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ABSTRACT

We address the challenge of representing long captions in vision-language models,
such as CLIP. By design these models are limited by fixed, absolute positional en-
codings, restricting inputs to a maximum of 77 tokens and hindering performance
on tasks requiring longer descriptions. Although recent work has attempted to
overcome this limit, their proposed approaches struggle to model token relation-
ships over longer distances and simply extend to a fixed new token length. In-
stead, we propose a generalizable method, named TULIP, able to upgrade the
token length to any length for CLIP-like models. We do so by improving the ar-
chitecture with relative position encodings, followed by a training procedure that
(i) distills the original CLIP text encoder into an encoder with relative position
encodings and (ii) enhances the model for aligning longer captions with images.
By effectively encoding captions longer than the default 77 tokens, our model
outperforms baselines on cross-modal tasks such as retrieval and text-to-image
generation.

1 INTRODUCTION

Obtaining text representations for long captions in vision-language models is an open research chal-
lenge. Within the context of text-only large language models, this problem has been studied ex-
tensively (Chung et al., 2024; Touvron et al., 2023; Bai et al., 2023; Gu & Dao, 2023; Su et al.,
2024; Dubey et al., 2024; Pawar et al., 2024; Jiang et al., 2024; Lieber et al., 2024), yet, methods
for context length expansion have only scarcely made their way into the vision-language domain.
For instance, contrastive vision-language models like CLIP (Radford et al., 2021; Jia et al., 2021; Li
et al., 2022) are constrained to short input sequences, capped at 77 tokens. Natively, such models
based on Transformers (Vaswani et al., 2017) process their input as an unordered set of tokens and
use positional encoding to preserve order information (Yun et al., 2019). In particular, CLIP models
use absolute positional encodings, which rely on a predefined maximum number of tokens, thereby
limiting the input sequence to 77 tokens by design. We introduce an efficient and generalizable
method, TULIP, that upgrades the context window size of CLIP-like models.

Recently, Long-CLIP (Zhang et al., 2024) highlighted this problem and proposed an approach for
unlocking the long-text capabilities of CLIP. However, their approach focuses on stretching the ex-
isting absolute positional encodings, which primarily addresses the issue of the hard token limit
but it continues to rely on absolute encodings which inhibit the model’s comprehension of pairwise
token relationships. To address the challenge of comprehensively modeling the pairwise distances
between tokens, more flexible positional encoding methods have been proposed (Shaw et al., 2018;
Su et al., 2024; Golovneva et al., 2024). For example, relative positional encodings offer an ap-
proach that allows the model to capture interactions between tokens more effectively, regardless of
their placement in the sequence (Su et al., 2024). While this method has shown promise in natural
language processing tasks, it remains unexplored in vision-language models. This is not surprising,
as extending the context length in vision-language models by switching to more flexible positional
encodings is computationally costly because of its significant retraining efforts.

Our proposed method upgrades the context window size of CLIP-like models by utilizing relative
positional encodings, which are not restricted to a fixed length. Changing the model in this manner
normally requires expensive multi-modal retraining. Instead, we propose an adaptation phase to
first distill the knowledge of the original CLIP into the new model with relative positional encodings
using only caption data. Such a distillation approach is flexible and can be applied to CLIP-like
models constrained by the standard 77-token window, transforming it into a model capable of han-
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dling longer captions. Afterwards, we perform full fine-tuning on the distilled model for a single
epoch on 1 million image-caption pairs (Chen et al., 2023a), to further improve the alignment be-
tween images and long captions. After these phases, our TULIP model can ingest captions longer
than the usual 77 tokens and we observe improved performance on tasks ranging from cross-modal
retrieval to text-to-image generation, compared to (interpolated) fixed token-window baselines.

