
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONVEYOR: EFFICIENT TOOL-AWARE LLM SERVING
WITH TOOL PARTIAL EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The complexity of large language model (LLM) serving workloads has substantially
increased due to the integration with external tool invocations, such as ChatGPT
plugins. In this paper, we identify a new opportunity for efficient LLM serving for
requests that trigger tools: tool partial execution alongside LLM decoding. To this
end, we design Conveyor, an efficient LLM serving system optimized for handling
requests involving external tools. We introduce a novel interface for tool developers
to expose partial execution opportunities to the LLM serving system and a request
scheduler that facilitates partial tool execution. Our results demonstrate that tool
partial execution can reduce request completion latency by up to 38.8%.

1 INTRODUCTION

The rapid evolution of large language models (LLMs) has significantly accelerated in recent years,
and LLMs have quickly become the state-of-the-art approach in many AI tasks, such as content
generation, question answering, and text classification. Consequently, LLM serving systems have
emerged as a crucial component in deploying these models in various applications to achieve high
performance and resource efficiency. Many LLM serving techniques have been proposed to reduce
response latency Leviathan et al. (2023); Chen et al. (2023a); Fu et al. (2024); Cai et al. (2024) and
improve system throughput Rasley et al. (2020); Kwon et al. (2023); Yu et al. (2022); Dao et al.
(2022); Dao (2024); Chen et al. (2023b).

Recently, a new use case, tool-assisted LLM serving, has emerged to enhance the reasoning capabilities
of LLMs and enable them to interact with the external world. In a typical tool-assisted LLM serving
workflow, a user first sends a request (i.e., the original prompt) to the system. An LLM will then
process this request and generate a set of tool calling commands, or plans. Tool executors will
invoke various tools to execute these commands and collect outputs, or observations. The original
prompt, plans, and observations will be concatenated following a template, and then sent back to
the LLM. The LLM generates either new plans, indicating a new round of tool execution, or the
ultimate response to be sent back to the user. Example tools include but are not limited to calculators,
databases, code interpreters, search engines, and ticket-booking travel agency websites. The most
notable example is ChatGPT plugins, which have allowed users to book air tickets and to reason
about mathematical expressions.

In this work, we identify a novel opportunity to enhance the efficiency of LLM serving systems
that involve external tools. Traditional approaches to LLM serving treat the invocation of external
tools as separate, sequential processes, leading to increased request completion times. However, we
propose that these processes can be optimized through partial execution of tools concurrently with
LLM decoding for a wide range of external tools (e.g., code interpreter, search, validation). We call
this tool partial execution. Figure 1 shows a conceptual example of LLM serving to demonstrate
the performance benefits of tool partial execution. For instance, when LLM generates Python code
for data visualization, one line of code such as “import matplotlib.pyplot as plt” can
immediately be executed in the Python interpreter before the subsequent Python code is decoded (or
generated) by the LLM. With partial execution, the resulting latency can be much shorter, because
the tool execution (e.g., loading Matplotlib) and LLM decoding (e.g., generating subsequent Python
code) can run in parallel without blocking each other.

To this end, we build Conveyor, an LLM serving system optimized for requests that trigger external
tools. Conveyor consists of two key design points. First, we propose an interface for a tool developer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM Serving

Decoding Prefilling Tool Execution

Tool Execution
LLM Serving w/o Partial Execution

Tool Execution
w/ Partial Execution

(ideal case)

Blocked (waiting)

Extended
delay

Figure 1: An example of tool-assisted LLM serving scenarios with and without tool partial execution
optimization. This example includes three rounds of LLM inference (blue and green blocks) and two
rounds of tool invocation (gray blocks).

to express the partial execution opportunity for an LLM serving system. For example, a code inter-
preter can use “\n” (newline) or “;” to serve as indicators of the opportunity for tool partial execution.
Second, we build a token-granularity scheduler to detect such partial execution opportunities and
invoke the corresponding tools to minimize unnecessary blocking and improve performance. During
LLM decoding, Conveyor detects the indication for partial execution opportunities, invokes tools, and
collects tool invocation results for future prefilling. Conveyor is fully compatible with state-of-the-art
efficient LLM serving techniques, such as PagedAttention Kwon et al. (2023), FlashAttention Dao
et al. (2022); Dao (2024), and continuous batching Yu et al. (2022).

