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Abstract

This paper presents a novel aerial-to-ground feature ag-
gregation strategy, tailored for the task of cross-view image-
based geo-localization. Conventional vision-based methods
heavily rely on matching ground-view image features with
a pre-recorded image database, often through establishing
planar homography correspondences via a planar ground
assumption. As such, they tend to ignore features that are
off-ground and not suited for handling visual occlusions,
leading to unreliable localization in challenging scenar-
ios. We propose a Top-to-Ground Aggregation (T2GA) mod-
ule that capitalizes aerial orthographic views to aggregate
features down to the ground level, leveraging reliable off-
ground information to improve feature alignment. Further-
more, we introduce a Cycle Domain Adaptation (CycDA)
loss that ensures feature extraction robustness across do-
main changes. Additionally, an Equidistant Re-projection
(ERP) loss is introduced to equalize the impact of all key-
points on orientation error, leading to a more extended dis-
tribution of keypoints which benefits orientation estimation.
On both KITTI and Ford Multi-AV datasets, our method
consistently achieves the lowest mean longitudinal and lat-
eral translations across different settings and obtains the
smallest orientation error when the initial pose is less ac-
curate, a more challenging setting. Further, it can complete
an entire route through continual vehicle pose estimation
with initial vehicle pose given only at the starting point. 1

1. Introduction
Visual-based cross-view localization aims to locate query
images taken from street-level cameras (referred to as
ground view) within a satellite or aerial view map. Plat-
forms like the Google Map API [6] have made satellite im-
ages accessible, spurring the development of cross-view lo-
calization techniques. Notable studies [4, 7, 10, 15, 20, 25,
26, 30] have focused on using satellite images for this task.
Despite this, accurate localization remains challenging due

1Code is available at https://github.com/ShanWang-
Shan/ViewFromAbove.
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Figure 1. Efficacy of T2GA. T2GA aggregates off-ground fea-
tures (e.g., the streetlight within the green square) and addresses
occlusions (e.g., the tree within the red square). Unlike conven-
tional methods that often overlook such elements, T2GA integrates
these features, thus improving appearance matching for ground-
level aligned pixels across views using ground plane homography.
Insets are magnified for clarity, with dotted outlines indicating ap-
pearance misalignment and solid outlines indicating appearance
alignment with the corresponding aerial view features.

to the significant viewpoint differences between ground and
aerial images [14, 31]. These viewpoint differences result
in a domain gap, adversely impacting feature alignment,
thereby compromising the overall accuracy of localization.

Recent research has explored two main approaches
to bridge the domain gap in image-based localization:
generative-based and geometry-alignment-based methods.
Generative-based methods, such as those utilizing GANs
[19] and diffusion models [29], reduce the domain gap by
transforming view styles from one view to another. How-
ever, the generated features for matching can lead to ambi-
guities in pose estimation. In contrast, geometry-alignment-
based methods, employing techniques like polar transfor-
mations [15, 20] or homography [14, 23, 24, 26], focus on
establishing correspondences for on-ground pixels. This
often results in the neglect of off-ground features, such
as streetlights, and difficulty in handling visual occlusions,
such as the obscuring of road details by treetops in aerial
views, both illustrated in Fig. 1. This neglect fails to lever-
age important geographic landmarks on the road and results
in a lack of robustness to issues like road mark degrada-
tion (e.g. fading and damaged paintings). To address these
limitations, we introduce the Top-to-Ground Aggregation
(T2GA) module. T2GA employs top-down feature aggre-
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gation to enrich on-ground points with an above-view per-
spective appearance, significantly improving feature align-
ment and localization accuracy. Furthermore, we recognize
that pixel positions above ground points may not necessarily
indicate higher elevations; instead, they could represent ob-
jects located further along the camera’s line of sight. To re-
solve this ambiguity, we integrate a transformer mechanism
that assesses whether these pixels belong to the same object
and determines occlusion precedence, such as shadows on
the road, which suggest likely occlusions in the aerial view.

In addition to viewpoint differences, ground and aerial
views differ in cameras types, lighting conditions, tones,
and resolutions. We introduce the Cycle Domain Adap-
tation (CycDA) loss function to address these variations.
CycDA enables bidirectional feature generation between
ground and aerial views. By minimizing the discrepancy
between domain-adapted features and their target counter-
parts, our approach ensures that features extracted from one
domain are effectively translatable to the other, fostering the
extraction of features that are invariant across domains.

We further introduce an Equidistant Re-projection Loss
to address a common bias in keypoint-synchronous detec-
tion localization methods, which tend to favor closer key-
points due to their reduced orientation errors. Our loss func-
tion mitigates this issue by applying a distance-weighted
approach, ensuring that orientation errors are independent
of keypoint distance. Consequently, keypoints are more
uniformly distributed across various distances, leading to
a more equitable and precise estimation of direction.

We summarize our contributions as follows:
• A top-to-ground feature aggregation module that effec-

tively bridges the domain gap between ground and aerial
views by utilizing off-road cues and handling occlusions.