In addition to our new method, we introduce a new benchmark for long captions adapted from the
recently introduced Dense Captioning Images (DCI) dataset (Urbanek et al., 2024). This benchmark
overcomes the limitations of existing retrieval benchmarks which lack diversity, as they focus on
specific scenes (e.g., Urban-1K (Zhang et al., 2024)), or are in-distribution datasets with already
saturated performance (e.g., ShareGPT4v test set (Chen et al., 2023a)). Our results show that evalu-
ating in a true long caption setting is crucial for evaluating contrastive vision-language mode as they
unearth an increased performance gap as compared to prior benchmarks.

In summary, our contributions are: (1) We propose TULIP, the first contrastive vision-language
model with relative positional encoding for long captions. (2) We propose a general training proce-
dure to adapt the positional encoding of CLIP-like models using a two-step adaptation encompassing
relative position distillation and expansion. (3) We demonstrate improved performance across dif-
ferent cross-modal retrieval and image generation tasks. We introduce a new benchmark Long-DCI
for a more comprehensive evaluation of long-caption retrieval tasks.

2 RELATED WORK

Position Encodings in Transformer Models. Transformers, the foundational architecture for many
vision-language models, rely on positional encodings to compensate for the lack of inherent posi-
tional awareness in their set-based representation. In the natural language domain, absolute posi-
tional encodings (Vaswani et al., 2017) were initially proposed, where fixed embeddings are added
to token embeddings based on their position in the sentence sequence. However, as models have
grown larger and more complex, alternative approaches emerged such as relative positional encod-
ings (Shaw et al., 2018; Press et al., 2021), randomized positional encodings (Ruoss et al., 2023),
extrapolation techniques (Press et al., 2022) and positional interpolation (Chen et al., 2023b). Other
works, such as Rotary Position Embedding (RoPE) (Su et al., 2024) and its variations (Chen et al.,
2023b; Peng et al., 2023), apply relative positional encodings without any modifications to the self-
attention mechanism, making it computationally efficient. Another recent approach is Contextual
Position Encodings (CoPE) (Golovneva et al., 2024), which is a more general position encoding
technique enabling one to attend to the i-th particular word, noun, or even sentence. In contrastive
vision-language models, integrating positional information effectively across modalities remains an
unsolved challenge and this is the primary focus of this paper.

Contrastive Vision-Language Models with Long Captions. Contrastive Vision-language models
have made significant strides in aligning visual and textual modalities, driven by the success of large-
scale pre-trained models such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), BLIP (Li
et al., 2022) and many others (Garg et al., 2023; Vasu et al., 2024b;a; Cherti et al., 2023; Sun et al.,
2023). These models leverage contrastive learning techniques to align image and text representa-
tions in a shared feature space, enabling robust performance on tasks such as image-text retrieval and
zero-shot classification. However, all these models focus on short, global textual descriptions, often
limited by small context windows, such as the 77-token limit in CLIP. Recent research has started
considering this limitation, for instance, DCI (Urbanek et al., 2024) highlights the problem by point-
ing out that CLIP’s 77-token limit restricts the model from accommodating detailed, dense captions.
DreamLIP (Zheng et al., 2024) studies the usage of synthetically generated long captions under the
contrastive learning framework but uses subsampled short captions from longer captions instead of
processing the complete long captions. Long-CLIP (Zhang et al., 2024) engages the challenge more
directly, by stretching absolute position encodings through interpolation to enable fine-tuning on
long captions. However, interpolation only partially addresses the limitations of absolute encodings
when processing longer, complex captions. This is because interpolation merely extends the existing
positional information without fundamentally altering its nature or capabilities. These limitations
include diminished ability to capture fine-grained relative positions and poor generalization to longer
captions (Pawar et al., 2024). We propose an alternative approach that incorporates relative encod-
ings without training from scratch, thereby enabling more effective processing of long captions and
the comprehension of the pairwise token relationships therein.
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3 TULIP

In this section, we introduce our method Token-Length Upgraded CLIP (TULIP). We start by stating
the problem setting, followed by introducing the positional encoding swapping and the two-step
adaptation procedure: (i) relative position distillation and (ii) relative position expansion.

