hard scenarios, leading to an opti- 654

mality gap between LLMs and classic DB algo- 655

rithms in terms of strong regret. To bridge this 656

gap, we propose LEAD, an agentic flow frame- 657

work that integrates off-the-shelf DB algorithms 658

with LLM agents through fine-grained adaptive in- 659

terplay. This framework provides theoretical guar- 660

antees and ensures robust performance even under 661

noisy and adversarial prompts. Moving beyond 662

the limitations of traditional numeric rewards, it 663

sheds light on how language-based reasoning can 664

be robustly generalized from words to actions. 665
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Limitations666

This work primarily focuses on the fundamental667

context-free Dueling Bandit (DB) setting, explor-668

ing the performance and generalization of Large669

Language Models (LLMs) within this relative670

decision-making framework. The scope of this671

work is limited to this specific setting, and does not672

address the complexities introduced by other types673

of DB environments. The following limitations are674

noteworthy: (i) The exploration of LLMs in con-675

junction with other ongoing regret-minimization676

algorithms is not considered here; (ii) The perfor-677

mance of LLMs under alternative winner defini-678

tions, such as Borda and Neumann winners is not679

explored; (iii) The paper does not examine LLMs’680

behavior in other DB settings, such as contextual681

dueling bandits, multi-dueling bandits, and adver-682

sarial dueling bandits. Expanding the scope to683

solve these limitations is an important direction for684

future work.685
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Appendix878

This appendix provides supplementary information and additional experimental results to support the879

main text. The content is organized into three main parts:880

A. Related Works881

B. Theoretical Part: Algorithm Design and Analysis of LEAD882

• Appendix B.1 presents the algorithm design logic using Explore-then-Exploit methods.883

• Appendix B.2 describes the LEAD algorithm stated in Section 4.1, detailing its key features and884

implementation remarks.885

• Appendix B.3.1 presents the necessary definitions, assumptions and lemmas for the theoretical886

analysis of LEAD in Section 4.2.887

• Appendix B.3.2 proves Theorem 4.1, 4.2, and 4.3, establishing LEAD’s regret bounds.888

C. Experimental Part: Prompt Design and Supplementary Results889

• Appendix C.1 illustrates the implementation details of our experiments.890

• Appendix C.2.1 illustrates the transitive and intransitive environments construction.891

• Appendix C.2.2 illustrates the prompt design and prompt perturbations logic.892

• Appendix C.2.3 provides exemplars of GPT-4 TURBO to showcase their behavior.893

• Appendix C.3 presents supplementary experimental results, providing further insights into the894

performance and behavior of the algorithms in Sections 3 and 4.895

A Related Works896

We provide the detailed related works as follows.897

Dueling bandits. The problem of dueling bandits was initially introduced in (Yue et al., 2012). Various898

methods have been proposed to tackle the task since then. These methods can be broadly classified into899

two categories as Explore-Then-Exploit methods and Ongoing Regret Minimization methods according900

to (Zoghi et al., 2014b). Explore-Then-Exploit methods focus on identifying the best arm with high901

confidence before exploiting it, such as Interleaved Filter (IF) (Yue et al., 2012) and Beat the Mean902

(BTM) (Yue and Joachims, 2011), etc. In contrast, Ongoing Regret Minimization methods explicitly903

target the objective of minimizing cumulative regret, including Relative Upper Confidence Bound904

(RUCB) (Zoghi et al., 2014a) and Self-Sparring (Sui et al., 2017), etc. Dueling bandit problem and905

preference feedback in general has a wide variety of applications, including recommendation systems906

(Yue et al., 2012), robotics (Tucker et al., 2020), and most recently, the training algorithm of large907

language models, such as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022).908

LLM agents for multi-armed bandits. Several recent works have explored evaluating the capabilities909

of LLMs in bandit problems. For example, (Baheri and Alm, 2023) proposed an approach to enhance910

contextual bandits by integrating LLMs as encoders. The LLMs’ ability to capture rich semantic911

and syntactic information from textual contexts is leveraged to provide the algorithm with a more912

informative representation of the context. The LLM-augmented algorithm transforms the raw context913

into a latent space vector using the LLM’s encoding capabilities. This encoded context is then used914

to guide the decision-making process. (Krishnamurthy et al., 2024) investigates whether LLMs can915

engage in exploration in simple MAB environments without additional training. They compared various916

prompt designs and found that GPT-4 with zero-shot chain-of-thought (CoT) reasoning and an externally917

summarized interaction history performed the best, while other configurations failed in exploration, either918

by never selecting the best arm after initial rounds or by selecting all arms nearly equally often. Different919
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from the previous results, in this work we go beyond the settings of numeric rewards and investigate the 920

capabilities of LLMs under preference feedback. 921

In-context LLMs for decision-making. Beyond bandit problems, LLM agents have demonstrated 922

strong capabilities in complex reasoning across a wide range of in-context reinforcement learning and 923

decision-making tasks (Laskin et al., 2022; Lee et al., 2024; Zhou et al., 2022; Yao et al., 2024). Various 924

existing works aim to understand LLM agents’ capabilities for in-context decision-making, with notable 925

examples including planning (Huang et al., 2022; Hao et al., 2023). Additionally, LLM agents have 926

been shown to enhance embodied agents in robotic applications by providing advanced task planning 927

abilities (Brohan et al., 2023) and reward designing (Ma et al., 2023), further enabling the development 928

of lifelong learning agents (Wang et al., 2023). Besides these empirical successes, the authors of (Park 929

et al., 2024) analyzed LLMs’ interactions in online learning and game theory settings through the lens 930

of the regret metrics. They identified simple cases where LLMs fail to be no-regret. Another line of 931

research incorporates LLMs into classic decision-making frameworks to create LLM-augmented online 932

decision-makers. For instance, Liu et al. (Liu et al., 2024) utilized LLMs to enhance the components 933

of warm starting, sampling candidates, and surrogate modeling in Bayesian optimization. Our work 934

contributes to this broad area by integrating LLM agents with the classic Explore-then-Exploit DB 935

algorithms to enhance the utilization of preference feedback. 936

B Algorithm Design and Analysis of LEAD 937

In this section, we detail the design principles and implementation of the LEAD algorithm. First, we 938

present the algorithm design logic. Then, we provide a rigorous proof of Theorem 4.1, 4.2, and 4.3, estab- 939

lishing the theoretical guarantees of LEAD (IF2 base) under the assumptions outlined in Appendix B.3.1. 940