• A cycle domain adaptation loss function that promotes
domain-invariant feature extraction, enhancing the ro-
bustness of cross-view localization methods.

• An equidistant re-projection loss function ensures orien-
tation errors are consistent regardless of keypoint dis-
tance, leading to a more extended distribution of key-
points and more accurate orientation estimation.

The evaluations are conducted on KITTI and Ford Multi-AV
datasets while leveraging the Google Maps as correspond-
ing satellite images. Experimental results demonstrate that
our method can achieve consistent vehicle pose estimation
under various challenging situations. Our method achieves
the lowest mean longitudinal and lateral translation errors
on both KITTI and Ford Multi-AV datasets under differ-
ent settings. We also obtains the smallest orientation error
when the initial pose is less accurate, demonstrating the ro-
bustness of our method. Further, with initial vehicle pose
only at the starting point, our method can complete the route
through continuous pose estimation, demonstrating its gen-
eralisation ability and potential for practical deployment.

2. Related Work
Image-level cross-view localization. Early visual-only
cross-view localization methods [7, 10, 15, 16, 20, 30] ap-
proach the task as an image retrieval problem, focusing on
coarse localization through image-to-image matching. To
bridge the domain gap between ground and aerial views,
various techniques have been proposed to facilitate cross-
view feature matching. [10] incorporated per-pixel ori-
entation information, while [15] and [20] utilized a pre-
defined polar transform to align aerial-view images with
ground views. Additionally, [19] and [29] employed GAN-
based and diffusion model-based style transformations, re-
spectively. While efforts have been made to minimize
the domain gap, these methods rely on image-level fea-
ture matching, restricting their localization accuracy, often
falling short of the precision achieved by commercial GPS
systems in open areas [21].
Patch-wise cross-view localization. To improve accuracy,
several methods employ patch-wise feature matching, es-
pecially effective in aerial views with wide fields of view
and high resolutions. For instance, [31] employs trans-
formers to emphasize informative patches, [27, 28] com-
putes dense spatial distributions using patch attention, and
[9] introduces the ‘slice-to-sector match’ and ‘Cross-view
attention’ to calculate similarity between aerial sectors and
ground view slices. However, their attention queries are de-
rived from aerial images, posing reliability issues when the
pose is unknown. OrienterNet [13] transforms ground view
images into Bird’s Eye View (BEV) grids for matching with
OpenStreetMap data. Despite these advancements, local-
ization accuracy remains limited by the patch (grid) size.
Pixel-wise cross-view localization. Pixel-wise feature
matching has been explored in various methods [4, 14,
24, 25] for precise localization, yet they struggle with
the inherent domain gap between views. Our baseline,
PureACL[24], and other geometry-alignment-based meth-
ods [14, 26] prioritize on-ground pixel correspondences but
overlook off-ground features and occlusions, leading to sub-
optimal performance. CVGL [4] transforms the ground
view image into a BEV for aerial matching. Their BEV
transformation employs aerial coordinates as queries, intro-
ducing a high degree of freedom and increasing the com-
plexity of matching. In the BoostAcc [17] framework, ho-
mography transformation is used on ground views to source
query pixel data for the pixel-to-slice attention mechanism.
This transformation introduces distortions from non-ground
pixels, potentially exacerbating errors in subsequent pro-
cessing stages. Moreover, the keys and values span entire
and adjacent columns, risking compounded ambiguities in
both longitudinal and lateral estimation. Our approach aims
to address these challenges, proposing a novel pixel-to-
overhead-column attention mechanism for improved cross-
view localization accuracy.

14844



Ig

Is Fs

Fg

Triplet Loss

Equidistant
Re-projection

Loss

T2GA

CycDA  LossFaQ

K
V

Softmax

Baseline Model
Confidence Map

Generator

Keypoint
Detector

Weighted
Residual

Calculator

Pose Optimizer

MLP
MLP

Feature Extractor

C

p

w(P)
x

r(P)

Ppred

Fatt

Figure 2. Our method adopts PureACL [24] as the baseline model and introduces three novel components (highlighted in red): (1) T2GA
(Sec.4.1): aggregates the features of elevated pixels onto the feature of the on-ground pixel that is directly beneath them to alleviate the
representation gap of the same object across different views; (2) CycDA Loss (Sec.4.2): explicitly enforces a view-invariant representation
for the same object; and (3) ERP Loss (Sec.4.3): allows the model to leverage key points that are farther away from the vehicle while
allocating more emphasis on correcting the vehicle orientation estimation.

