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ABSTRACT

Offline design optimization problem arises in numerous science and engineering
applications including materials engineering, where expensive online experimen-
tation necessitates the use of in silico surrogate functions to predict and maximize
the target objective over candidate designs. Although these surrogates can be
learned from offline data, their predictions are often inaccurate outside the offline
data regime. This challenge raises a fundamental question about the impact of
imperfect surrogate model on the performance gap between its optima and the
true oracle optima, and to what extent the performance loss can be mitigated. Al-
though prior work developed methods to improve the robustness of surrogate mod-
els and their associated optimization processes, a provably quantifiable relation-
ship between an imperfect surrogate and the corresponding performance gap, and
whether prior methods directly address it, remain elusive. To shed more light on
this important question, we present a novel theoretical formulation to understand
offline black-box optimization, by explicitly bounding the optimization quality
based on how well the surrogate matches the latent gradient field that underlines
the offline data. Inspired by our theoretical analysis, we propose a principled
black-box gradient matching algorithm to create effective surrogate models for
offline optimization. Experiments on diverse real-world benchmarks demonstrate
improved optimization quality using our approach to create surrogates.

1 INTRODUCTION

Many science and engineering applications involve optimizing an expensive-to-evaluate black-box
objective function over large design spaces. Some examples include design optimization over can-
didate molecules, proteins (Nguyen & Daugherty, 2005), drugs, biological sequences, and super-
conducting materials (Si et al., 2016). To evaluate candidate designs, we need to perform physical
lab experiments or computational simulations which are labor-intensive and impractical to do in an
online manner. Offfine optimization (Trabucco et al., 2022; 2021) is a more practical setting where
we assume the access to a dataset of input and objective function evaluation pairs, and the overall
goal is to use this offline training data to uncover optimal designs from the given input space.

The prototypical approach (Hutter et al., 2011; Brookes et al., 2019) to solve offline optimization
problems is to learn a surrogate model from the given training data which can predict the objective
function value for unknown inputs and find optimal input (i.e., maximizer) for this surrogate using
gradient-based methods. The key implicit assumption behind this approach is that we can learn
an accurate surrogate model over the entire input space using supervised learning. However, this is
rarely achievable in practice due to the size and sparsity of the offline training data. In most cases, the
surrogate model is only reliable within a constrained neighborhood of the offline data (Fannjiang &
Listgarten, 2020) and can be highly erroneous outside this neighborhood. Consequently, there will
be a discrepancy between the gradient fields of the Oracle (i.e., true objective function) and the
surrogate model which will misguide the gradient search towards sub-optimal solutions.

This raises two related fundamental questions. First, how does the discrepancy in gradient estima-
tion affect the performance gap between the optima of the surrogate model and the Oracle. Second,
how to learn surrogate models which can closely approximate the gradient field of the Oracle. Both
questions are challenging given that the Oracle’s gradient field is entirely non-observable even at
the offline training data points, and have not been studied by prior work. In fact, we note that while
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Figure 1: Comparison of gradient estimation error incurred by MATCH-OPT (orange) and standard
regression (blue) while learning the gradient field of the Shekel function on 4-dimensional input
space at different out-of-distribution (OOD) settings where test inputs were drawn from N(0, o)
while training inputs were drawn from N(0, I). Smaller « indicates larger deviation from the offline
data regime, which widens the performance gap between MATCH—-OPT and standard regression.

there is an existing literature on random gradient estimation methods (Fu, 2015; Wang et al., 2018),
those methods require the ability to actively sample data from the Oracle (or black-box function)
which is not possible in the context of offline optimization.

Contributions. The main contribution of this paper is therefore to (1) provide theoretically-sound
answers to these two questions; and (2) to demonstrate their practical significance on real-world
offline design optimization problems:

1. To answer the first question, we present a theoretical framework to characterize the performance
of gradient-based search guided by a surrogate model for offline optimization. We provably bound
the performance gap between the optima of the Oracle and the trained surrogate as a function of how
well the surrogate matches the (latent) gradient field of the Oracle on the offline training data. Our
derived bound is non-trivial and yet model-agnostic, making it broadly applicable (Section 3).

2. To answer the second question, we present a principled gradient matching algorithm, referred to
as MATCH-OPT, that is inspired by our theoretical analysis. Intuitively, gradients of the Oracle are
relatively less sensitive to changes in the input. Hence, a surrogate model trained to directly match
gradients will result in good offline optimization performance with gradient search from diverse
starting points (referred as “reliable””). An overview of our algorithm is given in Fig. 2. Our algo-
rithm MATCH-OPT is model-agnostic and allows us to approximate the gradient field that underlies
the offline training data using a parametric surrogate (Section 4). In practice, existing offline opti-
mization algorithms exhibits high variance in their performance across diverse design optimization
tasks. MATCH-OPT is aimed at achieving reliable performance to address this critical challenge.

To provide an intuition and sanity check to readers, we visualize the reliability of our method’s gra-
dient estimation in several out-of-distribution (OOD) settings. We train our method, MATCH-OPT,
and a standard regression model on the same set of random inputs drawn from N(0,I) and their
Shekel function (https://www.sfu.ca/~ssurjano/shekel.html) evaluations. Fig. 1
plots the (sorted) gradient estimation error (i.e., the norm difference between predicted and ora-
cle gradients) achieved by the two approaches at 1000 random inputs drawn from different OOD
distributions N(0, oI) parameterized with different values of o € [0.1,0.2,0.5, 1.0].

It is observed that (1) when the test and train distributions are the same (« = 1.0), the performance of
the two approaches are the same; but (2) when « decreases (i.e., larger deviation from the offline data
regime), our approach achieves significantly smaller error, suggesting that a direct gradient matching
is more reliable in OOD data regimes. While this behaviour does not necessarily translate into better
predictive accuracy, our Theorem 1 demonstrates that it will indeed minimize the optimization risk
as we follow the surrogate gradient to find the oracle maximum. We note that similar ideas have
shown great empirical success in a different area of structured prediction where models were learned
to guide greedy search in combinatorial spaces (Doppa et al., 2014).

3. Finally, we demonstrate the efficacy of MATCH-OPT on diverse real-world optimization problems
from the design-bench benchmark (Trabucco et al., 2022). Our results show that MATCH-OPT con-
sistently shows improved optimization performance over existing baselines, and produces high-
quality solutions with gradient search from diverse starting points (Section 5). Our code is provided
in the supplementary files for review purposes and will be made public.
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Figure 2: Our approach MATCH-OPT synthesizes input sequences with monotonically increasing
function values from the offline dataset, which are used to train a parametric surrogate model. Our
loss function incorporates both standard regression loss (i.e., value matching) and a novel gradient
matching loss. We perform gradient search on the trained surrogate to find optimized designs.

