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ABSTRACT

This paper investigates the theoretical optimality of community detection in net-
works using graph neural networks (GNNs). We show that appropriately designed
GNN:ss for supervised community detection can match the performance of classical
spectral and likelihood-based methods, achieving information-theoretic optimality
under the stochastic block model (SBM). These results provide the first rigorous
connection between deep learning algorithms and their statistical guarantees for
community detection. We extend existing GNN-based methods into a two-stage
framework, where the second stage is critical for ensuring theoretical optimal-
ity. Our algorithm is trained on synthetic and/or real-world graphs with known
community labels and can be subsequently applied as generic algorithms to any
network in an off-the-shelf manner, offering strong practicality. Extensive exper-
iments on both synthetic and real-world datasets support our theoretical findings,
demonstrating that the proposed two-stage GNN framework delivers high accu-
racy and remains robust under model mis-specification. These results establish
GNN s as both a theoretically sound and practically effective approach to commu-
nity detection.

1 INTRODUCTION

Community detection is a central task in network analysis, with broad implications across disci-
plines such as sociology, biology, computer science, and physics. Advances in community detection
contribute not only to theoretical developments in graph theory and machine learning but also to
practical applications across scientific, industrial, and societal contexts. Over the past decade, re-
search on community detection has seen rapid and substantial progress. Under canonical models
such as the stochastic blockmodel (SBM) and degree-corrected blockmodel (DCBM), existing work
have investigated thoroughly e.g., recoverability conditions, information-theoretic thresholds and
minimax misclassification rates (Abbe et al., 2016; [Zhang & Zhou, 2016} [Yan, 2016; |Gao & Mal,
20215 |Gao et al., 2018; [Mossel et al., [ 2023)).

When considered in the context of community detection, algorithmic advances outpace theoretical
developments in deep learning. On the algorithmic front, there is a growing use of deep learning
algorithms in community detection beyond traditional statistical methods. These algorithms include
e.g., graph convolutional network (GCN) (Kipf & Welling, 2017; Wang et al 2021} [Liu et al.,
2023)), graph neural network (GNN) (Chen et al., [2019;|Sun et al., 2021} Jiang & Ke} [2023)), graph
autoencoders (Kipf & Welling, 2016; He et al., 2022). To further improve the effectiveness of rep-
resentation learning, attention mechanisms have also been incorporated into the neural networks
(Velickovic et al., 2018} Wang et al., |2023; [Zhao et al., [2022). We refer interested readers to the
survey paper [Su et al.|(2024). While these deep learning algorithms have significantly advanced the
effectiveness of community detection, not enough attention has been devoted to developing theo-
retical understandings of their performance. (Chen et al.|(2019) state the analogy of GNN with the
power iteration method, but rigorous analysis on approximation error is absent. Their work also does
not answer the question of whether GNN can attain good theoretical bounds in terms of misclassi-
fication rate. To the best of the authors’ knowledge, there has not been any solid or comprehensive
theoretical analysis on the statistical properties of deep learning methods for community detection.

In the broader field of learning, a body of work has established results concerning the statistical
properties that deep neural networks can achieve. |Yarotsky| (2017) is one of the pioneering works
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to study the approximation bounds of deep ReLU networks. [Schmidt-Hieber| (2020) illustrate how
ReLU networks’ depth and sparsity govern approximation power and convergence rates in non-
parametric regression setting. Under such setting, Hu et al.| (2021)) and [Suh et al.| (2022)) study the
generalization properties in overparametrized ReLLU neural networks. There are also several re-
sults on convergence rates of deep neural networks in classification setting (Kim et al.,|2021; |Bos &
Schmidt-Hieber, 2022; | Meyer, 2023)), and density estimation setting (Bos & Schmidt-Hieber, |2024)).
Readers are referred to the survey paper Suh & Cheng|(2025) for more details. All these studies fo-
cus on deep neural networks with conventional problems such as regression and classification, rather
than graph-structured data considered in this paper. Nonetheless, they constitute one of the major
motivations for the present work.

