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Abstract

We study online learning problems in which a decision maker has to take a sequence
of decisions subject to m long-term constraints. The goal of the decision maker is
to maximize their total reward, while at the same time achieving small cumulative
constraints violation across the T rounds. We present the first best-of-both-world
type algorithm for this general class of problems, with no-regret guarantees both in
the case in which rewards and constraints are selected according to an unknown
stochastic model, and in the case in which they are selected at each round by an
adversary. Our algorithm is the first to provide guarantees in the adversarial setting
with respect to the optimal fixed strategy that satisfies the long-term constraints. In
particular, it guarantees a ρ/(1 + ρ) fraction of the optimal reward and sublinear
regret, where ρ is a feasibility parameter related to the existence of strictly feasible
solutions. Our framework employs traditional regret minimizers as black-box
components. Therefore, by instantiating it with an appropriate choice of regret
minimizers it can handle the full-feedback as well as the bandit-feedback setting.
Moreover, it allows the decision maker to seamlessly handle scenarios with non-
convex rewards and constraints. We show how our framework can be applied in
the context of budget-management mechanisms for repeated auctions in order to
guarantee long-term constraints that are not packing (e.g., ROI constraints).

1 Introduction

We study online learning problems where a decision maker takes decisions over T rounds. At each
round t, the decision xt ∈ X is chosen before observing a reward function ft together with a set
of m time-varying constraint functions gt. The decision maker is allowed to make decisions that
are not feasible, provided that the overall sequence of decisions obeys the long-term constraints∑T
t=1 gt(xt) ≤ 0, up to a small cumulative violation across the T rounds. The problem becomes

that of finding a sequence of decisions xt which guarantees a reward close to that of the best fixed
decision in hindsight while satisfying long-term constraints. This type of framework was first proposed
by Mannor et al. [23], and it has numerous applications ranging from wireless communication [23]
and multi-objective online classification [11], to safe online learning [2, 9, 10].

Mannor et al. [23] show that guaranteeing sublinear regret and sublinear cumulative constraints
violation is impossible even when ft and gt are simple linear functions. Therefore, previous works
either focus on the case in which constraints are generated i.i.d. according to some unknown stochastic
model, without providing any guarantees for the adversarial case, or provide results for adversarially-
generated constraints under some strong assumptions on the structure of the problem or using a
weaker baseline. A few examples in the latter case are [25, 27, 15, 13]. In the former setting (i.e.,
stochastic constraints), Wei et al. [26] consider a weaker baseline that is feasible for each constraint
gt, going against the basic idea of long-term constraints. A notable exception is the work by Yu
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Algorithm Constr. Non-convex Bound — constant ρ Bound — arbitrary ρ
ft and gt Reward Violation Reward Violation

Yu et al. [29] STOC 7 OPT− Õ(T 1/2) Õ(T 1/2) — —

Ours STOC 3 OPT− Õ(T 1/2) Õ(T 1/2) OPT− Õ(T 3/4) Õ(T 3/4)

ADV 3 ρ
1+ρ

OPT− Õ
(
T 1/2

)
Õ(T 1/2) — —

Table 1: Comparison between performances of our algorithm and previous work using the same
baseline. Bounds for settings that were previously intractable are in gray. OPT is the baseline reward.

et al. [29], who employ the same baseline as ours, and provide an upper bound of Õ(T 1/2) for both
regret and constraints violation (see Table 1). We also mention that there are some works studying
the problem in which constraints are static (see, e.g., [20, 22, 28, 30]), or focus on specific types of
constraints, such as knapsack constraints [5, 19]. Our framework differs from those works as we deal
with arbitrary and time-varying constraints. Moreover, it also extends the online convex optimization
framework introduced by Zinkevich [31] by allowing for general non-convex loss functions ft,
arbitrary feasibility sets X , and arbitrary time-varying long-term constraints.