2 BACKGROUND AND PROBLEM SETUP

Offline Black-box Optimization. Suppose X is an input space where each x € X is a candidate
input. Let g : X — 3 be an unknown, expensive real-valued objective function which can evaluate
any given input x € X to produce output y = g(x). For example, in material design application,
g(x) corresponds to running a physical lab experiment. Our overall goal is to find an optimal input
or design x, € X that maximizes the output of an experiment or simulation process g(x),

X, 2 argmax g(x). (D)
xeX
We are provided with a static dataset of n input-output pairs ©={(x1, z1), (X2, 22), -+ , (Xn, 2n)}

collected offline, where z;=g(x;). The optimization algorithm does not have access to objective
function g values on inputs outside the dataset .

Surrogate Model. We do not have access to the black-box function g(x) beyond the offline dataset
® of n training examples. This allows us to learn a surrogate g4 (x) for g(x) via supervised learning.

¢ = arg;mn; £<g¢/ (xi), g(xi)> = argd)rlnin ;:;E(;M,/ (Xi), zi> , 2)

where ¢ denotes the parameters of surrogate model and £(z, z’) denotes the loss of predicting z
when the oracle value is 2’ for a given input x. For example, £(z, z') = (z —2')? and g4 (x) = ¢ ' x

Gradient-based Search Procedure. Once learned, ¢ is fixed and we can use g,(x) as a surrogate
to approximate the optimal design as:

xy ~ xj where x;*! £ xf + X Vg, (x}) 3)
which is defined recursively for 0 < & < m — 1 via a m-step gradient ascent process starting from
an initial solution xY = x with a fixed learning rate A > 0. The final iterate xy' is referred to as
the solution of gradient search guided by the surrogate. Ideally, we want this solution to match the
solution of gradient search guided by the oracle derivative, or the derivative of a differentiable proxy
function that is closest to the ground-truth function g, if the oracle function does not exist. We refer
to this as the oracle gradient, and the solution guided by the oracle gradient is defined as:

X, =~ x™ where x"1 £ xF 4+ \.Vyg (x’:) G))

*

which forms a similar gradient search of m steps with the same initial solution x0 = xg =x

and learning rate A > 0. However, this search process employs the oracle gradient instead of the
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surrogate gradient. A discrepancy between Oracle gradients and surrogate gradients can result in a
performance gap between the objective function values of x7* and x7".

This paper therefore studies two related questions in the context of gradient search guided by a
trained surrogate model for offline optimization.

Q1. How does the discrepancy between Oracle and surrogate gradients impact the quality of uncov-
ered solutions? This will be discussed in Section 3.

Q2. How to learn surrogate models that can closely approximate Oracle gradients using the offline
training data ®? Building on the result of Section 3, this will be discussed in Section 4.

3 THEORETICAL ANALYSIS

We provide a rigorous theoretical analysis to answer Q1. We derive an upper-bound for the perfor-
mance gap between gradient search guided by the Oracle function and the trained surrogate, which
is characterized explicitly in terms of how well the surrogate’s gradient field fits with the offline data.

Performance Gap. First, we define the performance of the solution found via m steps of gradient

ascent on g4 (x) starting from xg = x" via
Ny (xg) = Ry (x") = g(x) — g(xs) = 9(x) — g(xF) . (5)

where x7 is defined in equation 3. Similarly, we have R} (x?) = R7"(x°) = g(x.) — g(xI*) > 0.
Note that we are distinguishing between the Oracle solution x}* and x, here because often, finding
X, is intractable even with access to the Oracle g(x) (e.g., combinatorial spaces). Thus, it is more
practical to compare the surrogate solution with the oracle solution, rather than the oracle optima.
We can now define the performance gap and state our main result.

Definition 1. For a fixed gradient ascent process starting from x with m update steps and learning

m

rate \ > 0, the performance gap between the surrogate solution Xy and the oracle solution X" is

Gualx) 2 | R0 - R (%)

; (6)

where Ry and Ry, are as defined above.

Theorem 1. Suppose g(x) is a -Lipschitz continuous and -Lipschitz smooth function. The worst-
case performance gap between g and some arbitrary surrogate gy is upper-bounded by:

m—1
(G NN £ max G (x) < m/\ﬁ(l + )\u) - max HVg(x) — Vg(b(x)H . @)
Please see Appendix A for a detailed derivation and further discussion..

Theorem 1 establishes that the worst-case performance gap between the surrogate and oracle solu-
tions is upper-bounded by the maximum norm difference between the surrogate and oracle gradients
over the input space. This provides a direct quantification of optimization quality as a function of
gradient discrepancies. In addition, the result of Theorem 1 also characterizes a balance between the
risk and potential of gradient search in terms of the learning rate and the number of update steps.

As the learning rate A or the number of search steps m approaches zero, the bound in Theorem 1
also approaches zero. This means an extremely conservative gradient search (one that barely moves)
would minimize the gap between R, and R, making the performance of the surrogate solution
arbitrarily close to that of the oracle solution. At the same time, such a conservative strategy would
widen the gap between the oracle solution and the optima, which ultimately deteriorates the overall
performance of offline optimization. Conversely, an explorative search that uses larger A and m
will bring 2R, closer to zero, making the oracle solution arbitrarily close to the true optima. At the
same time, it also widens the gap between the surrogate and oracle solution, again reducing the
performance of offline optimization. Furthermore, as the bound in equation 7 holds for all possible
choices of g4, we can tighten it with respect to g,. That is:

m—1
Gn < mM(l + /\u) . mq%nmax HVg(x) - Vg¢(x)H . (8)

s
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For a fixed gradient based search configuration (m, A), the offline optimization task is therefore
reduced to solving a minimax program,

¢. = argminmax HVg(x) — Vg¢(x)H . 9
d) X
which is non-trivial since we do not have direct access to Vg(x). Instead, we only have the value of

g(x;) at a finite number of inputs {x;}?* . We will describe the solution to equation 9 below.