3.1 PROBLEM STATEMENT

Let model f be a contrastive vision-language model, such as CLIP, designed to align text and images
in a shared embedding space. The text encoder of f , denoted as fT is constrained to processing
sequences up to a predefined number of 77 tokens, denoted by Tf = 77. This is due to the fixed
absolute positional encodings Pf ∈ R77×d, where d is the dimensionality of the embeddings. Given
an input sequence x = [x1, x2, . . . , xn], where n > Tf , the model truncates x to x′ = [x1, . . . , xTf

]
losing critical information from the sequence beyond the first 77 tokens.

Our objective is to transform model f into model g, without any re-training from scratch, to enable
processing sequences of arbitrary length Tg . In this new model g, the token-length constraint of fT
is removed, allowing the model to handle inputs of length Tg > 77.

3.2 POSITIONAL ENCODING SWAPPING

In fT , the positional encoding function Pf (i) maps each token position i to a vector in Rd, within
a window of size 77. To overcome this limitation, we redefine the positional encoding function for
model g, denoted as Pg(i) which scales with input length Tg . This new function allows the model g
to process captions of arbitrary length without truncation.

Figure 1: Swapping the Positional Encoding. We update CLIP models by replacing the absolute
positional encoding with relative positional encoding in each transformer block. This modification
allows for long caption understanding and better modeling of pairwise token dependencies.

We implement Pg(i) as Rotary Positional encodings (RoPE) (Su et al., 2024) presented in Figure
1. Unlike traditional absolute positional encodings, where each position in a sequence is assigned
a fixed vector, RoPE rotates the embeddings based on the relative distance between tokens. More
specifically, we alter the calculation of the attention weights within the self-attention layers of the
text encoder fT , which are initially calculated as softmax(

qTmkn√
d
), where:

qm = Wqxm, kn = Wkxn, (1)

representing the query and key vectors respectively for the m-th and n-th tokens in the sequence x,
and Wq,Wk are their learned projection matrices. With RoPE, we inject the position information of
each token xi into the qm and kn vectors by:

qm = RΘ,mWqxm, kn = RΘ,nWkxn, (2)
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Figure 2: TULIP training procedure. First, we perform relative position adaptation by distilling
the knowledge of the CLIP text encoder into a student text encoder initialized with relative position
encodings. This stage uses the first 77 tokens of a long caption (the gray block). The second stage
is the relative position expansion, where we fine-tune the distilled text encoder with captions longer
than 77 tokens (the combined gray and yellow blocks), together with the vision encoder.

where RΘ,m and RΘ,n represent rotation matrices and Θ is the rotational frequency associated with
the j-th dimension of the embedding. The rotational frequency ensures that different dimensions of
the token embeddings rotate differently, embedding both absolute and relative positional information
into the self-attention mechanism.

3.3 RELATIVE POSITION DISTILLATION

Once the architectural changes are in place, the next challenge is to adapt the text encoder of model
g to handle both short and long text inputs while retaining the image-text alignment capabilities of
model f . We achieve this through knowledge distillation, shown with the first block of Figure 2,
where fT acts as the teacher and the text encoder with the new relative encodings as the student
sT . A key advantage of this approach is that it eliminates the need to retrain the model from scratch
despite the introduction of new relative positional encodings. Instead, we distill the knowledge
from fT , transferring its capabilities to the student model without losing the original alignment
performance. This method is not only efficient but also generalizable, making it applicable to any
text encoder that requires adaptation to new positional encodings.

Let x = [x1, x2, . . . , xn] represent an input caption, where n ≤ Tf . Both the teacher model fT
and the student model sT encode this sentence into a shared embedding space. Specifically, the
teacher model fT aggregates the sequence into a special text token and yields the output embeddings
zfT = fT (x). Similarly, the student model yields output embeddings zsT = sT (x). The distillation
loss is formulated as a cosine similarity between zfT and zsT , aiming to maximize their alignment:

Ldistill =
zfT · zsT

∥zfT ∥∥zsT ∥
. (3)

This loss function ensures that the student model sT learns from the teacher model fT , by lever-
aging the original model’s ability to align textual and visual information. After the distillation, the
student model sT has the capabilities of the teacher model for encoding up to 77 tokens with rela-
tive positional encodings. The only missing feature is the ability to process longer context which is
addressed next.

