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Abstract

In this paper, we study the behavior of the Upper Confidence Bound-Variance
(UCB-V) algorithm for the Multi-Armed Bandit (MAB) problems, a variant of the
canonical Upper Confidence Bound (UCB) algorithm that incorporates variance
estimates into its decision-making process. More precisely, we provide an asymp-
totic characterization of the arm-pulling rates for UCB-V, extending recent results
for the canonical UCB in [21] and [23]. In an interesting contrast to the canoni-
cal UCB, our analysis reveals that the behavior of UCB-V can exhibit instability,
meaning that the arm-pulling rates may not always be asymptotically deterministic.
Besides the asymptotic characterization, we also provide non-asymptotic bounds
for the arm-pulling rates in the high probability regime, offering insights into the
regret analysis. As an application of this high probability result, we establish that
UCB-V can achieve a more refined regret bound, previously unknown even for
more complicate and advanced variance-aware online decision-making algorithms.
A matching regret lower bound is also established, demonstrating the optimality of
our result.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a fundamental framework capturing the exploration-
exploitation trade-off in sequential decision-making. Over decades, it has been rigorously studied and
widely applied across fields like dynamic pricing, clinical trials, and online advertising [32, 35, 27].

In the classic K-armed MAB problem, a learner is faced with K arms, each associated with an
unknown reward distribution Pa for a ∈ [K], supported on [0, 1] with mean µa and variance σ2

a. At
each time step t ∈ [T ], the learner selects an arm at and observes a reward Xt drawn independently
from Pat

. The learner’s goal is to maximize the cumulative reward by striking an optimal balance
between exploration (sampling less-known arms to improve estimates) and exploitation (selecting
arms with high estimated rewards). This objective is commonly framed as a regret minimization
problem, where the regret over a time horizon T is defined as Reg(T ) ≡

∑T
t=1(µa⋆ − µat

) with
a⋆ ≡ argmaxa∈[K] µa the optimal arm with the highest expected reward.
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Regime Stability Regret Upper Bound Regret Lower Bound
σ1 = o(σ2) No∗

σ1 = Ω(σ2)
Õ(σ2

√
T ) Ω̃(σ2

√
T )

σ2 = o(σ1)
Yes

Õ((σ2/σ1) · σ2
√
T ) Ω((σ2/σ1) · σ2

√
T )

Table 1: Summary of stability and regret results for UCB-V under different σ1, σ2 regimes.
∗There exists an instance such that the arm pulling rate is unstable.

The minimax-optimal regret for the K-armed bandit problems is known to be Θ(
√
KT ) up to

logarithmic factors. This rate is achievable by several well-established algorithms, including the
Upper Confidence Bound (UCB) [5, 4], Thompson Sampling [1, 32], and Successive Elimination
[13], among others. Beyond the regret minimization, increasing attention has been devoted to
analyzing finer properties and large-T behaviors of several typical algorithms, including the regret
tail distributions [15, 16], diffusion approximations [14, 21, 2, 24], and arm-pulling rates [21, 23].
Among these works, [21] and [23] introduced the concept of stability for the canonical UCB algorithm,
enabling the precise characterization of arm-pulling behaviors and facilitating statistical inference for
adaptively collected data, a task traditionally considered challenging for the general bandit algorithms.

In more structured settings, sharper regret bounds are achievable, particularly when arm variances
are small. For instance, if all arms have zero variance (i.e., deterministic rewards), a single pull of
each arm is sufficient to identify the optimal one. This observation has motivated active research into
developing variance-aware algorithms for bandit problems [5, 3, 4, 20, 28, 40, 41, 33]. Among these
algorithms, the Upper Confidence Bound-Variance (UCB-V) algorithm [3, 4], detailed in Algorithm 1,
adapts the classic UCB algorithm by incorporating variance estimates of each arm.

While regret minimization for variance-aware algorithms has been well-studied, their precise arm-
pulling behavior remains less explored. The main challenge here is that incorporating variance
information introduces a new quantity, in addition to the reward gaps ∆a ≡ µa⋆ − µa, a ∈ [K],
that influences the arm-pulling rates. In fact, the behavior of the algorithm can differ significantly
depending on whether variance information is incorporated or not. In Figures 1 and 2b, we compare
the empirical arm-pulling rates between UCB-V and the canonical UCB in a two-armed setting.
Compared to the canonical UCB, its variance-aware version exhibits significantly greater fluctuations
in arm-pulling numbers as the reward gap changes, and its arm-pulling distribution is more heavy-
tailed. This highlights the significant differences in the variance-aware setting and introduces
additional challenges.

Algorithm 1 UCB-V Algorithm

1: Input: Arm number K, time horizon T , and exploration coefficient ρ.
2: Pull each of the K arms once in the first K iterations.
3: for t = K + 1 to T do
4: Compute arm pulls for arm a up to time t by na,t ≡

∑
s∈[t−1] 1{As = a}, a ∈ [K].

5: Compute the empirical means and variances

X̄a,t ≡
1

na,t

∑
s∈[t−1]

1{as = a}Xs, σ̂2
a,t ≡

1

na,t

∑
s∈[t−1]

1{as = a}(Xs − X̄a,t)
2.

6: Compute the optimistic rewards UCB(a, t) ≡ X̄a,t +
( σ̂a,t√

ρ log T
∨ 1√

na,t

)
ρ log T√

na,t
for a ∈ [K].

7: Choose arm At given by At = argmaxa∈[K] UCB(a, t).
8: end for

1.1 Our Contributions

In this work, we try to close this gap by presenting a precise asymptotic analysis of UCB-V. As in
[21] and [23], our main focus is on the arm-pulling numbers and stability. For clarity, we concentrate
on the two-armed bandit setting, specifically K = 2, in the main part of our paper, as it effectively
captures the core exploration-exploitation trade-off while allowing a precise exposition of results
[31, 18, 22, 21]. The extension to the K-armed case is discussed in Appendix B.

2



0

100

200

300

400

500

0 10000 20000 30000 40000
n1,T

F
re

q
u
e
n
c
y

UCB

UCB−V

(a)

0

200

400

0 10000 20000 30000 40000 50000
n1,T

F
re

q
u
e
n
c
y

UCB

UCB−V

(b)

Figure 1: The distributions of n1,T for UCB-V and UCB with T = 50, 000 over 5000 repetitions.
(a) σ1 = σ2 = 1/4,∆2 = 0 (b) σ1 = 0, σ2 = 1/4,∆2 = σ2

√
log T/T . A more detailed numerical

setting is provided in Appendix H.

More precisely, by providing a general concentration result, we establish both precise asymptotic
characterizations and high-probability bounds for the arm-pulling numbers of UCB-V. When σ1, σ2 =
Ω(1), our results provide a straightforward generalization of those obtained for the canonical UCB.
In contrast, when σ1 ≪ σ2, we show that, unlike UCB, the stability result may not hold for UCB-V
and that it reveals a phase transition phenomenon in the optimal arm-pulling numbers, as illustrated
in Figure 2. Finally, as an application of our sharp characterization of arm-pulling rates, we present a
refined regret result for UCB-V that is previously unknown for any other variance-aware decision-
making algorithms. We summarize our contributions in more detail below (see also Table 1). For
notational simplicity, we assume that the optimal arm is a⋆ = 1 and denote by ∆ = ∆2.

Precise asymptotic behavior for UCB-V. For fixed values of ∆, σ1, σ2, and T , we introduce a pair
of deterministic equations whose unique solution {n⋆a,T ≡ n⋆a,T (∆, σ1, σ2, T )}a=1,2 predicts the
arm-pulling numbers of UCB-V. We show that for possibly T -dependent (∆, σ1, σ2),

na,T
n⋆a,T

p−→ 1 for a = 1, 2,

except when σ1 ≪ σ2 and σ2
√
ρ log T/(

√
T ∆) = 1 hold simultaneously; see Theorem 1 for a

precise statement. This phenomenon, referred to as the stability of arm-pulling numbers, is formally
defined in Definition 1. Consequently, the solutions of these deterministic equations can be used to
predict the behavior of UCB-V in the large-T regime, as illustrated in Figure 2. Our results reveal
several notable differences between UCB-V and the canonical UCB, as analyzed in [21] and [23],
due to the incorporation of variance information:

• When σ1, σ2 = Ω(1), the optimal arm will always be pulled a linear number of times,
with n1,T ∼ σ2

1

σ2
1+σ2

2
T as ∆ → 0. This indicates that, in the small-gap regime, the UCB-V

algorithm tends to allocate more pulls to the arm with higher reward variance, generalizing
the result for the canonical UCB in which both arms are pulled T/2 times in the small-∆
regime.

• When σ1 = o(σ2), UCB-V may pull the optimal arm sublinearly in the small-∆ regime. In
contrast, the canonical UCB pulls the optimal arm linearly in T , as illustrated in Figure 2b.
This behavior is governed by the ratio ΛT ≡ σ2

√
ρ log T/(

√
T ∆). More precisely, given

σ1 ≤
√
ρ log T/T and σ2 = Ω(1),

1. When limT→∞ ΛT < 1, we have n1,T /n⋆1,T
p−→ 1 with n⋆1,T = Ω(T ).

2. When limT→∞ ΛT > 1, we have n1,T /n⋆1,T
p−→ 1 with n⋆1,T = O(

√
T/σ2).

3. When limT→∞ ΛT = 1, there exists a bandit instance where, for large T , P(n1,T ≳
T/

√
log T ) ∧ P(n1,T ≲

√
T log T ) ≳ 1.

The above results completely characterize the behavior of n1,T in the prescribed regime.
Notably, we establish a phase transition in the optimal-arm pulling times n1,T , shifting
from O(

√
T/σ2) to Ω(T ) at the critical point ΛT = 1. We also note that the existence of

an unstable instance when ΛT ∼ 1 highlights a stark contrast between UCB-V and the
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canonical UCB, where, for the latter, it has been shown that the behavior of n1,T for any
∆ > 0 can be asymptotically described by a deterministic sequence {n⋆1,T } as T → ∞.

High probability bounds and confidence region for arm pulling numbers. While our asymptotic
theory provides the precise limiting behavior of UCB-V, it has a drawback similar to those found
in [21] and [23]: the convergence rate in probability is quite slow. Specifically, the probability that
the uncontrolled event occurs decays at a rate of O((log T )−1). This slow rate is inadequate for
providing insight or guarantees in the popular high probability regime for studying bandit algorithms,
where the probability of an uncontrolled event should be in the order of O(T−1). To address this
gap, we demonstrate that, starting from our unified concentration result in Proposition 1, one can
derive non-asymptotic bounds for the arm pulling numbers in the high probability regime. Such result
provides a high probability confidence region for arm pulling numbers, as illustrated in Figure 3a in
Appendix D.1.

Refined regret for variance-aware decision making. As an application of our high probability
arm-pulling bounds, we demonstrate in Theorem 2 that the UCB-V algorithm achieves a refined
regret bound of form

O
(

σ2
2

σ1 ∨ σ2

√
T

)
.

This result improves upon the best-known regret1 for UCB-V [4, 36] and surpasses the regrets for
all known variance-aware bandit algorithms [41, 40, 33, 9, 10], which are of form O(σ2

√
T ) in

the two-armed setting. Our result is the first to reveal the effect of the optimal arm’s variance:
When σ1 = o(σ2), the regret matches the previously known O(σ2

√
T ) bound, and the optimal

arm’s variance does not affect performance; as σ1 surpasses σ2, the regret decreases as σ1 increases,
following the form O(

σ2
2

σ1

√
T ). Simulations presented in Figure 2 confirm our theoretical predictions,

demonstrating that UCB-V exhibits improved performance in high-σ1 scenarios, which was previously
unknown. A matching regret lower bound is established in Theorem 3, demonstrating the optimality
of our result.

Notation. For any positive integer n, denote by [n] = [1 : n] set {1, . . . , n}. For a, b ∈ R,
a∨ b ≡ max{a, b} and a∧ b ≡ min{a, b}. For any a ∈ R, a+ ≡ max{a, 0}. Throughout this paper,
we regard T as our fundamental large parameter. For any possibly T -dependent quantities a ≡ a(T )
and b ≡ b(T ), we say that a = o(b) or b = ω(a) if limT→∞ a/b = 0. Similarly, a = O(b) or
b = Ω(a) if limT→∞|a/b| ≤ C for some constantC. If a = O(b) and a = Ω(b) hold simultaneously,
we say a = Θ(b), or a ≍ b, and write a ∼ b in the special case when limT→∞ a/b = 1. We write
a ≳ b (resp. a ≲ b) to mean a ≥ Cb (resp. a ≤ Cb) for some absolute constant C > 0. If either
sequence a or b is random, we say a = oP(b) if a/b

p−→ 0 as T → ∞.

2 Implicit bounds for arm-pulling numbers

Additional notations. For ρ > 1 and T ∈ N+, let

σa(ρ;T ) ≡
σa√
ρ log T

, ∆a(ρ;T ) ≡
∆a

ρ log T
, a ∈ [K].

Whenever there is no confusion, we write σa ≡ σa(ρ;T ) and ∆a ≡ ∆a(ρ;T ). We also allow σa and
∆a to depend on T . For any σ ≥ 0 and n ∈ N+, define φ(n;σ) ≡ σ ∨ n−1/2/

√
n. For each fixed

σ ≥ 0, the map φ(·;σ) : R≥0 → R≥0 is monotone nonincreasing in n, and its (piecewise) inverse
n(·;σ) : R≥0 → R≥0 is n(φ;σ) ≡ (σ2 ∨ φ)/φ2. Consequently, studying na,T reduces to analyzing

φa,t ≡ φ(na,t;σa) =
σa ∨ n−1/2

a,t√
na,t

, a ∈ [K], t ∈ [T ].

Here the two pieces in φ match the variance-driven term (σ/
√
n) and the boundedness-driven term

(1/n) in Bernstein’s inequality; the rescalings σa and ∆a place variance and gap on the same
Bernstein-type exploration scale used by our UCB-V bonus.

1[4] does not directly provide the worst-case regret bound for UCB-V, and the best known worst-case
regret bound for UCB-V is claimed as O(

√
KT log T ) in [28]. In Appendix E.2, we show that the

O(
√∑

a̸=a⋆ σ2
aT log T ) regret for UCB-V can be derived based on results in [4].
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Figure 2: (a): The regrets of UCB-V with σ2 ≍ T−1/4,∆2 ≍ 1/
√
T fixed and σ1 ≍ T−1/2, T−1/4, 1,

each instance with 10 repetitions. (b): The median and 30% quantile of n1,T (optimal arm-pulling
count) for UCB and UCB-V, under varying ΛT in the σ1 = o(σ2) regime, with T = 1, 000, 000 over
30 repetitions for each ∆2. The red dotted line is the predicted n1,T of UCB-V using (6). A more
detailed numerical setting is provided in Appendix H.

2.1 Implicit bounds for arm-pulling numbers

Consider Algorithm 1 with K = 2. We start with the following concentration result for φa,T .