3. Preliminary
Task Settings. The Fine-Grained Cross-View Localization
(FGCVL) task aims to estimate the accurate 3-DoF pose
of a vehicle, including longitudinal and lateral translations
and orientation on a satellite map Is, given an initial coarse
pose Pinit. It also assumes that the vehicle is equipped
with on-board camera(s) 2 , and the image captured by these
cameras, denoted as the ground image Ig , is accessible.
Baseline Model. PureACL [24] is adopted as the baseline
model for our approach. It employs a share-weight U-Net
to extract ground/satellite feature maps F = {F g, F s} and
ground/satellite confidence maps C = {Cg, Cs} 3 from the
ground/satellite images I = {Ig, Is}. The ground con-
fidence map Cg is tasked to select the top-N most con-
fident pixel-level features from F g at the positions pg =
{(ug

i , v
g
i )}Ni=1. These features are then: (i) Projected from

on-board camera coordinates to the satellite coordinates us-
ing psi (P) = KsPK−1

g pgi
4, where Ks and Kg are the in-

trinsic matrices of satellite and on-board cameras, respec-
tively. P is the initial pose Pinit at the first iteration and
the estimated pose Ppred in the subsequent iterations. (ii)
A weighted residual w(P)× r(P) is computed between the
top-N selected features from the ground feature map and the
corresponding features from the satellite feature map as:

w(P) = Cs[ps(P)]×Cg[pg], r(P) = F s[ps(P)]−F g[pg], (1)

where [·] is a lookup operation in a feature/confidence
map with sub-pixel interpolation. (iii) The Levenberg-
Marquardt (LM) algorithm [11] takes the computed
weighted residual w(P) × r(P) as input and outputs the
predicted vehicle pose Pm

pred at the mth iteration, with m ∈
{1, . . . ,M}. The process of (i) - (iii) repeats for M = 20

2While our method is compatible with multiple cameras, our primary
experiments focus on one front camera and four surrounding cameras.

3We simply refer to the fused confidence map, rather than distinguish-
ing between view-consistent and on-ground confidence maps in PureACL.

4PureACL obtains 3D world coordinates of the vehicle from homo-
geneous coordinates K−1

g pg by utilizing on-ground characteristics. For
simplicity in this context, we note homogeneous coordinates as directly
corresponding to the 3D world coordinates.

iterations to produce the final vehicle pose Ppred.
PureACL [24] employs two loss functions: a Triplet

Loss [12] and a Re-projection Loss. The former supervises
the weighted residual, enforcing that the encoder extracts
pose-sensitive features from both ground and satellite im-
ages. The later utilises the projection error w.r.t the ground
truth pose Pgt to penalize incorrectly predicted vehicle pose
Ppred (Refer to Supplementary Sec.D for more details).

4. Method

We propose a novel View From Above (VFA) method to
tackle the FGCVL task by aligning feature representations
across the orthogonal viewpoints, the ground view and the
satellite views. As illustrated in Fig. 2, our method intro-
duces three innovative components onto the baseline model:
(1) Top-to-Ground Aggregation Module (T2GA) (Sec. 4.1);
(2) Cycle Domain Adaptation Loss (CycDA) (Sec. 4.2); and
(3) Equidistant Re-Projection Loss (Sec. 4.3).

4.1. Top to Ground Aggregation

The appearance discrepancy between the same objects
viewed from ground and satellite perspectives presents a
significant challenge in achieving high precision in the
FGCVL task [14, 17, 24, 26]. This issue is often en-
countered on tall structures, e.g. street light, and the oc-
clusion from aerial objects, e.g. tree branches, where their
near(on)-ground appearance, accessible to only on-board
vehicle camera, is significantly different from their top ap-
pearances which are only registered by the satellite cam-
era (see Fig. 1). Such discrepancies are common on roads
and can lead to inaccuracies in cross-view localization. To
address this challenge, we propose aligning the representa-
tions between ground and satellite views, focusing specif-
ically on the on-ground pixels, where geometry alignment
across the two views hold due to the ground plane homog-
raphy. Specifically, we present a T2GA module that aggre-
gates the features of elevated pixels onto the feature of the
on-ground pixel that is directly beneath them, as illustrated
in the ‘T2GA’ red box in Fig. 2. For an on-ground pixel:
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p ∈ {(u, v)}W
g−1,Hg−1

u=0,v=τ , and where τ is a threshold corre-
sponding to the height of horizon in the ground view image,
and W g and Hg are the width and height of the ground view
image, respectively. The corresponding elevated pixels are
q ∈ {(up, v)}

vp
v=0, where (up, vp) are the coordinates of the

on-ground pixel p. The aggregation is achieved via the at-
tention mechanism [22], defined as:

F att[p] = Softmax (QKT )V, (2)

where F att[p] represents the feature vector at a pixel p on
the feature map F att. In this context, p and q denote an
on-ground pixel and its corresponding elevated pixels, re-
spectively. The query is formed by taking the features
of on-ground pixels Q = M(F g[p]) where M(·) rep-
resents a non-linear mapping consisting of an MLP layer
followed by an activation function. The value is derived
from the features of elevated pixels corresponding to the
on-ground pixel V = F g[q], and the key is then obtained
by applying the same non-linear mapping to V, resulting
in K = M(V). This non-linear mapping ensures that the
query and key are mapped to the same feature space before
computing their matrix product. QKT 5. Notably, value
V is used directly in its original form for the computation,
facilitating a straightforward fusion (for the same object) or
replacement (in cases of occlusion) at ground level.
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Figure 3. Attention between the on-ground pixels and their cor-
responding elevated pixels is displayed column-wise. (Left ex-
ample): The attention between the base and top of the streetlight
is high despite their distinct appearances. This allows the resul-
tant aggregated ground feature to be aligned with the satellite fea-
ture corresponding to the matching geographic location. (Right
example): In the absence of occlusion from above, ground pixels
maintain minimal attention with their elevated pixels. This avoids
unnecessary dilution of the ground features which are already well
aligned with their satellite counterparts.