3.4 RELATIVE POSITION EXPANSION

Finally, we expand the context length of model g beyond the original 77-token limit by fine-tuning
it with longer captions, shown in the second block of Figure 2. We start by copying the student
model weights into the text encoder of g. This is followed by employing Neural Tangent Kernel
(NTK)-aware scaled RoPE (bloc97, 2023), a refined version that adapts to the changing length of
the input. In particular, we aim to scale the rotational frequency Θ by a factor (α ∗ Tg

Tf
) − (α − 1),
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where α is a hyperparameter, to accommodate the training of the new higher token positions. The
objective behind such scaling is to resolve the problem of losing high-frequency information when
interpolating the RoPE embeddings to the higher token positions. In model g, the new positional
encodings now support input sentences xg of arbitrary length, Tg > Tf . We proceed with fine-
tuning using the usual contrastive loss as follows: L(x, y) = − log

exp(cos(zx,zy)/τ)∑
y′ exp(cos(zx,zy′ )/τ)

, where x is
the sentence, y is the image and τ is the temperature hyperparameter. However, to keep the original
capability for handling short sentences as well, we jointly optimize two contrastive loss terms for
both long and short sentences, as follows:

Ltotal(xTg
, xTf

, y) = λ× Lshort(xTf
, y) + (1− λ)× Llong(xTg

, y). (4)
The first loss term, Lshort, is designed to preserve the model’s ability to handle short captions, align-
ing with the capabilities of model f . The other term, Llong, is introduced to ensure that model g can
process longer captions effectively.

By extending the context length in this manner, model g becomes capable of handling both short
and long captions, making it more versatile for a wide range of vision-language tasks as we will
demonstrate in the experiments.

4 EXPERIMENTS & RESULTS

Datasets and downstream tasks. We evaluate TULIP on three downstream tasks: short cap-
tion cross-modal retrieval, long caption cross-modal retrieval, and text-to-image generation. For
short caption cross-modal retrieval, we follow Zhang et al. (2024) and evaluate our model on the
COCO2017 5k validation set (Lin et al., 2014) and the full Flickr30k dataset (Plummer et al., 2015).
Similarly, for long caption cross-modal retrieval, we use two datasets namely ShareGPT4V test split
and Urban-1K. Both datasets contain 1,000 image-caption pairs, collected by Zhang et al. (2024)
and recaptioned using the ShareGPT4V captioning model.

It is important to recognize that long-caption cross-modal retrieval benchmarks come with several
limitations. These include a lack of diversity, as some focus on narrowly defined scenes (e.g., Urban-
1K), while others consist of in-distribution datasets where performance is already saturated (e.g.,
ShareGPT4V). To overcome these challenges, we introduce a new benchmark for long captions
adapted from the recently introduced Dense Captioning Images (DCI) dataset (Urbanek et al., 2024).
Long-DCI includes 7,000 human-annotated images and long caption pairs, with captions averaging
200 tokens per image. This human-led annotation process ensures diverse and accurate descriptions,
avoiding the biases inherent in AI-generated captions like those from ShareGPT4V.

Evaluation metrics. We report image-to-text and text-to-image retrieval performance using recall
as the standard evaluation metric. Our evaluation process is the same for all experiments, including
how we handle long input tokens. For each dataset, we choose the best design and settings using a
validation set, and then report the final results on the test set.