To evaluate Conveyor, we use four LLM serving workloads that contain external tool invocations and
use Mistral-7B-Instruct-v0.2 Jiang et al. (2023) and Functionary-Small-v2.21 to invoke tools. Our
evaluation focuses on two major aspects. First, we demonstrate the potentials of tool partial execution
with Conveyor by showcasing the performance benefits across various workloads. For instance,
Conveyor reduces the latency by up to 38.8% across workloads including code generation, search,
and planning. Second, we intentionally explore the limitations of Conveyor. Since the performance
improvements depend heavily on the characteristics of workloads and the external tools, we combine
theoretical analysis with practical workload testing to thoroughly study scenarios (e.g., invoking
calculator tools) where Conveyor provide only limited improvements. This two-fold evaluation allows
us to present a comprehensive understanding of both the strengths and boundaries of Conveyor. We
would also like to highlight that the effectiveness of Conveyor is not affected by the choice of LLM
or prompts because the execution flow of LLM decoding instructions and invoking tools remains the
same that tool partial execution can happen alongside LLM decoding.

In summary, this paper makes the following main contributions:

• We are the first to identify the opportunity for tool partial execution during LLM decoding;

• We build Conveyor, an LLM serving system that enables tool partial execution to significantly
reduce the total request completion latency;

• We conduct systematic empirical evaluation and analysis to demonstrate that tool partial execution
can provide performance benefits to a wide range of external tools.

2 RELATED WORK

In this section, we first introduce how modern LLM serving systems work. We next summarize
emerging efforts in integrating external tool access into LLM serving.

2.1 LLM SERVING SYSTEMS

Modern LLMs predominantly employ the Transformer architecture Vaswani et al. (2017), at the
core of which lies the self-attention module. The self-attention module computes three vectors for
each token in the sequence, including query (Q), key (K), and value (V) vectors. It then calculates
the attention score for each token by multiplying its Q vector with the K vectors of all preceding
tokens, followed by a softmax and weighted average computation. Since the key and value vectors
for processed tokens will be reused when generating new tokens, previous keys and values are usually
cached in the GPU memory, known as the KV cache.

1https://github.com/MeetKai/functionary

2

https://github.com/MeetKai/functionary

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Intermediate
Agent

LLM
Serving
System

User

Tool Executors External Env

(a) (b)
(c)
(g)
(h)

(i)

(d) (f)

(e)

How does the
weather look like
in New York now?

Figure 2: A tool-assisted LLM serving scenario.

To process an LLM serving request, a Transformer-based LLM operates through two phases: Prefilling
and Decoding. During the prefilling phase, the entire user prompt is processed and the LLM generates
the first output token. The user prompt can be processed in parallel in a single iteration. Therefore,
GPU utilization is typically high during this prefilling phase thanks to the intra-request parallelism.
During the decoding phase, the model generates output tokens sequentially, relying on all previously
generated tokens, including both user prompts and all tokens produced thus far. This sequential
generation inherently results in lower GPU utilization and throughput as only one token can be
produced per iteration for a single serving request. This sequential generation process is called
autoregressive decoding. Therefore, modern LLM serving systems batch multiple serving requests
together to improve system throughput and resource utilization. For example, continuous batching Yu
et al. (2022); Kwon et al. (2023) has become the most widely deployed batching technique in existing
LLM serving systems.

2.2 LLM SERVING WITH EXTERNAL TOOL INVOCATIONS

Recently, there has been a rising trend of integrating LLM serving with external tool execution (e.g.,
ChatGPT plugins and Toolformer Schick et al. (2023)). External tools extend an LLM’s capabilities to
perform various complex tasks and interact with external environments. For example, many AI agents
enable LLMs to access search engines to acquire up-to-date information or access databases that
contain private datasets. LLMs can also invoke calculators to reason about complex math equations
and execute code interpreters to generate customized data visualization. Moreover, they can trigger
other ML models (e.g., computer vision models) to understand image contents.

A typical tool-enabled LLM serving system is depicted in Figure 2. A user sends a prompt to an
intermediate agent. There are typically three components in such systems: an intermediate agent
interacting with users, an LLM serving system, and a set of tool executors that interact with external
environments. There can be several rounds of tool invocation when serving one user request. For
brevity, we demonstrate the workflow assuming the request only needs one round of tool invocation:
(a) the user first sends a request to the intermediate agent. (b) The agent feeds the original prompt
to the LLM serving system, and (c) the LLM generates a plan, including tools to invoke and
corresponding parameters. (d) The agent then invokes tool executors accordingly. (e) The tool
executors interact with the external environments (e.g., online search engines or databases) and (f)
return the observations (i.e., execution output) to the agent. (g) The agent concatenates the original
prompt, plans, and observations together and feeds them back to the LLM. (h) The LLM generates
the ultimate response and (i) the agent sends the response back to the user.