B.1 Algorithm Design Logic 941

Limitations of naive intervention. A straightforward approach to addressing the convergence instability 942

limitation of LLMs is to use a simple if-else condition that forces the LLMs to converge when they 943

first exploit two identical arms, which we call the Convergence-Triggered (CT) intervention strategy. 944

However, CT fails to guarantee the selection of the true Condorcet winner and can reinforce local optima 945

(see Figure 16 in Appendix C.3 for a failure example). This suggests that relying on the LLMs’ internal 946

convergence behavior to trigger the transition from exploration to exploitation is unreliable, as the LLMs 947

are largely driven by its inherent sampling noise rather than a structured exploration policy. Thus, handling 948

this limitation with theoretical guarantees remains challenging. 949

Explore-then-exploit algorithms as ideal candidates. Classic DB algorithms can be classified into 950

two categories: Explore-Then-Exploit methods and Ongoing Regret Minimization methods (Zoghi et al., 951

2014b). Among these, Explore-Then-Exploit structure stands out as particularly well-suited for LLM 952

augmentation: 953

• The Explore-Then-Exploit structure naturally aligns with the LLMs’ tendency to keep exploring 954

without converging (see Figure 13), allowing for leveraging the LLMs’ exploration behavior while 955

mitigating their exploration vulnerability and convergence instability (see Section 3.1). 956

• Its symbolic representation of the algorithm’s logic enables clear integration of LLM suggestions 957

at specific points without disrupting the overall structure and theoretical guarantees. In contrast, 958

algorithms like Self-Sparring in (Sui et al., 2017) are less symbolic, making them less suitable for 959

direct LLM augmentation. 960

• Its strong theoretical guarantees, e.g., IF2 with an expected regret bound of O((K/εbad) logT ) matching 961

the DB problem’s lower bound of Ω((K/εbad) logT ) up to constants (see Appendix B.3.1), and its 962

empirical performance (see Figures 2 and 7) provide a robust foundation, ensuring convergence and 963

bounded regret. 964
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B.2 Detailed Procedure Description965

Algorithm 1 Algorithm-Enhanced LLM Agent: LEAD (IF2 base)
Initialize :Time horizon length T , arms B = {b1, . . . ,bK}, incumbent arm bIF2

1 while |B| ≥ 1 do
2 TrustLLM← True /* LLM Phase in Figure 3 (Lines 2-10) */
3 while TrustLLM do
4 Prompt LLM to select (bLLM1 ,bLLM2) from B
5 bLLM←MATCH ARMS(bLLM1 ,bLLM2) (Procedure 1) /* Compare LLM arms */
6 for b ∈ B do
7 b′←MATCH ARMS(bLLM,b) (Procedure 1) /* Compare bLLM with others */
8 if b′ ̸= bLLM then TrustLLM← False, continue
9 end

10 end
11 StillTrust,B← VALIDATE(b′,B,TrustLLM) (Procedure 2)
12 bIF2,B←IF2(bIF2,B) (Procedure 3) /* IF2 Phase in Figure 3 (Lines 11-12) */

13 end
14 if StillTrust then return bLLM
15 else return bIF2

It is worth noting the following features of Algorithm 1 in its practical implementation.966

Remark 1. The LLM Phase allows for flexible exploration design within the bounded length of the967

MATCH ARMS procedure, not limiting the number of prompts and comparisons performed by the LLM to968

identify an empirically best arm.969

Remark 2. The bound length in the MATCH ARMS procedure can be adjusted based on empirical970

requirements. Modifying the confidence parameter δ and the threshold ε will affect the regret bound and971

the algorithm’s performance. These parameters can be tuned to balance exploration and exploitation,972

depending on the specific application and desired level of confidence.973

In Procedure 1 below, we describe the MATCH ARMS procedure used in LEAD (see Algorithm 1 and974

Figure 3). It compares two given arms a and a′ with specified parameters δ and ε .975

Procedure 1 MATCH ARMS (with a bounded number of comparisons)
Input: Two arms a,a′, confidence parameter δ ← 1/(K2 logT ), and threshold ε ← ε1,2
if a ̸= a′ and t ≤ (16/ε2) log(K logT ) then

while ∄ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with a′ and update P̂a,a′ and Ĉa,a′ , t← t +1

end
return b

else return a

Similarly, the next VALIDATE procedure is used in LEAD. It validates if an incumbent arm b′ that wins976

previous matches in LEAD can still be trusted.977
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Procedure 2 VALIDATE

Input: Incumbent arm a, candidate arms B, TrustLLM, confidence parameter δ ← 1/(T K2), and
threshold ε ← ε1,2
if TrustLLM is True then

for b ∈ B do
if t ≤ (16/ε2) log(K logT ) then

while ∄ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do
Compare a with b and update P̂a,b and Ĉa,b, t← t +1

end
if b ̸= a then return StillTrust← False,B← B\{a}

end
return StillTrust← True,B← /0

if TrustLLM is False then return StillTrust← False,B← B

We also reprise the IF2 procedure in (Yue et al., 2012) below to complement the presentation of LEAD. 978

Procedure 3 IF2 PROCEDURE

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(T K2), t← 0
if t ≤ (16K/ε2

1,2) log(K logT ) then
for b ∈ B do

Compare a with b and update P̂a,b and Ĉa,b, t← t +1
end
a,B← ANNEAL(a,B)

return a,B

Procedure 4 ANNEAL

Input: Incumbent arm a, candidate arms B, confidence parameter δ ← 1/(T K2), matrices P̂ and Ĉ
while ∃ (b,b′) ∈ B such that P̂b,b′ > 1/2 and 1/2 /∈ Ĉb,b′ do