Long-DCI ShareGPT4V Urban-1K

Img2Txt Txt2Img Img2Txt Txt2Img Img2Txt Txt2Img

V
iT

-B
-1

6 CLIP 35.9 33.7 78.2 79.6 68.1 53.6
Fine-tuned CLIP 46.3 45.4 94.1 93.6 80.4 79.8
Long-CLIP 42.1 48.4 94.6 93.3 78.9 79.5
TULIP (Ours) 50.2 50.6 98.6 98.6 88.1 86.6

V
iT

-L
-1

4 CLIP 35.0 37.0 81.8 84.0 68.7 52.8
Fine-tuned CLIP 51.6 50.7 95.3 95.4 78.0 76.5
Long-CLIP 54.0 46.1 95.8 95.6 82.7 86.1
TULIP (Ours) 55.7 56.4 99.0 99.0 90.1 91.1

Table 1: Long caption cross-modal retrieval comparison on Long-DCI, ShareGPT4V and Urban-
1K. TULIP consistently outperforms other CLIP variants across all evaluated datasets and tasks.
Note that we adopt the results for CLIP and Long-CLIP from Zhang et al. (2024), while we fine-
tune CLIP (Fine-tuned CLIP) on ShareGPT4V ourselves.
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COCO Flickr30k

Img2Txt Txt2Img Img2Txt Txt2Img

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
V

iT
-B

-1
6 CLIP 51.8 76.8 32.7 57.7 44.1 68.2 24.7 45.1

Fine-tuned CLIP 37.4 62.3 21.8 43.4 25.7 45.8 17.9 34.5
Long-CLIP 57.6 81.1 40.4 65.8 46.8 71.4 34.1 56.3
TULIP (Ours) 56.8 80.3 40.7 66.1 46.1 70.8 35.2 57.4

V
iT

-L
-1

4 CLIP 56.1 79.5 35.4 60.1 48.5 72.6 28.0 49.3
Fine-tuned CLIP 37.9 63.1 23.1 45.1 26.0 46.3 17.9 34.9
Long-CLIP 62.8 85.1 46.3 70.8 53.4 77.5 41.2 64.1
TULIP (Ours) 62.6 84.7 46.1 71.1 56.7 79.5 41.6 64.3

Table 2: Short caption cross-modal retrieval comparison on COCO and Flickr30k. TULIP
shows competitive performance, often matching or exceeding Long-CLIP across different metrics
and backbones.

Training details. Our training procedure comprises two phases: relative position distillation and
relative position expansion, both utilize the ShareGPT4V dataset (Chen et al., 2023a) containing
1M image and long caption pairs. During the relative position distillation phase, we truncate cap-
tions to the first 77 tokens for both the teacher and student models. We train the student model
using cosine loss as the distillation loss function for 20 epochs with a batch size of 640 using the
AdamW optimizer (Loshchilov, 2017), setting the learning rate to 5e-4 with 1000 warmup steps. In
the relative position expansion phase, we employ full-length captions without truncation, exposing
the model to comprehensive-textual details. The full TULIP model, featuring the new distilled text
encoder, is fine-tuned using the NTK approach, with α empirically set to 8.0. For all main exper-
iments, we use 248 number of tokens to match Long-CLIP’s context length for a fair comparison.
Note that we can increase the length to more tokens, as shown in our ablations. We perform this fine-
tuning stage for a single epoch with a batch size of 1280, a learning rate of 1e-5, and 1000 warmup
steps using AdamW. We base our implementations on OpenAI’s pre-trained CLIP-ViT-B-16 and
CLIP-ViT-L-14 architectures (Ilharco et al., 2021). Our code will be made publicly available.