This paper aims to close the gap between deep learning-based community detection algorithms and
their theoretical properties. We try to answer the following theoretical questions in the community
detection context: (i) Can a well-designed GNN perform approximately the computations that are
needed in traditional statistical methods, and if so, what is the network depth requirement to reach
certain level of approximation accuracy? (ii) Can GNN achieve the minimax rate of community
detection in classical models such as SBM? (iii) How good is the trained GNN on the unseen sam-
ples? In other words, can the trained GNN achieve strong performance for out-of-sample networks?
By addressing these questions, we establish, possibly for the first time in the statistical community,
the theoretical properties of deep learning—based methods for community detection. Furthermore,
this paper improves upon the existing GNN community detection algorithm by leveraging insights
from established statistical theory. In particular, we incorporate a second stage GNN devised to
carry out local refinement of normalized edge counting that improves the accuracy of community
assignments. This stage is essential for the GNN to achieve the minimax rate.

There are several technical challenges in our theoretical analysis. First, while existing frameworks
for conventional deep neural networks offer a comprehensive set of theoretical tools, GNN exhibits
substantial differences from those conventional neural networks designed for regression-type data.
In particular, GNN computations involve more intricate operations, such as spectral decomposition
(or more specifically, orthogonal iteration) on matrices, whose approximation errors and conver-
gence properties that has not been established in prior literature. Second, by establishing a general-
ization bound, we go beyond the typical existing analysis focused on the error rate only on training
(in-sample) data, and prove rigorously that the trained GNN performs well also on out-of-sample
networks.

Contributions. We summarize the main contributions of this paper as follows:

* We establish, for the first time in the literature, a statistical theoretic foundation for deep
learning—based community detection algorithms. We derive error bounds for GNN approx-
imations. We demonstrate that GNN, with ReLU-based activations, can achieve the mini-
max rate. In SBM with a typical parameter setting, the number of layers needed to achieve
minimax rate is at most O((logn)®), where n is the network size and c is an positive con-
stant. This result bridges the gap between deep learning algorithms and their underlying
theoretical guarantees for community detection.

* We propose a two-stage GNN training scheme, where the second stage augments the exist-
ing GNN-based supervised community detection with a local refinement stage. This two-
stage approach not only enhances empirical performance but, more importantly, guarantees
that the resulting estimator attains the statistically minimax rate.

* We provide a reusable framework to establish generalization bounds of the GNN-based
community detection algorithms by investigating the complexity of the underlying GNN-
based function class.

Notations. We write I,, as the identity matrix of size n (or I as the identity matrix in general)
and J,, as the n X n matrix of ones, i.e., J, = 1,,x,. We use 1, to represent the n-dimensional
vector of all ones. For a vector x € R”, we use ||z to denote the Euclidean norm of z, and
|z]lmax = maxi<j<k|z;| to denote its infinity norm. For a matrix Y € R™ %, let Y;. and Y,
represent its ith row and jth column respectively. Also, let ||Y||max = max; ; |Yi;|, ||Y||F and
||lY'||]2 denote its infinity norm, Frobenius norm and spectral norm respectively. Let op,in (Y') be the
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smallest singular value of Y, and col(Y") be the column space of Y. For a positive integer n, we use
[n] to denote the set {1,...,n}. For aset S, we use |S| to denote its cardinality.

2 MODEL AND ALGORITHM

2.1 THE SBM SETUP

We consider the classical SBM setup. Assume the undirected network has n nodes and a known
number of communities K, with K = O(1). The cases of unknown K, and/or K with a larger
order, are left to future research. Suppose the true community labels are o = (o1, ...,0,) € [K]™.
The size of the kth community is denoted by n, = >, Tio,—ry.- Letn = [ng,... k|,
Nmin = Milge[g] Nk, and Nmax = Maxge[g] nk. The adjacency matrix A € R™ ™ has (i, j)
entry associated with the edge between every pair of nodes such that A;; = 0 and

Aij =Aj = Bernoulli(p;;) forl <i < j <n, (1)
where the underlying probability matrix P € R™*™ is defined by

Pij = ]l{aizaj}p + ]l{aﬁéaj}q (2

with 0 < ¢ < p < 1. The relationship p > q assures that the network is assortative. It is possible
to relax to the form P;; = p,,,;, meaning that the connection probabilities within and between
communities may depend on the specific pair of communities involved. However, for the theoretical
derivation presented in this paper, we retain the simpler form given in (Z). We write the model
determined by (1) and (2) as SBM(n, p, q).