Proposition 1. Recall that σa ≡ σa(ρ;T ) and ∆a ≡ ∆a(ρ;T ) for a ∈ [2]. Fix any δ > 0, ρ > 1,

and any positive integer T ≥ 4 such that ε ≡ ε(δ; ρ;T ) ≡ 5
(√

48 log(log(T/δ)/δ)
ρ log T + 128 log(1/δ)

ρ log T

)1/2
+

200√
T
≤ 1

2 . Then, with probability at least 1− δ, we have(
1− ε

1 + ε

)4

≤ σ2
1 ∨ φ1,T

Tφ2
1,T

+
σ2
2 ∨ (φ1,T +∆2)

T (φ1,T +∆2)2
≤
(
1 + ε

1− ε

)4

and
(
1−ε
1+ε

)4 ≤ φ2,T

φ1,T+∆2
≤
(
1+ε
1−ε

)4
.

The proof of Proposition 1 above is inspired by the delicate analysis of bonus terms for the canonical
UCB [23] in the large-T regime and is presented in Appendix C.1. Proposition 1 establishes
a sandwich inequality, demonstrating that as term ε(δ; ρ;T ) approaches 0, the concerned ratio
converges to 1. This can be viewed as a non-asymptotic and variance-aware extension of the results
found in [21] and [23] for the canonical UCB. To incorporate variance information, we have also
developed a Bernstein-type non-asymptotic law of iterated logarithm result in Lemma 8 in Appendix
G, which is of independent interest. We now make several comments regarding Proposition 1:

Deriving the asymptotic equation. When selecting δ = (log T )−1, we find that for any ρ > 0, the
ε(δ; ρ;T ) term approaches 0 at a rate of O

(
log log T
log T

)
. Under this selection, Proposition 1 yields the

following probability convergence guarantee

σ2
1 ∨ φ1,T

Tφ2
1,T

+
σ2
2 ∨ (φ1,T +∆2)

T (φ1,T +∆2)2
= 1 + oP(1). (1)

It is noteworthy that in this asymptotic result, the oP(1) term converges to 0 at a relatively slow
rate, both in probability and magnitude. For each T , it has a probability of at least 1−O

(
1

log T

)
of

being bounded by O
(
log log T
log T

)
. This slow rate appears not only in our result but also in [21] and

[23], necessitating a considerably large T to observe theoretical predictions clearly in experiments, as
illustrated in Figure 2b.

Permissible values of ρ for high probability bounds. One popular scale selection of δ is δ ≍ 1/T 2,
where Proposition 1 becomes a high-probability guarantee widely adopted in the pure-exploration
and regret analysis literature [5, 3]. With such selection, the requirement ε(δ; ρ;T ) < 1/2 translates
to ρ > c′ for some universal and sufficiently large constant c′. Thus, we have that with probability at
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least 1−O(1/T 2),

1− (c′)−1 ≤ σ2
1 ∨ φ1,T

Tφ2
1,T

+
σ2
2 ∨ (φ1,T +∆2)

T (φ1,T +∆2)2
≤ 1 + (c′)−1. (2)

In particular, since the centered term is a monotone increasing function of φ1,T , this result provides
a high-probability confidence region for φ1,T and consequently for n1,T , as shown in Figure 3a in
Appendix D.1. These high probability bounds of n1,T enable us to derive the refined regret bound for
UCB-V in Section 4.

The implications outlined above will be made precise in the subsequent two sections.

3 Asymptotic characterization of arm-pulling numbers

3.1 Stability of the asymptotic equation

Consider the deterministic equation

f(φ) = 1 with f(φ) ≡ σ2
1 ∨ φ
Tφ2

+
σ2
2 ∨ (φ+∆2)

T (φ+∆2)2
. (3)

Recall that σa ≡ σa/
√
ρ log T and ∆a ≡ ∆a/(ρ log T ) for a = 1, 2, so the equation actually

depends on both ρ and T . For any fixed T ∈ N+ and ρ > 1, Proposition 1 indicates that φ1,T satisfies
f(φ1,T ) = 1 + ζ, where ζ represents a perturbation term. Given the asymptotic equation derived
in (1), it is reasonable to conjecture that the behavior of φ1,T aligns with the solution of the above
deterministic equation. To formally connect φ1,T to the solution of (3), we conduct a perturbation
analysis of this equation. Specifically, we have the following result.
Lemma 1. Fix any T ∈ N+ and ρ > 1. It holds that:

1. The fixed-point equation (3) admits a unique solution φ⋆ ∈ (1/T, 1).

2. Assume that there exist some ζ ∈ (−1/2, 1/2) and φζ such that f(φζ) = 1 + ζ. Then∣∣∣∣φζ

φ⋆
− 1

∣∣∣∣ ≤ 27|ζ| ·
(
1 +

∣∣∣∣ σ2
2

T∆
2

2

− 1

∣∣∣∣−1

∧ σ2

σ1 ∨ T−1/2

)
. (4)

The proof of Lemma 1 above is provided in Appendix D.1. Intuitively, Lemma 1 asserts that in either
the homogeneous variance case (σ2 ≍ σ1) or when the ratio σ2

2/(T∆
2

2) is bounded away from 1,
the solution φζ of the ζ-perturbed equation is provably bounded by

(
1±O(ζ)

)
φ⋆. However, when

σ1 = o(σ2) and the ratio σ2
2/(T∆

2

2) approaches 1, the stability guarantee of the lemma breaks down.
Although this result may seem pessimistic—as σ2

2/(T∆
2

2) ∼ 1 causes the right-hand side of (4) to
diverge—it accurately reflects the behavior of the perturbed solution. This is illustrated in Figure 3b
in Appendix D.1, where instability arises when σ2

2/(T∆
2

2) = 1.

3.2 Asymptotic stability

One important consequence of the perturbation bound is the following asymptotic stability result.
Theorem 1. Consider Algorithm 1 with K = 2. Assume that

lim
T→∞

{∣∣∣∣ σ2
2

T∆
2

2

− 1

∣∣∣∣−1

∧ σ2

σ1 ∨ T−1/2

}
<∞. (5)

Then for a ∈ [2], we have na,T /n⋆
a,T

p−→ 1, where n⋆1,T is the unique solution to equation

σ2
1 ∨ φ(n⋆1,T ;σ1)

Tφ2(n⋆1,T ;σ1)
+
σ2
2 ∨ (φ(n⋆1,T ;σ1) + ∆2)

T (φ(n⋆1,T ;σ1) + ∆2)2
= 1 (6)

and n⋆2,T ≡ σ2
2 ∨ (φ(n⋆1,T ;σ1) + ∆2)/(φ(n

⋆
1,T ;σ1) + ∆2)

2.
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The proof of Theorem 1 above is provided in Appendix D.2, relying on Proposition 1 and Lemma 1.
Lemma 1 shows that the boundedness condition in (5) is essential for ensuring the stability of the
arm-pulling process, as defined in Definition 1. Specifically, when σ1 = σ2 = 1, condition (5) is
always satisfied, and the asymptotic equation (6) reduces to the canonical UCB setting studied in
[21] and [23], where stability is guaranteed. The key insight behind such stability in an even more
general homogeneous setting σ1 ≍ σ2 is that the optimal arm’s pulling number grows linearly with
T , as noted in [23, Eqn. (22)]. In the inhomogeneous case where σ1 = o(σ2), the boundedness of
|σ2

2/(T∆
2

2)−1|−1 becomes crucial for stability and appears to be novel, ensuring stability even when
n1,T grows sub-linearly in T . The instability result in the next subsection complements Theorem 1
by presenting a counterexample where the boundedness condition in (5) fails. An extension to the
K-armed setting is discussed in Appendix B.

Asymptotic behavior of arm-pulling numbers. Let us write φ⋆ ≡ φ(n⋆1,T ;σ1) for simplicity. From
Theorem 1, the asymptotic behavior of n1,T can be derived through n⋆1,T , which, in turn, can be fully
determined by φ⋆, provided that the boundedness condition in (5) holds. Thus, understanding the
analytical properties of φ⋆ is sufficient to determine the asymptotic behavior of n1,T .

The function f(φ⋆) is known to be monotonic increasing in φ⋆, and the solution to f(φ⋆) = 1 lies
within the interval [0, 1]. This allows us to efficiently compute the numerical behavior of φ⋆ to predict
both asymptotic and finite-time arm-pulling behavior, as illustrated in Figure 3a in Appendix D.1.
However, due to the presence of a maximum operation and the complexity of the underlying equation,
obtaining a closed-form solution for φ⋆ remains difficult. Below, we present several extreme cases
that highlight new phenomena arising from the incorporation of variance information, which differs
from the classical UCB algorithm. A full analytical characterization of φ⋆ is left for future research.
Example 1. When σ1, σ2 = Ω(1), Eqn. (6) simplifies to

n⋆1,T
T

+

(
σ1
σ2

·
√

T

n⋆1,T
+

∆2

σ2

√
T

ρ log T

)−2

= 1.

In the moderate gap regime ∆2 ∼ σ2
√
θ log T/T for some fixed θ ∈ R≥0, we have n⋆1,T /T =

λ⋆(θ)
(
1 + o(1)

)
, with λ⋆(θ) being the unique solution to equation λ+

(
σ1

σ2
· 1√

λ
+
√
θ/ρ
)−2

= 1.

Moreover, we can compute the limits limθ→+∞ λ⋆(θ) = 1 and limθ→0 λ
⋆(θ) =

σ2
1

σ2
1+σ2

2
.

This result recovers the asymptotic equation for the canonical UCB in [21] and [23] when σ1 =
σ2 = 1. The λ⋆ equation derived here can be viewed as an extension of those in [21]. Notably, in the
small-gap limit θ → 0, the arm-pulling allocation for UCB-V becomes proportional to the variance
instead of being equally divided.

Example 2. When σ1 ≤
√
ρ log T/T , σ2 = Ω(1), Eqn. (6) simplifies to

n⋆1,T
T

+

(
1

σ2

√
ρ log T

T
· T

n⋆1,T
+

∆2

σ2

√
T

ρ log T

)−2

= 1.

In the moderate gap regime where ∆ ∼ σ2
√
θ log T/T for some fixed θ ∈ R≥0 \ {ρ}, we have

n⋆1,T /T = λ⋆(θ)
(
1 + o(1)

)
, with λ⋆(θ) being the unique solution to equation λ +

(
1
σ2

√
ρ log T

T ·
1
λ +

√
θ/ρ
)−2

= 1. Moreover, we can compute the limits limθ→+∞ λ⋆(θ) = 1 and limθ→0 λ
⋆(θ) =

2√
1+4σ2

2T+1
.

This limit indicates a distinct behavior between UCB-V and UCB: as θ → 0, the number of pulls for
the optimal arm becomes sub-linear in T , specifically O(

√
T/σ2), while for UCB, it approaches

T/2. Additionally, we have a more detailed description of the transition between sub-linear and
linear pulling times: (i) When θ < ρ, λ⋆(θ) ≤ 1/(σ2(1 −

√
θ/ρ)

√
T ) and (ii) When θ > ρ,

λ⋆(θ) ≥ 1− ρ/θ. This result indicates that the transition from O(
√
T ) pulling time to Ω(T ) pulling

time for the optimal arm occurs at θ = ρ.

Inference with UCB-V. Another key implication of Theorem 1 is its relevance to the post-policy
inference in the UCB-V algorithm. To begin, we recall the notion of arm stability as defined in [23,
Definition 2.1].
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Definition 1. An arm a ∈ [K] is stable if there exists a deterministic sequence n⋆a,T such that

na,T
n⋆a,T

p−→ 1 with n⋆a,T → ∞, (7)

where n⋆a,T may depend on T, {µa}a∈[K], and {σ2
a}a∈[K].

This notion of stability guarantees that, as T → ∞, the number of times that an arm is pulled becomes
predictable, thus enabling valid statistical inference for each arm’s reward distribution. Specifically,
under the stability condition, the following Z-statistic converges in distribution to a standard normal

√
na,T

σ̂a,T

(
X̄a,T − µa

)
⇒ N (0, 1). (8)

This result is crucial for constructing valid hypothesis tests and confidence intervals in the adaptive
sampling settings [29, 39]. For space efficiency, we provide a more detailed discussion along with
simulation results in Appendix I.

3.3 Unstable results: closer look and hard instances

Recall that Theorem 1 establishes the stability result, except for the case when σ1 = o(σ2) and
σ2
2/(T∆

2

2) = 1 hold simultaneously. In this section, we provide a hard instance in this setting and
show the instability result. More precisely, let us consider the setting similar to Example 2, with
σ2 = 1, σ1 = 0, and gap ∆2 = σ2

√
θ log T/T .

In this scenario, the behavior of the solution to the asymptotic equation is described by n⋆1,T ∼
λ⋆(θ)T , where λ⋆(θ) solves λ+

(√
ρ log T/T/λ+

√
θ/ρ
)−2

= 1 or equivalently,

1√
1− λ

− 1

λ

√
ρ log T

T
=
√
θ/ρ. (9)

To heuristically explain why θ = ρ (or equivalently σ2
2/(T∆

2

2) = 1) acts as a phase transition point
and leads to instability, we formally take the first-order expansion 1/

√
1− λ ≈ 1 + λ/2 in (9) and

multiply both sides by λ. This yields a quadratic equation in λ, 1
2λ

2 +(1−
√
θ/ρ)λ−

√
ρ log T

T = 0.

Notably, the order of the solution in T depends crucially on the sign of 1−
√
θ/ρ. For any ε > 0, by

observing the analytical solution to the quadratic equation, we have

λ =

{
O(ε−1

√
ρ log T

T ) when 1−
√
θ/ρ ≥ ε,

Ω(ε) when 1−
√
θ/ρ ≤ −ε.

In particular, a perturbation in θ around θ = ρ of magnitude ε with different signs can lead to a
fluctuation in n⋆1,T from O(ε−1

√
T log T ) to Ω(εT ).

Based on the above intuition and informal argument, we can rigorously demonstrate the instability
result by constructing a Bernoulli bandit instance and establishing a time-uniform anti-concentration
result for the Bernoulli reward process via Donsker’s principle. Intuitively, our anti-concentration
result shows that, with constant probability, θ can be perturbed by a magnitude of O((log T )−1)
with different signs, which then implies instability in n1,T even when we play UCB-V with the
oracle information of the variance (i.e., with σ̂a,t = σa). We summarize the instability result in the
following proposition and provide its proof in Appendix D.3.
Proposition 2. Consider the following two-armed Bernoulli bandit instance: for µ = 1/2 and
∆2 = µ(1 − µ)ρ log T/T , arm 1 has reward µ +∆ and variance 0, and arm 2 has reward µ and
variance µ(1 − µ). Assume that σa’s are known and let na,T be computed by Algorithm 1 with
σ̂a,t = σa. Then for sufficiently large T , there exist some constants c0, c1 > 0 such that

P(n1,T ≤ c1
√
T log T ) ∧ P(n1,T ≥ c−1

1 T/ log1/2 T ) > c0.

Remark 1. In the example above we set σ1 = 0 for simplicity. The instability analysis in Proposition 2
also extends to cases where the optimal arm has variance σ1 = O(T−1/2), since in this regime the
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UCB-V bonus for the optimal arm matches the σ1 = 0 case. By contrast, constructing an instance
with σ1 = T−α for some α ∈ (0, 1/2) is more delicate and appears to require new ideas: the
associated asymptotic equation becomes substantially more involved, and a complete analysis is
currently unclear.