Given the negative result by Mannor et al. [23], a natural question is what kind of guarantees we can
reach in the adversarial setting, when adopting the standard baseline of the best fixed decision in
hindsight satisfying (in expectation) the long-term constraints. We provide the first positive result
going in this direction, by designing a no-α-regret algorithm that guarantees a sublinear cumulative
constraints violation. Moreover, we make a step forward in the line of work initiated by Bubeck
and Slivkins [12], by showing that our algorithm is also the first best-of-both-worlds algorithm for
problems with arbitrary long-term constraints. This allows our algorithm to guarantee good worst-
case performance (adversarial case), while being able to exploit well-behaved problem instances
(stochastic case). The only assumption which we require is the existence of a decision that is strictly
feasible with respect to the sequence of constraints. We denote by ρ the “margin” by which this
decision is strictly feasible. At the same time, we show that even without this assumption, we can
recover sublinear regret and violation with stochastic constraints.

Previous work usually assumes that ρ is a given constant. In that case, our algorithm matches the
guarantees by Yu et al. [29] when constraints are generated i.i.d. according to an unknown distribution,
and has no-α-regret with α = ρ/(1 + ρ) in the adversarial case (Table 1). Moreover, we argue that if
ρ is allowed to depend on T and take arbitrarily small values, then there are certain values for which
any regret bound depending on 1/ρ would be useless. This setting is usually overlooked by previous
work, which assumes ρ to be a given constant. We show that, in the case of an arbitrary ρ, in the
stochastic setting our algorithm guarantees Õ(T 3/4) regret and cumulative constraints violation.

Our framework employs traditional regret minimizers as black-box components. Therefore, by
instantiating it with an appropriate choice of regret minimizers it can handle full-feedback as well as
bandit-feedback settings. In the former case, after playing xt, the decision maker gets to observe ft
and gt, while in the latter case only the realized values ft(xt) and gt(xt) are observed. Moreover,
this allows the decision maker to seamlessly handle scenarios with non-convex reward and constraints,
by employing a suitable regret minimizer for non-convex losses (see, e.g., [24]). Our algorithm is
based on a two-stage approach in which primal and dual players interact through Lagrangian games.
In the first (play) phase, the primal player tries to balance out the maximization of their rewards with
constraints violation. In the second (recovery) phase, the primal player only makes “safe decisions” to
avoid violating constraints too much. In the case of stochastic rewards and constraints, the algorithm
never enters phase two. This is particularly relevant for budget-pacing mechanisms in repeated
auctions, being related to how budget is allocated. Our framework can also perform budget allocation
subject to constraints not tractable by traditional mechanisms, such as ROI constraints [8, 16].2

2 Preliminaries

First, we introduce the set of probability measures on the Borel sets of X . We refer to such a set as
the set of strategy mixtures, denoted as Ξ. In the following, for the ease of presentation and with

2See [14] for an extended version of this work.
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a slight abuse of notation, whenever we write a ξ ∈ Ξ in place of an x ∈ X , we mean that we are
taking the expectation with respect to the probability measure ξ. For instance, given f ∈ F and
g ∈ G, we have that f(ξ) = Ex∼ξf(x) and g(ξ) = Ex∼ξg(x).

Then, given two functions f ∈ F and g ∈ G, we define the following optimization problem, which
chooses the strategy mixture ξ ∈ Ξ that maximizes the expected reward encoded by f , while
guaranteeing that the constraints encoded by g are satisfied in expectation.

OPTf,g :=

{
sup
ξ∈Ξ

f(ξ) s.t.

g(ξ) ≤ 0.
(LPf,g)

We denote by dg ∈ [−1, 1] the largest possible value for which there exists a strategy mix-
ture ξ ∈ Ξ satisfying the constraints g(ξ) ≤ 0 by a margin of at least dg. Formally, dg :=
supξ∈Ξ mini∈[m]−gi(ξ). In order to ensure that OPTf,g is always well defined, we assume that it is
always the case that dg ≥ 0. Notice that, if dg > 0, then Problem LPf,g satisfies Slater’s condition.

We consider several settings, differing in how functions ft and gt are selected, either stochastically or
adversarially. We say that functions ft (respectively gt) are selected stochastically, when they are
independently drawn according to a given probability measure µF over F (respectively µG over G).
Instead, we say that functions ft (respectively gt) are selected adversarially if each ft (respectively
gt) is chosen by an adversary based on the sequence of prior decisions, namely x1, . . . ,xt−1.