4.1 CROSS-MODAL RETRIEVAL COMPARISON

We evaluate TULIP against the original CLIP, fine-tuned CLIP on ShareGPT4V (Chen et al., 2023a),
and Long-CLIP Zhang et al. (2024) for both long-caption (Table 1) and short-caption (Table 2) cross-
modal retrieval tasks. As shown in Table 1, our proposed model outperforms all benchmarks in long-
caption cross-modal retrieval across 3 datasets on both image-to-text and text-to-image retrieval,
utilizing two different vision backbones: ViT-B-16 and ViT-L-14 (Dosovitskiy et al., 2021). On the
Long-DCI dataset, which is a more challenging benchmark for all approaches, we can observe that
Long-CLIP already shows improvement over the original CLIP and that our TULIP model further
improves on this. These results demonstrate the efficacy of TULIP in enhancing CLIP’s capabilities
for long-caption cross-modal retrieval, particularly in diverse scenarios. For short captions, as shown
in Table 2, we find that the tailored approach used by Long-CLIP for the first 20 tokens is beneficial
for the short caption performance as they outperform CLIP even on short captions. Whereas TULIP
is able to obtain competitive performance without needing to specifically tailor to the first 20 tokens,
which demonstrates the flexibility of relative positional encodings across different caption lengths.
Overall, the results in Table1 and 2 indicate that TULIP is effective not only for long captions but
also for maintaining competitive performance in short caption retrieval scenarios.

4.2 TEXT-TO-IMAGE GENERATION

In this section, we evaluate qualitatively how our proposed procedure enhances text-to-image gen-
eration by simply replacing the original CLIP ViT-L-14 text encoder with our TULIP model, in
particular using the text encoder. We use Stable Diffusion XL (SDXL) (Podell et al., 2023) as the
image generation backbone. Note that do not perform any additional training of the diffusion model.
As observed in Figure 3, TULIP demonstrates improvements in both long and short caption under-
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Figure 3: Text-to-Image Generation results. We replace the text encoder of SDXL with our own
TULIP model. We observe improvements in both long captions understanding and capturing nu-
anced details, compared to the baselines CLIP-ViT-L-14 and Long-CLIP. Note that the // marks the
77-token boundary in the caption. The words in green indicate visual concepts that are correctly
generated by TULIP and are missed by the baselines.

standing and modeling of nuanced details. For example, our version of SDXL + TULIP accurately
depicts “the red tulip inside a wooden box” in the first example. This is not the case with SDXL-
CLIP or SDXL-Long-CLIP which generate many tulips in the garden, missing the key detail of a
single tulip being inside the box. This observation shows that our model can indeed capture finer
details in the description. The second example shows that our model successfully generates “an old
man sits on a rock” even when this detail appears beyond the 77-token limit. On the other hand,
both base CLIP and Long-CLIP encoders fail at this. A similar observation is in the third example
where the model correctly captures ‘people walking along the streets”. These examples are direct
evidence that our approach can truly capture the meaning of words in longer captions. For shorter
prompts, our model also shows enhanced caption understanding. For instance, it accurately repre-
sents the ferret with a “playful grin” demonstrating the enhanced association of attributes with their
corresponding nouns. Even more impressively, it accurately places the ferret inside a “large glass
jar”, showing correct spatial understanding - something both CLIP and Long-CLIP fail to achieve.
These observations suggest that our TULIP text encoder enhances long caption comprehension, re-
sulting in more accurate and contextually rich image generation across varying prompt lengths. We
provide additional results in the appendix.
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Long-DCI ShareGPT4V Urban-1K

Positional encodings Img2Txt Txt2Img Img2Txt Txt2Img Img2Txt Txt2Img

CoPE 50.8 49.9 98.5 97.8 86.7 82.8
RoPE 55.7 56.4 99.0 99.0 90.1 91.1

Table 3: Ablation comparing different relative position encodings: RoPE and CoPE in
TULIP. RoPE generalizes better across varying or extended sentence lengths, especially on out-
of-distribution datasets, namely Long-DCI and Urban-1k.

4.3 ABLATION STUDY

In this section, we carefully analyze various design choices for our proposed method. We examine
different positional encoding schemes, investigate the impact of context length, and explore varia-
tions in the distillation loss function.

Different types of Relative Positional Encodings In this experiment, we compare different types
of relative positional encodings. We choose a recently introduced Contextual Position Encoding
(CoPE) (Golovneva et al., 2024) for implementing the relative positional encodings in the text en-
coder. Afterwards, we perform the distillation and context length extension phases using the same
dataset and parameters as with RoPE (Su et al., 2024). In Table 3 we observe that RoPE outper-
forms CoPE in long-caption retrieval tasks. This is due to RoPE’s strong ability to generalize across
varying or extended sentence lengths, even beyond those on which the model was originally trained.
In contrast, CoPE struggles to generalize as effectively when sequence lengths increase, as its em-
beddings are more dependent on the specific context within which they were trained. This explains
why CoPE performs similarly to RoPE on the ShareGPT4V test split (same training distribution),
but shows a larger performance gap on the Long-DCI and Urban-1k datasets.