The computed attention map Softmax(QKT ) can accu-
rately reflect the connection between the on-ground pixels
and their corresponding elevated pixels. As illustrated in
Fig. 3, high attention values are assigned to the base and top

5In processing all query pixels, we first compute the matrix multiplica-
tion QKT using all column pixels q ∈ {(up, v)}H

g−1
v=0 . We then elim-

inate the attention values corresponding to pixels below each query pixel
{(up, v)}H

g−1
v=vp+1. After this elimination, the Softmax function is applied.

of the streetlight despite their different appearances. This
provides important cues to alleviate the representation gap
between the ground feature and satellite features. On the
other hand, in the absence of occlusion, e.g. tall structure
and tree branch, thus the attention between on-ground and
elevated pixels is minimal, avoiding diluting the ground fea-
tures that are well aligned with their satellite counterparts.

The feature map F att after attention calculation is verti-
cally stacked with the upper part of the original F g to gen-
erate the aggregated feature map F a:

F a = F g
0:Hg−τ ⊕ F att, (3)

where ⊕ denotes vertically stacking and F g
0:Hg−τ indicated

the slicing of F g from row 0 to Hg − τ . Subsequently,
this aggregated feature map F a replaces F g in the residual
calculation as per Eq. 1, resulting in an updated formula:
r(P) = F s[ps(P)]− F a[pg].

The advantage of the aggregated feature map is also indi-
rectly reflected by the ground confidence map of the base-
line model as shown in Fig. 4. Without the T2GA mod-
ule, the confidence map only highlights pixels correspond-
ing to road marks and curds, resulting in a concentrated
sampling of key points for subsequent estimation of vehicle
pose. This has the following drawbacks: (1) fail to leverage
road landmarks e.g. traffic signal poles, that encode impor-
tant geographic location; and (2) not robust to road mark
degradation problems, e.g. fading and damaged paintings,
and visibility issues, e.g. glow on road marks. T2GA alle-
viates the feature discrepancy between ground and satellite
views. As a result, the traffic signal pole receives higher
confidence, allowing it to be subsequently sampled as key
points to estimate more precise vehicle pose.

Figure 4. Illustration on the effect of T2GA on the confidence
map of the baseline model. The confidence map without T2GA
(Left) predominantly highlights road marks and curbs, resulting in
subsequent keypoint sampling missing important road landmarks,
e.g. traffic signal poles, that provide important cues to vehicle
pose estimation; The confidence map with T2GA (Right) has high-
confidence values distributed across various road marks and traffic
poles. With more geographic cues provided by multiple sources,
the resultant pose prediction becomes more precise and robust.

4.2. Cycle Domain Adaptation Loss

There are multiple sources responsible for the representa-
tion gap between ground and satellite features. In addi-
tion to the varying appearances of the same object across
different views, camera specifications, e.g. tone, hue, in-
tensity, brightness and resolution, and temporal changes of
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varying spans, can also lead to inconsistent representations
for the same geographic location. Such issue is in gen-
eral overlooked by the existing FGCVL methods [14, 28].
Despite introducing a triplet loss to further distinguish fea-
ture representations based on different poses, our baseline
model, PureACL [24], falls short in enforcing invariant fea-
ture representation at the corresponding geographic loca-
tions across different views.

We propose a Cycle Domain Adaptation (CycDA) loss to
explicitly enforce view-invariant representations that con-
sists of three L2-loss between ground and satellite feature
representations in three different feature spaces. The rep-
resentation loss in the ground feature space is defined as:

Lg =
1

N

N∑
i=1

∥∥∥F a[pgi ]−D
(
E
(
F s[psi (Pgt)] c⃝cs

)
c⃝cg

)∥∥∥
2
, (4)

where E(·) is a projection from the pixel feature space to
a latent feature space, D(·) is a projection from the latent
feature space to the pixel feature space, cs and cg repre-
sent the focal length of satellite camera and vehicle camera
respectively which are introduced to guide the projection
functions, and c⃝ is a concatenation acting on the feature
channel dimension. Similarly, the representation loss in the
satellite feature space is:

Ls =
1

N

N∑
i=1

∥∥∥F s[psi (Pgt)]−D
(
E
(
F a[pgi ] c⃝cg

)
c⃝cs

)∥∥∥
2
, (5)

We also enforce the satellite feature to be aligned with the
ground feature corresponding to the same geographic loca-
tion in a latent feature space through:

Lm =
1

N

N∑
i=1

∥∥∥E(F a[pgi ] c⃝cg)− E
(
F s[psi (Pgt)] c⃝cs

)∥∥∥
2
. (6)

The overall CycDA loss can then be defined as:

LCycDA = Lg + Ls + Lm (7)

4.3. Equidistant Re-projection Loss

Our method tackles a challenging setting of simultaneously
detecting key points from the ground image and predicting
the vehicle pose using the detected key points. Our baseline
model introduces a re-projection loss computed over the se-
lected top-N key points defined as:

LRP =
1

N

N∑
i=1

∥psi (Ppred)− psi (Pgt)∥22, (8)

where psi (Ppred) and psi (Pgt) are the projected coordinates
on the satellite image from the selected top-N ground key
points with the predicted vehicle pose and the groundtruth
vehicle pose respectively, and ∥·∥2 denotes the L2-distance.