B← B\{b′}
end
if ∃ b′ ∈ B such that P̂a,b′ < 1/2 and 1/2 /∈ Ĉa,b′ then

while ∃b ∈ B such that P̂a,b > 1/2 do
B← B\{b} /* IF2 pruning */

end
a← b′, B← B\{b′}

return a,B

B.3 Theoretical Analysis 979

B.3.1 Useful Assumptions and Lemmas for Dueling Bandits 980

We introduce the useful definitions, assumptions and lemmas for Dueling Bandits that are necessary for 981

the theoretical analysis of our proposed algorithm. 982

Throughout this paper, we consider two important performance metrics. The first is the strong regret of a 983

given algorithm ALG, defined as 984

SR(ALG) :−
T

∑
t=1

(
ε (b∗,Arm1(t))+ ε (b∗,Arm2(t))

)
. (3) 985

where T is the time horizon. The second is the weak regret of ALG, defined as 986
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WR(ALG) :−
T

∑
t=1

min
(

ε (b∗,Arm1(t)) ,ε (b∗,Arm2(t))
)
. (4)987

which only compares b∗ against the better of the two selected arms Arm1(t) and Arm2(t). It is worth988

highlighting that LLM agents exhibit significantly different behaviors with respect to the two defined989

notions of regret, as detailed in Section 3.1.990

Assumption 1 (Total Ordering). The preference matrix P = (εi j) satisfies the Total Ordering (TO)991

property such that for all i, j ∈ [K], i≻ j implies εi j > 1/2.992

With the TO property satisfied, we assume the preference matrix P further satisfies the following two993

standard properties (Yue and Joachims, 2009, 2011; Yue et al., 2012).994

Assumption 2 (Strong Stochastic Transitivity). The preference matrix P = (εi j) satisfies the Strong995

Stochastic Transitivity (SST) such that for any arms i, j,k ∈ [K] such that i≻ j ≻ k under the total order996

≻, we have εik > max{εi j,ε jk}.997

Assumption 3 (Stochastic Triangle Inequality). The preference matrix P = (εi j) satisfies the Stochastic998

Triangle Inequality (STI) such that for any arms i≻ j ≻ k, we have εik ≤ εi j + ε jk.999

Note that the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952) used in our experiments C.11000

satisfies Assumption 2 and 3. We restate the following theoretical guarantees for IF2 that is useful in the1001

proof of Theorem 4.2. Let εbad :−minb̸=b∗ ε(b,b∗).1002

Lemma 1 (Theorem 2 in (Yue et al., 2012)). Assuming the preference matrix P satisfies the SST and STI,1003

then IF2 has its expected regret (both weak and strong) bounded from above by1004

E[SR(IF2)]≤ O
(

K
εbad

logT
)
. (5)1005

The following expected regret bound achieved by IF2 is tight up to multiplicative constants, as indicated1006

by the lower bound (Theorem 4) in (Yue et al., 2012) such that any algorithm ALG for DB satisfies1007

E[SR(ALG)] = Ω((K/εbad) logT ).1008

B.3.2 Theoretical Guarantees of LEAD1009

Part I: Vulnerability of Standalone LLM Agents1010

Assumption 4 (Worst-Case Behavior). Under the original prompt (see Figure 5), the worst-case behavior1011

of an LLM agent in the dueling bandit setting is equivalent to a randomizer that selects action pairs1012

uniformly at random.1013

Vulnerability of standalone LLM agents. Inspired by the adversarial corruptions framework introduced1014

in (Hajiesmaili et al., 2020) for the classic MAB problem, we investigate the vulnerability of standalone1015

LLM agents in the DB setting under adversarial prompts. We consider an attacker with a budget Φ(T )1016

who employs the following strategy: whenever the LLM agent selects the optimal arm b∗ for comparison,1017

the attacker manipulates the input prompt to the LLM to eliminate b∗ from the duel with probability p1018

(where 0 < p ≤ 1 is a constant), subject to the constraint of performing at most Φ(T ) attacks over T1019

rounds. This adversarial strategy compels the LLM agent to select suboptimal arms, resulting in poor1020

performance, as formalized in the following theorem with Assumption 4.1021

Proof of Theorem 4.1. Consider the following DB instance with K ≥ 3 arms {b1, . . . ,bK} and preference1022

matrix P:1023

Pi, j =


0.5+ ε, if bi = b∗ and b j ̸= b∗,
0.5− ε, if bi ̸= b∗ and b j = b∗,
0.5, otherwise.

1024
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where 0 < ε < 0.5 is a small constant. In this instance, arm b∗ is the unique Condorcet winner, and all 1025

other arms are suboptimal with a gap of ε to b∗. 1026

Now, consider an attacker strategy with budget Φ(T ): Whenever the LLM agent selects a duel containing 1027

the optimal arm b∗, the attacker manipulates the input prompt to the LLM agent (as described in Eq. (1)) 1028

to eliminate b∗ from the comparison with probability p (where 0 < p≤ 1 is a constant), subject to the 1029

constraint that the attacker can perform at most Φ(T ) attacks over the T rounds. 1030

Let N(T ) be the number of rounds in which the LLM agent selects a duel containing the optimal arm b∗ 1031

up to round T . Due to the attacker’s manipulation of the input prompt, in each of these N(T ) rounds, b∗ is 1032

eliminated from the comparison with probability p. However, because of the attacker’s budget constraint, 1033

the actual number of attacked rounds is at most min{N(T ),Φ(T )}. 1034

In the rounds where b∗ is eliminated from the comparison, the LLM agent can only select from the 1035

suboptimal arms {bi | bi ̸= b∗, i ∈ [K]}. Let ∆i = Pb∗,bi − 0.5 denote the suboptimality gap of arm bi 1036

with respect to b∗. Then, the expected regret incurred in each round where b∗ is eliminated from the 1037

comparison is at least minbi ̸=b∗ ∆i = ε . 1038

Thus, the expected cumulative regret of the LLM agent after T rounds is at least: 1039

E[Regret(T )]≥ p ·E[min{N(T ),Φ(T )}] · ε ≥ p ·min{E[N(T )],Φ(T )} · ε, 1040

where the first inequality follows from the regret incurred in rounds where b∗ is eliminated from the duel, 1041

and the second inequality holds due to Jensen’s inequality and the linearity of expectation. 1042

According to the Assumption 4, in the worst case, the LLM agent’s behavior is equivalent to randomly 1043

selecting a duel in each round. For K arms, there are K(K−1)/2 possible duel combinations. Therefore, 1044

the probability of selecting a duel containing b∗ in each round is (K − 1)/
(K

2

)
= 2

K , which yields 1045

E[N(T )] = T · 2
K . The regret bound becomes: 1046

E[Regret(T )]≥ p ·min
{

2T
K

,Φ(T )
}
· ε = Ω

(
min

{
T
K
,Φ(T )