The existence of an unstable instance at ΛT = 1 complements our previous finding, where UCB-V’s
stability was shown for ΛT ̸= 1. This result highlights a contrast between the UCB-V and canonical
UCB: as shown in [21] and [23], the canonical UCB is stable for all ∆, which corresponds to the
case in our setting when σ1 = σ2 = 1. Our result demonstrates that, in a heterogeneous variance
environment, UCB-V may exhibit significant fluctuations. Another implication of this instability is
that, unlike the canonical UCB, the CLT for the Z-statistic may not hold for data collected by UCB-V,
as shown in Figure 4b in Appendix I. This necessitates the developments of new statistical inference
methods for UCB-V collected data or new variance-aware decision-making algorithms with stronger
stability guarantees than UCB-V, which we leave as a valuable future direction.

4 Refined regret for variance-aware decision making

In this section, we show that a refined regret can be achieved by UCB-V based on our arm-pulling
number bounds presented in Section 2. Previously, the best-known regret for UCB-V, shown in [4], is
given by 2

Reg(T ) ≤ max
∆2≥0

C log T
( σ2

2

∆2
+ 2
)
∧∆2T ≤ C ′σ2

√
T log T . (11)

As mentioned earlier, the regret in (11) does not account for the effect of σ1, which contradicts the
empirical performance of UCB-V and is conservative in the large σ1, small σ2 regime, as shown in
Figure 2a. On the other hand, the derived asymptotic equation for the arm-pulling times naturally
indicates a dependency of n2,T on σ1, opening the possibility for refined worst-case regret bounds.
More precisely, by adopting the high-probability bound in (2), we can show the following proposition.

Proposition 3. There exists some universal constant C0 such that with ρ ≥ C0 and T ≥ 3,

P
(
n2,T ≤ 16

∆2 + φ(n1,T ;σ1)
∨
( 16σ2

∆2 + φ(n1,T ;σ1)

)2)
≥ 1− 6

T 2
.

By applying the upper bound on the number of pulls for sub-optimal arms, we are able to derive the
refined worst-case regret for UCB-V.

Theorem 2. There exists some universal constant C0 > 0 such that for ρ ≥ C0 and T ≥ 3, we have
that with probability at least 1− 6/T 2,

Reg(T ) ≤ 16
(
σ2 ∧

16σ2
2

σ1

)√
ρT log T +

√
ρ log T .

The proof of the above results can be found in Appendix E. The regret bound in Theorem 2 above
improves upon the bound in (11) for the large σ1, small σ2 regime, while recovering (11) in the small
σ1 regime. We note that sharper bounds may be derived in special instances based on Proposition 3.
For example, in the Bernoulli setting where µ1 is close to 1, the variance inequality σ2

2 ≲ σ2
1 +∆2

holds. In this case, Proposition 3 implies a regret bound of the form O(σ1
√
T log T ), which matches

the result established in [30].

Regret results for the K-armed setting. Since most works consider the general K-armed setting,
for ease of comparison we now presenting the K-armed extension of Theorem 2, we leave the

2Rather than presenting an equation of the form (11), [4] established the following gap-dependent upper
bound on the number of times a suboptimal arm is pulled:

E(n2,T ) ≤ C log T

(
σ2
2

∆2
2

+
2

∆2

)
. (10)

However, it is straightforward to show (11) by combining (10) with the trivial bound Reg(T ) ≤ ∆2E(n2,T ).
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rigorous statements in Theorem 5 in Appendix B. For a K-armed MAB problem with variances
{σ2

a}Ka=1(assuming again W.L.O.G. arm 1 is optimal), we have:

Reg(T ) = O
(√ ∑

a∈[2:K]

σ2
a ∧

( ∑
a∈[2:K]

σ2
a

σ1

)
·
√
T log T

)
,

The best known worst-case regret of UCB-V was previously known as O(
√
KT log T ), as discussed

in [28]. In comparison, our result shows that UCB-V can achieve regret adaptive to both the
variances of sub-optimal and optimal arms. Beyond UCB-V, for Thompson sampling algorithms,
the O(

√∑
a∈[2:K] σ

2
aT log T ) regret was proved in a Bayesian setting, where each arm’s reward

distribution follows a known prior distribution. Especially, even when working with the Bayesian
regret, the dependency on σ1 is previously unrevealed. We believe that our results for UCB-V can be
extended to these posterior sampling algorithms.

Optimality of Theorem 2. Now we establish a matching lower bound to show the optimality of
Theorem 2. To describe the lower bound result, consider any given distributions P1 and P2. Let
v = (P1,P2) denote a 2-armed bandit instance, where Pi represents the distribution of the i-th arm.
To emphasize the dependency on the means µi ≡ EX∼Pi [X] and variances σ2

i ≡ VarX∼Pi [X] of
the arms, we redundantly express this instance as v = (P1(µ1, σ1),P2(µ2, σ2)).

Given any instance v, we use the notation σ2
opt(v), σ

2
sub(v) to denote variances of optimal and sub-

optimal arms under v for clarity. For any policy π and any instance v, we denote Eπv and Pπv as
the expectation and probability with respect to the reward distribution induced by π under v. More
precisely, we establish the following regret lower bounds. The proof is deferred to Appendix E.3.
Theorem 3. Given any sufficiently large T > 0 and 0 < σ2 < 1/3, consider the following class of
problems with σ-bounded variances:

Vσ ≡ {(P1(µ1, σ1),P2(µ2, σ2)) : σ1 ∨ σ2 ≤ σ, supp(Pi(µi, σi)) ⊂ [0, 1], i ∈ {1, 2}}.
Then for every policy π, there exists some v ∈ V such that,

Eπv Reg(T ) = Ω(σsub(v)
√
T ). (12)

Moreover, the following trade-off lower bound holds: Given any 0 < β < 1/2 and cT =
O(poly(log T )), consider

V ′
β ≡ {(P1(µ1, σ1),P2(µ2, σ2)) ∈ Vσ : µ1 > µ2, σ1 = T βσ2

2 , σ1 ≥ T−β/256}
and the good policy class

Πgood ≡
{
π : max

v∈V

Eπv Reg(T )

σsub(v)
≤ cT

√
T

}
.

Then for any π ∈ Πgood, there exists some v′ ∈ V ′
β such that

Eπv′ Reg(T ) = Ω
(σ2

sub(v
′)

σopt(v′)

√
T

cT

)
. (13)

Theorem 3 states that, in the general scenario with σ-bounded variances, no algorithm can achieve
a regret better than σsub(v)

√
T . This reveals the optimality of Theorem 2 in the regime where

σopt(v) ≤ σsub(v). Furthermore, we show that in σopt > σsub regime, any reasonably good
algorithm that performs nearly optimal in worst-case over V (i.e., the algorithms lie within Πgood)

cannot achieve a regret better than σ2
sub

σopt

√
T . In particular, the regret upper bound in Theorem 2

demonstrates that UCB-V matches such trade-off lower bound in the regime where σopt > σsub,
illustrating its optimality.

Conclusion. In this paper, we provide a refined analysis of the UCB-V algorithm, including a
precise characterization of its asymptotic arm-pulling behavior and high-probability, non-asymptotic
bounds that lead to a sharper and optimal regret upper bound. Several valuable future directions
remain open. First, the instability result is established only under the regime σ1 = o(

√
log T/T )

and σ2 = Ω(1), while the stability condition in the more general case σ1 = o(σ2) is not yet sharply
understood. Second, as discussed in Section B, our stability condition in the K-armed setting requires
a uniform-type separation condition mina ∆̄a ≥ σ̄a

√
(K − 1)/T , which we believe can be further

refined.

10



Acknowledgments. This work is generously supported by NSF CCF-2312205, ONR 13983263, and
2026 New York University Center for Global Economy and Business grant.

References
[1] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit

problem. In Conference on Learning Theory, pages 39–1. JMLR Workshop and Conference
Proceedings, 2012.

[2] Victor F Araman and René A Caldentey. Diffusion approximations for a class of sequential
experimentation problems. Management Science, 68(8):5958–5979, 2022.

[3] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning bandit algorithms in stochastic
environments. In International Conference on Algorithmic Learning Theory, pages 150–165.
Springer, 2007.

[4] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration–exploitation tradeoff
using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–
1902, 2009.

[5] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[6] Patrick Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.

[7] Haoyu Chen, Wenbin Lu, and Rui Song. Statistical inference for online decision making: In a
contextual bandit setting. Journal of the American Statistical Association, 116(533):240–255,
2021.

[8] Xi Chen, Zehua Lai, He Li, and Yichen Zhang. Online statistical inference for contextual
bandits via stochastic gradient descent. arXiv preprint arXiv:2212.14883, 2022.

[9] Yan Dai, Ruosong Wang, and Simon S Du. Variance-aware sparse linear bandits. arXiv preprint
arXiv:2205.13450, 2022.

[10] Qiwei Di, Tao Jin, Yue Wu, Heyang Zhao, Farzad Farnoud, and Quanquan Gu. Variance-aware
regret bounds for stochastic contextual dueling bandits. arXiv preprint arXiv:2310.00968, 2023.

[11] Maria Dimakopoulou, Zhimei Ren, and Zhengyuan Zhou. Online multi-armed bandits with
adaptive inference. Advances in Neural Information Processing Systems, 34:1939–1951, 2021.

[12] Congyuan Duan, Jingyang Li, and Dong Xia. Online policy learning and inference by matrix
completion. arXiv preprint arXiv:2404.17398, 2024.

[13] Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal
of Machine Learning Research, 7(6), 2006.

[14] Lin Fan and Peter W Glynn. Diffusion approximations for thompson sampling. arXiv preprint
arXiv:2105.09232, 2021.

[15] Lin Fan and Peter W Glynn. The fragility of optimized bandit algorithms. arXiv preprint
arXiv:2109.13595, 2021.

[16] Lin Fan and Peter W Glynn. The typical behavior of bandit algorithms. arXiv preprint
arXiv:2210.05660, 2022.

[17] Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic
algorithms for logistic bandits. In International Conference on Machine Learning, pages
3052–3060. PMLR, 2020.

[18] Alexander Goldenshluger and Assaf Zeevi. A linear response bandit problem. Stochastic
Systems, 3(1):230–261, 2013.

11



[19] Vitor Hadad, David A Hirshberg, Ruohan Zhan, Stefan Wager, and Susan Athey. Confidence
intervals for policy evaluation in adaptive experiments. Proceedings of the National Academy
of Sciences, 118(15):e2014602118, 2021.

[20] Junya Honda and Akimichi Takemura. Optimality of thompson sampling for gaussian bandits
depends on priors. In Artificial Intelligence and Statistics, pages 375–383. PMLR, 2014.

[21] Anand Kalvit and Assaf Zeevi. A closer look at the worst-case behavior of multi-armed bandit
algorithms. Advances in Neural Information Processing Systems, 34:8807–8819, 2021.

[22] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm
identification in multi-armed bandit models. Journal of Machine Learning Research, 17(1):1–
42, 2016.

[23] Koulik Khamaru and Cun-Hui Zhang. Inference with the upper confidence bound algorithm.
arXiv preprint arXiv:2408.04595, 2024.

[24] Xu Kuang and Stefan Wager. Weak signal asymptotics for sequentially randomized experiments.
Management Science, 2023.

[25] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in Applied Mathematics, 6(1):4–22, 1985.

[26] Tor Lattimore. Refining the confidence level for optimistic bandit strategies. Journal of Machine
Learning Research, 19(20):1–32, 2018.

[27] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[28] Subhojyoti Mukherjee, KP Naveen, Nandan Sudarsanam, and Balaraman Ravindran. Efficient-
ucbv: An almost optimal algorithm using variance estimates. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[29] Xinkun Nie, Xiaoying Tian, Jonathan Taylor, and James Zou. Why adaptively collected data
have negative bias and how to correct for it. In International Conference on Artificial Intelligence
and Statistics, pages 1261–1269. PMLR, 2018.

[30] Hao Qin, Kwang-Sung Jun, and Chicheng Zhang. Kullback-leibler maillard sampling for multi-
armed bandits with bounded rewards. Advances in Neural Information Processing Systems,
36:60514–60526, 2023.

[31] Philippe Rigollet and Assaf Zeevi. Nonparametric bandits with covariates. COLT 2010, page 54,
2010.

[32] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial
on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

[33] Aadirupa Saha and Branislav Kveton. Only pay for what is uncertain: Variance-adaptive
thompson sampling. In The Twelfth International Conference on Learning Representations,
2024.

[34] David Simchi-Levi, Zeyu Zheng, and Feng Zhu. Regret distribution in stochastic bandits:
Optimal trade-off between expectation and tail risk. arXiv preprint arXiv:2304.04341, 2023.

[35] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286, 2019.

[36] Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for
undiscounted reinforcement learning in mdps. In Algorithmic Learning Theory, pages 770–805.
PMLR, 2018.

[37] Ruitu Xu, Yifei Min, and Tianhao Wang. Noise-adaptive thompson sampling for linear contex-
tual bandits. Advances in Neural Information Processing Systems, 36, 2024.

12



[38] Ruohan Zhan, Vitor Hadad, David A Hirshberg, and Susan Athey. Off-policy evaluation via
adaptive weighting with data from contextual bandits. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 2125–2135, 2021.

[39] Kelly Zhang, Lucas Janson, and Susan Murphy. Inference for batched bandits. Advances in
Neural Information Processing Systems, 33:9818–9829, 2020.

[40] Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Improved variance-aware confidence
sets for linear bandits and linear mixture mdp. Advances in Neural Information Processing
Systems, 34:4342–4355, 2021.

[41] Heyang Zhao, Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Variance-dependent
regret bounds for linear bandits and reinforcement learning: Adaptivity and computational
efficiency. In The Thirty Sixth Annual Conference on Learning Theory, pages 4977–5020.
PMLR, 2023.

13



A Additional related works

Variance-aware decision making

In the multi-armed bandit setting, leveraging the variance information to balance the exploration-
exploitation trade-off was first studied by [5] and [3, 4], where the UCB-V algorithm was proposed
and analyzed. Beyond the optimistic approach, [28] examined elimination-based algorithms that
utilize variance information, while [20] and [33] focused on analyzing the performance of Thompson
sampling in variance-aware contexts.

Beyond the MAB model, variance information has been utilized in contextual bandit and Markov
Decision Process settings [36, 40, 9, 41, 10, 37]. Among these works, [40] and [41] are most relevant
to our study, especially regarding the linear contextual bandits. Instead of assuming that each arm
a has a fixed variance σa, they assumed that at each round t, all arms have the same variance σt
depending on the time-step t. In the homogeneous case – i.e. when σa ≡ σ, σt ≡ σ for some σ > 0 –
their settings coincides with ours, and both algorithms achieve a regret of

√
σ2KT regret. However,

in the general case, the regret results are not directly comparable.

Asymptotic behavior analysis in multi-armed bandits

Our investigation into the asymptotic behaviors of UCB-V is inspired by recent advancements in
the precise characterization of arm-pulling behavior [21, 23], which focused on the canonical UCB
algorithm. Beyond the canonical UCB algorithm, another line of research explores the asymptotic
properties of bandit algorithms within the Bayesian frameworks, particularly under diffusion scaling
[14, 2, 24], where reward gaps scale as 1/

√
T . Additionally, a noteworthy body of work [15, 16, 34]

conducts asymptotic analyses in the regime described by [25], where the reward gaps ∆ remain
constant as T increases.