Figure 5. Comparison of detected keypoints with and without ERP
Loss. (Left) Without the ERP Loss, keypoints are predominantly
located in close proximity to the vehicle. (Right) With the ERP
Loss, there is a more dispersed distribution of keypoints.

Despite being effective in pipelines where simultaneous de-
tection of key points is not required [3, 18, 25], the re-
projection loss tends to overly penalize the orientation er-
rors of distant points. This forces the detected key points
being closer to the vehicle, as illustrated in Fig. 5, and less
accurate vehicle orientation estimation (see Sec. 5.2).

To mitigate the aforementioned issue, we propose an
Equidistant Re-Projection (ERP) loss that is defined as:

LERP =
1

N

N∑
i=1

∥p
s
i (Ppred)− psi (Pgt)

Dps
i

∥22, (9)

where Dps
i

= ∥psi (Pgt)− psvehicle(Pgt)∥2 is the L2-
distance between the satellite image coordinates of the ith

keypoint and the vehicle. The design prevents the orienta-
tion error from scaling with the L2-distance between key
points and vehicle on the satellite image, which dominates
over the orientation error on distant key points. As shown in
Fig. 5, our method can leverage key points that are farther
from the vehicle than our baseline model.

5. Experiments
5.1. Implementation Details

Datasets. To evaluate our proposed approach, we conduct
experiments on two well-established autonomous driving
datasets: the Ford Multi-AV Seasonal dataset (FMAVS) [1]
and the KITTI dataset [5]. Consistent with established prac-
tices [14, 24, 25], our primary focus is on images from
the front left camera as query images. Additionally, fol-
lowing the methodology of PureACL [24], we broadened
our analysis to include four camera perspectives: front left,
rear right, side left, and side right. For data partitioning
in the KITTI-CVL dataset, we utilized an approach in line
with HighlyAcc [14], which involves two test splits. The
first, ‘Same,’ includes images from the same trajectories as
the training dataset, while the second, ‘Cross,’ comprises
images from distinct trajectories. Regarding the FMAVS
dataset, we follow the partitioning strategy proposed by
PureACL [24], using all images from the same trajectories
but different traversals. It is noteworthy that there are minor
route variations within these same trajectories 6

Metrics. We adopt evaluation metrics in line with Highly-
Acc [14], SliceMatch [9], SIBCL [25], and PureACL [24].

6An example is provided in Supplementary Fig. 1.
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Table 1. Comparison on the KITTI-CVL Dataset Under Initial Noise Conditions (±10◦,±20m). Results marked with ⋆ are sourced
directly from the respective original papers. Those denoted by ⋄ indicate retraining of methods for consistent evaluation criteria alignment.
- indicates that the corresponding data were not provided.

Location(m)↓ Lateral(%)↑ Longit(%)↑ Orient(◦)↓ Orient(%)↑
Model Mean Median r@1m r@3m r@5m r@1m r@3m r@5m Mean Median r@1◦ r@3◦ r@5◦

Sa
m

e

⋆DSM[15] - - 10.12 30.67 48.24 4.08 12.01 20.14 - - 3.58 13.81 24.44
⋆HighlyAcc[14] 12.08 11.42 35.54 70.77 80.36 5.22 15.88 26.13 3.72 2.83 19.64 51.76 71.72
⋆SliceMatch[9] 7.96 4.39 49.09 - 98.52 15.19 - 57.35 4.12 3.65 13.41 - 64.17
⋆BoostAcc[17] 10.01 5.19 76.44 96.34 98.89 23.54 50.57 62.18 0.55 0.42 99.10 100.00 100.00
⋆CCVPE [28] 1.22 0.62 97.35 98.65 99.71 77.13 96.08 97.16 0.67 0.54 77.39 99.47 99.95
⋆HC-Net [26] 0.80 0.50 99.01 - 99.73 92.20 - 99.25 0.45 0.33 91.35 - 99.84
⋄PureACL [24] 2.42 0.42 91.95 93.40 94.28 91.86 92.12 92.38 3.97 1.77 32.71 53.89 71.66