})
. 1047

Therefore, any standalone LLM agent whose policy is represented by Eq. (1) under the worst-case 1048

assumption will suffer an expected regret of Ω
(
min

{
Φ(T ), T

K

})
. This lower bound demonstrates the 1049

vulnerability of solely relying on LLM agents for DB in adversarial environments when the attacker can 1050

manipulate the input prompts. 1051

Part II: Expected Regret Bounds of LEAD (IF2 base) 1052

Suppose at each step t ≤ T , aligning with the design of IF2 in (Yue et al., 2012), P̂t is estimated such 1053

that each P̂i, j is the fraction of number of comparisons when bi was the winner out of all previous 1054

t comparisons. Define a confidence interval Ĉt :− (P̂t − ct , P̂t + ct) where ct :−
√

log(1/δ )/t. Before 1055

proceeding to prove Theorem 4.2, we first state a useful lemma from (Yue et al., 2012) as a result of the 1056

Hoeffding’s inequality (Hoeffding, 1994). 1057

Lemma 2 (Generalized Lemma 1 in (Yue et al., 2012)). Let δ = 1/(K logT )2 be a confidence parameter 1058

with δ ∈ (0,1/2], a winner between two arms bi and b j is identified with probability at least 1−δ , using 1059

at most
(

16/ε2
i, j

)
log(K logT ) number of comparisons. 1060

Note that Lemma 2 can be directly implied by Lemma 1 in (Yue et al., 2012). Now, under Assumption 2 1061

and 3 such that the preference matrix P satisfies the SST and STI properties, we prove Theorem 4.2. 1062

Proof of Theorem 4.2. Suppose the arms suggested by LLM agent includes the best arm b∗ after explor- 1063

ing TLLM steps. We prove the two bounds shown in Theorem 4.2 one-by-one. 1064

Weak regret bound. The first TLLM steps induce accumulated weak regret of at most O(TLLM). According 1065

to (Yue et al., 2012), IF2 plays O(K) matches (comparisons) in expectation. Thus, the expected 1066
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number of rounds of calling IF2 PROCEDURE is O(logT/ log(K logT )). Applying Lemma 2, with1067

O
(
(1/ε2

1,2) log(K logT )
)

(by setting a hyper-parameter ε = ε1,2) comparisons between two arms, since1068

the best arm b∗ is always included in each comparison, the best arm b∗ is correctly identified with1069

probability at least 1−1/(K logT )2. This procedure leads to no weak regret since b∗ suggested by the1070

LLM agent is always included as the incumbent arm in future comparisons.1071

Moreover, the implementation of Procedure 3 induces at most O((K/ε2
1,2) log(K logT )) comparisons.1072

The validation procedure (Procedure 2) leads to no weak regret if bLLM is indeed the best arm and1073

the identification of bLLM = b∗ succeeds with a probability 1− 1/T . Denote by E1 and E2 two error1074

events when b∗ loses some of the matches in the LLM Phase. there exist comparisons (matches) fail1075

in the validation procedure (Procedure 2) or the IF2 Phase (Procedure 3). The union bound implies1076

with probability 1−1/(K logT ), b∗ will win all the matches such that P(E1)≤ 1/(K logT ). Similarly,1077

P(E2)≤ 1/T . Combining these events, regarding the total expected weak regret, the expected weak regret1078

induced by the steps after time TLLM can be bounded by1079

E[SR(LEAD after TLLM)]1080

≤
(

1− 1
K logT

− 1
T

)
O
(

K log(K logT )
ε1,2

)
︸ ︷︷ ︸

LLM Phase

+
1

K logT
O
(

K
ε1,2

logT
)

︸ ︷︷ ︸
IF2 Phase

+
1
T

O(T )︸ ︷︷ ︸
Failure Cases

1081

= Õ
(

K logK
ε1,2

)
1082

since there are at most K +1 matches.1083

Convergence guarantee. Furthermore, consider the adversarial selection of arms from the LLM agent.1084

According to Lemma 2, the IF2 procedure with an expected regret O((K/ε1,2) log(T )) is implemented1085

at most O(1) times with probability 1−1/(T K), provided with |B|= K. Therefore, the expected regret1086

(either strong or weak) induced by each implementation of Procedure 3 is at most O((K/ε1,2) log(T ))1087

since there are at most O
(
(K/ε2

1,2) log(K logT )
)

additional comparisons of pairs in the LLM phase.1088

Finally, applying the expected regret bound in Lemma 1 completes the proof.1089

1090

Part III: Converse1091

In the following, we argue that for any algorithm ALG, achieving an upper bound E [WR(ALG)]≤ TLLM1092

for all TLLM is impossible.1093

Proof of Theorem 4.3. Suppose ALG is an algorithm that leads to a weak regret bound E [WR(ALG)]≤1094

TLLM for all TLLM, then it has to trust and include the recommended arm in all the comparisons immediately1095

after it is proposed by the LLM agent to ensure that future weak regret becomes zero. To see this, note1096

that one can always construct an adversarial TLLM that leads to a nonzero future weak regret. However,1097

the LLM agent can choose to provide an arm that is always not the best arm for all t ∈ {1, . . . ,T}. This1098

leads to E [SR(ALG)]≥ E [WR(ALG)]≥Ω(T ).1099

1100

C Prompt Design and Supplementary Results1101

C.1 Implementation Details of Experiments1102

Prompts and configurations of LLMs. We employ an interactive zero-shot chain-of-thought (CoT)1103

prompt Prompt(P,Ht ,R), as defined in Section 2, which describes the problem setting P, externally1104

summarized interaction history Ht and reasoning instructions R. We adopt the prompting template and1105
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LLM configurations that lead to the best performance among all prompt variations explored in recent 1106

studies (Krishnamurthy et al., 2024; Nie et al., 2024) for MAB problem. The LLM agents interact with 1107

dueling bandit environments in a round-based manner, with the prompt guiding their decision-making 1108

process. We conduct experiments with five LLMs (Achiam et al., 2023; Touvron et al., 2023): GPT-3.5 1109