Integrating external tools into an LLM serving system has inspired a new line in machine learning
system research: KV cache management. Since multiple rounds of LLM serving are typically needed
for a single user request, the resources (e.g., KV cache) for a finished LLM serving are likely to be
reused by future LLM inferences Abhyankar et al. (2024). Treating these multiple rounds of LLM
serving as independent requests results in redundant prefilling of the same token sequences. For
example, in Figure 2, to process the serving request (7), the LLM needs to compute the KV vectors
for the original prompt and generated plans, which have already been computed previously as (2)
and (3). AttentionStore Gao et al. (2024) evicts the KV cache to CPU memory as long as the PCIe
bandwidth permits the transfer. When the next round initiates, the KV cache is then loaded back into
the GPU memory to eliminate KV cache recomputation. InferCept Abhyankar et al. (2024) predicts
the execution time of external API access and estimates the corresponding GPU resource waste.
InferCept then uses the estimation results to make GPU management decisions, such as discarding
the key-value states, swapping the states to CPU memory, or retaining the states inside the GPU.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Managing the KV cache is only one of the opportunities to accelerate LLM serving with external
tools shown in this of works. Next, we will show that there is one additional opportunity to improve
LLM serving with external tool invocations.

3 DESIGN

We first describe the new opportunity of tool partial execution. We then describe our new tool interface
design and system implementation in Conveyor. Finally, we analyze the potential performance gain
from tool partial execution.

3.1 EFFICIENCY OPPORTUNITIES IN MODERN TOOL-ASSISTED LLM SERVING SYSTEMS

Today’s tool-assisted LLM serving systems start the plan execution only after the LLM completes
the entire decoding procedure. This misses the opportunities for pipelining LLM’s decoding and
plan execution to achieve reduced serving latency and improved system efficiency. For example,
it would be ideal if the Python interpreter could start partially executing the script as soon as the
LLM generates the first line of code (e.g., import torch), without waiting for the generation
of the entire script. However, in existing designs Schick et al. (2023); Abhyankar et al. (2024),
since the LLM serving system and the tool execution are not co-optimized, the Python interpreter
will only start after the entire script has been generated. This leads to extended serving delay and
inefficient resource utilization (e.g., the LLM is idle and GPU cycles are wasted). We name this
desired capability of initiating tool execution before complete LLM decoding as tool partial execution,
which has the potential to significantly reduce the serving latency and improve the overall efficiency
and responsiveness of the system.

Figure 3: Python code generated by the LLM.

Let’s consider a concrete
example of executing
Python code (in Figure 3).
This code is generated by
Mistral-7B-Instruct-v0.2
with the prompt “Plotting
a sine wave in python
with torch and matplotlib.
ONLY output code without
trailing explanation.”. We
use the markdown code
block syntax ```python
and ``` as the indicators
for the start and end of the
tool. The execution without
tool partial execution is that the LLM first generates the entire Python script, executes the script, and
returns the image to the user. To understand why Conveyor provides performance improvement in
this case, we plot the execution timeline with and without tool partial execution in Figure 4. The
green blocks represent the LLM decoding of a line of Python. The numbers represent line numbers.
The grey boxes represent the execution of the Python code in a Python interpreter. With partial
execution, the execution of lines 1–12 can be completely pipelined with the decoding procedure, and
only line 13 needs to be executed after the decoding is finished.

Realizing such partial execution in existing tool-assisted LLM serving systems requires us to address
the following two technical challenges. First, the LLM system needs to understand when a tool
partial execution can be started. This information needs to be passed to the system whenever a
tool is registered, and it varies across different tools. For example, it is not possible to establish an
HTTP connection without fully decoding the hostname. Therefore, a new set of interfaces should
be properly designed for tool developers. Second, we need to carefully avoid unnecessary blocking
and maximize resource efficiency when LLM decoding and tool execution are scheduled in parallel.
For example, one round of LLM serving may invoke multiple tools sequentially. The system should
manage these executions and outputs properly so that tool execution will not affect LLM decoding or
vice versa.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Decoding Prefilling Tool Execution

Python plugin

6Decoding 1 92 53 4 8 127 10 11

1 2 3 4 56 7 8 9 10 11 12

Python plugin

Decoding 1-13

12 3 4 56789 10 11 12

With Partial Execution

Without Partial Execution

13

13

13

Figure 4: Case #1: Execution timeline for the CodeGen workload with and without partial execution.
The numbers in the diagram represent the line number of code in Figure 3. The length of each
block represents the relative execution time but does not correspond to exact duration due to the
expressiveness constraints in the diagram.