Inference with adaptively collected data

In addition to the regret minimization, there is a growing amount of interest in statistical inference
for the bandit problems. A significant body of research addresses the online debiasing and adaptive
inference methods [11, 7, 8, 12], but our findings are more closely related to studies focused on
the post-policy inference [29, 39, 19, 38]. These works aim to provide valid confidence intervals
for reward-related quantities based on data collected from pre-specified adaptive policies. Among
them, the most relevant works are [21] and [23]. The former addresses the inference guarantee of
Z-estimators collected by UCB in the two-armed setting, while the latter extends this to the K-armed
setting. In particular, these two works assert the stability of the pulling time for the optimal arm under
arbitrary gap conditions ∆, enabling the application of the martingale Central Limit Theorem (CLT)
to obtain an asymptotically normal estimator of µ⋆. However, our results point out a critical regime
where such stability breaks down, as shown in Figure 4b, highlighting the price of utilizing variance
information to enhance the regret minimization performance.

B Discussions on K-armed setting

In this section, we extend the results in Theorem 1, which addresses the 2-armed setting, to the
general K-armed case. Recall that σa ≡ σa(ρ;T ) and ∆a ≡ ∆a(ρ;T ) for a ∈ [K]. The formal
statement of the result is given in the following theorem.

Theorem 4. Consider Algorithm 1. Assume that for any a ∈ [2 : K],

lim
T→∞

{
max

a∈[2:K]

(
1

K − 1
− σ2

a

T∆
2

a

)−1

+

∧
(

σ2
a

T∆
2

a

− 1

)−1

+

∧ σa

σ1 ∨ T−1/2

}
<∞. (14)

Then for a ∈ [K], we have

na,T
n⋆a,T

p−→ 1,

14



where n⋆1,T is the unique solution to equation

∑
a∈[K]

σ2
a ∨ (φ(n⋆1,T ;σ1) + ∆a)

T (φ(n⋆1,T ;σ1) + ∆a)2
= 1 (15)

and for a ∈ [2 : K],

n⋆a,T ≡
σ2
a ∨ (φ(n⋆1,T ;σ1) + ∆a)

(φ(n⋆1,T ;σ1) + ∆a)2
.

When K = 2, the condition in (4) simplifies to the stability condition for the 2-armed setting as stated
in Theorem 1. While instability occurs when (4) is violated in the 2-armed case (cf. Proposition 2),
there is no clear reason to expect that (4) is optimal for the K-armed setting. Indeed, as indicated in
the proof, the fixed-point equation (15) may remain stable if there exists some a ∈ [K] \ {1} that
satisfies the boundedness condition in (14). However, formally characterizing such an a poses a
significant challenge in itself. As such, a full generalization to the K-armed setting is left for future
work.

Asymptotic arm-pulling characterization (moderate gap, K-armed). To build intuition for (15),
consider the K-armed setting with all variances {σa}a∈[K] = Ω(1) and gaps in the moderate-gap
regime ∆a = σa

√
(θa log T )/T with fixed θa ≥ 0. In this regime the variance branches of φ(·; ·)

are active, and

φ(n⋆1,T ;σ1) =
σ1√

n⋆1,T
√
ρ log T

, φ(n⋆1,T ;σ1) + ∆a =
σ1/
√
n⋆1,T + σa

√
θa/T√

ρ log T
.

Plugging these into (15) and multiplying both sides by ρ log T yields

∑
a∈[K]

σ2
a

T
(
σ1/
√
n⋆1,T + σa

√
θa/T

)2 = 1,
n⋆a,T
T

=
σ2
a

T
(
σ1/
√
n⋆1,T + σa

√
θa/T

)2 .
As θa → 0 (shrinking gaps), the normalized pulling rates converge to

n⋆a,T
T

−→ σ2
a∑

j∈[K] σ
2
j

.

That is, when the gaps vanish, each arm’s asymptotic pulling rate becomes proportional to its variance,
generalizing the two-armed intuition and the homogeneous-variance case.

Besides the stability results, the high-probability bounds for na,T in the K-armed setting, as in (2),
still hold when (6) is replaced with (15), as shown in Appendix C. The following corollary provides a
refined regret bound in the K-armed setting.

Theorem 5. There exists some universal constant C0 > 0 such that for ρ ≥ C0 and T ≥ 3, we have
that with probability at least 1− 3K/T 2,

Reg(T ) ≤ 16

(√ ∑
a∈[2:K]

σ2
a ∧

∑
a∈[2:K]

16σ2
a

σ1

)√
ρT log T + (K − 1)

√
ρ log T .

When K = 2, Theorem 5 above aligns with Theorem 2. A comparison with previous findings
is provided at the end of the previous section. Notably, in the small σ2

a/σ1 regime, the bound in
Theorem 5 grows linearly with the number of arms K. We conjecture that the result in Theorem 5 is
optimal up to logarithmic factors for variance-aware decision-making, even for more complicated
algorithms beyond UCB-V. Establishing the corresponding minimax lower bound is left for future
work.
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C Proofs for Section 2

For any T ∈ N+ and δ > 0, we define events

M(δ; ρ;T ) ≡
{
|X̄a,t − µa| ≤ φa,t · e(δ; ρ;T ), ∀t ∈ [T ], a ∈ [K]

}
,

V(δ; ρ;T ) ≡
{
|σ̂2

a − σ2
a| ≤ φa,t · e(δ; ρ;T ), ∀t ∈ [T ], a ∈ [K]

}
,

where e(δ; ρ;T ) ≡
√

48ρ log T log(log(T/δ)/δ) + 128 log(1/δ). The majority of the technical
analysis in this paper will be done on event M(δ; ρ;T )∩V(δ; ρ;T ). It is worth noting that, as shown
in Proposition 7 below, we have P(M(δ; ρ;T ) ∩ V(δ; ρ;T )) ≥ 1− 3Kδ for any δ < 1/2. Although
the statements in Section 2 are presented for the 2-armed setting, the proof in this section applies to
the K-armed setting as well.

C.1 Proof of Proposition 1

Recall that φa,t ≡ φ(na,t;σa). For simplicity, denote by φ̂a,t ≡ φ(na,t; σ̂a,t/
√
ρ log T ) for a ∈ [K]

and t ∈ [T ]. The following lemma provides a quantified error between φ̂a,t and φa,t.
Lemma 2. On event M(δ; ρ;T ) ∩ V(δ; ρ;T ), we have that for any a ∈ [K] and t ∈ [T ],

|φ̂a,t − φa,t| ≤ φa,t ·

√
e(δ; ρ;T )

ρ log T
.

Proof. By the elementary inequality that |
√
x−√

y| ≤
√
|x− y| for any x, y ≥ 0, we can derive on

event M(δ; ρ;T ) ∩ V(δ; ρ;T ) that

|φa,t − φ̂a,t| ≤
|σa − σ̂a,t|√
ρ log T · na,t

= φa,t ·
(

|σa − σ̂a,t|
√
ρ log T (σa ∨ n−1/2

a,t )

)

≤ φa,t ·
√
φ(na,t;σa) · e(δ; ρ;T )

√
ρ log T (σa ∨ n−1/2

a,t )
≤ φa,t ·

√
e(δ; ρ;T )

ρ log T
,

which completes the proof.

For any δ, ρ > 0, let I±(δ; ρ;T ) ≡ 1 ± Err1/2(δ; ρ;T ) ± Err(δ; ρ;T ) with Err(δ; ρ;T ) ≡
e(δ; ρ;T )/(ρ log T ). Recall that φa,T = φ(na,T ;σa). The following proposition provides (tight)
upper and lower bounds for φa,T .
Proposition 4. Fix any T ∈ N+ and any δ, ρ ∈ R+ such that I±(δ; ρ;T ) > 0. Then on event
M(δ; ρ;T ) ∩ V(δ; ρ;T ), we have that for any a ∈ [K],

I+(δ; ρ;T )

I−(δ; ρ;T )
· na,T
na,T − 1

≥ ∆a + φ1,T

φa,T
≥ I−(δ; ρ;T )

I+(δ; ρ;T )
· n1,T − 1

n1,T
. (16)

Proof. The proof primarily follows the framework in [26, 23]. In the proof, we write I± ≡ I±(δ; ρ;T ),
M ≡ M(δ; ρ;T ), and V ≡ V(δ; ρ;T ) for simplicity. For any a ∈ [K], denote by Ta the last time-
step such that arm a was pulled.

(Step 1). In this step, we provide an upper bound for φ−1
a,T . By the UCB rule, we have

X̄a,Ta
+ φ̂a,Ta

· ρ log T ≥ X̄1,Ta
+ φ̂1,Ta

· ρ log T .
By Lemma 2, it holds on event M∩V that

I+ · φa,Ta
≥ ∆a + φ1,Ta

· I−.

Using further na,Ta
= na,T − 1, n1,Ta

≤ n1,T , and ∆a ≥ 0, we can show that

I+ · φ(na,T − 1;σa) ≥
(
∆a + φ1,T

)
· I−.
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As φ(na,T − 1;σa) ≤ φa,Tna,T /(na,T − 1), we can obtain an upper bound for φ−1
a,T

I+
I−

≥ ∆a + φ1,T

φa,T
· na,T − 1

na,T
. (17)

(Step 2). In this step, we provide a lower bound for φ−1
a,T . Consider the last time-step such that arm 1

was pulled. In view of the UCB rule, it holds that

X̄a,T1 + φ̂a,T1 · ρ log T ≤ X̄1,T1
+ φ̂1,T1

· ρ log T .
By Lemma 2, we have that on event M∩V ,

I− · φa,T1 ≤ ∆a + φ1,T1 · I+. (18)

Then by na,T1 ≤ na,T − 1, n1,T1 ≤ n1,T − 1, and ∆a ≥ 0, it follows that

I− · φa,T ≤
(
∆a + φ(n1,T − 1;σ1)

)
· I+, (19)

As φ(n1,T − 1;σ1) ≤ φ1,Tn1,T /(n1,T − 1), we can obtain a lower bound for φ−1
a,T

I−
I+

≤ ∆a + φ1,T

φa,T
· n1,T
n1,T − 1

. (20)

Combining (17) and (20) above concludes the proof.

Proposition 5. Fix any T ∈ N+ and any δ, ρ ∈ R+ such that I±(δ; ρ;T ) > 0. Then on event
M(δ; ρ;T ) ∩ V(δ; ρ;T ), we have that for any a ∈ [K],(

I+(δ; ρ;T )

I−(δ; ρ;T )
· na,T
na,T − 1

)−1

≤
σa ∨ n−1/2

a,T

σa ∨ (φ1,T +∆a)1/2
≤
(
I−(δ; ρ;T )

I+(δ; ρ;T )
· n1,T − 1

n1,T

)−1

.

Proof. In the proof below, let us write I± ≡ I±(δ; ρ;T ) for simplicity. Denote by

ξu ≡ I+
I−

· na,T
na,T − 1

, ξl ≡
I−
I+

· n1,T − 1

n1,T
.

Note that for any σ > 0, function φ(·;σ) : R+ → R+ is bijective and monotone decreasing, with its
inverse map given by

ψ(z;σ) : z → z ∨ σ2

z2
, z ∈ R+.

Starting from the sandwich inequality (16), the monotonicity of φ yields that

ψ
(
ξ−1
u (∆a + φ1,T );σa

)
≥ na,T ≥ ψ

(
ξ−1
l (∆a + φ1,T );σa

)
.

As ξ−1
l > 1, we have

n−1
a,T ≤

ξ−2
l (∆a + φ1,T )

2

ξ−1
l (∆a + φ1,T ) ∨ σ2

a

≤
ξ−2
l (∆a + φ1,T )

2

(∆a + φ1,T ) ∨ σ2
a

.

Using further the fact that ψ(z;σ)−1 ∨ σ2 = z ∨ σ2, we arrive at

n−1
a,T ∨ σ2

a ≤
(
(∆a + φ1,T ) ∨ σ2

a

)
· ξ−2

l .

Similar, from ξ−1
u < 1 we can derive that

n−1
a,T ∨ σ2

a ≥
(
(∆a + φ1,T ) ∨ σ2

a

)
· ξ−2

u .

Combining the above two bounds completes the proof.

Lemma 3. Fix any T ∈ N+ and any δ, ρ ∈ R+ such that 0 < I+(δ; ρ;T )/I−(δ; ρ;T ) ≤ 2 and
T > 2K. Then on event M(δ; ρ;T ) ∩ V(δ; ρ;T ), we have that for any a ∈ [K],

na,T ≥ σ2
1T ∨

√
T

100K
· 1a=1 +

ρ log T

8
· 1a̸=1. (21)
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Proof. In the proof below, we write I± ≡ I±(δ; ρ;T ) for simplicity. Let us first consider the lower
bound for n1,T . Suppose by contradiction that (21) does not hold and we have

n
−1/2
1,T >

10
√
K

(σ1

√
T ) ∨ T 1/4

,

which implies σ1 ∨ n−1/2
1,T ≥ σ1 ∨ (σ−1

1 T−1/2 ∧ T−1/4) = σ1 ∨ T−1/4. Thus, it follows that

φ1,T = (σ1 ∨ n−1/2
1,T )n

−1/2
1,T ≥ 10

√
K√
T

.

On the other hand, as
∑

a∈[K] na,T = T , there must exist some a ∈ [K], a ̸= 1 such that na,T ≥
T/K. For such a, we have by (17) that

I+
I−

· na,T
na,T − 1

≥
√
na,T · φ1,T

σ1 ∨ n−1/2
a,T

⇒ 2T

T −K
≥

√
na,T · φT

σ1 ∨ n−1/2
a,T

⇒ 2T

T −K
·
σ1 ∨ n−1/2

a,T√
na,T

≥ 10
√
K√
T

⇒ 2T
√
K

T −K
· 1√

T
≥ 10

√
K√
T

,

which then leads to a contradiction. The lower bound for n1,T follows.

Next, we prove the lower bound for na,T , a ∈ [2 : K]. Starting from (20), we have by the lower
bound for n1,T in the first part that

na,T ≥ 1

2(∆a + φ1,T )
· n1,T − 1

n1,T
≥ 1

4

(
1

ρ log T
+

10
√
K

T 1/4

)−1

≥ ρ log T

8
,

which proves the claim.

We are now ready to prove Proposition 1.

Proof Proposition 1. In the proof below, let us write I± ≡ I±(δ; ρ;T ) and Err ≡ Err(δ; ρ;T ) for
simplicity. It follows from Propositions 4 and 5 that on event M(δ; ρ;T ) ∩ V(δ; ρ;T ),

I2−
I2+

· (na,T − 1)(n1,T − 1)

na,Tn1,T
≤

√
na,T · (∆a + φ1,T )

σa ∨ (φ1,T +∆a)1/2
≤

I2+
I2−

· na,Tn1,T
(na,T − 1)(n1,T − 1)

.

Applying the lower bounds for na,T in Lemma 3, we can further bound the right-hand side above as

I2+
I2−

·
(
1− 8

ρ log T

)−1

·
(
1− 100K√

T

)−1

≤
(
1 + 2

√
Err

1− 2
√
Err

)2(
1− 8

ρ log T

)−1(
1− 100K√

T

)−1

≤ (1 + 2
√
Err)2

1− 5
√
Err − 100KT−1/2

,

where we have used
√
Err ≥ 8/(ρ log T ) and the elementary inequality (1 − x)(1 − y)(1 − z) ≥

1− x− y − z for ∀x, y, z > 0.