TURBO, GPT-4, GPT-4 TURBO, LLAMA 3.1 (8B), and O1-PREVIEW. Our use of these scientific 1110

artifacts is in accordance with their respective licenses. Note that we skip the GPT-4O version which is 1111

primarily developed for multimodal tasks and has the same intelligence as GPT-4 TURBO. The detailed 1112

prompt is provided in Appendix C.2.2. 1113

Baselines. We compare LLMs against nine well-established baseline algorithms to evaluate their efficacy. 1114

The baselines include Interleaved Filter (IF2) (Yue et al., 2012), Beat the Mean (BTM) (Yue and 1115

Joachims, 2011), Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE) (Urvoy et al., 1116

2013), Relative Upper Confidence Bound (RUCB) (Zoghi et al., 2014a), Relative Confidence Sampling 1117

(RCS) (Zoghi et al., 2014b), Relative Minimum Empirical Divergence (RMED) (Komiyama et al., 2015), 1118

Versatile Dueling Bandits (VDB) (Saha and Gaillard, 2022), Self-Sparring (Sui et al., 2017), and Double 1119

Thompson Sampling (DTS) (Wu and Liu, 2016). Each of these algorithms employs distinct strategies for 1120

selecting arms and estimating preferences, with the ultimate goal of efficiently identifying the Condorcet 1121

winner. We assess the performance of LLMs and baseline algorithms using strong regret and weak 1122

regret metrics defined in Section 2. We use γ = 0.5 for BTM, f (K) = 0.3K1.01 for RMED, η = 1 for 1123

Self-Sparring, and α = 0.51 for RUCB, RCS and DTS. 1124

Environments. We evaluate the regret performance of LLMs and baselines across two types of stochastic 1125

environments under the standard DB setting with a Condorcet winner (CW). The environments differ in 1126

their stochastic transitivity properties and are divided into two cases, each with two levels of difficulty 1127

instances (Easy and Hard) depending on the distinguishability of the CW in beating other arms: (i) 1128

Transitive Case (SST∩STI): This case uses a Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1129

1952; Yue et al., 2012). The preference matrices generated in this way satisfy the Strong Stochastic 1130

Transitivity (SST) and Stochastic Triangle Inequality (STI), which implies the existence of a CW; (ii) 1131

Intransitive Case (CW \ (SST∪STI)): the preference matrices introduce cyclic preferences among 1132

non-winning arms while ensuring the existence of a CW. The intransitive case is modeled using a custom 1133

preference construction designed to violate SST and STI. The detailed constructions can be found in 1134

Appendix C.2.1. 1135

Random tests. The scale of our experiments is chosen to balance computational feasibility while 1136

preserving the ability of obtaining meaningful conclusions. We set the time horizon to T = 2000 rounds, 1137

providing the LLMs and baseline algorithms with sufficient opportunity to learn and adapt to the DB 1138

environments. Each experiment is replicated N = 5 times for the LLMs and N = 20 times for the baseline 1139

algorithms, enabling an understanding of their average behaviors and reliable performance estimates. 1140

C.2 LLM Experimental Results 1141

In this section, we provide the detailed design of the prompts used in our experiments and provide 1142

additional results to support our findings. We begin by presenting the original prompt used in the LLM- 1143

Env interaction and introduce the perturbed prompts, which include both noisy and adversarial variations 1144

to test the robustness of our approach. Finally, we provide four exemplars using the original prompt to to 1145

showcase the behavior of both GPT-4 TURBO and O1-PREVIEW. 1146

C.2.1 Environments 1147

Transitive Case: SST∩STI 1148

In transitive instances, the preference matrices are constructed using the Bradley-Terry-Luce (BTL) 1149

model (Bradley and Terry, 1952; Yue et al., 2012), with a generalized form known as the Plackett-Luce 1150

model (Plackett, 1975). In this model, each arm is associated with a utility parameter θ(i)> 0, where i 1151

19



represents the rank of the arm (i.e., θ(1) corresponds to the best arm, θ(2) corresponds to the second best1152

arm, and so on). For any pair of arms bi and b j, the probability of bi being preferred over b j is determined1153

by P(i≻ j) = θ(i)/(θ(i)+θ( j)). Setting the number of arms K = 5, we randomize the order of the1154

arms to prevent selection bias, resulting in the following arm ordering: b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4. We use1155

two instances: Transitive-Easy and Transitive-Hard, with their respective θ parameters given by:1156

• Transitive-Easy instance: θ(1) = 1, θ(i) = 0.5− (i−1)/2K, ∀i ∈ [2,K].1157

• Transitive-Hard instance: θ(i) = 1− (i−1)/K, ∀i ∈ [K].1158

Note that the datasets generated in this way satisfy the Strong Stochastic Transitivity (SST) and Stochastic1159

Triangle Inequality (STI) properties (Yue et al., 2012) (see Appendix B.3.1 for more details). The settings1160

of the used BTL model also imply the existence of a Condorcet winner.1161

Intransitive Case: CW \ (SST∪STI)1162

In intransitive instances, the preference matrices are constructed to violate both the Strong Stochastic1163

Transitivity (SST) and Stochastic Triangle Inequality (STI) properties. This design creates cyclic prefer-1164

ences among the non-winning arms while preserving the existence of a Condorcet winner. Setting K = 5,1165

we still use the same shuffled arm ordering: b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4 for intransitive instances.1166

• Intransitive-Easy instance: The Condorcet winner b5 has a strong preference over any other arm:1167

P(5≻ j) = 0.8, P( j ≻ 5) = 0.2, ∀ j ∈ {1, . . . ,4}.1168

Among the non-winning arms b1, . . . ,b4, cyclic preferences are introduced via:1169

P(i≻ j) = 0.8−0.2 · (( j− i−1) mod (K−1)) , ∀i, j ∈ {1, . . . ,4}, i ̸= j.1170

This configuration ensures a clear dominance by b5.1171

• Intransitive-Hard instance: The Condorcet winner’s preference is weaker, with:1172

P(5≻ j) = 0.6, P( j ≻ 5) = 0.4, ∀ j ∈ {1, . . . ,4}.1173

This setting makes it more challenging to identify b5 as the Condorcet winner.1174

Finally, in both instances, the symmetry condition is imposed for consistency:1175