For estimated labels 6 = (61,...,6,), we focus on the misclassification rate ¢y(o,5) =
Minges, + > iein) Ln(o:)26,}> Where Sk represents the set of all possible permutations of [r].

Some notations are in order. Assume A has eigenvalues Ay, ..., A, satisfying [A1] > -+ > |A,],
and associated eigenvectors vy,...,v, € R™. Letn = |Ak|/|Ak+1|. Define V = [v1,...,0,],
Vi = [o1,-.,0x) Vo = [ocsn, s va) A = ding(Ary -, An)s Ar = diag(A, ... Ax), As =
diag(AK—‘rh cee )‘n)

2.2 THE GNN FRAMEWORK

To conduct supervised community detection, we adopt the line GNN framework in [Chen et al.
(2019). Suppose the mth layer of the GNN has node features of dimension d,,, and these node
features are presented by a vector (™) € R™*%»_ That is, the ith row of (™) is the features of node
i. The GNN is characterized by a group of linear operators on z("), where these linear operators
are precisely the multiplication on the left by n x n matrices. Following the usual notation, we
write a graph G = (V, E). For a graph G with size |V| = n and adjacency matrix A, we choose
the family of n x n matrices F(A) = {I,,, J., D, A, A; ..., Ay} with some positive integer h, in
which D is the degree matrix that is diagonal and whose (4, %) entry D;; is the degree of node 7, and
Ap, = min(1, A2h). We only allow | F(A)| = O(1). Unlike|Chen et al.|(2019), we have included an
additional matrix J,, in F(A) in our model. This facilitates our theoretical analysis, while leaving
the practical results nearly unaffected.

The GNN maps features of one layer to those of the next via linear operators induced by the matrices
in F(A), followed by the ReLU activation function. In particular, it first computes

2t = N 0pmglm L) = p | ST 0™ | 3)
O;eF(A) O,eF(A)

d’”l . .
where 95’”) € Rénx~5~ are GNN parameters, and p(-) is the celebrated ReLU function p(z) =
max(0, z) with entry-wise action on matrices. Then it concatenates z(™+1) and z(™+1) to get the

features of the next layer

pm+1) — Z(m+1)72(m+1):| € RnXdm1 (4)
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We concatenate {9§m) : O; € F(A)} into a vector 8™ with length d,,,(dy,11/2)|F(A)|, and
denote # = {8 ... #(M)} as the collection of parameters in each layer. Essentially, a GNN
is fully determined by the parameters ¢, and does not depend on the particular graph G. Define
|d||max = maxi<m<nr dm the width of the GNN. With chosen initial features 20 e R*do | we
write the effect of GNN with parameters ¢ on graph G as a mapping fj ..o ()

fgﬂc(o) (G) = Op(m) O Og(m—1) O+ 0 0py(0) (Jj(o)), ®))

where og(») means the GNN operators defined by and (4) with parameter #(™). Note that (%)
does not depend on 6 in any way, but is allowed to be random.

We attach a softmax layer at the end of the GNN to formulate the community assignment. The result
of softmax function on each row of z(™), is a probability matrix ¥(A,z(?);0) € R"*¥ whose
rows all sum up to 1. With this probability matrix, one can determine the estimated community
labels o(A, z(9); 0) by (A, z(0); 0) = maxerx] Yi,k (A, z(0);9).