Algorithm 1 MATCH-OPT: Black-Box Gradient Matching from Offline Training Data
Input: Dataset © = {(xs, 2:) }i~1, initial surrogate model parameters ¢, length of monotonic synthetic paths
m, number of iterations 7, learning rate A > 0, regularization parameter cv > 0
Output: Surrogate model g4 with parameters ¢><T>
1: Generate monotonic trajectories C"* via strategy from Krishnamoorthy et al. (2023b), Kumar et al. (2019)
2: ¢ « ¢ //initialize parameters of surrogate model
3: fort <~ 0:7—1do
4: £ <« 0// initialize the average loss
5.
6

for ¢ = (x1,...,%xm) €C™ do
£f] <+ gradient matching loss using Eq. 12 with ¢ = ¢

is 2
7: L a- Z (g (%) — g (x2) ) // compute regression regularizer with ¢ = ¢
i=1
~1
8: £+ £+ Cm’ (Sg + Sf) // update the average loss

9: oD M 4 ). V¢£‘ ., !/ once the inner loop finishes, £ in Eq. 13 will have been computed
=9

10: return the learned surrogate model gg with ¢ = o

4 PRACTICAL ALGORITHM: MATCH-OPT

This section answers Q2 by providing a principled algorithm, which is referred to as MATCH-OPT.
The crux of solving equation 9 lies with how we approximate the Oracle gradient field when we
are given evaluations of the Oracle function at a fixed set of inputs (i.e., offline dataset). A naive
approach is to sample perturbed values around a target input and use the finite difference method to
approximate its gradient (Fu, 2015; Wang et al., 2018). However, these methods require querying
the Oracle function for perturbations of data points, which is not possible in the offline optimization
setting. To overcome this challenge, we leverage the fundamental line integration theorem, which
states that for any two inputs x and x’ with corresponding values z = ¢g(x) and 2’ = g(x'):

z2—2 = g(x’)—g(x) ~ (x’—x)T/O1 [Vg¢(x~(1—t)+x’-t)}dt, (10)

where the approximation holds when Vg4 closely estimates the oracle gradient Vg. To enforce this,
we need to find ¢ such that the averaged difference between the LHS and RHS of equation 10 is
minimized. That is, we want to solve:

2
1

¢* = argmin £,(¢) £ Exxeon (Az - AXT/ Vg¢<x- (1-1) +X/~t)dt> , (11
® 0

where Az = g(x) — g(x’) provides a tractable learning objective when the expectation is taken
over random inputs sampled from the offline training dataset ®. We note that in the ideal scenario,
equation 11 can be solved indirectly with a direct regression approach because the gradient fields
of g and g, must be the same when g4 (x) accurately estimates g(x) for every x. However, as long
as there are discrepancies, it is unclear which surrogate gradient (among surrogate candidates that
approximate the Oracle equally well) would minimize the gradient discrepancy. As such, we argue
that a direct gradient matching approach is more preferable in this case. This statement is supported
by both our synthetic experiment (see Fig. 1) and real-world experiments presented in Section 5.3.

Practical Considerations. A naive optimization of equation 11 requires enumerating over all pairs
of training inputs. Iterating through the entire dataset is thus more expensive than a standard regres-
sion algorithm. To avoid this overhead, we adopt the strategy of Krishnamoorthy et al. (2023b) and
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Kumar & Levine (2020), which organizes training data into monotonically increasing trajectories
that mimic optimization paths. This encourages the model to learn the behavior of a gradient-based
optimization algorithm, and thus allows the gradient matching algorithm to focus more on strategic
input pairs that are more relevant for gradient estimation.

Specifically, let C™ denote a finite set of m-hop synthetic input paths with increasing objective func-
tion values, i.e., if ( = {x1,Xa,...,X;n} € C™, we have g(x;41) > g(x;). To sample trajectories
from this set, we first bin the offline inputs based on their percentiles in the dataset, and subsequently
sample one input from each bin to form a trajectory with monotonically increasing function values.
We adapt the loss function in equation 11 to optimize along such sampled paths, and thus focus on
estimating gradient information that is relevant to the downstream search procedure. That is, we aim

to minimize £,(¢;C™) £ E¢eem[L4(; ()], where:

m—1 1 2
(Az — Ax" / Vo (xi (1= t) + Xig1 - t)dt)
0

00 2 Y
=~ (Az - % i:l (AXT (Vg¢ (rl(u — 1)) + Vge (rl(u)))>> , (12)

K2

3

12

1
u=

K2

1
and r;(u) = x; - (1 — (u/K)) + xi41 - (u/K). Here, equation 12 takes empirical expectation
over the successive pairs along the synthesized trajectories ¢ € C™, Az £ g(x;,1) — g(x;) and
Ax £ x;41 — x;. In addition, the integral inside the expectation on the RHS of equation 12
is approximated via a discretization of (0,1) into « intervals with equal lengths. Our empirical
inspections suggest that a discretization x = 5 works best in practice. We combine this loss function
with the regression loss along the synthetic trajectory to achieve the best of both worlds; that is:

i=1

L£(¢) = Lyem(9)+a-Eeeem Z (Q(Xi) - g¢(Xi)> ; (13)

where « is a trade-off hyper-parameter, and £(¢) denotes our ultimate loss function. A complete
pseudo-code of this algorithm is detailed below (see Algorithm 1). We set & = 1 in all our experi-
ments since the regression and gradient match terms have the same unit scale.

Complexity Analysis. Given a m-hop synthetic sequence { of d-dimensional inputs, each step
of the inner loop in Algorithm 1 will require a linear scan over m segments. For each segment,
the algorithm needs to compute (1) the gradient matching loss, which costs O(dmk|$|) where &
is the granularity of the discretization in equation 12 and |¢| is the number of parameters of the
surrogate model, and (2) the regression regularizer on this path, which costs O(m/|¢|). Thus, suppose
p = |C™| synthetic input sequences/paths were generated for our algorithm, the entire inner loop of
Algorithm 1 will incur a total cost of O(p-(dm#«|¢|+m|¢|)) = O(p-dmk|¢|). This is the complexity
per training iteration. For T iterations, the total complexity of Algorithm 1 will be O(7 - p-dmk|d|).

5 EXPERIMENTS

This section describes the set of benchmark tasks used to evaluate and compare the performance of
MATCH-OPT with those of other baselines (Section 5.1), the configurations of both our proposed
algorithm and those baselines (Section 5.2), as well as their reported results (Section 5.3).

5.1 BENCHMARKS

Our empirical studies are conducted on 6 benchmark tasks from a diverse set engineering domains.
Each task comprises a black-box oracle and an offline training dataset, which is a small subset of
a much larger dataset used to train the oracle. Each participating algorithm only has access to the
offline dataset. The oracle is only used to evaluate the performance of the final inputs recommended
by those offline optimizers. The specifics of these datasets and their oracle functions are further pro-
vided in the design baseline package (Trabucco et al., 2022). Four tasks are defined over continuous
input spaces, whereas the other two are discrete, which we summarize below.