We compare the performance of the decision maker against the baseline T OPTf̄,ḡ , where f̄ and ḡ are
suitably-defined functions. When functions ft, respectively gt, are selected stochastically, then we
define function f̄ , respectively ḡ, so that f̄(x) := Ef∼µF [f(x)], respectively ḡ(x) := Eg∼µG [g(x)].
When functions ft, respectively gt, are selected adversarially, then we define function f̄ , respectively
ḡ, so that f̄(x) := 1

T

∑T
t=1 ft(x), respectively ḡ(x) := 1

T

∑T
t=1 gt(x).

Our goal is to design online algorithms for the decision maker that output a sequence of decisions
x1, . . . ,xT such that both the cumulative regret with respect to the performance of the baseline,
defined as RT := T OPTf̄,ḡ −

∑T
t=1 ft(xt), and the cumulative constraints violation, defined as

V T := maxi∈[m]

∑T
t=1 gt,i(xt), grow sublinearly in the number of rounds T .

In conclusion, we introduce a Problem-specific parameter that is strictly related to the feasibility of
Problem LPf̄,ḡ. We call it the feasibility parameter ρ ∈ R, which is formally defined as follows.
When functions gt are selected stochastically, ρ := supξ∈Ξ mini∈[m]−ḡi(ξ). When functions gt are
selected adversarially, ρ := supξ∈Ξ mint∈[T ] mini∈[m]−gt,i(ξ).

3 A unifying meta-algorithm

In this section, we present our meta-algorithm. Its core idea is to instantiate suitable pairs of RMs,
where one is working in the domain X of primal variables and the other in a suitable subset of the
domain Rm+ of dual variables. At each round t ∈ [T ], the algorithm makes the RMs “play” against
each other in a Lagrangian game, where the utility functions observed by them are related to the
Lagrangian function Lft,gt(x,λ) of Problem LPft,gt .

Algorithm description. The algorithm works in two phases. In the first one, called play phase, the
algorithm builds a primal RM, called RP

I , working in the primal domain X and a dual RM, called
RD

I , operating on the subset Dρ̃ of the dual domain Rm+ , where ρ̃ is set in Line 1. The algorithm
makes the two RMs playing against each other (see the call LAGRANGIANGAME(RP

I ,RD
I , 1)) until

either the cumulative violation V t incurred by the algorithm exceeds a given threshold or round
T is reached. Then, in the second phase, called recovery phase, the algorithm constructs a new
pair of primal, dual RMs, with the latter working on the (m − 1)-dimensional simplex ∆m. The
recovery phase uses the remaining rounds to make these new RMs play against each other, with
the primal RM observing modified utility functions that do not account for functions ft (see the
call LAGRANGIANGAME(RP

II,RD
II, 0)). The pseudo-code describing one “play” between two RMs,

calledRP andRD, is defined by the sub-procedure LAGRANGIANGAME(RP,RD, v) in Algorithm 2.
The additional parameter v ∈ {0, 1} is used to control the feedback fed into the primal RM RP;
specifically, if v = 1, then RP observes a utility function that also accounts for ft (play phase),
otherwise, if v = 0, the observed utility function only accounts for the term depending on gt.
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Algorithm 1 META-ALGORITHM(T, δ, ρ̂)

1: ρ̃← max
{
ρ̂/2, T−1/4

}
, η ← δ/3, t← 1

. Phase I: Play
2: RP

I ← INITP
(
X ,
[
− 1/ρ̃, 1 + 1/ρ̃

]
, η
)

3: RD
I ← INITD

(
Dρ̃,

[
− 1/ρ̃, 1/ρ̃

]
, 0
)

4: while V t ≤ (T − t)ρ̃+Mρ̃ − 1 ∧ t ≤ T do
5: xt ← LAGRANGIANGAME(RP

I ,R
D
I , 1)

6: T1 ← t− 1
. Phase II: Recovery

7: RP
II ← INITP (X , [−1, 1], η)

8: RD
II ← INITD (∆m, [−1, 1], 0)

9: while t ≤ T do
10: xt ← LAGRANGIANGAME(RP

II,R
D
II, 0)

Algorithm 2 LAGRANGIANGAME(RP,RD, v)

1: xt ← RP.NEXTELEMENT()
2: λt ← RD.NEXTELEMENT()

3: Play xt and get ft and gt . Full f.
Play xt and get ft(xt) and gt(xt) . Bandit f.
. Primal RM update

4: Let uPt : x 7→ vft(x)− 〈λt, gt(x)〉 . Full f.
uPt(xt)← vft(xt)− 〈λt, gt(xt)〉 . Bandit f.