The impact of the caption length. Next, we evaluate the impact of varying context lengths on the
performance of RoPE in long-caption image retrieval tasks. To investigate this, we fine-tune only
the text encoder during the context length extension phase with different context sizes (which are
n×77): {77, 154, 231, 308} tokens while keeping the image encoder frozen. We deliberately freeze
the image encoder to isolate the text encoder’s performance, as unfreezing it could potentially mask
the text encoder’s limitations in processing longer inputs. Figure 4 presents the model’s performance
across three datasets (ShareGPT4V, Urban-1K, and Long-DCI) for cross-modal retrieval tasks. We
observe general improvement in performance with increased context length, particularly from 77 to
154 tokens, across all datasets. This improvement is more pronounced for image-to-text retrieval,
suggesting that longer contexts enhance text representation and enable more precise alignment with
image features. However, we observe a slight performance plateau or minor decline for 308-length
sentences, signaling a point of diminishing returns where additional tokens may introduce noise or
redundancy. This plateau is likely due to the average caption length in our training data being 174.02
tokens, explaining why performance levels off between 154 and 231 tokens.

Benefit of using cosine distillation loss. In this section, we vary the distillation loss function
used during the relative position adaptation phase and report the results in Table 4. As seen, the
cosine loss performs better than other alternatives across different datasets and tasks. We believe
this is attributed to its alignment with the normalized embedding space of CLIP models and its
scale invariance property. The scale invariance of cosine loss proves particularly beneficial in this
distillation setup, where the student model (ViT-L-14 with the added RoPE or CoPE layer) can
produce embeddings with different magnitudes compared to the teacher model. This invariance
allows the distillation process to focus on transferring the essential directional information of the
embeddings, rather than being influenced by potential scale discrepancies introduced by the RoPE or
CoPE layer. As a result, cosine loss consistently outperforms other loss functions like L2 and MSE
across various datasets (Long-DCI, ShareGPT4V, Urban-1K) and cross-modal tasks such as image-
to-text and text-to-image, demonstrating its effectiveness in preserving the semantic relationships
learned by the teacher model.
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Figure 4: Impact of the sequence length on cross-modal retrieval tasks. We observe general
improvement in performance with increased sequence length, particularly from 77 to 154 tokens,
across all datasets and tasks.

Long-DCI ShareGPT4V Urban-1K

Distillation loss Img2Txt Txt2Img Img2Txt Txt2Img Img2Txt Txt2Img

CLIP 35.0 37.0 81.8 84.0 68.7 52.8

L2 39.4 35.8 84.8 83.9 70.2 56.3
MSE 36.4 31.8 83.0 81.3 74.0 53.9
Cosine 38.5 35.8 84.8 84.2 73.6 56.6

Table 4: Ablation comparing different distillation loss terms in TULIP. Cosine loss yields the
best performance across different datasets and tasks.

4.4 ADDITIONAL ANALYSIS

Attention spread visualization. The effectiveness of our model in long cross-modal retrieval tasks
and image generation is largely due to its distinct attention distribution patterns. To illustrate this,
we visualize the attention scores between the CLS text token and its preceding tokens in the final
attention block of the text encoder, as shown in Figure 5. For comparison, we provided attention
visualizations for both our TULIP and LongCLIP. This analysis reveals two key advantages of our
model when processing a 248-token caption. First, our model exhibits a more uniform distribution of
attention across input tokens, demonstrating its ability to expand the attention scope and effectively
aggregate information from a broader range of tokens. This expanded attention field improves the
model’s performance in long-caption tasks by capturing and utilizing details from later parts of
the caption that other models might overlook. Second, our model shows increased attention to
punctuation symbols, particularly commas, which enhances its ability to parse and segment longer
texts. Such capability is crucial for better comprehension of complex, multi-caption descriptions.