Using the same argument for the left-hand side, we can show that

1− 5
√
Err − 100KT−1/2

(1 + 2
√
Err)2

≤
√
na,T · (∆a + φ1,T )

σa ∨ (φ1,T +∆a)1/2
≤ (1 + 2

√
Err)2

1− 5
√
Err − 100KT−1/2

.

Summing over a and using the fact that
∑

a∈[K] na,T = T, we can obtain that

(1− 5
√
Err − 100KT−1/2)2

(1 + 2
√
Err)4

≤
K∑

a=1

σ2
a ∨ (φ1,T +∆a)

T (∆a + φ1,T )2
≤ (1 + 2

√
Err)4

(1− 5
√
Err − 100KT−1/2)2

,

as desired.
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Figure 3: (a): The confidence region of n1,T under different ΛT , with σ1 = o(σ2). The dotted
lines represent the exact and perturbed solutions of (3), where the perturbed curves solve f(φ) =
1 ± 1/ log T . The UCB-V line shows the number of arm pulls under the UCB-V algorithm with
30% quantile, with T = 105 over 30 repetitions. (b): The ratio between the perturbed solution
f(φ) = 1± 1/ log T and the exact solution f(φ) = 1 is shown for T = 105, 107, 109 under different
ΛT . It can be seen that the ratio deviates from 1 as ΛT → 1 with increasing T .

D Proofs for Section 3

D.1 Proof of Lemma 1

Proof of Lemma 1. (1). First, we prove the existence and uniqueness of φ⋆. Note that f(φ) is
continuously monotone decreasing on (0,∞). On the other hand, as

f(1/T ) =
σ2
1 ∨ T−1

T−1
+
σ2
2 ∨ (T−1 +∆2)

T (T−1 +∆2)2
>
σ2
1 ∨ T−1

T−1
≥ 1

and

f(1) =
σ2
1 ∨ 1

T
+
σ2
2 ∨ (1 + ∆2)

T (1 + ∆2)2
≤ 2

T
< 1,

there must exist a unique φ⋆ ∈ (1/T, 1) such that f(φ⋆) = 1, proving the claim.

(2). We only show the proof for the case of ζ > 0, while the case of ζ < 0 can be handled similarly.
Note by the monotonicity, we have φζ ≤ φ⋆. Let φζ/φ

⋆ = 1− ζ̄ for some ζ̄ ≥ 0 depending on ζ.
Our aim is to derive an upper bound for ζ̄.

It follows from (3) that at least one of the following holds:

Case 1 :
σ2
1 ∨ φ⋆

T (φ⋆)2
≥ 1

2
, Case 2 :

σ2
2 ∨ (φ⋆ +∆2)

T (φ⋆ +∆2)2
≥ 1

2
.

Case 1: If σ2
1 = σ2

1 ∨ φ⋆, we have σ2
1 = σ2

1 ∨ φζ . Hence, it holds that

ζ = f(φζ)− f(φ⋆) ≥ σ2
1 ∨ φζ

Tφ2
ζ

− σ2
1 ∨ φ⋆

T (φ⋆)2
=

σ2
1

T (φ⋆)2

(
1− (1− ζ̄)2

(1− ζ̄)2

)
≥ 1

2
ζ̄.

For the case when φ⋆ = σ2
1 ∨ φ⋆, we can compute that

ζ = f(φζ)− f(φ⋆) ≥ σ2
1 ∨ φζ

Tφ2
ζ

− σ2
1 ∨ φ⋆

T (φ⋆)2
≥ 1

Tφ⋆

(
1− 1

1− ζ̄

)
≥ 1

2
ζ̄.

By combining the above results, in Case 1, we can conclude that ζ̄ ≤ 2ζ.

Case 2: Note that in this case, we have

1

Tφ⋆
∨ σ2

1

T (φ⋆)2
≤ σ2

1 ∨ φ⋆

T (φ⋆)2
≤ 1

2
. (22)
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On the other hand, if φ⋆+∆2 = σ2
2∨(φ⋆+∆2), we can show that 1/(Tφ⋆) ≥ 1/T (φ⋆+∆2) ≥ 1/2.

Thus, it must hold that φ⋆ = T/2 and ∆2 = 0. This implies that when φ⋆ +∆2 = σ2
2 ∨ (φ⋆ +∆2),

ζ = f(φζ)− f(φ⋆) ≥ 1

T (φζ +∆2)
− 1

T (φ⋆ +∆2)

=
1

Tφ⋆

(
1− 1

1− ζ̄

)
≥ 1

2
ζ̄.

For the case when σ2
2 = σ2

2 ∨ (φ⋆ +∆2), using (22) and the fact that φ⋆ ≥ T−1, we can deduce that
σ2
2

T (φ⋆ +∆2)2
≥ 1

2
≥ σ2

1 ∨ φ⋆

T (φ⋆)2
≥ σ2

1 ∨ T−1

T (φ⋆)2
,

which implies that φ⋆/(φ⋆ +∆2) ≥ (σ1 ∨ T−1/2)/σ2. Hence, it follows that

ζ = f(φζ)− f(φ⋆) ≥ σ2
2

T (φζ +∆2)2
− σ2

2

T (φ⋆ +∆2)2
(23)

=
σ2
2(φ

⋆ − φζ)

T (φ⋆ +∆2)2
·
(
φζ + φ⋆ + 2∆2

(φζ +∆2)2

)
≥ φ⋆ζ̄

2(φ⋆ +∆2)
≥ σ1 ∨ T−1/2

2σ2
ζ̄.

This gives the bound corresponding to σ2/(σ1 ∨ T−1/2) in (4).

Next, we will derive the bound that corresponds to |σ2
2/(T∆

2

2)− 1|−1 in (4). The analysis will be
further separated into two cases: (i) 1− σ2

2/(T∆
2

2) ≥ 0 and (ii) 1− σ2
2/(T∆

2

2) < 0.

For case (i), we can show that

ζ = f(φζ)− f(φ⋆) ≥ ζ̄

1− ζ̄
· σ

2
1 ∨ φ⋆

T (φ⋆)2
+ ζ̄ · σ2

2φ
⋆

T (φ⋆ +∆2)3

≥
(
σ2
1 ∨ φ⋆

T (φ⋆)2
+

σ2
2

T (φ⋆ +∆2)2
− σ2

2∆2

T (φ⋆ +∆2)3

)
· ζ̄ ≥

(
1− σ2

2

T∆
2

2

)
· ζ̄.

For case (ii), let us recall from (23) that

ζ ≥ φ⋆ζ̄

2(φ⋆ +∆2)
≥ ζ̄

6
· 1∆2/φ⋆≤2 +

φ⋆ζ̄

2(φ⋆ +∆2)
· 1∆2/φ⋆>2. (24)

Note that when ∆2/φ
⋆ > 2 (or equivalently φ⋆/∆2 < 1/2),

σ2
2

T (φ⋆ +∆2)2
≥ σ2

2

T∆
2

2

(
1− 3

φ⋆

∆2

)
⇒
(

σ2
2

T∆
2

2

− 1

)
1

φ⋆
− 3σ2

2

T∆
3

2

≤ 0.

Using the condition that 1− σ2
2/(T∆

2

2) < 0, we can derive that

(φ⋆)−1∆2 ≤ 3σ2
2

T∆
2

2

·
(

σ2
2

T∆
2

2

− 1

)−1

.

As σ2
2/(φ

⋆+∆2)
2 ≤ T and φ⋆/∆2 < 1/2, we can obtain that σ2

2/(T∆
2

2) ≤ 9/4, which then entails
that (φ⋆)−1∆2 ≤ 27/(2σ2

2/(T∆
2

2)− 2). Consequently, it holds that
φ⋆ζ̄

2(φ⋆ +∆2)
· 1∆2/φ⋆>2 ≥ ζ̄

2 + 27
(

σ2
2

T∆
2
2

− 1
)−1 · 1∆2/φ⋆>2.

Plugging this back to (24) yields that

ζ ≥ ζ̄

6 + 27
(

σ2
2

T∆
2
2

− 1
)−1 .

By combining the above results, in Case 2, we can conclude that

ζ̄ ≤ 27ζ ·
(
1 +

∣∣∣∣ σ2
2

T∆
2

2

− 1

∣∣∣∣−1

∧ σ2

σ1 ∨ T−1/2

)
.

The claim then follows by combining the estimates in Cases 1 and 2 above.
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D.2 Proof of Theorem 1

Proposition 6. For any positive sequences {σT }T≥1, {nT }T≥1, and {n̄T }T≥1, the following are
equivalent:

1. limT→∞ φ(nT ;σT )/φ(n̄T ;σT ) = 1.

2. limT→∞ nT /n̄T = 1.

Proof. (1) ⇒ (2). First, noticing that by the elementary inequality,

1 ∧ a

b
≤ a ∨ c
b ∨ c

≤ 1 ∨ a

b
, ∀a, b, c > 0, (25)

we can deduce from (1) that limT→∞(φ(nT ;σT ) ∨ σ2
T )/(φ(n̄T ;σT ) ∨ σ2

T ) = 1. Using further the
identity n = (σ2 ∨ φ(n;σ))/φ2(n;σ) for any n, σ > 0, we have

lim
T→∞

nT
n̄T

=

(
lim

T→∞

φ2(nT ;σT )

φ2(n̄T ;σT )

)
·
(

lim
T→∞

φ(nT ;σT ) ∨ σ2
T

φ(n̄T ;σT ) ∨ σ2
T

)
= 1.

(2) ⇒ (1). In light of (25), we see that (2) implies limT→∞(σT ∨ n
−1/2
T )/(σT ∨ n̄

−1/2
T ) = 1.

Consequently, it holds that

lim
T→∞

φ(nT ;σT )

φ(n̄T ;σT )
=

(
lim

T→∞

√
n̄T
nT

)
·
(

lim
T→∞

σT ∨ n−1/2
T

σT ∨ n̄−1/2
T

)
= 1.

The claim follows.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us select δ = 1/ log T . In the proof, we will write I± ≡ I±(δ; ρ;T ),
M ≡ M(δ; ρ;T ), and V ≡ VT (δ; ρ;T ) for simplicity. We also write φ⋆ ≡ φ(n⋆1,T ;σ1). From
Proposition 7, we have P(M∩V) ≥ 1− 3K/ log T .

The uniqueness of n1,⋆ follows directly from Lemma 1(1) and the fact that φ(·;σ1) is bijective. It
follows from Propositions 4 and 5 that on event M∩V ,

I2−
I2+

· (na,T − 1)(n1,T − 1)

na,Tn1,T
≤

√
na,T · (∆a + φ1,T )

σa ∨ (φ1,T +∆a)1/2
≤

I2+
I2−

· na,Tn1,T
(na,T − 1)(n1,T − 1)

.

Applying Lemma 3 and using the facts that φ1,T = o(1) on M∩V and ∆a = o(1), we can show
that for any a ∈ [K], limT→∞ na,T = +∞ on M∩V . Hence, the inequality in the above display
implies that for any a ∈ [K],

na,T · (φ1,T +∆a)
2

σ2
a ∨ (φ1,T +∆a)

= 1 + oP(1). (26)

Using further
∑

a∈[K] na,T /T = 1, we can arrive at∑
a∈[K]

σ2
a ∨ (φ1,T +∆a)

T (φ1,T +∆a)2
= 1 + oP(1). (27)

Let us consider the case when K = 2. By resorting to Lemma 1(2), we have that φ1,T /φ
⋆ =

1 + oP(1), which together with Proposition 6 implies that n1,T /n⋆1,T = 1 + oP(1).

For arm 2, with (26) at hand, by Proposition 6 it suffices to show that

φ1,T

φ⋆
= 1 + oP(1) ⇒ σ2

2 ∨ (φ⋆ +∆2)

σ2
2 ∨ (φ1,T +∆2)

· (φ1,T +∆2)
2

(φ⋆ +∆2)2
= 1 + oP(1),

which is straightforward by (25).
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D.3 Proof of Proposition 2

We need the following lemma to prove Proposition 2.
Lemma 4. Consider the Two-armed Bernoulli Bandit instance in Proposition 2. Recall that Ti is the
last time that arm i was pulled. Then for sufficiently large T , there exists some constant c0 > 0 such
that

P
(
U ≡

{
X̄2,T1 >

1

2
+

1
√
n2,T1

})
∧ P

(
L ≡

{
X̄2,T2 <

1

2
− 1

√
n2,T2

})
≥ c0.

Proof. (Step 1). We first prove the following: On event MT ∩ VT , there exists some constant
0 < c < 1 such that

n2,T1∧T2
≥ cT. (28)

To this end, recalling from (18) that

I−
2
√
n2,T1

≤ 1

2
√
T

+
I+
n1,T1

holds on event M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ) and using Lemma 3 with the fact that n1,T1 =
n1,T − 1, we can deduce that for sufficiently large T ,

n2,T1
≳

(
1√
T

+
1

n1,T1

)−2

≳ T.

Given that n2,T2
= n2,T − 1, a similar estimate applies to n2,T2

if we start from (19), which proves
(28).

(Step 2). Let c be the constant in (28). It follows from Step 1 and Lemma 8 that for any ε > 0, there
exists some T0 = T0(ε) > 0 such that for T ≥ T0, P(n2,T1

≥ cT ) ≥ 1 − ε. Using Lemma 9 and
choosing ε = canti/2, we can obtain that

P(U) ≥ P
({

X̄2,T1 >
1

2
+

1
√
n2,T1

}
∩ {n2,T1 ≥ ⌊cT ⌋}

)
≥ P

({∑
i∈[n]

Xi >
n

2
+
√
n for all n ≥ ⌊cT ⌋

}
∩ {n2,T1

≥ ⌊cT ⌋}

)
≥ canti − ε ≥ canti

2
.

This concludes the proof for the probability estimate for U . The estimate for P(L) follows a similar
argument, so will be omitted here to avoid repetitive details.

We are now ready to prove Proposition 2.

Proof of Proposition 2. (1). We will first prove the upper bound for n1,T on event U ∩
M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ). Consider time T1 that arm 1 was last pulled. Using (i)
the definition of U and (ii) the UCB rule, we can show that on event U ∩ M(1/ log T ; ρ;T ) ∩
V(1/ log T ; ρ;T ),

µ+
1

√
n2,T1

+ φ2,T1 · ρ log T
(i)

≤ X̄2,T1 + φ2,T1 · ρ log T
(ii)

≤ µ+∆+
ρ log T

n1,T1

.

Rearranging the terms, it holds on event U ∩M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ) that

φ2,T1
· ρ log T ≤ ∆− 1

√
n2,T1

+
ρ log T

n1,T1

.

By the facts that σ2
2 = µ(1− µ), ∆2 = µ(1− µ)ρ log T/T , n2,T ≥ n2,T1

, n1,T1
= n1,T1

− 1, and
n1,T + n2,T = T , we can arrive at

1

n1,T − 1
−
(
1 +

1

ρσ2log T

)
· σ2√

T − n1,T
≥ − σ2√

T
.
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Further using 1/
√
T − n1,T ≥ (1 + n1,T /(2T ))/

√
T , the above inequality becomes

1

n1,T − 1
−
(
1 +

1

ρσ2log T

)
· σ2n1,T
2T 3/2

≥ 1

ρσ2log T
· σ2√

T
.