Define the loss function with respect to GG as the cross-entropy

000 9(A,2:0) = — min + 3 log (¥, 00 (A,20:0)) ©)
i€[n]

TESK N

The sum in () can also be regarded as the log-likelihood function of a multinomial logistic regres-
sion with (M) as the design matrix and 7(c’) as the response. When the training set consists of
graphs G1, ..., G, with adjacency matrices A, ..., AU and initial features z(°V), ... 2(0m)
the objective of training is to minimize the empirical risk R, ({A®}7, {2©)}m 10) =

Sy (o, U (A 20 0)) fm.

2.3 A TWO-STAGE GNN SCHEME

The classical two-stage algorithm (Gao et al., 2017; 2018} |Gao & Ma, 2021} |Gao et al., [2022),
introduced in the unsupervised community detection context, consists of a spectral clustering stage
and a local refinement stage. We summarize its supervised counterpart as Algorithm 2]in Appendix
The local refinement procedure, as described by lines 4-6 in Algorithm |2} updates community
labels according to the community with which each node has the highest proportion of connections.
It is repeated ¢ times to ensure sufficient improvement.

In this paper, we introduce a two-stage GNN training scheme based on the GNN framework de-
scribed in Section[2.2] This training scheme, devised to mimic Algorithm 2] is described as Algo-
rithm [T} The first stage trains a regular GNN. For each graph in the training set, the second stage
GNN takes Z (&) € R™"*¥, the one-hot matrix of the estimated labels & from the first stage, as initial
features and train another GNN.

1: Train the first GNN with initial features z(®) € R™*%_ For each graph G with adjacency
matrix A in the training set, let 5 = (A, 2(?; 5) be its estimated community labels from the
first GNN.

2: For each graph G, compute Z(5) € R™*¥, where Z; ,(6) = 15, fori € [n] and k € [K].

3: Train the second GNN initial features Z (&) for graph G.

Algorithm 1: A two-stage GNN training scheme for supervised community detection.

The testing is also divided into two stages. For a testing graph A**St, we use the first trained GNN to
obtain its initial label prediction 5**'. Based on 5***', we compute matrix Z(5*!). We then apply
the second trained GNN, with Z(5°¢5") as initial features, to obtain a renewed label prediction 55t
When necessary, the second GNN can be applied iteratively, using Z(5%°t) from the last iteration
as the input, to obtain the next label prediction 6¢5¢(2) This process can be repeated several times

until a pre-specified number of repetitions is reached or the label prediction is stable.
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3 THEORETICAL RESULTS

Rohe et al.[(2011),|Sussman et al.| (2012),|Le1 & Rinaldo|(2015) and numerous other studies analyze
the consistency of spectral clustering algorithm for community detection. |Gao et al.|(2017) and|Gao
& Ma|(2021)) show that the classical two-stage algorithm achieves the minimax misclassification rate
in SBM. Our objective is to show that the two-stage GNN can attain nearly the same misclassification
rate in-sample. More importantly, we also establish generalization guarantees to ensure optimal
misclassification rate for out-of-sample data, assuming the out-of-sample data follows the same
generating mechanism of the training network data.

The following two assumptions are assumed to hold throughout the entire theoretical derivation, so
we do not restate the conditions in the theoretical results.

Assumption 1. 1y, > n/(BK) and nmax < Sn/K, where (3 is an absolute constant.
Assumption 2. n(p — q) > \/logn and n(p — q) > /np.

Assumption [T]assures that all K communities are of the same order. Assumption[2]is a condition that
assures certain level of assortativity. In the typical setting of p = alogn/n, ¢ = blogn/n where
a, b are absolute constants, it is satisfied. We denote €2, as the parameter space for SBM(n, p, q)
that satisfy Assumptions|[T]and 2]

3.1 ERROR BOUND OF GNN APPROXIMATION TO ORTHOGONAL ITERATION

Observe that the multinomial regression in line 2 of Algorithm [2| can take any matrix spanning
col(V1) as the design matrix, rather than requiring the precise matrix V;. The orthogonal iteration
method (Golub & Van Loan, [2013)), detailed as AlgorithmE]in Appendix@ can be used to construct
a matrix with column space close enough to col(V7).