Tool Developers
Scheduler

ParserParserParserParser

LLMLLMLarge Language Model

ParserParserParserPlugins

(1)

Model Developers

(2)

UsersTool Execution Process

(3)
(4) (5)

(6)

(7)

(8) (9)

(b)

(a)

Conveyor System

Figure 5: Conveyor workflow overview.

3.2 TOOL INTERFACE DESIGN TAILORED FOR PARTIAL EXECUTION

Partial execution in Conveyor requires tool developers’ involvement to achieve optimal performance.
Tool developers need to inform the LLM system when a tool can be initiated and what data is
needed for the tool to execute. One option is to provide a token-level streaming interface to tool
developers. This option requires tool developers to manually parse these tokens and extract the
required information (e.g., tool invocation indicator and corresponding parameters). However, this
option is neither user-friendly nor efficient. First, the tool developer has to handle complex parsing
logic based on raw tokens, which can be burdensome for complex tools. Furthermore, a user may
register many tools for potential usage while an LLM request may invoke none of them. In this
scenario, complex parsing can be redundantly executed multiple times because each tool needs to
process raw tokens independently, leading to wasted resources.

Instead, Conveyor takes over the parsing responsibility and provides neat but generic interfaces to
tool developers. Conveyor offers a set of parsers and a base plugin interface for tool developers. Tool
developers only need to select a parser, typically depending on the LLM they use, and wrap their tool
implementation with the plugin interface. Developers register both the parser and the plugin with the
system during registration.

The parser and plugin interface enable the system to determine when a tool is invoked and how data
is used by the tool (e.g., data format). For example, a Python interpreter plugin consumes data line by
line as it executes a line of data when each end-of-line is decoded. Conveyor handles token parsing
for all tools, avoiding redundant parsing execution by different tools. Additionally, wrapping the tool
implementation with our plugin interface is lightweight. For example, our implementation for the
Python interpreter plugin shows that only 32 lines of Python code are needed, including necessary
logging and error handling.

3.3 CONVEYOR EXECUTION WORKFLOW

After plugins are registered to Conveyor, the system understands the indicators of different tools for
partial execution and the data these tools require. To efficiently and effectively detect these indicators
and conduct partial execution during decoding, Conveyor includes an efficient parser. This parser
parses the generated token stream and invokes plugins accordingly. It is designed to support stream
processing and emit completed pieces of data immediately for efficiency.

Figure 5 shows the system architecture and workflow of Conveyor. Model developers and tool
developers first register models and tool plugins to Conveyor, shown as (a) and (b). Next, when

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(1) a user sends a request to the system, the scheduler schedules received requests and (2) invokes
the LLM for serving. During each decoding iteration, (3) tokens are sent to the parser. The parser
processes generated tokens, assembles them into semantic information (e.g., strings or keys), and
(4) identifies tool invocation indicators. When a tool invocation indicator is identified, (6) Conveyor
invokes the corresponding plugins and spawns a new process with an isolated setup to run the tool
instance. Conveyor relies on duplex inter-process communication (IPC) channels to communicate
with the new process running the tools to (6) send tool execution commands and (7) receive outputs.
If no tool invocation is needed, (5) the parser simply returns the tokens to the scheduler and the
next iteration starts. During each iteration, (8) the scheduler periodically polls the plugins’ status
to receive tool execution outputs. The scheduler determines whether (2) a new round of serving is
needed or (9) the response is ready to be returned to the user.

Currently, LLMs continue to decode the data needed by the tool after the indicator has been decoded.
Therefore, when the parser has processed adequate tokens and detects that a piece of data needed
by the tool has been decoded, it assembles a message containing the data and sends it through the
IPC channel to the tool process. Notably, the parser only needs to wait for the data required by the
tool (e.g., parameters) instead of the entire LLM response. The separate process receives the data
from the IPC channel and attempts to execute the tools. Depending on the tools, there might be cases
where a tool needs multiple pieces of data to execute. The process executing the tools will store data
in an internal buffer and wait for the remaining data in such cases. For example, when invoking a
Python interpreter, function definitions (e.g., def func():) should be executed when the entire
definition block has been decoded.