Note that the above inequality is quadratic, we can then solve it to obtain that

n1,T ≤

√
(B −A)2 + 4A(B + 1)− (B −A)

2A
,

where for sufficiently large T ,

A =

(
1 +

1

ρσ2log T

)
· σ2

2T 3/2
≍ 1

T
√
T log T

,

B =
1

ρσ2log T
· σ2√

T
≍ 1√

T log T
.

Thus, we can conclude on event U ∩M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ) that

n1,T ≤ 2(B + 1)√
(B −A)2 + 4A(B + 1) + (B −A)

≤ 2(B + 1)

B −A
≲

√
T log T.

(2). The lower bound for n1,T on event L∩M(1/ log T ; ρ;T )∩V(1/ log T ; ρ;T ) can be established
using a similar strategy. Let us consider time T2 that arm 2 was last pulled. Using (i) the definition of
L and (ii) the UCB rule, we have that on event L ∩M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ),

µ− 1
√
n2,T2

+ φ2,T2
· ρ log T

(i)

≥ X̄2,T2
+ φ2,T2

· ρ log T
(ii)

≥ µ+∆+
ρ log T

n1,T2

.

Rearranging the terms yields that on event L ∩M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ),

φ2,T2 · ρ log T ≥ ∆+
1

√
n2,T2

+
ρ log T

n1,T2

.

It follows from the facts that ∆
2

2 = σ2
2/T , n1,T ≥ n1,T2 , n2,T2 = n2,T − 1, and n1,T + n2,T = T

that

1

n1,T
−
(
1− 1

ρσ2 log T

)
· σ2√

T − n1,T − 1
≤ − σ2√

T
.

Observe that on event L ∩M(1/ log T ; ρ;T ) ∩ V(1/ log T ; ρ;T ), it holds that c1
√
T ≤ n1,T + 1 ≤

c2T for some constants c1 > 0 and 0 < c2 < 1, cf. Lemme 3 and (28). Then we can derive that for
sufficiently large T ,

1

n1,T
−
(
1− 1

ρσ2 log T

)
· σ2√

T
·
(
1 +

2n1,T
(1− c2)T

)
≤ − σ2√

T
, (29)

where we have also used 1/
√
1− (n1,T + 1)/T ≤ 1 + 2n1,T /(1− c2)T . Therefore, with

A =
2σ2

(1− c2)T 3/2

(
1− 1

ρσ2 log T

)
≍ 1

T
√
T log T

, (30)

B =
1

ρσ2 log T
· σ2√

T
≍ 1√

T log T
, (31)

we can solve the inequality (29) to obtain that

n1,T ≥ B +
√
B2 + 4A

2A
≥ B

2A
≳

T√
log T

.

The claim now follows from Lemma 4.
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E Proofs for Section 4

We would like to emphasize that, although the statements in Section 4 are presented for the 2-armed
setting, the proof in this section applies to the K-armed setting as well.

E.1 Proof of Proposition 3

We will work on the following events

M̃(ρ;T ) ≡
{
|X̄a,t − µa| ≤ φa,t ·

ρ

4
log T, ∀t ∈ [T ],∀a ∈ [K]

}
,

Ṽ(ρ;T ) ≡
{
|σ̂2

a − σ2
a| ≤ φa,t ·

ρ

4
log T, ∀t ∈ [T ],∀a ∈ [K]

}
.

The following lemma provides a probability estimate for event M̃T ∩ ṼT when ρ is large.
Lemma 5. There exists some universal constant C0 > 0 such that for ρ ≥ C0 and T ≥ 3,

P
(
M̃(ρ;T ) ∩ Ṽ (ρ;T )

)
≥ 1− 3K/T 2.

Proof. By selecting δ = 1/T 2 in equations (52) and (53), we achieve the desired result, provided
that ρ ≥ C0 with C0 sufficiently large to satisfy

√
96C0 + 256 ≤ C0/4.

Proof of Proposition 3. First, in view of the proof for Lemma 2, it holds that on event M̃T ∩ ṼT ,

|φ̂a,t − φa,t| ≤ φa,t/2, ∀a ∈ [K], ∀1 ≤ t ≤ T.

At time-step Ta, by the UCB rule of X̄a,Ta
+ φ̂a,Ta

· ρ log T ≥ X̄1,Ta
+ φ̂1,Ta

· ρ log T , we have that
on event M̃T ∩ ṼT ,

φa,T · ρ log T
4

+
3

2
φa,Ta · ρ log T ≥ ∆a +

1

2
φ1,T · ρ log T − ρ log T

4
φ1,T · ρ log T.

Dividing ρ log T on both sides and rearranging the inequality, we can deduce that

8 ≥ ∆a + φ1,T

φa,Ta

≥ ∆a + φ1,T

φa,T
· na,T − 1

na,T
,

which then implies either na,T ≤ 1 or φa,T ≥ (∆a + φ1,T )/16. Therefore, we have

na,T ≤ 16

∆a + φ1,T

∨
(

16σ2

∆a + φ1,T

)2

.

The claim now follows from Lemma 5.

E.2 Proof of Theorem 2

Proof of Theorem 2. Observe that

Reg(T ) =
∑
a∈A1

na,T∆a +
∑
a∈A2

na,T∆a

with A1 ≡ {a ∈ [2 : K] : 16σ2
a > ∆a + φ1,T } and A2 ≡ [2 : K] \ A1. It follows from Proposition

3 that

P
(
ET ≡

{
n2,T ≤ 16

∆2 + φ(n1,T ;σ1)
∨
(

16σ2

∆2 + φ(n1,T ;σ1)

)2})
≥ 1− 4

T 2
.

Then for the summation on A2, we can derive on event ET that∑
a∈A2

na,T∆a ≤
∑
a∈A2

∆a

φ1,T +∆a

≤ (K − 1)
√
ρ log T . (32)
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For the summation on A1, we have that, on one hand,∑
a∈A1

na,T∆a ≤
√∑

a∈A1

na,T

√∑
a∈A1

na,T∆2
a

≤ 16
√
T ·

√√√√∑
a∈A1

σ2
a

(∆a + φ1,T )2
∆2

a ≤ 16

√∑
a∈A1

σ2
a · ρT log T ,

(33)

and on the other hand,∑
a∈A1

na,T∆a ≤
∑
a∈A1

256σ2
a∆a

(∆a + φ1,T )2
≤
∑
a∈A1

256σ2
a∆a

φ2
1,T

∧ σ2
a∆a

∆
2

a

≤ 256
∑
a∈A1

σ2
a∆aT

σ2
1

∧
(
σ2
a

∆a
· ρ log T

)
≤ 256

∑
a∈A1

σ2
a

σ1

√
ρT log T .

(34)

Combining (32)–(34) above concludes the proof.

Remark 2. Using the high-probability arm-pulling bound from [4]

na,T ≲
σ2
a

∆2
a

+
1

∆a
,

inequalities (32) and (33) remain valid when the definitions of A1 and A2 are replaced with

A′
1 ≡ {a ∈ [2 : K] : σ2

a ≳ ∆a} and A′
2 ≡ [2 : K] \ A′

1,

respectively. This adjustment leads to a regret bound of O(
√∑

a̸=1 σ
2
aT log T ).

E.3 Lower bound proofs

In this section, we prove Theorem 3. For clarity, we first present the proof for the Gaussian case in
Section E.3.1, then extend the construction of reward distributions to the bounded support setting in
Section E.3.2.

E.3.1 Proof with Gaussian bandit instances

For simplicity, we present the proof with Gaussian bandit instances first and then generalize it to the
hard instances constructed over bounded reward distributions.

Theorem 6. Consider the following two classes of problems with any β > 0:

V ≡ {(N (µ1, σ1),N (µ2, σ2)) : µ1, µ2 ∈ R, σ1, σ2 ∈ R≥0},
V ′
β ≡ {(N1(µ1, σ1),N2(µ2, σ2)) ∈ V : µ1 > µ2, σ1 = T βσ2

2 , σ1 ≥ T−β/256}.

Then for every policy π, there exists some v ∈ V such that

Eπv Reg(T ) = Ω(σsub(v)
√
T ). (35)

Moreover, the following trade-off lower bound holds: Given any cT = O(poly(log T )), consider the
good policy class

Πgood ≡
{
π : max

v∈V

Eπv Reg(T )

σsub(v)
≤ cT

√
T

}
,

then for any π ∈ Πgood, there exists some v′ such that

Eπv′ Reg(T ) = Ω

(
σ2
sub(v

′)

σopt(v′)

√
T

cT

)
. (36)
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Proof. We consider the proof of (35) first. Let ∆ ∈ [0, 1/2] and σ2 ≥ σ1, where the specific values
will be determined later. We consider the following two instances:

ν1 ≡ (N (∆, σ2
1),N (0, σ2

2)), ν2 ≡ (N (∆, σ2
1),N (2∆, σ2

2)).

Fix a policy π. Recall the divergence decomposition Lemma for the reward distributions Pπν1
,Pπν2

(see e.g. Lemma 15.1 of [27]), we have by our construction,

KL(Pπν1
∥Pπν2

) = Eπν1
(n1,T )KL(N (∆, σ2

1)∥N (∆, σ2
1))

+ Eπν1(n2,T )KL(N (0, σ2
2)∥N (2∆, σ2

2))

= Eπν1
(n2,T )KL(N (0, σ2

2)∥N (2∆, σ2
2)) ≤ 2T∆2/σ2

2 . (37)

Here, Pνi;j denotes the distribution of jth arm in instance νi. Moreover, for instance ν1, we
have Eπν1

Reg(T ) = ∆Eπν1
n2,T ≥ ∆TPπν1

(n2,T ≥ T/2)/2 and for instance ν2, we have
Eπν2 Reg(T ) = ∆Eπν2 n1,T ≥ ∆TPπν2(n2,T < T/2)/2. Combining the above estimates and
applying Bretagnolle-Huber inequality, we can obtain that

Eπν1 Reg(T ) + Eπν2 Reg(T ) ≥
∆T

4
exp(−2∆2T 2/σ2

2). (38)

Taking ∆ = σ2/
√
2T , we arrive at the lower bound

Eπν1
Reg(T ) ∨ Eπν2

Reg(T ) ≥ σ2
√
T

4
√
2e
.

This implies that either

Eπν1
Reg(T ) ≥ σ2

√
T

8
√
2e

=
σsub(ν1)

√
T

8
√
2e

or Eπν2
Reg(T ) ≥ σ2

√
T

8
√
2e

≥ σ1
√
T

8
√
2e

=
σsub(ν2)

√
T

8
√
2e

hold, which completes the proof of (35).

Next, we prove the trade-off lower bound in (36). With slight abuse of notations, we construct the
following instances: with σ1 ∈ [T−β/256, 1] and ∆ ≡ 16σ1cT /

√
T ,

ν1 ≡ (N (∆, σ2
1),N (0, σ1T

−β)), ν2 ≡ (N (∆, σ2
1),N (2∆, σ1T

−β)).

We would like to argue that for any π ∈ Πgood,

Eπν1 Reg(T ) ≥
σ2
sub(ν1)

256σopt(ν1)

T 1/2

cT
=
T 1/2−β

256cT
. (39)

We will prove this claim by contradiction. Suppose (39) does not hold, we may derive that

Eπν1(n2,T ) = Eπν1 Reg(T )/∆ ≤ T 1−β

4096σ1c2T
.

Therefore, similar to (37), we can obtain a refined upper bound for KL(Pπν1
∥Pπν2

) (instead of using
the trivial upper bound n2,T ≤ T ),

KL(Pπν1
∥Pπν2

) ≤ T 1−β

4096σ1c2T

1024σ1c
2
T

T 1−β
=

1

4
.

Then we may proceed as (38) to derive

Eπν1 Reg(T ) + Eπν2 Reg(T ) ≥ 4σ1e
−1/4cT

√
T ≥ 3σ1cT

√
T .

By the upper bound of Eπν1
Reg(T ) (hypothesis), we have

Eπν2 Reg(T ) ≥ 3σ1cT
√
T − Eπν1 Reg(T )

≥ 3σ1cT
√
T − T 1/2−β

256cT
≥ 3σ1cT

√
T − σ1

√
T

cT
≥ 2cTσ1

√
T ≥ 2cTσsub(ν2)

√
T ,

which implies that π /∈ Πgood, a contradiction. This proves (39) and therefore completes the proof of
the trade-off lower bound in (36).
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E.3.2 Remark on Lower Bound over Bounded Distributions

In the proof of Theorem 6, we used the Gaussian distribution for notational convenience, owing to
its analytical KL divergence bound. However, the upper bound result is derived for bounded bandit
instances, which leads to a slight mismatch between the lower bound and upper bound environments.
In this section, we show that the proof can be readily generalized to the hard instances constructed
over bounded reward distributions.

Here we specify a two-point supported variable based construction: Given any positive µ, σ2, we
consider distributions Qµ,σ supported over {0, µ

2+σ2

µ } with

Qµ,σ(0) =
σ2

µ2 + σ2
, Qµ,σ

(µ2 + σ2

µ

)
=

µ2

µ2 + σ2
.

It can be seen that EX∼Qµ,σ
[X] = µ and VarX∼Qµ,σ

(X) = σ2.

Suppose, in addition, that µ < σ and let Q∆
µ,σ denote a ∆-modification of Qµ,σ for any 0 < ∆ <

µ2+σ2

µ − 2µ, defined as

Q∆
µ,σ(0) =

σ̃2

(µ+∆)2 + σ̃2
, Q∆

µ,σ

(µ2 + σ2

µ

)
=

(µ+∆)2

(µ+∆)2 + σ̃2
,

where σ̃ ≥ 0 the solution to

(µ+∆)2 + σ̃2

µ+∆
=
µ2 + σ2

µ
. (40)

Since m(a) ≡ (µ+∆)2+a
µ+∆ is an increasing function in a and

m(σ) <
µ2 + σ2

µ
< lim

a→+∞
m(a),

it follows that σ̃ is well-defined and satisfies σ̃ > σ.

Then we may compute the KL-divergence between Qµ,σ and Q∆
µ,σ as follows:

KL(Qµ,σ∥Q∆
µ,σ) =

µ2

µ2 + σ2
log

µ2

µ2+σ2

(µ+∆)2

(µ+∆)2+σ̃2

+
σ2

µ2 + σ2
log

σ2

µ2+σ2

σ̃2

(µ+∆)2+σ̃2

(40)
=

µ2

µ2 + σ2
log

µ

µ+∆
+

σ2

µ2 + σ2
log

σ2

σ̃2
· µ+∆

µ

≤ µ2

µ2 + σ2
log

µ

µ+∆
+

σ2

µ2 + σ2
log

µ+∆

µ
+ log

σ2

σ̃2

=
σ2 − µ2

µ2 + σ2
log

µ+∆

µ
+ log

σ2

σ̃2

≤ σ2 − µ2

µ2 + σ2
log

µ+∆

µ
,

where in the last step, we have used the fact that log(σ2/σ̃2) ≤ 0.

Taking µ ≥ σ −∆ in the last inequality and using the elementary inequality log(1 + x) ≤ x then
leads to

KL(Qµ,σ∥Q∆
µ,σ) ≤

σ + µ

µ2 + σ2
· ∆

2

µ
≤ 2∆2

σ(σ −∆)
.