1 & 2. The Ant Morphology (Brockman et al., 2016) (ANT) and D’Kitty Morphology dataset (Ahn
et al., 2020) (DKITTY) collect morphological observations of two robots and their corresponding
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rewards in moving as fast as possible, or towards a specific location. The morphological parameters
of the robot is defined over a 60/56-dimensional continuous search space.

3. The Hopper Controller dataset (Ahn et al., 2020) (HOPPER) collects observations of a neural net-
work policy weights and their rewards on the Hopper-v2 locomotion task in OpenAl Gym (Brock-
man et al., 2016). The search space is defined over 5126-dimensional continuous space.

4. The Superconductor dataset (Brookes et al., 2019) (SCON) collects observations of supercon-
ductor molecules and their corresponding critical temperatures. Each molecule is represented by a
86-dimensional continuous vector.

5 & 6. The TF-Bind-8 (TF8) and TF-Bind-10 (TF10) datasets (Barrera et al., 2016) collect the
binding activity scores between a given human transcription factor and various DNA sequences
of length 8 and 10 respectively. The goal of these discrete tasks is to find a DNA sequence that
maximizes the binding score with the given transcription factor.

METHOD ANT DKiITTY HOPPER SCON TF8 TF10 MNR
GA 0.271 0.895 0.780 0.699 0.954 0.966 0.600
ENS-MEAN 0.517 0.899 1.524 0.716 0.926 0.968 0.500
ENS-MIN 0.536 0.908 1.42 0.734 0.959 0.959 0.467
CMA-ES 0.974 0.722 0.620 0.757 0.978 0.966 0.367
MINS 0.910 0.939 0.150 0.690 0.900 0.759 0.700
CBAS 0.842 0.879 0.150 0.659 0916 0.928 0.733
ROMA 0.832 0.880 2.026 0.704 0.664 0.820 0.667
BONET 0.927 0.954 0.395 0.500 0911 0.756 0.683
COMS 0.885 0.953 2.270 0.565 0.968 0.873 0.467

MATCH-OPT 0.931(2) 0.957(1) 1.572(3) 0.732(3) 0.977(2) 0.924(6) 0.283

Table 1: Performance of MATCH-OPT and other baselines at 100" percentile level. The last column
shows the mean normalized rank (MNR) computed across all tasks (smaller is better). The individ-
ual rank of MATCH-OPT on each task is included next to its reported performance.

5.2 CONFIGURATION OF ALGORITHMS AND EVALUATION METHODOLOGY

Baselines. Our empirical studies evaluate and compare the performance of MATCH-OPT against
those of multiple state-of-the-art baseline approaches including COMS (Trabucco et al., 2021),
ROMA (Yu et al., 2021), BONET (Krishnamoorthy et al., 2023b). Several other baselines from
the design bench benchmark (Trabucco et al., 2022) including Gradient Ascent (GA), Gradient As-
cent Ensemble Mean (ENS-MEAN), Gradient Ascent Ensemble Min (ENS-MIN), covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen, 2006), model inversion networks (MINS) (Ku-
mar & Levine, 2020), conditioning by adaptive sampling (CBAS) (Brookes et al., 2019) are also
included for a thorough comparison. The same neural network architecture is used for all baselines.
Details of our experiments are deferred to Appendix B.

Evaluation Methodology. Our experiments follow the widely adopted evaluation methodology
introduced by Trabucco et al. (2022). That is, each algorithm starts the search from the same initial
set of n = 128 offline inputs and generates the corresponding set of solution candidates which
are evaluated by the oracle function. For each algorithm, these (128) solutions are then sorted in
increasing order, and the corresponding values at the 100" percentile (maximum solution) and 50™
(median solution) are reported in Table 1 and Table 2 below. All oracle values are normalized using
the maximum and minimum values from a larger unobserved dataset (that was used to train the
oracle). We run each algorithm on each task 4 times and report the mean and standard deviation. We
report mean performance in the main text and defer their standard deviations to Appendix D.

Comparison Metrics. The overall performance of a baseline against other methods across different
optimization tasks can be assessed using (a) their mean (normalized) performance; and (b) their
mean (normalized) performance rank. While the first metric has often been used in prior work, it
does not account for the variation in performance among tasks. For example, normalized perfor-
mance are often close to 1 for easy tasks, whereas for harder tasks, they can be closer to 0. The
mean performance metric therefore might favor algorithms that do well on easy tasks, but poorly on
other hard tasks. To mitigate such biased assessment, we consider the mean normalized rank (MNR)
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metric that is agnostic to such variation of performance This is defined below:

Z rank(A; task;)

MNR(A
# algorithms

(14)
where p is the number of tasks and rank(.A; taski) = ¢ means A is the g-best algorithm for the i-th
task. To scale the MNR to the same range of (0, 1) (for convenience), we also normalize the rank by
the number of participating algorithms in the ranking order. An algorithm with low MNR therefore
has more reliable performance across tasks, and is preferable to other methods with higher MNR.

5.3 RESULTS AND DISCUSSION

To demonstrate the effectiveness of MATCH-OPT, we report the 100™ and 50™ percentile results in
Table 1 and Table 2 comparing MATCH-OPT with all the baselines. Other than the algorithm’s indi-
vidual performance reported for each task, we calculate its mean normalized rank (see equation 14)
to account for the reliability of its performance (across tasks) in the comparison.

Mean Rank Comparison. Overall, no algorithm performs best in more than two task domains due
to the diverse nature of the benchmark tasks. In fact, for the 100-percentile performance reported
in Table 1, each algorithm only performs best in at most one task. Among these, MATCH-OPT per-
forms best on the DKITTY dataset, and second best on ANT and TF8 datasets. MATCH—-OPT is
consistently among the top-3 performers on four out of six task domains, which is an evidence of
its reliable performance. In fact, this is best reflected in terms of the mean normalized rank metric
(MNR) which averages the normalized rank of each baseline across all six tasks (see equation 14).
Among all participating algorithms, MATCH-OPT achieves the lowest MNR, which is also markedly
lower than that of the second lowest MNR of COMS. At 501 percentile, Table 2 also shows that
MATCH-OPT achieves the best MNR among competing baselines.