P( j ≻ i) = 1−P(i≻ j), ∀i, j ∈ {1, . . . ,K}, i ̸= j.1176

Accordingly, as shown below, we create a cyclic pattern of preferences among the non-winning arms1177

while maintaining the Condorcet winner’s superiority.1178

Intransitive-Easy Instance (pw = 0.8)1179

P =


0.0 0.8 0.6 0.4 0.2
0.2 0.0 0.8 0.6 0.2
0.4 0.2 0.0 0.8 0.2
0.6 0.4 0.2 0.0 0.2
0.8 0.8 0.8 0.8 0.0

1180

Intransitive-Hard Instance (pw = 0.6)1181

P =


0.0 0.8 0.6 0.4 0.4
0.2 0.0 0.8 0.6 0.4
0.4 0.2 0.0 0.8 0.4
0.6 0.4 0.2 0.0 0.4
0.6 0.6 0.6 0.6 0.0

1182
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C.2.2 Design of Prompts 1183

Original Prompt

Problem Description: 
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an 
unknown probability P(i > j) of arm i winning against arm j in a pairwise duel. There 
exists a best arm (Condorcet Winner) among the 5 arms, which has a greater than 
50% probability of winning against any other arm in a pairwise duel.  
 
At each time step, I will provide you with a summary that shows the past dueling 
results and empirical probabilities. Then you must choose 2 arms to duel against each 
other. The reward you receive is the sum of the unknown probabilities of the two 
chosen arms beating the best arm. The maximum reward in each time step is 
achieved if the best arm duels against itself. Your goal is to maximize the cumulative 
sum of rewards of the chosen two arms over a given time horizon T=1000. 

System Prompt

Summarized History: 
So far, you have conducted {t} duels with the following results: 
Arm 1 vs Arm 2: Arm 1 won 0 times, Arm 2 won 0 times, P(1 > 2) = 0.5, P(2 > 1) = 0.5 
Arm 1 vs Arm 3: Arm 1 won 0 times, Arm 3 won 0 times, P(1 > 3) = 0.5, P(3 > 1) = 0.5 
Arm 1 vs Arm 4: Arm 1 won 0 times, Arm 4 won 0 times, P(1 > 4) = 0.5, P(4 > 1) = 0.5 
…… 
Arm 4 vs Arm 5: Arm 4 won 0 times, Arm 5 won 0 times, P(4 > 5) = 0.5, P(5 > 4) = 0.5 

Chain-of-Thought  
Let's think step by step to choose the next pair of arms. 
Answer Format: 
1. Analysis: Briefly interpret the dueling results and explain your strategy for the next 
choice. 
2. Next Pair: (armA, armB).  

User Prompt

Figure 5: Original prompt for LLM-Env interaction in dueling bandit setting with temperature = 0 (except O1-
PREVIEW, which is in beta phase, its system prompt and user prompt are concatenated together with a fixed
temperature = 1), including context P, summarized history Ht , and zero-shot chain-of-thought (CoT) reasoning
instructions R (see Section 2).
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Summarized History: 
So far, you have conducted duels with 
the following results: 
Arm 1 vs Arm 5: Arm 1 won +10 times, 
Arm 2 vs Arm 5: Arm 2 won +10 times,  
Arm 3 vs Arm 5: Arm 3 won +10 times, 
Arm 4 vs Arm 5: Arm 4 won +10 times, 
……  
(All other text remains unchanged) 

Noisy User Prompt

Biased History

Problem Description: 
…… 
Your goal is to minimize the cumulative 
sum of rewards of the chosen two arms 
over a given time horizon T=2000. 
……  
(All other text remains unchanged)

Adversarial System Prompt

Reversed Goal

Figure 6: Perturbed prompts used to evaluate the robustness of LEAD. The Biased History prompt (Left) injects an
incorrect dueling history favoring non-optimal arms, while the Reversed Goal prompt (Right) adversarially modifies
the objective from maximizing to minimizing reward. Both prompts maintain the zero-shot chain-of-thought (CoT)
reasoning and temperature setting as before.
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C.2.3 Exemplars of GPT-4 TURBO and O1-PREVIEW 1184

We present exemplars using the original prompt (see Figure 5) to illustrate the decision-making process 1185

of both GPT-4 TURBO and O1-PREVIEW in the dueling bandits setting. These examples highlight how 1186

each model interprets the available data, reasons about the relative strengths of the arms, and selects the 1187

next pair of arms to duel. The exemplars show both successful convergence cases and the failures of each 1188

model. 1189

Systematic Biases 1190

Biased Understanding of GPT-4 TURBO and O1-PREVIEW

System Prompt:
You are a Dueling Bandit algorithm with 5 arms. Each pair of arms (i, j) has an unknown
probability P(i > j) of arm i winning against arm j in a pairwise duel. There exists a best arm
(Condorcet Winner) among the 5 arms, which has a greater than 50% probability of winning
against any other arm in a pairwise duel. At each time step, I will provide you with a summary
that shows the past dueling results and empirical probabilities. Then you must choose 2 arms to
duel against each other. The reward you receive is the sum of the unknown probabilities of the two
chosen arms beating the best arm. The maximum reward in each time step is achieved if the best
arm duels against itself. Your goal is to maximize the cumulative sum of rewards of the chosen
two arms over a given time horizon T = 1000.
Question: Can an arm duel against itself?
Answer Exemplars:
Example 1: In a traditional dueling bandit problem, an arm dueling with itself doesn’t make
practical sense because the outcome is trivially known—it would always win. The typical setup
for dueling bandits is to choose two distinct arms to engage in a duel, which provides meaningful
information about their relative strengths.
Example 2: In the context of a dueling bandit problem, an arm dueling with itself typically doesn’t
make sense because the purpose of a duel is to compare two different arms. Dueling an arm
with itself wouldn’t provide any new information about the relative strengths of the arms, as the
outcome is trivially known: the arm would win against itself 100% of the time.
Example 3: In the context of a dueling bandit problem, an arm cannot duel with itself because the
concept of a duel inherently involves comparing two different entities. The purpose of a duel is to
establish which of the two arms is superior, or to collect comparative information. An arm dueling
itself would not generate any valuable information or result, as it would trivially win against itself.
Therefore, you need to choose two distinct arms for each duel in a dueling bandit problem.
Example 4: In the context of a dueling bandit problem, an arm cannot duel with itself because the
concept of a duel inherently involves comparing two different entities. The purpose of a duel is to
establish which of the two arms is superior, or to collect comparative information. An arm dueling
itself would not generate any valuable information or result, as it would trivially win against itself.
Therefore, you need to choose two distinct arms for each duel in a dueling bandit problem.