Ours 0.20 0.17 99.97 99.97 99.97 99.97 99.97 99.97 1.53 0.93 50.95 83.97 95.45

C
ro

ss

⋆DSM[15] - - 10.77 31.37 48.24 3.87 11.73 19.50 - - 3.53 14.09 23.95
⋆HighlyAcc[14] 12.58 12.11 27.82 59.79 72.89 5.75 16.36 26.48 3.95 3.03 18.42 49.72 71.00
⋆SliceMatch[9] 13.50 9.77 32.43 - 86.44 8.30 - 35.57 4.20 6.61 46.82 - 46.82
⋆BoostAcc[17] 13.01 9.06 57.72 86.77 91.16 14.15 34.59 45.00 0.56 0.43 98.98 100.00 100.00
⋆CCVPE [28] 9.16 3.33 44.06 81.72 90.23 23.08 52.85 64.31 1.55 0.84 57.72 92.34 96.19
⋆HC-Net [26] 8.47 4.57 75.00 - 97.76 58.93 - 76.46 3.22 1.63 33.58 - 83.78
⋄PureACL [24] 6.20 0.61 67.24 87.26 92.76 64.81 73.63 89.69 4.26 2.48 23.45 48.69 59.24

Ours 0.21 0.18 99.92 99.96 99.97 99.91 99.91 99.91 2.04 1.38 38.31 80.12 92.48

Our precision assessment includes median and mean errors
for overall, lateral, and longitudinal translations, as well as
orientation accuracy. Additionally, our analysis covers lat-
eral and longitudinal translations and localization recall at
various distances (0.25m, 0.5m, 1m, 3m, and 5m), and ori-
entation recall within a range of 1◦ to 5◦.
Training Details. We apply two sets of criteria: (1) Follow-
ing HighlyAcc [14], ground images are processed at a reso-
lution of 256×1024, and satellite images at 512×512, with
initial pose noise ±10◦ for orientation and ±20m for trans-
lations. (2) In accordance with PureACL [24], we process
FMAVS images at 432×816, KITTI images at 384×1248,
and satellite images at 1, 280 × 1, 280. To better simulate
turning scenarios, we adopt an expanded initial pose noise
range of ±45◦ for orientation and ±20m for translations.
For training, we utilize an NVIDIA RTX 3090 GPU with a
batch size of 3, employing the Adam optimizer [8] with a
learning rate of 10−5. Feature extractor weights are adapted
from PureACL [24], while other components are initialized
randomly. Training iterations average around 285ms, in-
cluding 200ms dedicated to optimization. The inference
speed, subject to initial pose variability, averages at 222ms.

5.2. Comparison with Existing Methods

We evaluate our method against recent visual-only ap-
proaches on the KITTI-CVL dataset following the metrics
of HighlyAcc [14]. The results shown in Tab. 1 clearly
indicate the superiority of our approach in spatial preci-
sion, consistently maintaining poses within a 1m radius in
both ‘Same’ and ‘Cross’ areas with over 99.9+% probabil-
ity. While our method may not lead in orientation accu-
racy under an initial pose range of ±10◦, it demonstrates

superior performance when the range is extended to ±45◦,
as detailed in Tab. 2. This underlines the robustness of
our approach. Our approach leverages pixel-wise local-
ization, offering finer granularity compared to the patch-
wise localization of SliceMatch[9], CCVPE [28], and the
image-level localization of DSM [15]. Although HighlyAcc
[14] and HC-Net [26] are pixel-wise localization methods,
their homography-based mechanisms fail to incorporate off-
road cues. In contrast, our approach effectively utilizes
these cues, resulting in enhanced performance. Addition-
ally, our longitudinal estimation significantly surpasses that
of BoostAcc [17]. This improvement is likely attributable to
our method’s strategy of not aggregating information from
pixels below, thereby reducing longitudinal ambiguity. In
comparison to the baseline method PureACL [24], our ap-
proach achieves significant enhancements in both orienta-
tion and spatial accuracy, especially in mean error reduc-
tion. Specifically, we observe a 91+% reduction in spatial
mean error and a 52+% reduction in orientation mean er-
ror. The difference between mean and median errors for
PureACL indicates potential convergence issues in high-
noise environments. By integrating the T2GA and CycDA
modules, we bridge the domain gap and ensure convergence
even under challenging conditions.

5.3. Challenge Initial Pose and Stringent Metrics

To rigorously evaluate our method, we adopt the strin-
gent metrics of PureACL [24], which are more demand-
ing than those used by HighlyAcc[14]. We benchmark our
method against baseline methods SIBCL [25] and PureACL
[24], as well as SOTA methods CCVPE [28] and BoostAcc
[17]. The results in Tab. 2 reaffirm the advantages of our
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Table 2. Comparison with Initial Noise Conditions (±45◦,±20m).For the KITTI-CVL dataset, evaluations are conducted in ‘K-Same’ and
‘K-Cross’ areas. On the Ford-CVL dataset, the ‘Log4’ trajectory, as used in SIBCL [25], is chosen for its optimal satellite view alignment.
Additional log evaluations are detailed in the supplementary material. ‘F-1C’ and ‘F-4C’ represent assessments on the Ford-CVL dataset
using either a single front-facing camera or four surrounding cameras. Note: ⋆ indicates that SIBCL [25] is a hybrid LiDAR-visual method.