It is worthwhile to note that we choose to spawn tool execution on a separate dedicated process to
avoid unnecessary contention or interference with the LLM decoding procedure. Machine learning
serving software usually uses Python as the programming language platform (e.g., PyTorch Paszke
et al. (2019)), and running a Python-based tool in the same process may cause either the tool execution
or LLM decoding to be blocked by the Python Global Interpreter Lock (GIL) mechanism. Such
contention can cause extended latency and reduce system performance. Further, running tools on a
separate process will enforce security, since the tools are run in a different context, having an isolated
address space. Even if the tool is corrupted, it will not affect the integrity of the LLM inference.
Another feature of Conveyor is that the parser implementation only depends on the syntax of the tool
message generated by the model. This means Conveyor only rely on a small number of well-defined
parsers. The number of parsers needed only depend on the number of models supported by the
system, no the number of tools.

3.4 THEORETICAL ANALYSIS

We now analyze the theoretical performance gain brought by Conveyor. In §4.4, we demonstrate
that the theoretical performance gain can reflect the general trend of empirical performance gain
measured in our real implementation.

Consider a general tool-assisted LLM serving request, which may consist of multiple rounds of tool
invocations. For each round i, we denote the time of token generation as gi, including both the
prefilling and decoding time. We denote the time of tool execution for round i as ti. In tool-assisted
LLM serving workflows, the next generation (i.e., decoding) phases typically depend on previous
tool outputs. Therefore, let us assume that the generation of gi+1 depends on the tool invocation of
ti. Consider n rounds of tool invocations. Without tool partial execution, the total execution time is
Lold =

∑n
i=1(gi + ti) + gn+1. Here gn+1 is the LLM decoding to process the output of the last tool

invocation, so there is no tool access after this decoding procedure.

When tool partial execution is enabled (e.g., using Conveyor), the best case is that the token generation
and tool execution can be fully parallelized. For example, the tool starts to execute after the first
token is generated and returns the output before the last token is decoded. The worst case is that
the tool only starts after the entire decoding procedure has finished. Therefore, the theoretical time
consumed by each tool-assisted LLM serving round i would be

max{gi, ti} ≤ Li ≤ gi + ti. (1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The overall latency to serve a request is therefore bounded by:
n∑

i=1

max{gi, ti}+ gn+1 ≤ Lnew ≤ Lold (2)

The best-case speedup that can be achieved via enabling tool partial execution is where gi and ti
are fully overlapped, i.e., Lnew =

∑n
i=1 max{gi, ti}+ gn+1, with a corresponding relative latency

improvement given by
∑n

i=1(gi+ti)+gn+1∑n
i=1 max{gi,ti}+gn+1

− 1.

4 EVALUATION

We evaluate Conveyor on various workloads and demonstrate how integrating tool-awareness into
modern LLM serving systems enhances system efficiency. First, we briefly introduce our evaluation
setup. We then evaluate Conveyor on various tool-assisted LLM serving tasks from existing litera-
ture, showing that partial tool execution significantly reduces response delay and improves overall
resource utilization. Second, through two case studies, we systematically break down performance
improvements for these workloads in detail. We then demonstrate that Conveyor matches the trend
of the theoretical best-case latency speedup. Finally, we analyze and demonstrate that Conveyor’s
overhead is negligible in modern tool-assisted LLM serving scenarios.

4.1 SETUP

We evaluate Conveyor on our testbed of servers with two Intel 10-core Xeon Gold 5215 CPUs
(running at 2.5 GHz base frequency) and one NVIDIA GeForce RTX 3090 GPU. We implement
our system on top of PyTorch Paszke et al. (2019) with FlashInfer CUDA kernels Ye et al. (2024).
Our Conveyor system is implemented in about 2K lines of Python. Our baseline is the same code
but with tool partial execution disabled, where tool invocation always happens after decoding to the
end-of-sequence (EOS) token.

Workloads. To the best of our knowledge, there are unfortunately no publicly available realistic
datasets of tool-assisted LLM serving scenarios. Although enabling LLMs to use tools is a very
hot field in generative AI, prior works Li et al. (2023); Xu et al. (2023b) mainly test whether LLM
can produce correct output to invoke the tools. The tool API interfaces are designed for testing
LLMs’ comprehension capabilities, and the tools only have mocked backend implementation which
produce synthetic results. We cannot use such workloads to evaluate Conveyor, because we need
tools to actually execute in order to perform latency evaluation. Instead, we systematically investigate
existing literature Kim et al. (2023); Liu et al. (2024); Jin et al. (2024); Arora & Kambhampati (2023);
Xu et al. (2023a); Ruan et al. (2023); Kuchnik et al. (2023); Li et al. (2023); Xu et al. (2023b) and
construct four scenarios for our evaluation. We implement generic tool interfaces and the backend
for the following four scenarios. In our evaluation, the tools execute real actions and make actual
network requests to the Internet.