Now we can summarize the above construction and calculation into the following lemma:

Lemma 6. Given any µ, σ > 0, there exists a distribution Qµ,σ supported on {0, µ
2+σ2

µ } with

EX∼Qµ,σ [X] = µ, VarX∼Qµ,σ [X] = σ2.
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Given any ∆ > 0 and suppose that

σ > µ ≥ σ −∆, 0 < ∆ <
µ2 + σ2

µ
− 2µ, ∆ ≤ σ/2 (41)

holds simultaneously. Then exists a ∆-modification Q∆
µ,σ of Qµ,σ supported on {0, µ

2+σ2

µ } such that

EX∼Q∆
µ,σ

[X] = µ+∆, VarX∼Q∆
µ,σ

[X] = (1 + ∆/µ)(σ2 − µ∆), KL(Qµ,σ∥Q∆
µ,σ) ≤

4∆2

σ2
.

In particular, for any σ > 0, with the selection 0 < ∆ ≤ σ/2, µ = σ − ∆, one can verify that
(µ, σ,∆) satisfies the condition (41) and the corresponding Qµ,σ, Q

∆
µ,σ are supported inside [0, 3σ]

with variances lies in [σ2, 3σ2].

Based on Lemma 6, we now explain how to modify the distribution class constructed for proving (35)
and (36) separately.

Proof of (12). The proof follows the same as that of (35); we highlight the differences below. Given
any σ1, σ2,∆ satisfying σ2 ≥ σ1 ≥ 2∆, we consider the following two instances:

ν1 ≡
(
Qσ2−∆/2,σ1

, Qσ2−∆,σ2
), ν2 ≡

(
Qσ2−∆/2,σ1

, Q∆
σ2−∆,σ2

)
.

Note that with such selection, Lemma 6 ensures that the distributions of the second arm’s reward in
both instances are supported over [0, 3σ] with their variances lied in [σ2

2 , 3σ
2
2 ]. For the first arm, we

have its variance is given by σ2
1 and its support is bounded by

(σ2 −∆/2)2 + σ2
1

σ2 −∆/2
≤ 8σ2

2

3σ2
≤ 3σ2,

thus selecting σ2 < 1/3 ensures that the constructed reward distributions are supported over [0, 1].

Next, we can proceed the same analysis as in section E.3.1 with the proof of (35). The only difference
is that the bound in (37) under our new construction turns to

KL(Pπν1
∥Pπν2

) = Eπν1
(n2,T )KL(Qσ2−∆,σ2

∥Q∆
σ2−∆,σ2

) ≤ 4T∆2/σ2
2 ,

and therefore, (38) becomes to

Eπν1 Reg(T ) + Eπν2 Reg(T ) ≥
∆T

4
exp(−4∆2T 2/σ2

2).

Taking ∆ = σ2/
√
2T (as T ≥ 2, we must have that ∆ ≤ σ2/2), we arrive at the lower bound

Eπν1
Reg(T ) ∨ Eπν2

Reg(T ) ≥ σ2
√
T

4
√
2e2

.

This implies that either

Eπν1
Reg(T ) ≥ σ2

√
T

8
√
2e

=
σsub(ν1)

√
T

8
√
2e

or Eπν2
Reg(T ) ≥ σ2

√
T

8
√
2e

≥ σ1
√
T

8
√
2e

=
σsub(ν2)

√
T

8
√
2e

hold, which completes the proof of (12).

Proof of (13). The proof follows the same as that of (36); we highlight the differences below. For
any fixed 0 < β < 1/2 and σ1 ≥ T−β/256, ∆ = 16σ1cT /

√
T , and σ2 =

√
σ1T−β , we set

ν1 ≡
(
Qσ2−∆/2,σ1

, Qσ2−∆,σ2

)
, ν2 ≡

(
Qσ2−∆/2,σ1

, Q∆
σ2−∆,σ2

)
.

In particular, notice that

σ2/2 ≥ ∆ ⇐⇒ T−βσ1 ≥ 512σ2
1cT /

√
T ⇐⇒ σ1 ≤ T 1/2−β

512cT
,
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which always holds under our selection for sufficiently large T . Thus the KL divergence upper bound
between Qσ2−∆,σ and Q∆

σ2−∆,σ2
in Lemma 6 still holds under our construction. Now applying the

same argument in Section E.3.1, we can arrive at

Eπν1
Reg(T ) + Eπν2

Reg(T ) ≥ 4σ1e
−KL(Pπν1

∥Pπν2
)cT

√
T , ∀π ∈ Πgood

when suppose in contradiction that

Eπν1
Reg(T ) ≤ σ2

sub(ν1)

256σopt(ν1)

T 1/2

cT
=
T 1/2−β

256cT
, ∀π ∈ Πgood. (42)

Now by Lemma 6, we have

KL(Pπν1
∥Pπν2

) ≤ T 1−β

4096σ1c2T

512σ2
1c

2
T

Tσ2
2

=
1

8
,

Which then, together with (42) implies

Eπν2 Reg(T ) ≥ 4σ1e
−1/8cT

√
T − Eπν1 Reg(T ) ≥ 3σ1cT

√
T − σ1

√
T

cT

≥ 2cTσ1
√
T ≥ 2cTσsub(ν2)

√
T ,

which implies that π /∈ Πgood, a contradiction. This disproves (42) and therefore completes the proof
of the trade-off lower bound in (13).

F Proofs for Section B

With slight abuse of notation, we define function f(x) for any x ∈ R≥0 as

f(x) ≡
∑

a∈[K]

σ2
a ∨ (x+∆a)

T (x+∆a)2
.

Let us consider the following fixed-point equation in φ

f(φ) =
∑

a∈[K]

σ2
a ∨ (φ+∆a)

T (φ+∆a)2
= 1. (43)

The following lemma extends Lemma 1 to the K-armed setting.

Lemma 7. It holds that:

1. The fixed-point equation (43) admits a unique solution φ⋆ ∈ (1/T, 1) for all T ∈ N+.

2. Assume that there exist some δ ∈ (−1/2, 1/2) and φδ such that f(φδ) = 1 + δ. Then there
exists some constant c = c(K) > 0 such that∣∣∣∣φδ

φ⋆
− 1

∣∣∣∣ ≤ c|δ| · max
a∈[K]

{
1 +

(
1

K − 1
− σ2

a

T∆
2

a

)−1

+

∧
(

σ2
a

T∆
2

a

− 1

)−1

+

∧ σa

σ1 ∨ T−1/2

}
.

(44)

Proof. The proof is almost the same as that of Lemma 1. We include the proof here for the
convenience of readers.

(1). First we prove the existence and uniqueness of φ⋆. Note that f(φ) is continuously monotone
decreasing on (0,∞). On the other hand, as

f(1/T ) =
σ2
1 ∨ T−1

T−1
+
σ2
2 ∨ (T−1 +∆a)

T (T−1 +∆a)2
>
σ2
1 ∨ T−1

T−1
≥ 1
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and

f(1) =
∑

a∈[K]

σ2
a ∨ (1 + ∆a)

T (1 + ∆a)2
≤ K

T
< 1,

there must exist a unique φ⋆ ∈ (1/T, 1) such that f(φ⋆) = 1, proving the claim.

(2). We only show the proof for the case of δ > 0, while the case of δ < 0 can be handled similarly.
It follows from the monotonicity that φδ ≤ φ⋆. Let φδ/φ

⋆ = 1− δ̄ for some δ̄ = δ̄(δ) ≥ 0. Our aim
is to derive an upper bound for δ̄.

It follows from (43) that at least one of the following holds:

Case 1 :
σ2
1 ∨ φ⋆

T (φ⋆)2
≥ 1

K
, Case 2 : ∃a ∈ [K] \ {1}, σ

2
a ∨ (φ⋆ +∆a)

T (φ⋆ +∆a)2
≥ 1

K
.

Case 1: If σ2
1 = σ2

1 ∨ φ⋆, we have σ2
1 = σ2

1 ∨ φδ . Then it holds that

δ = f(φδ)− f(φ⋆) ≥ σ2
1 ∨ φδ

Tφ2
δ

− σ2
1 ∨ φ⋆

T (φ⋆)2
=

σ2
1

T (φ⋆)2

(
1− (1− δ̄)2

(1− δ̄)2

)
≥ 1

K
δ̄.

For the case when φ⋆ = σ2
1 ∨ φ⋆, we can compute that

δ = f(φδ)− f(φ⋆) ≥ σ2
1 ∨ φδ

Tφ2
δ

− σ2
1 ∨ φ⋆

T (φ⋆)2
≥ 1

Tφ⋆

(
1− 1

1− δ̄

)
≥ 1

K
δ̄.

By combining the above results, in Case 1, we can conclude that δ̄ ≤ Kδ.

Case 2: Note that in this case, we have

1

Tφ⋆
≤ 1

Tφ⋆
∨ σ2

1

T (φ⋆)2
≤ σ2

1 ∨ φ⋆

T (φ⋆)2
≤ K − 1

K
. (45)

This implies that when φ⋆ +∆a = σ2
a ∨ (φ⋆ +∆a),

δ = f(φδ)− f(φ⋆) ≥ 1

T ((1− δ̄)φ⋆ +∆a)
− 1

T (φ⋆ +∆a)

=
δ̄φ⋆

T (φ⋆ +∆a)((1− δ̄)φ⋆ +∆a)

≥ δ̄Tφ⋆

T (φ⋆ +∆a)T (φ⋆ +∆a)
≥ δ̄

K(K − 1)
.

For the case when σ2
a = σ2

a ∨ (φ⋆ +∆a), using (45) and the fact that φ⋆ ≥ T−1 leads to

σ2
a

T (φ⋆ +∆a)2
≥ 1

K
≥ 1

K − 1
· σ

2
1 ∨ φ⋆

T (φ⋆)2
≥ 1

K − 1
· σ

2
1 ∨ T−1

T (φ⋆)2
,

which entails that φ⋆/(φ⋆ +∆a) ≥ (σ1 ∨ T−1/2)/(σa

√
K − 1). Hence, we have that

δ = f(φδ)− f(φ⋆) ≥ σ2
a

T (φδ +∆a)2
− σ2

a

T (φ⋆ +∆a)2
(46)

=
σ2
a(φ

⋆ − φδ)

T (φ⋆ +∆a)2
·
(
φδ + φ⋆ + 2∆a

(φδ +∆a)2

)
≥ φ⋆δ̄

K(φ⋆ +∆a)
≥ σ1 ∨ T−1/2

K
√
K − 1σa

δ̄.

This gives the bound that corresponds to σa/(σ1 ∨ T−1/2) in (44).

Next, we will derive the bound corresponding to (σ2
a/(T∆

2

a)−1)−1
+ and (1/(K−1)−σ2

a/(T∆
2

a))
−1
+

in (44). The analysis will be further separated into two cases: (i) 1/(K − 1)− σ2
a/(T∆

2

a) ≥ 0 and
(ii) 1− σ2

a/(T∆
2

a) < 0.
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For case (i), notice that

σ2
1 ∨ φ⋆

T (φ⋆)2
= 1−

∑
a≥2

σ2
a ∨ (φ⋆ +∆a)

T (φ⋆ +∆a)2

≥ 1− (K − 1) ·max
a≥2

σ2
a ∨ (φ⋆ +∆a)

T (φ⋆ +∆a)2
.

Let a⋆ ≡ argmax a≥2(σ
2
a ∨ (φ⋆ +∆a))/(T (φ

⋆ +∆a)
2). Then we can show that

σ2
1 ∨ φ⋆

T (φ⋆)2
≥ (K − 1) ·

(
1

K − 1
−

σ2
a⋆

T∆2
a⋆,T

)
Thus, we can arrive at

δ = f(φδ)− f(φ⋆) ≥ δ̄

1− δ̄
· σ

2
1 ∨ φ⋆

T (φ⋆)2
≥ (K − 1) ·

(
1

K − 1
−

σ2
a⋆

T∆2
a⋆,T

)
· δ̄

For case (ii), let us recall from (46) that

δ ≥ φ⋆δ̄

2(φ⋆ +∆a)
≥ δ̄

3K
· 1∆a/φ⋆≤2 +

φ⋆δ̄

2(φ⋆ +∆a)
· 1∆a/φ⋆>2. (47)

Observe that when ∆a/φ
⋆ > 2 (or equivalently φ⋆/∆a < 1/2),

σ2
a

T (φ⋆ +∆a)2
≥ σ2

a

T∆
2

a

(
1− 3

φ⋆

∆a

)
⇒
(

σ2
a

T∆
2

a

− 1

)
1

φ⋆
− 3σ2

a

T∆
3

a

≤ 0.

Using the condition that 1− σ2
a/(T∆

2

a) < 0, we can deduce that

(φ⋆)−1∆a ≤ 3σ2
a

T∆
2

a

·
(

σ2
a

T∆
2

a

− 1

)−1

.

As σ2
a/(φ

⋆ +∆a)
2 ≤ T and φ⋆/∆a < 1/2, we can obtain that σ2

a/(T∆
2

a) ≤ 9/4, which then leads
to (φ⋆)−1∆a ≤ 27/(2σ2

a/(T∆
2

a)− 2). Hence, it follows that

φ⋆δ̄

2(φ⋆ +∆a)
· 1∆a/φ⋆>2 ≥ δ̄

2 + 27
(

σ2
a

T∆
2
a

− 1
)−1 · 1∆a/φ⋆>2.

Plugging this back to (47) yields that

δ ≥ δ̄

3K + 27
(

σ2
a

T∆
2
a

− 1
)−1 .

By combining the above results, in Case 2, we can conclude that

δ̄ ≤ (3K + 27)δ · max
a∈[K]

{
1 +

(
1

K − 1
− σ2

a

T∆
2

a

)−1

+

∧
(

σ2
a

T∆
2

a

− 1

)−1

+

∧ σa

σ1 ∨ T−1/2

}
.

The claim then follows by combining the estimates in Cases 1 and 2 above.

Proof of Theorem 4. The proof of Theorem 4 closely mirrors that of Theorem 1, and we spell out
some of the details for the convenience of readers. We start by noticing that most of the derivations in
Section D.2 hold for the K-armed setting. Specifically, from (27) we have that∑

a∈[K]

σ2
a ∨ (φ1,T +∆a)

T (φ1,T +∆a)2
= 1 + oP(1). (48)

Combining (48) above with the stability result in Lemma 7 concludes the proof.

Proof of Theorem 5. See the proof of Theorem 2 in Section E.2.
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G Auxiliary results

Lemma 8. Assume that X1, X2, . . . are i.i.d. bounded random variables in [−1, 1] with zero mean
and variance σ2. Let X̄t ≡

∑
s∈[t]Xs/t be the empirical mean. Then we have that for any δ < 1/2,

P
(∣∣X̄t

∣∣ < σ

√
12 log log(T/δ)

δ

t
+

64 log(1/δ)

t
, ∀1 ≤ t ≤ T

)
≥ 1− δ.

Proof. As in previous works, our proof relies on constructing a supermartingale and applying Doob’s
inequality. Let Ft be the filtration generated by X1, . . . , Xt and St ≡

∑
s∈[t]Xs. For any η ∈ [0, 1],

E[exp(ηSt)|Ft−1] = exp(ηSt−1)E[exp(ηXt)|Ft−1]

≤ exp(ηSt−1)
(
1 + η2σ2

)
≤ exp(ηSt−1 + η2σ2). (49)

Here, in the first inequality above, we have used the fact that E[exp(ηXt)] ≤ 1+ η2σ2
a; see, e.g., [17,

Lemma 7].