5: R
P.OBSERVEUTILITY(uPt) . Full f.
RP.OBSERVEUTILITY(uPt(xt)) . Bandit f.
. Dual RM update

6: Let uDt : λ 7→ −〈λ, gt(x)〉
7: RD.OBSERVEUTILITY(uDt)

4 Applications to repeated auctions settings

Internet advertising platforms usually operationalize large auction markets by using proxy bidders that
place bids in repeated auctions on the advertisers’ behalf. A proxy-bidder selects bids according to a
budget-pacing mechanism, which manages the usage of the advertisers’ budget over time [1, 16, 7].
In this section, we discuss the application of our framework to budget-management in auctions,
arguing that it can deal with more general constraints on ad slots allocation with respect to what is
currently achievable with multiplicative pacing algorithms, which manage only knapsack constraints.

We consider the problem faced by a bidder who takes part in a sequence of repeated auctions. We
focus on the case of second-price and first-price auctions, since they are the de facto standard in large
Internet advertising platforms. At each round t ∈ [T ], the bidder observes their valuation vt from a
finite set of nv possible valuations V ⊂ [0, 1]. Such valuation models targeting preferences of the
advertiser. Then, the bidder chooses a bid bt ∈ B, where B ⊂ [0, 1] is a finite set of nb possible bids
such that 0 ∈ B (i.e., the bidder is allowed to skip items without incurring in any cost). The utility of
the bidder depends on the largest among competing bids, denoted by βt. In particular, the utility is
computed as ft(bt) = (vt − ct(bt))1{bt ≥ βt}, where the cost ct is such that ct(bt) = β1{bt ≥ βt}
in second-price auctions, and ct(bt) = bt1{bt ≥ βt} for first-price ones. Finally, the bidder has
a target per-round budget of ρ > 0, which yields an overall budget B := ρT that limits the total
spending over the T rounds. In the case of budget-constrained bidding, a strictly feasible solution can
be easily achieved by always bidding 0. Using the target per-round budget ρ = B/T we can write
the budget constraint as

∑
t∈[T ] gt(bt) ≤ 0, with gt(b) = ct(b)− ρ for any b ∈ B. As a benchmark

to evaluate the algorithm, we consider the best feasible static policy π : V → B. The set of static
policies can be represented by X := Bnv , where a vector b ∈ Bnv encodes the policy’s bids for each
possible valuation. To apply our framework to this problem, it is sufficient to design a primal regret
minimizer constructor (recall that, in order to design dual RMs, we can employ OMD). This can
be implemented by instantiating a regret minimizer EXP3.P [3] for each possible valuation in V .
Given a failure probability ν ∈ (0, 1), each RM guarantees a regret bound of

√
Tnblog(nb/ν) with

probability at least 1− ν. Thus, given a desired failure probability η ∈ (0, 1), by setting ν = η/nv
we get that, with probability at least 1− η, the bounds of all the RMs hold. Hence, by a union bound,
we get that the regret of a primal RM is EPT,η = O(nv

√
Tnblog(nbnv/η)).

Handling ROI constraints. Traditional budget-pacing mechanisms (see, e.g., [8, 6]) are based on
primal-dual algorithms that are near optimal in settings with knapsack constraints only, and they
cannot be generalized to deal with other types of long-term constraints. However, there are many real-
world situations in which guaranteeing other types of constraints is crucial for practical applications
(see, e.g., [18, 17]). One example is the case of return on investment (ROI) constraints [4, 18, 21].The
recent work by Golrezaei et al. [17] presents a threshold-based algorithm for repeated second-price
auctions under budget and ROI constraints. Our framework allows advertisers to reach a target ROI
while keeping expenses under control also in the setting of repeated first-price auctions. In particular,
given a target ROI ω, we define the ROI constraints as gt(bt) = (ω − vt/bt)1{bt ≥ βt} ≤ 0. Then,
it is enough to instantiate our framework as described before to immediately get that the cumulative
violation of the budget and ROI constraints are upper bounded by Õ(T 1/2). This holds both in the
fully stochastic and in the fully adversarial setting.
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