METHOD ANT DKiITTY HOPPER SCON TF8 TF10 MNR
GA 0.130 0.742 0.089 0.641 0.510 0.794 0.600
ENS-MEAN 0.192 0.791 0.209 0.644 0.529 0.796 0.433
ENS-MIN 0.190 0.803 0.166 0.672 0.490 0.794 0.500
CMA-ES -0.049 0.482 -0.033 0.590 0.592 0.786 0.683
MINS 0.614 0.889 0.088 0.414 0.420 0.465 0.650
CBAS 0.376 0.757 0.013 0.099 0.442 0.613 0.817
ROMA 0.448 0.760 0.370 0.420 0.560 0.780 0.533
BONET 0.620 0.897 0.390 0.470 0.505 0.465 0.417
COMS 0.557 0.879 0.379 0.414 0.652 0.606 0.467

MATCH-OPT 0.611(3) 0.887(3) 0.393(1) 0.439(6) 0.594(2) 0.720(6) 0.350

Table 2: Performance of MATCH-OPT and other baselines at 50" percentile level. The last column
shows the mean normalized rank (MNR) computed across all tasks (smaller is better). The individ-
ual rank of MATCH-OPT on each task is included next to its reported performance.

Reliability Assessment. To further demonstrate the consistent reliability of MATCH-OPT as previ-
ously alluded to in the introduction section, we also plot the MNRS of all competing baselines at
every solution percentile level in Fig. 3a. As expected, MATCH-OPT achieves the lowest MNR at
almost every percentile, averaging at approximately 0.35 which is again markedly lower than the
second lowest MNR. In addition, we also plot the mean performance of the tested algorithms across
all percentile level in Fig. 3b, which also show that MATCH—-OPT is the best performer (on average)
between 0- and 80-percentile. Above that, between 80- and 100-percentile level, MATCH-OPT is
the second best performer. The above observations (both MNR and mean performance) suggest
that MATCH-OPT is consistently the most reliable among all optimizers. We also refer the readers
to Appendix E which further visualizes the entire rank distribution of the tested algorithm across
different percentile level. All observations are consistent with our above observations in Fig. 3a.

6 RELATED WORK

Black-box optimization problems were previously approached using derivative-free methods, such
as random gradient estimation (Wang et al., 2018) or Bayesian optimization (Snoek et al., 2012;
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Figure 3: Plots of (a) mean normalized ranks (MNRs); and (b) mean (normalized) performance of
baselines at all performance percentile levels.

Wang et al., 2013; Eriksson et al., 2019). These methods require online evaluation of the oracle
function to approximate its derivative or learn its surrogate model. In many practical applications,
this can be very expensive (e.g., testing new protein or drug design), or even dangerous (e.g., test-
driving autonomous vehicles in a real physical environment). To avoid this, offline optimization
approaches tackle this problem via utilizing an existing dataset that records oracle evaluations for a
fixed set of inputs. These approaches can be categorized into two main families:

Conditioning Search Model. Existing approaches in this direction are grounded in the frame-
work of density estimation, which aims to learn a probabilistic prior over the input space. The
search model is treated as a probability distribution conditioned on the rare event of achieving a
high oracle score, and is estimated using different approaches, such as adaptive trust-region based
strategies (Brookes et al., 2019), or zero-sum game (Fannjiang & Listgarten, 2020). ? learns an
inverse mapping of the oracle evaluations to inputs using conditional generative adversarial net-
work (Mirza & Osindero, 2014) and uses it as a search model that predicts which regions will most
likely have high-performing designs. These approaches often require learning a computationally
expensive generative model of the input space, and are sensitive to the accuracy of the conditioning
at out-of-distribution input regimes. The robustness of these conditioning algorithms has not been
defined, nor investigated.

Conditioning Surrogate Model. Approaches in this direction tend to fix the search methodol-
ogy and focus on conditioning the surrogate model to improve the likelihood of finding a good
design. This is generally achieved via adopting different forms of regularization on the predicted
values of OOD inputs based on the learned surrogate. For example, Yu et al. (2021) uses robust
model pre-training and adaptation to ensure local smoothness, whereas Fu & Levine (2021) max-
imizes data likelihood to reduce the uncertainty in OOD prediction. Alternatively, Trabucco et al.
(2021) penalizes high-value predictions for OOD examples to avoid overestimation of OOD inputs.
These heuristic approaches are only justified empirically through practical demonstrations. From a
theoretical perspective, the extent of effectiveness of these conditioning algorithms, as well as the
fundamental question regarding when to trust a surrogate function both remain unclear.

7 CONCLUSION

This paper presents a new theoretical perspective on offline black-box optimization which estab-
lished the first upper bound on the performance gap between the solutions guided by a trained
surrogate and the oracle function. The bound reveals that such performance gap depends on how
well the surrogate model matches the gradient field of the Oracle function on the offline dataset. In-
spired by this theoretical analysis, we studied a novel algorithm for creating surrogate models based
on gradient matching and demonstrated improved solutions on diverse real-world benchmarks. Al-
though our theory and algorithm is grounded in the context of offline optimization, the developed
principles can also be broadly applied to related sub-areas including safe Bayesian optimization and
safe reinforcement learning in interactive online learning scenarios.
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A PROOF OF THEOREM 1

Theorem 1. Suppose g(x) is a continuous function with Lipschitz and smooth constants, { and p.
Then, we have

m—1

G = max®,, (x) < m)\é(l + )\u) - max HVg(x) — ng)(x)H
X X

which characterizes the upper-bound of the worst-case performance gap in terms of the maximum

norm difference between the surrogate and oracle gradient over the input space.

Proof. We first note that the performance of the m-step oracle solution starting at x0 = x? is exactly

the (m-1)-step oracle solution starting at x.. Likewise, the performance of the m-step surrogate

solution starting at xg = x¥ is exactly the (m-1)-step surrogate solution starting at xé. That is:
R (x”) = R (x)) = R (xy) where x| = x) 4+ AVg(x))
m 0 _ m 0 o m—1 1 1 0 0
Ry (x') = WG, (xg) = NG (xp) where xp = x5 + AVgy (xg) (15)

Consequently, for each initial point x°, we can bound the performance gap as follows:

= |5 ) - k) + T () — ()

*

*

cunli) [ ) 0] < ) o

[z xé) =y )|+ [y () - T ()
= B (xh) e (k) - e () | (16)

Thus, let £, _1(x},x}) = [R71(x}) — Ry HxL)|, we have B, A (x0) < &, 10(x}) +
Em— 1(x¢7 x1). To bound the term &, 1(x¢, x1), we will prove the following intermediate results.