With γi ≡ i−1(i+ 1)−1 and ηi ∈ [0, 1] to be determined, let us define

Zt ≡
{
1, if t = 0,∑∞

i=1 γi exp
(
ηiSt − tη2i σ

2
)
, if t ≥ 1.

(50)

Then in light of (49), it holds that

E[Zt+1|Ft] =

∞∑
i=1

γi
(
E[exp

(
ηiSt+1 − tη2i σ

2
)
|Ft] · exp(−η2i σ2)

)
≤

∞∑
i=1

γi exp
(
ηiSt − tη2i σ

2
)
= Zt,

implying that {Zt}t≥0 is sequence of supermartingale. Note that by invoking a similar argument as
in [23, Proof of Lemma 5.1],

{Zt ≥ 1/δ} ⊃
{
max

i
γi exp

(
ηiSt − tη2i σ

2
)
≥ 1/δ

}
=

{
X̄t ≥ min

i

(
1

tηi
log(

1

δγi
) + ηiσ

2

)}
.

For any fixed δ > 0, set

ηi =

{
2−i/2σ−1

a log1/2
( i(i+1)

δ

)
, if i ≥ i1,

1, if i < i1,

where i1 ≡ inf{i ∈ Z≥1 : 2ī ≥ σ−2
a (log(̄i(̄i+ 1)) + log(1/δ)) holds for ∀ ī ≥ i}.

Given these parameters, the analysis is further divided into two cases: σa ≥ 1/
√
T and σa < 1/

√
T .

Case 1: For σa ≥ 1/
√
T , it holds that

{Zt ≥ 1/δ} ⊃
{
X̄t ≥ min

i

(
1

tηi
log(

1

δγi
) + ηiσ

2

)}
⊃
{
X̄t ≥ min

i≥i1

(√
t

2i
+

√
2i

t

)
· σ

log1/2
( i(i+1)

δ

)
t1/2

}
.

For those t satisfying ⌈log2 t⌉ ≥ i1, we can choose i = ⌈log2 t⌉ to obtain

{Zt ≥ 1/δ} ⊃
{
X̄t ≥ 4σ

log1/2
( 2(log 4t)2

δ

)
t1/2

}
.
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For those t satisfying log2 t ≤ i1 − 1, it follows from the definition of i1 that t < 2i1 and 2i1−1 ≥
σ−2(log(i1(i1 − 1)) + log(1/δ)). Hence, we can deduce that

min
i≥i1

(√
t

2i
+

√
2i

t

)
· σ

log1/2
( i(i+1)

δ

)
t1/2

≤
(
1 +

√
2

√
2i1−1

t

)
· σ

log1/2
( i1(i1+1)

δ

)
t1/2

≤ σ
log1/2

( i1(i1+1)
δ

)
t1/2

+
√
2 log(i1(i1 − 1)) + 2 log(1/δ) ·

log1/2
( i1(i1+1)

δ

)
t

.

(51)

Below we will derive an upper bound for i1. Let us consider functions f(x) = 2x and g(x) =
σ−2 log(x(x+ 1)) + log(1/δ). It is easy to show that

f ′(x) = 2x log 2 > 2x−1, g′(x) =
2x+ 1

σ2x(x+ 1)
<

2T

x
.

Then we have f ′(x) > g′(x) as long as x > log(2T ) + 1. On the other hand, for x0 = 4 log(1/δ) +
4 log T + 1, it follows from σ−2 ≤ T that

f(x0) = 2(T/δ)4 > 2T log(5 log(2T/δ)) + log(1/δ) > g(x0),

which entails that f(x) > g(x) holds for all x > x0. Thus, we have i1 ≤ x0 = 4 log(T/δ) + 1.

Combining this upper bound of i1 with (51), we can obtain that

{Zt ≥ 1/δ} ⊃
{
X̄t ≥ σ

√
12 log log(T/δ)

δ

t
+

64 log(1/δ)

t

}
.

Case 2: For σ < 1/
√
T , we can deduce that

{Zt ≥ 1/δ} ⊃
{
X̄t ≥ min

i

(
1

tηi
log(

1

δγi
) + ηiσ

2

)}
⊃
{
X̄t ≥ min

i<i1

(
1

tηi
log(

1

δγi
) + ηiσ

2

)}
⊃
{
X̄t ≥

log(1/δ) + log 2

t
+

1

T

}
⊃
{
X̄t ≥

3 log(1/δ)

t

}
.

The claim follows.

As a corollary of Lemma 8, we have the following results on the concentration of the empirical mean
and variance: for any δ ≥ 0, let

e(δ;T ) ≡
√
48ρ log T log

log(T/δ)

δ
+ 128 log(1/δ).

Proposition 7. For all δ < 1/2 and a ∈ [K], it holds that

P
(∣∣X̄a,t − µa

∣∣ < φa,t · e(δ;T )/2, ∀1 ≤ t ≤ T

)
≥ 1− δ, (52)

P
(∣∣σ̂2

a,t − σ2
a

∣∣ < φa,t · e(δ;T ), ∀1 ≤ t ≤ T

)
≥ 1− 2δ. (53)

Proof. The claim in (52) follows from a direct application of Lemma 8 with the following simplifica-
tion for the error bound therein

σa

√
12 log log(T/δ)

δ

na,t
+

64 log(1/δ)

na,t
≤
(
σa ∨ n−1/2

a,t

)
· e(δ;T )
2
√
na,t

= φa,t ·
e(δ;T )

2
√
na,t

.
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To prove (53), we first notice that by |µa − X̄a,t| ≤ 1,

|σ̂2
a,t − σ2

a| =
∣∣∣∣ 1

na,t

∑
s∈[na,t]

(
(Xa,s − µa)

2 − σ2
a

)
− (µa − X̄a,t)

2

∣∣∣∣
≤
∣∣∣∣ 1

na,t

∑
s∈[na,t]

(Xa,s − µa)
2 − σ2

a

∣∣∣∣+ ∣∣µa − X̄a,t

∣∣.
Then we can bound the second term above using (52). The first term above can be analyzed by the
same argument as in proving (52), upon noting that Var((Xa,s−µa)

2−σ2
a) ≤ E((Xa,s−µa)

4) ≤ σ2
a.

This concludes the proof.

Lemma 9. Assume that {Xi}i≥1
i.i.d.∼ Bernoulli(1/2) and fix any c > 0. Then there exist some

N0 ∈ Z+ and constant canti = canti(c) > 0 such that for all N ≥ N0,

P
(∑

i∈[n]
Xi >

n

2
+

√
n, ∀⌊N/c⌋ ≤ n ≤ N

)
≥ canti, (54)

P
(∑

i∈[n]
Xi <

n

2
−

√
n, ∀⌊N/c⌋ ≤ n ≤ N

)
≥ canti. (55)

Proof. Our proof relies on Donsker’s Theorem, which states the convergence (in distribution) of the
random walk to the continuous-time Brownian motion; see, e.g., [6, Section 14]. More precisely, for
{Xi}i≥1

i.i.d.∼ Bernoulli(1/2), Donsker’s Theorem states that for

ΨN (t) ≡ 2√
N

( ∑
i∈[⌊Nt⌋]

Xi −
Nt

2

)
,

it holds uniformly in t ∈ [0, 1] that limN→∞ ΨN (t)
d
= B(t), where B(t) represents the standard

Brownian motion. Equivalently, for any ε > 0, there exists some N0 ∈ Z+ such that for all N ≥ N0,

sup
x∈R

∣∣∣∣P( inf
t∈[0,1]

ΨN (t) ≥ x

)
− P

(
inf

t∈[0,1]
B(t) ≥ x

)∣∣∣∣ ≤ ε.

Using the fact that inf⌊N/c⌋≤n≤N 2(
∑

i∈[n]Xi − n/2)/
√
N ≥ inft∈[1/c,1] ΨN (t), we can deduce

that for any x ∈ R,

P
( ∑

i∈[n]

Xi ≥
n

2
+ x

√
N, ∀⌊N/c⌋ ≤ n ≤ N

)

≥ P
(
1

2
inf

t∈[1/c,1]
ΨN (t) ≥ x

)
≥ P

(
inf

t∈[1/c,1]
B(t) ≥ 2x

)
− ε. (56)

As B(t + c−1)
d
= Z + B̄(t) for another standard Brownian motion B̄(t) and Z ∼ N (0, c−1)

independent from B̄(t), we can further bound the right-hand side (RHS) of the inequality in the above
display as follows. Denote by Φ the cumulative distribution function (CDF) of the standard Gaussian
distribution. Then we can show that

RHS of (56) = P
(

inf
t∈[0,1−c−1]

B̄(t) ≥ 2x− Z

)
− ε

(i)
= P

(
sup

t∈[0,1−c−1]

B̄(t) ≤ Z − 2x

)
− ε

(ii)

≥ P
(

sup
t∈[0,1−c−1]

B̄(t) ≤ x

)
· P
(
Z ≥ 3x

)
− ε

(iii)
=

(
2Φ
( x√

1− c−1

)
− 1

)
·
(
1− Φ

(
3
√
cx
))

− ε.

Here, in step (i) above we have used the symmetry property of the Brownian motion, in step (ii)
above we have used the independence between B̄(t) and Z, and in step (iii) above we have used the
reflection principle.

Now choosing

x = 1, canti =
1

2

(
2Φ
( x√

1− c−1

)
− 1

)
·
(
1− Φ

(
3
√
cx
))

, ε = canti

finishes the proof for (54). The proof for (55) is nearly the same due to the symmetric property of the
Brownian motion, so will be omitted here.
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H Numerical simulations

This section summarizes the settings of all numerical experiments reported in the main text and
specifies the reward distributions. Unless otherwise specified, we consider two-armed bandit instances
and take arm 1 to be the optimal arm.

Common numerical settings for generating reward distributions. In all experiments, we use a
Beta(α, β) distribution to generate rewards. Given a desired mean µ and variance σ2, and subject to
the boundedness constraint on [0, 1], we set

α = µ

(
µ(1− µ)

σ2
− 1

)
, β = (1− µ)

(
µ(1− µ)

σ2
− 1

)
.

Note that an implicit constraint on (µ, σ2) is σ2 ≤ µ(1− µ); this constraint is satisfied by all reward
distributions used below.

Figure 1: Distributions of n1,T . In both experiments that plot histograms of arm-pull counts, we
set the time horizon to T = 50,000 and the number of repetitions to R = 5,000. The exploration
hyperparameter is ρ = 2 for both UCB-V and UCB. The means and variances are set to µ1 = µ2 = 1

2

and σ1 = σ2 = 1
4 in Figure 1(a), and to σ1 = 0, σ2 = 1

4 , and ∆ = σ2
√

(log T )/T in Figure 1(b).

Figure 2: Regret and phase transition of optimal-arm pulls. For panel (a), we set the times
of repetition as 10, exploration hyper-parameter ρ = 2. We vary σ1 ∈ {T−1/2, T−1/4, 1} while
keeping σ2 = T−1/4 and µ1 = 1

2 ,∆2 = T−1/2, µ2 = µ1 + ∆2 fixed across curves. We plot the
realized regret Reg(T ) versus T and observe the trend toward O

(
(σ2

2/σ1)
√
T
)

as σ1 increases. For
panel (b), we set T = 1,000,000, and repetition time R = 30, ρ = 2, and fix σ1 = 0 and σ2 = 1

4 .
We sweep ΛT = σ2

√
ρ log T/(

√
T ∆2) by varying ∆2; for each value we plot the median and the

30% quantile of n1,T for UCB and UCB-V. The red dotted curve shows the numerical solution n⋆1,T
from (6), revealing a transition from sublinear to linear n1,T around ΛT ≈ 1.

I Further discussion on inference with UCB-V

The asymptotic normality of the Z-statistic in (8) is established via the martingale CLT. Due to the
adaptive nature of data collection in the bandit algorithms, traditional inference techniques based on in-
dependent and identically distributed (i.i.d.) data cannot be applied directly. However, for stable arms,
let us consider the filtration Fs generated by {X1, . . . , Xs}. The sequence

{1{as=a}(Xs−µa)

σa

√
n⋆
a,T

}
s∈[T ]

forms a martingale difference sequence. Moreover, the Lindeberg condition is satisfied, and thus it
holds that

∑
s∈[T ] E

(1{as=a}(Xs−µa)
2

σ2
an

⋆
a,T

∣∣Fs−1

) p−→ 1, which allows for the application of the martin-
gale CLT to establish the asymptotic normality of the Z-statistic. For a detailed derivation, see [23,
Section 2.1].

To illustrate the implication of our results on the reward inference, we conduct a simulation study
on the Z-statistic for UCB and UCB-V using the setting from Example 2, as shown in Figure 4. In
Figure 4a, the empirical distributions of the Z-statistic for both UCB and UCB-V approximate the
standard Gaussian, matching the theoretical predictions of our result in Example 2, where UCB-V is
stable in this regime. In Figure 4b, the empirical distribution of the Z-statistic for UCB-V shows a
noticeable bias compared to UCB. This suggests that the previously mentioned martingale CLT result
no longer holds for UCB-V when ΛT = 1. In the subsequent section, we show that the underlying
reason for this deviation from the CLT is the instability of UCB-V under condition ΛT = 1.

J Discussion on the modification of UCB-V

In our presentation of Algorithm 1, there are several differences compared to those proposed in [4].
In [4], the UCB reward for each action a is set as

Ba,t ≡ X̄a,t + σ̂a,t

√
2ζ log t

na,t
+ c

3ζ log t

na,t
,
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Figure 4: The empirical distributions of the Z-statistic for the sub-optimal arm for UCB and UCB-V
with σ1 = 0, σ2 = 1/4 under different ΛT , both with T = 50, 000 over 2, 000 repetitions.

where c, ζ > 0 are tunable constants. Specifically, their regret guarantee is established with c, ζ large
enough. In our statement, to simplify the notation in our asymptotic analysis, we choose c and ζ such
that for some ρ > 0, it holds that 2ζ = 3cζ = ρ, replacing log t with log T and modifying

σ̂a,t

√
ρ log T

na,t
+
ρ log T

na,t
to

(
σ̂a,t ∨

√
ρ log T

na,t

)
·

√
ρ log T

na,t
.

We make such modification for notational simplicity and facilitating comparison with results for the
canonical UCB [21, 23]. By setting σ̂a,t = 1 instead of estimating it via the sample variance in the
algorithm’s input, our analysis shows that the asymptotic behavior of the modified algorithm becomes
equivalent to that of the canonical UCB.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Contributions of the paper are accurately stated in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Potential limitations are discussed in the Sections 3 and 4.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated in their respective places.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes only simple simulations, and the settings are described in
detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper includes only simple simulations, and their settings are already
described in detail.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The simulation settings are clearly described in the text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The goal of the simulations is to illustrate theoretical insights but not superior
to some benchmark.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The simulations in the paper are simple and can be executed on a standard
laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This theoretical work involves no sensitive data or human subjects and fully
complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical study of a bandit algorithm, and we are not aware of any
immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not release any models or datasets that pose a risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work does not use any existing code, data, or other external assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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