• CodeGen: We ask the LLM to plot a sine wave in Python with the torch and matplotlib
library. Tool partial execution starts when Conveyor detects a complete line of Python code is
decoded.

• Search: We ask the LLM to write a “Hello World” program in Python, C++ and Java consecutively,
using tools to search online and use results from StackOverflow. Tool partial execution starts when
Conveyor identifies the function name of the tool.

• Planning: We ask the LLM to search the market caps of Microsoft and Apple, and use a calculator
to compute their ratio and output using a given formatting tool. The LLM generates a 4-stage plan
involving tools: the first and second stages search on the Internet, the third stage is to invoke a
calculator, and final stage is to use the format tool. Tool partial execution starts when a complete
stage of the plan is generated.

• Validation*: We ask the LLM to generate a function call to get local news. However, the LLM
fails to generate the correct location arguments even though it is prompted in the tool description.
The local news API requires a city name and a state name. If arguments are not correctly presented
in the correct format (e.g., missing the state name or the city name), the API call will fail. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CodeGen Search Planning Validation*0

1000

2000

3000

4000

Av
g

La
te

nc
y

(m
s) w/ tool

partial execution
w/o tool
partial execution

Figure 6: Average request completion latency with and without tool partial execution. Error bars
represent the standard deviations. Validation*: validation is not a standalone tool; it is a functionality
embedded within tools, such as verifying the validity of parameters.

failure is due to the LLM model’s reasoning constraint. For this workload, we only measure the
latency needed for detecting if this invocation is problematic, not including tool execution time.

We use Mistral-7B-Instruct-v0.2 for Python CodeGen and Planning workloads, and use Functionary-
Small-v2.2 for Search, Validation workloads. We choose Mistral-7B, because it is great at generating
Python code. We pick Functionary-Small, because it is trained for invoking tools. At the same
time, they meet our testbed’s limitations (NVIDIA RTX 3090’s available GPU memory). We pick
Functionary-Small for the Validation workload because we empirically found that it has a higher
probability of generating format-correct requests compared to Mistral-7B. We set temperature to be
0, so every test for the same workload has the same LLM output. Performance variance across tests
for the same workload is due to the performance variance in CPU/GPU processing and the Internet
(for the Search and Planning workloads).

Note that the effectiveness of Conveyor is not affected by the choice of LLM or prompts because the
execution flow and of LLM decoding instructions and invoking tools remains the same. The quality
of the final output will also not be affected since the output of both LLMs and tools are unmodified.
Enabling Conveyor or not only affects the starting time of tool execution and thus improve latency.
These aspects will be further elaborated in the following case study section.

4.2 MAIN RESULTS

Conveyor’s performance improvement is significant, but the extent heavily depends on the perfor-
mance characteristics of the tools. We run each workload 100 times and collect the average latency
and the standard deviations, and the results are shown in Figure 6. For the CodeGen workload,
the latency improvement comes from the parallelized execution of LLM decoding and the Python
interpreter execution. The average latency improvement is 26.3%. For the Search workload, the
performance gain comes from parallelizing the tool invocation of the search on StackOverflow and
the LLM decoding for the next search. The improvement is 35.8% on average. The latency variance
of the Search workload is high because it involves search over the Internet, and the constraints in the
search bring more uncertainty at the server side. For the Planning workload, the improvement comes
from parallel execution of decoding the plan and executing parts of the partially decoded plan, and
the corresponding latency improvement is 38.8%. Validation workload has shown the best latency
improvement of 376.4%, in which the source of the performance improvement is different from other
workloads. The partial execution allows the check for the format of the tool execution to run before
the entire sequence is decoded.

4.3 CASE STUDIES

Now, we delve deep into two case studies, CodeGen and Validation, to demonstrate where the
performance improvement comes from.

Case #1: Python code generation. For the CodeGen workload, we let Mistral-7B-Instruct-v0.2
generates the Python code to plot a sine wave (Figure 3). Figure 4 shows the corresponding execution
timelines with and without tool partial execution. Conveyor helps to reduce averagely 725 ms for the
entire end-to-end serving latency, which is 3,918 ms on average without partial execution, leading

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Decoding Prefilling Tool Execution

Plugin w/ Validation
Decoding “location”: “New York”

Plugin w/ Validation

Decoding “location”: “New York”, “date”: “2024-04-01”, “duration”: …

With Partial Execution

Without Partial Execution

Abort

Abort

Figure 7: Case #2: Execution timeline for the Validation workload with and without partial execution.

to 26.3% improvement (see §3.4) for this user request. It is worthwhile to note that a few import
statements (e.g., line 2 and line 5) consume negligible time because Conveyor invokes the Python
interpreter through fork, so the plotting script can reuse the modules already imported by Conveyor.