Comment: LLMs lack a fundamental understanding of the DB problem
1191
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Success cases1192

Successful Convergence Case of GPT-4 TURBO

1. Analysis:
- Arm 5 appears to be the strongest contender, showing a high probability of winning against all
other arms except Arm 2, where it still maintains a majority win rate.
- Arm 3 has a strong win rate against Arm 4 and a reasonable rate against Arm 2, but significantly
loses to Arm 5.
- Arm 2 has a mixed performance, winning against Arm 1 and Arm 4 but losing to Arm 5 and Arm
3.
- Arm 1 and Arm 4 are the weakest, with Arm 1 losing to almost all arms and Arm 4 only winning
against Arm 1.
- Given the goal to maximize the cumulative sum of rewards, focusing on duels involving Arm 5
seems most beneficial, as it has the highest probability of winning against other arms, suggesting
it might be the Condorcet Winner.

2. Next Pair: (Arm 5, Arm 5).
- Dueling Arm 5 against itself maximizes the reward for this step, as it likely has the highest
unknown probability of beating the best arm (itself in this case). This strategy ensures the highest
possible reward in a single duel under the given conditions.

Comment: Successfully understand the problem and suggest a converged arm pair
1193

Successful Convergence Case of O1-PREVIEW

1. Analysis:
Given the dueling results so far, we are tasked with maximizing the cumulative reward over the
remaining time horizon T = 2000 steps. The reward at each time step is the sum of the unknown
probabilities of the two chosen arms beating the best arm (the Condorcet winner).
To maximize our reward, we need to identify the arm that is most likely the best based on the
empirical data and choose it to duel against itself. This is because the maximum reward at each
time step is achieved when the best arm duels against itself.
Analyzing the empirical probabilities:
- Arm 5 has beaten all other arms with a probability greater than 50%:
- P(5 > 1) = 0.75
- P(5 > 2) = 0.75
- P(5 > 3) = 0.64
- P(5 > 4) = 1.00
This suggests that Arm 5 is the most likely Condorcet winner based on the data.
Therefore, to maximize the cumulative reward, we should choose Arm 5 to duel against itself, as
this maximizes the sum of probabilities 2×P(5 > BestArm).

2. Next Pair:
(Arm 5, Arm 5)

Comment: Successfully understand the problem and suggest a converged arm pair
1194
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Failure cases 1195

Convergence Instability Case of GPT-4 TURBO:

1. Analysis:
- Arm 5 appears to be a strong contender as it has a high winning probability against most other
arms, particularly against Arm 1, Arm 2, Arm 3, and Arm 4. Notably, it has a significant number
of duels against Arm 3, which provides a robust estimate of its strength relative to Arm 3.
- Arm 3 also shows strength, especially against Arm 4 and Arm 2, but it has a lower winning
probability against Arm 5.
- Arm 1 and Arm 4 seem to be weaker overall, with Arm 1 losing all duels against Arm 5 and Arm
4 having a low win rate against Arm 5.
- Arm 2 is somewhat in the middle, with a mixed record against the other arms.
Given the results, Arm 5 is likely the Condorcet Winner as it has a greater than 50% win rate
against all other arms. To maximize the reward, it would be beneficial to continue testing Arm 5
against other strong contenders to confirm its dominance and further understand the dynamics
between the other arms.

2. Next Pair:
- This pairing is chosen because while Arm 5 has shown strong performance against Arm 3,
the large number of duels suggests that further testing could provide additional insights and
confirm stability in the empirical probabilities. Additionally, dueling these two strong arms could
potentially yield a high reward if Arm 5 continues to dominate.
Choose: (Arm 5, Arm 3)

Comment: Keeps comparing the same top arms without committing to a single winner
1196
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Biased Understanding Case of O1-PREVIEW:

1. Analysis:
From the given data, we can infer that Arm 5 is likely the best arm (Condorcet Winner) because it
has beaten all other arms with probabilities greater than 50
- P(5 > 1) = 0.75
- P(5 > 2) = 0.75
- P(5 > 3) = 0.66
- P(5 > 4) = 1.00

Our goal is to choose two arms (armA and armB) such that the sum P(armA > best arm) + P(armB
> best arm) is maximized.
From the empirical probabilities:
- P(3 > 5) = 0.34
- P(2 > 5) = 0.25
- P(1 > 5) = 0.25
- P(4 > 5) = 0.00
Arm 3 has the highest probability of beating Arm 5, followed by Arms 2 and 1. Arm 4 has a zero
probability and should not be selected.
Between Arms 1 and 2, Arm 2 has participated in more duels against Arm 5, providing a more
reliable estimate of its probability to beat the best arm. Additionally, Arm 2’s performance against
other arms suggests it may be slightly better than Arm 1.
Therefore, the best choice to maximize our expected reward is to select Arm 3 and Arm 2.

2. Next Pair:
(Arm 3, Arm 2)

Comment: Exhibits a biased understanding of the problem description: while successfully
identifying the Condorcet Winner, it still selects suboptimal arms in duel.