Lemma 1. For any k € [1,m] and two different starting points u° and v°, the performance gap
between the k-step oracle solutions respectively starting from u° and v° is bounded by the norm
distance between the starting points:

E(u0v") = B () = REGO)| < o1 A V0l (17)

Proof. Let us first define the respective oracle search trajectories using the same gradient ascent
formalism. That is, the respective candidate solutions at some intermediate step x € [1, k] are given
by u® = u* 1 +AVg(u®!) and v¥ = v¥~1 + AVg(v*~1). We can then make use of the Lipschitz
continuous assumption to achieve the following bound:

1985 () =g (V) = llg(xe) =g () =g (x) + g (v¥)]
= o) =g (@) = £-[vF vt (18)

We subsequently bound the distance between the candidate solutions at step & in terms of the dis-
tance at step £ — 1 using the smoothness conditions:

Ve —uf]] = [V a4 AV (V) - AV (uf )|
< Hvkq _ uk:71|| 4 )\va (vkq) — vy (ukq) H
< (14 Ap) ||vk*1 fuk*1|| . (19)

Applying this bound recursively yields ||[v* —u®|| < (1+ )\u)kﬂvo —u’||. We finally substitute the
above into equation 18 to arrive at the final bound [|RE (u®) —RE (vO)[| < £(14+Ap)*|[v0—uP|. O
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Applying Lemma 1 with & = m — 1, u® = x}, and v® = x! subsequently allows us to bound
Em_l(xé, x1) as follows:

IN

00+ )™ [ — x|
(1 + )™t HXO + AVgs(x?) — x° — )\Vg(XO)H
M1+ M)™ [ Vge(x%) — Vgx°)|| & 2(x°) . (20)

gm—l (xé,xi)

We will now use this result to complete our bound for the performance gap. That is:
(GRS £ max (GHY (xo) < max Gr—1,2 (X}z)) + max Q(XO)

< Buis + mu0(x)

IN

Bgn + m-n}l(%x Q(XO), 21

where the last inequality is obtained via recursively applying the previous inequality m times. Sub-
stituting &9, = 0 and the upper-bound for Q(x" ) above into equation 21 gives:

G < mML+ )™t max HV% (x%) = Vg (x°) |, (22)

which completes our proof for Theorem 1. O

Tightness of the bound. Note that despite the exponential dependence on m of the above bound, its
tightness can be controlled by choosing a sufficiently small value for A. For example, if we choose
A < 1/m, it will follow that

1+r- ™" < (1+%)m71 < (1+%)m (23)

which will approach e* in the limit of /. Here, we use the known fact that lim,,, o (1 4+ p/m)™ =
e with p > 0. As such, when m is sufficiently large the bound in Theorem 1 is upper-
bounded with m - A - £ - (1 + X - u)™~! . gradient-gap ~ / - e* - gradient-gap which asserts
that the worst-case performance gap of our offline optimizer is approaching (in the limit of m)
¢ et - maxy [|[Vg(x) — Vge(x)|| = O(maxx | Vg(x) — Vge(x)||) which is not dependent on the
number of gradient steps.

Reducing the gradient gap. Intuitively, minimizing Eq. 11 will reduce the gradient gap. To
formalize this intuition rigorously, we will show below that (1) in the limit of optimization if a
parameterization ¢ can be found that zeroes out the loss in Eq. 11 over the entire input space,
the gradient gap is zero; and (2) in more practical cases, where the loss in Eq. 11 is not zero, the
gradient gap is still guaranteed to be upper-bound by the Lipschitz constant of the function gap,
which decreases as we optimize the loss function in Eq. 11. These are detailed below.

A. The minimized loss in Eq. 11 is zero. In this case, let us define:

Fy(x,x')

1 1
/ Vg(tx + (1 ft)x')dtf/ Vg (tx + (1 —t)x")dt (24)
0 0

The loss in Eq. 11 can be rewritten as

L4(¢) = E <F¢<X7x/)T(X—X/)> (25)

where the expectation is over all pairs (x,x’) from the input space. At the optimal ¢, since £4(¢) =
0 as assumed, it follows that

Fy (x, x’> ! (x - x’) -0 (26)

13
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for any choice of (x,x’). Next, by the line integration theorem, we also have

1
o)~ ) = (x0T ([ atexr (- ox)ar) @)
0
1
9o(x) — gp(x') = (x—x)T </ Vg(tx+ (1 — t)x’)dt) (28)
0
which together imply
-
Fo(xx) (x=x) = g(x) = g(x) ~ 9o(x) + g5(x) (29)
Combining Eq. 26 and Eq. 29 results in
9(x) = go(x) = g(x) = gs(x') (30)
for any choice of (x,x’). This means there exists a constant ¢ such that
9(x) —gs(x) = ¢ 3D
for all x. Thus, taking the derivative with respect to x on both sides of the above yields
Vg(x) = Vgs(x) = 0 (32)

which implies immediately that the gradient gap is zero everywhere. Hence, optimizing Eq. 11
guarantees in principle that the gradient will be perfectly matched in the limit of data (i.e., when we
take the expectation over the entire input space rather than over a finite set of offline data points).

B. The minimized loss in Eq. 11 is not zero. In this case, let us define
h(x) = g(x)— gs(x) (33)

and it will follow that |F 4(x,x) T (x — x')| = |h(x) — h(x)| following Eq. 29 above. This means
our loss function is working towards minimizing (h(x) —h(x’))? over (x,x’). This will makes h(x)
smoother as the output distance between different inputs are being reduced.