Case #2: Tool validation. For the Validation workload, we let Functionary-Small-v2.2 generate
a request for a local news service. The request is in JSON format, and the field “location” has to
contain a valid city name and a state name. If the “location” only contains the city name, the request
will be rejected by the service, and there is no point in sending such a request. Figure 7 shows the
execution timeline. Without partial execution, such a check has to take place after the entire request
is decoded. Partial execution allows the check to happen earlier and can abort immediately, saving
the resources and the time for decoding subsequent tokens.

4.4 LIMITATIONS OF CONVEYOR AND THEORETICAL ANALYSIS

The performance improvement of Conveyor depends heavily on the workloads. For lightweight tools
(where tool execution time is orders-of-magnitude less than the decoding time), we would expect
Conveyor to provide minimal performance improvement. To study this effect, we study two additional
workloads, where there is negligible opportunity to overlap LLM decoding and tool execution. We
use Functionary-Small-v2.2 for these two tools.

• Database: We provide a small SQLite file on disk in advance and ask the LLM to select
all the data from the database. Tool partial execution starts when Conveyor identifies the
function name of the tool.

• Calculator: We ask the LLM to compute 200×701 using a calculator tool. Tool partial
execution starts when the complete formula is decoded.

Figure 8: Theoretical and empirical latency
improvement from tool partial execution.

Further, our system evaluation is limited to the ca-
pability of existing open-source models and the ex-
isting sets of tools that they support. Even for the
tools evaluated in this paper, it is difficult to com-
prehensively evaluate more workloads due to model
restrictions. For example, for the planning work-
loads, we are only able to evaluate plans that exist-
ing models can create, and future LLMs may be able
to create more complex plans that our evaluation
methodology cannot cover.

To systematically quantify how much benefits Con-
veyor’s tool partial execution can bring for work-
loads have only have little overlapping opportunity
for tool execution and LLM decoding and future
tools, we use our mathematical analysis in §3.4 to quantify the maximum theoretical performance
gain in terms of latency improvement. We plot this latency improvement as a blue curve in Figure 8.
The x-axis is the ratio between tool execution time and decoding time, ti

gi
, assuming this ratio is fixed

across all i and gn+1 is negligible compared to
∑n

i=1 max{gi, ti}. We run empirical experiments
for the Database workloads and Calculator workloads. We put our empirical evaluation results as
red dots in the figure. As expected, the Database and the Calculator workloads achieve a near-zero
improvement. This is because the tool execution time is negligible compared to LLM decoding time.
They will not be accelerated by tool partial execution. The CodeGen, the Planning, and the Search
workloads achieve a more significant performance improvement, because their tool/decoding time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ratio is near the peak of the curve. The red dots are below the theoretical limit, because the theoretical
limit assumes tool access time is fully masked by decoding or vice versa. The red dots match the
overall trend of the theoretical best-case latency speedup. Note that the Search and the Planning
workloads performance depend on Internet performance. Their tool time is not stable and thus hard
to overlap perfectly with LLM decoding. We did not show the dot for the Validation workload: its
source of improvement is from aborting decoding earlier and is thus not captured by our theoretical
analysis.

4.5 OVERHEAD OF CONVEYOR

Conveyor has overheads in parsing output tokens. We measure Conveyor’s CPU overheads when
running the CodeGen task with and without tool partial execution. Our result is that Conveyor incurs
0.6% extra CPU cycles, which is negligible. This is expected since most CPU cycles are used in
the LLM serving (e.g., launching CUDA kernels) and triggering external tools), and parsing itself is
much more lightweight compared to these operations.

Another type of overhead is how much additional human effort a tool developer needs in order to
use our interface to port tools on top of Conveyor. For our six workloads, we manually incorporate
corresponding tools to Conveyor using Conveyor’s tool plugin interface. Each tool’s incorporation
only needs 20–40 lines of code. This demonstrates that porting more tools on top of Conveyor will
be simple.

5 CONCLUSION

In this paper, we presented Conveyor, a novel LLM serving system designed to efficiently handle
requests that incorporate external tools. The core idea of Conveyor is to enable tool partial execution
alongside LLM decoding to improve request completion latency. Conveyor’s design consists of two
components. First, Conveyor contains a tool interface design for tools to indicate the partial execution
opportunity to an LLM serving system. Second, Conveyor has a request scheduler that facilitates
corresponding tool partial execution. Our evaluation based on a set of LLM serving workloads shows
that Conveyor improves request completion time by up to 38.8%.