1197

C.3 Supplementary Experiments1198

C.3.1 Comparisons with Different Metrics1199

We present supplementary results to complement our case studies. (i) Figure 7 shows the strong and weak1200

regret comparisons for the Hard instance. (ii) Figure 10 presents comparisons under different numbers of1201

arms K, illustrating the impact of the Relative Decision Window. (iii) Figure 11 introduces the Best Arm1202

Inclusion Ratio and the Converged Best Arm Ratio. (iv) Figure 12 examines the generalized variance of1203

the strong and weak regret for both instances.1204
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Figure 7: Comparisons between LLM agents and various classic DB algorithms. Left and Right: strong and weak
regret for the Transitive-Hard instance. Results for the Transitive-Easy instance is presented in Figure 2. We
evaluate only three LLMs on the Transitive-Hard instance due to our research goals and high API costs: (i) The
results for the Transitive-Hard instance are qualitatively similar to those for the Transitive-Easy instance; (ii)
Obviously, the Transitive-Easy instance offers higher distinguishability, allowing us to observe convergence and
regret differences within a feasible number of steps.
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Figure 8: Comparisons between GPT-4 TURBO and various classic DB algorithms. Left and Right: strong
and weak regret for the Intransitive-Easy instance. Results for the Intransitive-Hard instance is presented
in Figure 9. We evaluate only our top-performing LLM on the Intransitive-Easy and Intransitive-Hard
instance to examine the scalability limitation.
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Figure 9: Comparisons between GPT-4 TURBO and various classic DB algorithms. Left and Right: strong and
weak regret for the Intransitive-Hard instance.
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K 
= 

5
K 

= 
10

Number of arms 
increases

LLM long-term  
performance degradesRelative Decision Window: However, the short-term 

performance remains exceptional

Figure 10: Cumulative strong and weak regret comparisons between LLM agents and classic dueling bandit
algorithms on Transitive-Easy instance under different numbers of arms K. Top Left and Top Right: K=5,
where GPT-4-Turbo significantly outperforms other methods on weak regret. Bottom Left and Bottom Right:
K=10, where the performance of GPT-4-Turbo degrades as the number of arms increases.
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Figure 11: Four LLMs (GPT-3.5 TURBO, GPT-4, GPT-4 TURBO, O1-PREVIEW) and two state-of-the-art baselines
(SELF-SPARRING and DTS) are compared against each other on the Transitive-Easy instance over different time
intervals. Left: the Best Arm Inclusion Ratio represents the fraction of duels that include the best arm (Condorcet
winner). Middle: the Converged Best Arm Ratio represents the proportion of duels where the best arm duels
against itself for exploitation. Right: the Suboptimal Duel Ratio represents the proportion of duels where both
arms selected in duel are suboptimal arms. We observed that while O1-PREVIEW can transit from exploration to
exploitation (high Converged Best Arm Ratio), it selects more optimal arms (high Suboptimal Duel Ratio) due to
the reinforced biased understanding as discussed in Section 3.1.

Methods

10
2

10
1

10
0

G
en

er
al

iz
ed

 V
ar

ia
nc

e 
(E

as
y)

BTM
SAVAGE
IF
RMED
RCS
RUCB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

Methods

10
2

10
1

10
0

G
en

er
al

iz
ed

 V
ar

ia
nc

e 
(H

ar
d)

BTM
SAVAGE
IF
RMED
RCS
RUCB

SelfSparring
DTS
GPT-3.5-Turbo
GPT-4
GPT-4-Turbo

Figure 12: Comparison of the generalized variance of strong and weak regret between three LLMs and baseline
algorithms on the Transitive-Easy (Left) and Transitive-Hard (Right) instances. In the Easy instance, GPT-4
TURBO exhibits the lowest average generalized variance. For the Transitive-Hard instance, GPT-4 TURBO
maintains a variance level comparable to state-of-the-art baseline algorithms (except BTM and SAVAGE, which are
in an early exploration stage).
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C.3.2 Duel Selection Trajectory1205

We visualize the duel selection trajectory in representative experiments to better understand the behavior1206

of LLM agents and baseline algorithms.1207

Duel Selection Trajectory Explanation: The reshuffled arm order is b5 ≻ b3 ≻ b2 ≻ b1 ≻ b4, with arm1208

indices from bottom to top: 5, 4, 3, 2, 1. Each filled black cell represents a selected arm at that time step.1209

For instance, black lines in arms 5 and 3 indicate the selection of the duel between (arm 5, arm 3) at that1210

particular time step.1211
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Figure 13: Comparison of duel selection trajectories among GPT-4 TURBO, SELF-SPARRING, and DTS on
the Transitive-Easy (Top Row) and Transitive-Hard (Bottom Row) instances. The decision trajectories of
GPT-4 TURBO exhibit a clear pattern of continuous exploration without converging to the best arm. In contrast,
SELF-SPARRING and DTS demonstrate structured exploration patterns and convergence properties.
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Figure 14: Comparison of duel selection trajectories between GPT-4 TURBO (Left) and O1-PREVIEW (Right)
on the Transitive-Easy instance. GPT-4 TURBO achieves low weak regret by consistently selecting the best
arm, though it struggles to converge to a single best arm. In contrast, O1-PREVIEW shows better convergence
behavior, but its weak regret performance is worse than GPT-4 TURBO due to incomplete or biased understanding,
as illustrated by the O1-PREVIEW exemplar in Appendix C.2.3.

GPT-3.5-Turbo GPT-4 GPT-4-Turbo
1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

H
ar

d

Figure 15: Local optima trajectories of GPT-3.5 TURBO (Left), GPT-4 (Middle), and GPT-4 TURBO (Right,
with noisy prompt) on the Transitive-Hard instance. Less capable LLMs, such as GPT-3.5 TURBO and GPT-4,
could get stuck comparing suboptimal arms on hard preference structure. Even for GPT-4 TURBO, noisy prompts
with biased history (see Figure 6) can lead it to be trapped in bad tournaments.

30



FailureSuccess
H
ar
d

Figure 16: Comparison of success (Left) and failure (Right) cases for the Convergence-Triggered GPT-4 TURBO
intervention strategy discussed in Section 4.1. While it works for most cases due to GPT-4 TURBO’s strong capa-
bility (Left), sometimes this naive intervention can reinforce suboptimal choices (Right) on the Transitive-Hard
instance.
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Figure 17: Duel selection trajectory comparison between GPT-4 TURBO and LEAD under different prompt settings
(see Figures 5 and 6). (i) Top Row: With the original prompt, LEAD leverages GPT-4 TURBO’s exploration
ability and guarantees convergence through the IF2 phase. (ii) Middle Row: With a noisy prompt (biased history),
LEAD overcomes the limitation of standalone GPT-4 TURBO getting trapped in local optima by employing
uniform comparisons in the IF2 phase. (iii) Bottom Row: With an adversarial prompt (reversed goal), LEAD
maintains robust behavior despite the adversarial modification. Across all scenarios, LEAD demonstrates superior
performance and robustness compared to standalone GPT-4 TURBO.
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