As a result, this process will reduce the Lipschitz constant e of h(x), which is defined to be the
minimum value such that

[h(x) —h(x)] < e [lx—x| 34
which implies
(9(x) = 9(x)) = (9s(x) = gs(x))] < € [lx =] (35)

Now, dividing both sides by ||x — x’|| yields

[[x —x'| I — x|

€ (36)

‘ 9(x) —9(x)  gs(x) — gs(x')

Now, suppose we choose x’ = x + t - e; where e; is a d-dimensional one-hot vector with the hot
component at the i-th position where d denotes the input dimension. So, the above is equivalent to

e =gt _ soburied-sule)) -
tlle:l tlle:]l
or more expressively,
o< 9xttoe)—g(x) gs(xtit-oei) —go(x) _ (38)

- tlleil tlleil -

Taking lim;_,( on all parts of the above inequality, the above can be rewritten as

glx+t-e;)— Q(X)> — limy g <9¢<X ti-e)— g¢(x)) < € (39)
e tledl

—e < limtao(
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Next, using the definition of directional gradient

. 1
Vig(x) = limeo - (g(Xth r) - 9(X)> (40)
and the fact that V,g(x) = Vg(x) 'r onr = e;, we have
1 1
e < (Vo) Ter) = (Ve Ter) < e o
el el
which implies
-
(Vg(x) - Vg¢(x)) e, < e-|ef = e 42)
where the last step is true because ||e;|| = 1. Next, repeat the above argument with r = e; for
1 =1,2,...,d and summing both sides of the resulting inequalities over : = 1,2, ..., d, we have

Vo) = Vgs ()|

d
>
1
i=1

T
(Vg(x) ngqJ)(x)) ei] < d-e = Ofe) (43)
Finally, we note that

|¥960) - Vgo)||, < |V90 - Vas)], < 0(0 (44)

which completes our proof and asserts that the gradient gap is indeed bounded by the Lipschitz
constant of the function gap h(x) = g(x)—ge(x), which decreases as we optimize the loss function.

B TRAINING AND EVALUATION DETAILS OF MATCH-OPT

We use a feed-forward neural network with 4 layers (512 — 128 — 32 — 1) activated by the Leaky
ReLU function as the surrogate model for MATCH-OPT. For each task, we train the model using
Adam optimizer (w/ fixed learning rate: le-4) for 200 epochs with a batch size of 128.

During the evaluation, we employ gradient updates for 150 iterations uniformly across all the tasks.
This evaluation procedure uses an Adam optimizer with a learning rate fixed to 0.01 for all discrete
tasks and 0.001 for all continuous tasks. We chose a larger learning rate for discrete tasks since the
discrete inputs are converted into logits (same as all baselines).

C MATCH-OPT ABLATION WITHOUT REGRESSION REGULARIZER

In this section, we demonstrate the effectiveness of our practical consideration mentioned in Sec-
tion 4. Specifically, we conduct an ablation study comparing two versions of MATCH-OPT using
the original gradient matching loss in equation 11 (referred as MATCH-OPT (no-regularizer)) and an
augmented version with regression regularizer along a set of sampled synthetic input sequences in
equation 13 (referred to as MATCH-OPT (with-regularizer)). Table 3 and 4 below reports the perfor-
mance of these ablated methods at the 100" and 50 percentile of solutions respectively. Overall,
we observe that MATCH-OPT (with-regularizer) outperforms MATCH-OPT (no-regularizer) on 4/6
tasks for both the 100"-percentile and 50"-percentile metric, thus confirming that it is important to
prioritize optimizing the gradient matching loss along critical trajectories of inputs.

D MEAN AND STANDARD DEVIATION RESULTS

As mentioned in the evaluation methodology, we ran each method for 4 different runs. This section
reports the mean results from Tables 1 and 2 along with the corresponding standard deviations.
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METHOD ANT DKittTY HOPPER SCON TF8 TF10
MATCH-OPT 0924  0.945 1172 0739 0941 0.954
(no-regularizer)
MATCH-OPT

! . 0.931 0.957 1.572 0.732 0977 0.924
(with-regularizer)

Table 3: Performance comparison between versions of MATCH-OPT with and without regression
regularizer at the 100" performance percentile (i.e., maximum solution) generated by each method.

METHOD ANT DKiTTY HOPPER SCON TF8 TF10
MATCH-OPT 0572 0876 0372 0471 0551 0.768
(no-regularizer)
MATCH-OPT

. . 0.611 0.887 0.393 0.439 0.594 0.720
(with-regularizer)

Table 4: Performance comparison between versions of MATCH-OPT with and without regression
regularizer at the 50" performance percentile (i.e., maximum solution) generated by each method.

E RANK DISTRIBUTION PLOTS

To further illustrate the reliability of MATCH-OPT, this section visualizes the entire rank distribution
of the tested algorithm across different percentile level (i.e., 25, 50, 75 and 100). Overall, we ob-
serve that MATCH—-OPT (colored in red) consistently achieves lower mean and standard deviation of
performance across all datasets at every percentile level, as compared to that of other baselines. This
observation corroborates previous results presented in the main text, and confirms our hypothesis
regarding the robustness of MATCH-OPT.

F ADDITIONAL EXPERIMENTS

In addition to the results reported in the main text, we have also compared MATCH-OP Twith three
additional baselines, which include DDOM Krishnamoorthy et al. (2023a), BO-qEI Wilson et al.
(2017) and BDI Chen et al. (2022). The results are reported in Table 7 and Table 8 below.

In both the 50-th and 100-th percentile settings, it appears MATCH-OPT outperforms DDOM in
all tasks. Furthermore, the results also show that MATCH-OPT performs the best in 6 out of 12
cases (across both the 100-th and 50-th percentile settings) while BO-qEI only performs best in 1
out of 12 cases. BDI performs best in 5 out of 12 cases, runs out of memory in 2 out of 12 cases.
Overall, MATCH-OPT appears to perform more stable than BDI and is marginally better than BDI.
It is also more memory-efficient than BDI as it does run successfully in all cases, while BDI runs out
of memory in 2 cases. MATCH-OPT also outperforms BO-gEI significantly in 11 out of 12 cases.

G RUNNING TIME

We also report the running time achieved by all tested algorithms below

All reported running times are in seconds. Our algorithm incurs more time than other baselines but
its total running time is still affordable in the offline setting: 4785s = 1.32hr. We do, however, want
to remark that such complexity comparison is only tangential to our main contribution. Our main
focus is on building optimizer with better and more stable performance overall, even at an affordable
increase of running time. Furthermore, we want to point out that as some of the baselines (such as
BONET) use an entirely different model which has a different number of parameters than ours, the
reported running times here might not be comparable on the same compute platform.
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METHOD ANT DKITTY HOPPER
GA 0.271 £0.013 0.895 +£0.013 0.780 £+ 0.462
ENS-MEAN 0.517 £ 0.039 0.899 £+ 0.010 1.524 £ 0.710
ENsS-MIN 0.536 +£0.031 0.908 +0.019 1.42 £0.645
CMA-ES 0.974 + 0.556 0.722 £ 0.001 0.620 £0.151
MINS 0.910 £ 0.034 0.939 + 0.003 0.150 £ 0.186
CBAS 0.842 + 0.015 0.879 £+ 0.002 0.150 + 0.014
ROMA 0.832 £ 0.055 0.880 £+ 0.008 2.026 £+ 0.225
BONET 0.927 £0.002 0.954 + 0.0001 0.395 £ 0.0002
COMS 0.885 £+ 0.024 0.953 £ 0.016 2.270 +£0.237
MATCH-OPT (0.931 £0.011(2) 0.957 £0.014 (1) 1.572 £0.322 (3)
METHOD SCON TF8 TF10