REFERENCES

Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, and Yiying Zhang. InferCept: Efficient
Intercept Support for Augmented Large Language Model Inference. In International Conference
on Machine Learning (ICML), 2024.

Daman Arora and Subbarao Kambhampati. Learning and Leveraging Verifiers to Improve Planning
Capabilities of Pre-trained Language Models. ArXiv, abs/2305.17077, 2023. URL https:
//api.semanticscholar.org/CorpusID:258947755.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating Large Language Model Decoding with Speculative Sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-Tenant LoRA Serving. In Machine Learning and Systems (MLSys), 2023b.

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and Memory-Efficient Exact Attention with IO-Awareness. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

10

https://api.semanticscholar.org/CorpusID:258947755
https://api.semanticscholar.org/CorpusID:258947755

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the Sequential Dependency of LLM
Inference Using Lookahead Decoding. In International Conference on Machine Learning (ICML),
2024.

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang,
Zhou Yu, and Pengfei Zuo. AttentionStore: Cost-effective Attention Reuse across Multi-turn
Conversations in Large Language Model Serving. arXiv preprint arXiv:2403.19708, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Shuowei Jin, Yongji Wu, Haizhong Zheng, Qingzhao Zhang, Matthew Lentz, Z. Morley Mao, Atul
Prakash, Feng Qian, and Danyang Zhuo. Adaptive Skeleton Graph Decoding. arXiv preprint
arXiv:2402.12280, 2024. URL http://arxiv.org/abs/2402.12280.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. An LLM Compiler for Parallel Function Calling. arXiv preprint arXiv:2312.04511,
2023.

Michael Kuchnik, Virginia Smith, and George Amvrosiadis. Validating Large Language Models with
ReLM. In Machine Learning and Systems (MLSys), 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https://doi.org/
10.1145/3600006.3613165.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding. In International Conference on Machine Learning (ICML), 2023.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023. URL
https://arxiv.org/abs/2304.08244.

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E. Gonzalez, Ion Stoica,
and Matei Zaharia. Optimizing LLM Queries in Relational Workloads, March 2024. URL
http://arxiv.org/abs/2403.05821. arXiv:2403.05821 [cs].

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/abs/
1912.01703.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System Optimiza-
tions Enable Training Deep Learning Models with Over 100 Billion Parameters. In International
Conference on Knowledge Discovery & Data Mining (KDD), KDD ’20, pp. 3505–3506, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:
10.1145/3394486.3406703. URL https://doi.org/10.1145/3394486.3406703.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei Shi,
Hangyu Mao, Ziyue Li, Xingyu Zeng, and Rui Zhao. TPTU: Large Language Model-based AI
Agents for Task Planning and Tool Usage, November 2023. URL http://arxiv.org/abs/
2308.03427. arXiv:2308.03427 [cs].

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves to
Use Tools. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

11

http://arxiv.org/abs/2402.12280
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2403.05821
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3394486.3406703
http://arxiv.org/abs/2308.03427
http://arxiv.org/abs/2308.03427

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models,
May 2023a. URL http://arxiv.org/abs/2305.18323. arXiv:2305.18323 [cs].

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the
tool manipulation capability of open-source large language models, 2023b. URL https:
//arxiv.org/abs/2305.16504.

Zihao Ye, Lequn Chen, Ruihang Lai, Yilong Zhao, Size Zheng, Junru Shao, Bohan Hou, Hongyi
Jin, Yifei Zuo, Liangsheng Yin, Tianqi Chen, and Luis Ceze. Accelerating self-attentions for
llm serving with flashinfer, February 2024. URL https://flashinfer.ai/2024/02/02/
introduce-flashinfer.html.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A Dis-
tributed Serving System for Transformer-Based Generative Models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521–538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

12

http://arxiv.org/abs/2305.18323
https://arxiv.org/abs/2305.16504
https://arxiv.org/abs/2305.16504
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

	Introduction
	Related Work
	LLM Serving Systems
	LLM Serving with External Tool Invocations

	Design
	Efficiency Opportunities in Modern Tool-assisted LLM Serving Systems
	Tool Interface Design Tailored for Partial Execution
	Conveyor Execution Workflow
	Theoretical Analysis

	Evaluation
	Setup
	Main Results
	Case Studies
	Limitations of Conveyor and Theoretical Analysis
	Overhead of Conveyor

	Conclusion