Caption-image relevance distribution analysis. This analysis investigates where relevant informa-
tion is distributed within long captions given an image. The aim is to highlight how useful content is
spread throughout the whole caption. We analyze 100 randomly selected images with long captions
from the ShareGPT4V dataset. For each image-caption pair, we computed the visual embeddings of
the image and compared them to the text embeddings of the caption subwindow. We define sliding
subwindows of sizes 20, 33, and 55 tokens, moving from left to right with strides of 5, 10, and 15
tokens respectively. We then calculated the cosine similarity between the image encoding and the
text encodings of each subwindow, visualized in Figure 6. The figure shows that the similarity scores
are distributed across different subwindows, emphasizing the need for models capable of processing
longer input sequences. Notably, as window size increases, the similarity patterns become more
concentrated and pronounced, suggesting that larger context windows capture more cohesive and
relevant information. Additionally, the variability in similarity across different windows highlights
the non-uniform distribution of image-relevant information throughout the captions. This reinforces
the need to leverage the entire textual sequence when learning image-text representations.
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(a) LongCLIP

(b) TULIP
Figure 5: Attention Spread Visualization comparing (a) LongClip and (b) TULIP. Our model
achieves uniform attention across tokens, demonstrating superior capabilities in parsing and seg-
menting longer texts with precision.

Figure 6: Caption-image relevance distribution analysis across varying window sizes and posi-
tions. it shows that image-relevant information is spread throughout captions, emphasizing the need
for models to process longer text inputs to capture all pertinent details.

5 CONCLUSION

In this work, we addressed the limitations of CLIP-like models in handling long input sequences.
We introduce TULIP, a generalizable method that upgrades the context length beyond the 77-token
limit. By leveraging relative positional encodings, our approach enables the effective modeling
of pairwise token relationships. Through a two-step training process, we successfully adapt the
CLIP-like model to process longer captions without compromising its performance on shorter in-
puts. Our experiments demonstrate that TULIP considerably improves long-caption performance on
cross-modal tasks such as retrieval and text-to-image generation, setting a new standard for vision-
language contrastive models that require handling complex, extended text descriptions.

Limitations. Our reliance on ShareGPT4V dataset, synthesized by GPT4V (Achiam et al., 2023),
limits TULIP’s performance to the quality of GPT4V’s long captions. Furthermore, while TULIP is
theoretically capable of handling longer contexts due to the nature of the relative positional encod-
ings, its token length is constrained by the average token length of the ShareGPT4V captions.
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A APPENDIX

A.1 ADDITIONAL TEXT-TO-IMAGE GENERATION RESULTS

Figure 7: Text-to-Image Generation results.
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Figure 8: Text-to-Image Generation results.
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Figure 9: Text-to-Image Generation results.
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Figure 10: Qualitative comparison of image generation models T5, CLIP, Long-CLIP, and
TULIP. Our TULIP-based model demonstrates the ability to generate images with nuanced details
from captions, offering a plug-and-play solution without requiring costly retraining.
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Figure 11: Qualitative comparison of image generation models T5, CLIP, Long-CLIP, and
TULIP. Our TULIP-based model demonstrates the ability to generate images with nuanced details
from captions, offering a plug-and-play solution without requiring costly retraining.
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Figure 12: Qualitative comparison of image-to-text cross-modal retrieval between CLIP and
TULIP. We can observe that our TULIP model can capture the fine-grained details in both captions
and images. Note that the red text color indicates visually misclassified concepts in the images,
whereas the green color indicates correct ones.

Figure 13: Qualitative comparison of text-to-image cross-modal retrieval between CLIP and
TULIP. We can observe that our TULIP model can capture the fine-grained details in both captions
and images. Note that the red text color indicates visually misclassified concepts in the images,
whereas the green color indicates correct ones.
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