Lateral(m)↓ Lateral(%)↑ Longit(m)↓ Longit(%)↑ Orient(◦)↓ Orient(%)↑
Model Mean Median r@0.25m r@0.5m r@1m Mean Median r@0.25m r@0.5m r@1m Mean Median r@1◦ r@2◦ r@4◦

K
-S

am
e CCVPE [28] 2.32 1.22 11.05 22.05 42.09 6.49 3.35 7.45 13.36 24.97 3.43 1.53 34.66 60.72 84.03

BoostAcc[17] 1.19 0.63 21.92 41.51 67.72 10.01 5.42 5.17 9.38 16.54 3.88 2.98 18.45 35.25 62.20
⋆ SIBCL[25] 1.23 0.70 17.01 33.34 61.88 3.14 0.86 20.68 31.40 55.58 8.90 1.69 35.50 55.04 71.06
PureACL[24] 2.94 0.23 58.75 66.34 70.60 3.15 0.37 45.65 68.23 74.87 8.13 2.80 37.99 52.57 64.13

Ours 0.17 0.14 76.20 97.73 99.97 0.08 0.07 98.18 99.89 99.97 2.19 1.07 48.97 66.29 90.54

K
-C

ro
ss CCVPE [28] 4.56 2.79 4.96 10.05 38.12 12.06 8.16 3.13 6.14 12.45 19.46 15.39 3.38 10.24 17.41

BoostAcc[17] 2.65 0.93 14.88 29.20 52.64 10.46 8.92 3.38 5.56 11.73 5.61 4.26 12.46 24.87 47.26
⋆ SIBCL[25] 2.72 0.71 16.90 32.62 58.24 5.48 1.05 19.58 30.74 49.25 9.67 1.96 25.02 50.18 60.16
PureACL [24] 4.24 0.25 50.25 62.63 64.56 3.89 0.44 7.41 62.04 64.23 10.96 3.16 19.95 36.25 56.49

Ours 0.17 0.15 75.96 97.47 99.97 0.09 0.07 97.49 99.87 99.97 2.88 1.44 36.10 63.08 86.18

F-
1C

CCVPE [28] 4.62 2.45 6.48 12.54 24.46 10.21 8.41 3.22 8.24 13.53 20.48 15.07 3.14 6.14 16.14
BoostAcc[17] 2.73 1.47 9.05 18.18 35.59 10.51 6.14 4.21 8.13 15.56 6.82 4.79 11.61 22.64 42.63
⋆ SIBCL[25] 2.59 0.71 20.92 41.53 60.43 5.38 1.18 12.59 23.99 43.87 6.34 1.57 35.21 58.41 70.65
PureACL[24] 2.94 1.54 11.34 21.14 37.76 4.75 1.74 10.46 20.07 37.64 7.38 3.33 15.12 30.42 57.01

Ours 0.49 0.41 31.77 59.17 89.23 0.36 0.32 38.43 75.72 97.46 2.19 1.08 47.31 72.71 90.10

F-
4C CVGL[4] 1.28 0.50 21.81 50.05 86.84 1.53 0.70 19.36 37.26 65.51 - - - - -

PureACL[24] 1.69 0.67 21.07 39.53 65.27 3.38 1.18 12.59 23.99 43.86 3.07 1.19 43.84 73.27 82.41
Ours 0.13 0.10 88.25 98.53 100.00 0.20 0.18 68.67 96.68 100.00 2.00 1.49 35.72 62.70 91.83
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Figure 6. Comparison of the baseline method PureACL and our
proposed method under varying initial noise ranges in the ‘cross’
area of the KITTI-CVL dataset. The blue bar indicates the median
value, while the red bar shows the difference between the median
and mean values. Notably, our method demonstrates robust con-
vergence, outperforming PureACL across all noise ranges, espe-
cially in larger noise scenarios where PureACL shows significant
discrepancies between median and mean values.

method, particularly in terms of reduced mean error and im-
proved longitudinal estimation. Notably, under conditions
of minimal initial pose noise (±15◦ and ±5m), PureACL
[24] outperforms SIBCL [25]. However, when faced with
more challenging conditions (±45◦ and ±20m), PureACL
[24] encounters convergence challenges, unlike our method,
which demonstrates consistent superiority. This highlights
the effectiveness of our proposed modifications in feature
alignment. Additionally, we assess our method’s conver-
gence range against PureACL [24] in the ‘Cross’ area of
the KITTI-CVL dataset, as depicted in Fig. 6. The red bar
in the figure highlights a significant reduction in the gap
between median and mean errors. This observation con-

firms our method’s enhanced ability to converge effectively
across a wider range of noise levels.