GA 0.699 + 0.054 0.954 £+ 0.020 0.966 + 0.026
ENS-MEAN 0.716 £ 0.065 0.926 £0.005 0.968 + 0.019
ENsS-MIN 0.734 + 0.058 0.959 + 0.052 0.959 + 0.021
CMA-ES 0.757 £ 0.013 0.978 + 0.007 0.966 + 0.007
MINS 0.690 + 0.024 0.900 £ 0.059 0.759 £0.031
CBAS 0.659 +£0.086 0.916 £+ 0.035 0.928 £0.013
ROMA 0.704 +£0.032 0.664 £0.015 0.820 +£0.014
BONET 0.500 £0.002 0.911 £ 0.005 0.756 £0.006
COMS 0.565 £ 0.012 0.968 £0.018 0.873 £0.053
MATCH-OPT (.732 £0.003 (3) 0.977 £0.004 (2) 0.924 +0.038 (6)

Table 5: Comparing MATCH-OPT and other baselines based on the 100" percentile of the solutions
(i.e., maximum solution) generated by each method. Each cell shows the mean and standard devia-
tion of the function values found by each method over 4 runs. The individual rank of our method is
included next to its reported performance for each benchmark.

H LIMITATION

One potential limitation of our approach in comparison to other baselines is that our gradient match
algorithm learns from pairs of data points. Thus, the total number of training pairs it needs to
consume grows quadratically in the number of offline data points. For example, an offline dataset
with N examples will result in a set of O(N?) training pairs for our algorithm, which increases
the training time quadratically. However, an intuition here is that training pairs are not equally
informative and, in our experiments, it suffices to get competitive performance by just focusing on
pairs of data along the sampled trajectories with monotonically increasing objective function values.
This allows us to keep training cost linearly with respect to V.

On the other hand, while it is true that none of the existing baselines (including our algorithm)
outperform others on all tasks, we believe that at least on these benchmark datasets, our algorithm
tends to perform most stably across all tasks, as measured by the mean averaged rank reported in
each of our performance tables. This is a single metric that is computed based on the performance of
all baselines across all tasks. The end-user can make a judgment based on such metrics. In practice,
by looking at how existing baselines perform overall on a set of benchmark tasks that are similar to
a target task, one can decide empirically which baseline is most likely to be best for the target task.
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METHOD ANT DKITTY HOPPER
GA 0.130 £ 0.029 0.742 £0.012 0.089 £+ 0.07
ENS-MEAN 0.192 £0.010 0.791 £0.019 0.209 £+ 0.035
ENS-MIN 0.190 £0.006 0.803 £ 0.005 0.166 £0.052
CMA-ES -0.049 + 0.003 0.482 +£0.171 -0.033 + 0.006
MINS 0.614 £ 0.034 0.889 + 0.004 0.088 £ 0.170
CBAS 0.376 £+ 0.023 0.757 £ 0.005 0.013 £ 0.002
ROMA 0.448 +£0.013 0.760 £ 0.028 0.370 £ 0.008
BONET 0.620 £0.003 0.897 £ 0.0001 0.390 + 0.0002
COMS 0.557 £0.015 0.879 + 0.001 0.379 £0.005
MATCH-OPT 0.6114+0.007 (3) 0.887+0.003 (3) 0.393 + 0.005 (1)
METHOD SCON TF8 TF10

GA 0.641 £ 0.036 0.510 £ 0.055 0.794 £+ 0.013
ENS-MEAN 0.644 £+ 0.070 0.529 £+ 0.030 0.796 + 0.006
ENS-MIN 0.672 + 0.042 0.490 + 0.052 0.794 + 0.008
CMA-ES 0.590 £ 0.012 0.592 £ 0.015 0.786 £ 0.009
MINS 0.414 £ 0.011 0.420 £ 0.009 0.465 £ 0.016
CBAS 0.099 + 0.008 0.442 + 0.038 0.613 £0.012
ROMA 0.420 £+ 0.030 0.560 £+ 0.104 0.780 £ 0.400
BONET 0.470 £ 0.004 0.505 £+ 0.004 0.465 £+ 0.002
COMS 0.414 +£0.023 0.652 + 0.108 0.606 £+ 0.027
MATCH-OPT 0.439 4+ 0.016(6) 0.594 + 0.015(2) 0.720 £0.015 (6)

Table 6: Comparing MATCH-OPT and baselines based on 50 percentile of the solutions (i.e., me-
dian solution) generated by each method. Each cell shows the mean and standard deviation of the
function values found by each method over 4 runs. The individual rank of our method is included
next to its reported performance for each benchmark.

METHOD ANT DKiTty HoOPPER SCON TF8 TF10
MATCH-OPT 00931 0.957 1.572 0.732 0977 0.924
DDOM 0.768 0.911 -0.261 0.570 0.674 0.538
BDI 0.967 0.940 1.706 0.735 0.973 OOM
BO-qEI 0.812 0.896 0.528 0.576  0.607 0.864

Table 7: Performance comparison between versions of MATCH-OPT with DDOM, BO-qEI and BDI
at the 100" performance percentile (i.e., maximum solution).

METHOD ANT DKiTty HoPPER SCON TF8 TF10
MATCH-OPT 0.611 0.887 0.393 0.439 0.594 0.720
DDOM 0.554 0.868 -0.570 0.390 0418 0.461
BDI 0.583 0.870 0.400 0480 0.595 OOM
BO-qEI 0.568 0.883 0.360 0.490 0439 0.557

Table 8: Performance comparison between versions of MATCH-OP T with DDOM, BO-qEI and BDI
at the 50" performance percentile (i.e., maximum solution).

OURS BO-QEI CMA-ES ROMA MINS CBAS BONET
TIME 4785 111 3804 489 359 189 614
GA ENS-MEAN ENS-MIN DDOM
TIME 45 179 179 2658

Table 9: Total running time (seconds) of all tested baselines.
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Figure 4: Plots of distributions of mean normalized rank (MNR) of the tested algorithms across all
tasks at the (a) 25-th, (b) 50-th, (c) 75-th, and (d) 100-th performance percentile levels.
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