5.4. Results with Continual Pose Estimation

To address GPS signal loss, we adopt an accumulated pose
estimation strategy that leverages initial poses based on the
vehicle’s previous pose estimates 7. We use the model
trained with initial noise allowances of ±45◦ and ±20m.
Our method’s robustness is evidenced by the continuous
running distance percentage presented in Tab. 3, showing
successful pose chaining throughout all evaluate routes. In
contrast, BoostAcc [17] and the single-camera PureACL
[24] exhibit significant drift, leading to errors beyond the
satellite map’s coverage and causing evaluations to cease
after covering less than 11% of the distance. Performance
comparisons on the KITTI-CVL dataset are shown in Fig. 7
8. Our approach consistently achieves accurate pose esti-
mation or experiences only minor drifts in challenging sce-
narios characterized by limited localization cues or severe
occlusions. In contrast, BoostAcc [17] exhibits significant
drift when a moving vehicle passes by, likely due to in-
correct query data from projected vehicle pixels. Further-
more, PureACL [24] appears to struggle with incorrect ori-
entation, resulting in reversed pose estimations. These out-

7This pose estimation is purely frame-based and does not involve any
sequence-based filtering techniques.

8Performance comparisons on the Ford-CVL dataset is shown in Fig. 1
and Fig. 2 of supplementary material.
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Figure 7. Accumulated pose estimation performance on a KITTI-
CVL dataset trajectory. (Top-left) Predicted poses by our method
(blue) closely match the ground truth (red) over the 3676-meter
route, outperforming PureACL (green) and BoostAcc (cyan),
which exhibit severe drift. (Top-right) Our approach demon-
strates rapid recovery upon encountering clear localization cues.
(Bottom-left) (Bottom-right) BoostAcc demonstrates substantial
drift when encountering moving vehicles.

comes highlight the importance of robustness in real-world
applications, as drifts that extend beyond the coverage of
satellite imagery can compromise all further pose estima-
tion processes.

Table 3. Comparison on Accumulated Pose Estimation.

Running percentage(%)↑
Model K-Cross F-1C F-4C

BoostAcc[17] 4.88 4.89 -
PureACL[24] 10.31 5.01 100.00

Ours 100.00 100.00 100.00

- indicates that BoostAcc does not support 4-camera setting.

6. Ablation Study
To evaluate the effectiveness of our proposed components,
we conduct ablation studies in the ‘cross’ area of the KITTI-
CVL dataset. Our method’s performance was compared
across various configurations, including the presence and
absence of CycDA and Equidistant Re-projection (ERP)
Loss functions, and the T2GA module. The results, as de-
tailed in Tab. 4, underscore the significant role each compo-
nent plays in improving our method’s performance.

The T2GA module aggregates information from top to
ground based on the assumption that the ground and satellite
views are orthogonal. However, this assumption might not
be accurate in scenarios involving uphill/downhill or turns.
To test our method’s robustness under these conditions, we
introduced affine warping to the ground view images with
a shear range of ±15◦. The outcomes, labeled ‘w/ Affine’
in Tab. 4, indicate our method’s efficacy in handling such

scenarios. This success is primarily due to two factors: (1)
the use of a U-Net for feature extraction allows each pixel
in the feature map to encapsulate information from its sur-
rounding area, enabling the handling of a degree of angu-
lar variation. (2) the satellite view from Google, which is
not strictly orthogonal to the ground view, suggests that our
method is already adapted to these types of challenges.

Table 4. Ablation study on the KITTI-CVL dataset ‘Cross’ area
with initial noise (±45◦,±20m).

Lateral(m)↓ Longit(m)↓ Orient(◦)↓
T2GA CycDA ERP Mean Median Mean Median Mean Median

4.24 0.25 3.89 0.44 10.96 3.16
✓ 1.29 0.19 1.27 0.17 4.11 2.13
✓ ✓ 0.21 0.18 0.12 0.10 3.38 1.89
✓ ✓ ✓ 0.17 0.15 0.09 0.07 2.88 1.44

w/ Affine 0.18 0.15 0.09 0.07 2.88 1.52
night 0.39 0.27 0.39 0.30 6.64 2.55

We further evaluate our method on an artificial dataset
derived from the KITTI test sets, created using the cross-
domain deep network proposed by Arruda et al. [2]. The
outcomes, labeled as ‘night’ in Tab. 4 show our method’s
stable performance in nighttime scenarios, highlighting its
resilience to variations in lighting and time of day. For fur-
ther details, please refer to Supplementary Sec. C.

7. Conclusion
We have presented a novel top-to-ground feature ag-
gregation for enhancing cross-view image-based geo-
localization. Our method overcomes limitations by incorpo-
rating aerial perspectives and utilizing a cycle domain adap-
tation loss for consistent feature extraction despite visual
disparities. The introduction of the equidistant re-projection
loss balances keypoint impact, promoting wider distribution
and thus enhancing orientation accuracy. Our method ex-
cels in vehicle pose estimation across challenging scenar-
ios, achieving the lowest translation errors in KITTI and
Ford datasets, and minimal orientation error with less ac-
curate initial poses. Crucially, by relying solely on the ini-
tial vehicle pose at the start, our method successfully com-
pletes routes via continuous pose estimation. This paves
the way for real-world applications like autonomous driving
and outdoor robotics. Future work will focus on integrating
this method into SLAM systems to remove loop closure de-
pendency and facilitate high-definition map generation.
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