Using a heuristic argument, Chen et al.{(2019)) point out the analogy of GNN with the power iteration
method to obtain vy, . .., vk (i.e. the columns of V) sequentially. We, on the other hand, rigorously
establish that a properly designed GNN can approximate the output of orthogonal iteration with
high accuracy. Notably, orthogonal iteration requires less conditions on A and a shallower GNN
compared to power iteration.

For a matrix @ € R™ ¥ with orthonormal columns, the distance between col(Q) and col(V;)
is measured by dist(col(Q),col(V})) := |[Hg — Hy,|2 for j = 1,2, where Hg and Hy, are
projection matrices of ¢ and V; respectively. We also have dist(col(Q), col(V;)) = [[V5";Qll2.
since V' = [V1, V] is orthonormal.

Assume one chooses Qg as initial features of the GNN. We impose the following condition on Qq:
Omin (A1 V7T Qo) > n~ 1) (7

for some r > 1. Condition (7) means that col(Qo) cannot be too close to col(V5), thus must retain
certain directions in col(V7). This is a sensible assumption, because otherwise it becomes difficult
for the orthogonal iteration to generate directions in col(V7). In Appendix@ we show that a matrix
sampled from the Haar distribution satisfies (7)) with high probability.

The following results characterize the error bound of a properly structured GNN in approximating
the orthogonal iteration.

Theorem 1. For any s > 0 and any ¢y > 0, there exists a GNN with parameters 0, such that for
any graph G ~ SBM(n, p, q), if initial features Q) satisfies ([7]) for its adjacency matrix A, the GNN

produces features of its last layer Q € R™"*¥ that satisfies

~

dist(col(Q),col(Vy)) < n™* €]
with probability at least 1 — n~. The depth M for such GNN satisfies
(log )’ (logn)?
& &
where & = log (can(p — q)/ max{\/np, vIogn}) with an absolute constant c; > 0 depending on
Co.

M < 8K*(s+r)r +8K2((K + 1)r 4 s)(s + 1)

€))
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Theorem [I] provides a general error bound for spectral decomposition using GNNs. It also has
independent theoretical significance beyond the context of community detection.

Remark 1. The order of M depends on how much larger n(p — q) is than max{,/np, logn}.
In the typical setting of p = alogn/n, ¢ = blogn/n where a,b are absolute constants, we have
& =< loglog n, so that M is upper bounded by (logn)¢ with ¢ < 3.

Remark 2. The convergence of orthogonal iteration relies on the condition that 1 is bounded away
from 0. This is guaranteed by the fact the fact that |A — P|la < ci1v/np + logn, which holds
with probability at least 1 — n~ (Lei & Rinaldo| 2015). In contrast, as power iteration generates
v1,...,Vk in a sequential manner, it requires |\, |/| k11| to be bounded away from zero for all
k € [K]. Hence orthogonal iteration imposes weaker conditions on A. Furthermore, the sequential
nature of power iteration leads to more severe accumulation of GNN approximation errors. As a
result, orthogonal iteration can achieve sufficient accuracy with a shallower GNN.

3.2 THE IN-SAMPLE MISCLASSIFICATION RATES

The GNN introduced in Theorem I|can be extended by adding one more layer and a softmax output
layer to approximate the multinomial regression. This is precisely what the first stage of Algorithm
is designed to address. Define R = [(np + logn)(p + (K — 1)q)?]/[n?*(p — q)*]. We provide
theoretical upper bounds on the misclassification rate this extended GNN in Theorem [2]

Theorem 2. For any co > 0, there exists a GNN with parameters 0" and depth M’ satisfying (@),
such that for any graph G ~ SBM(n, p, q) with true labels o, by feeding to this GNN initial features
Qo satisfying (@ Sfor G’s adjacency matrix A, it outputs estimated labels o (A, Qo; ') that satisfy

lo(0,0(A,Qo;8")) < 1 R.

with probability at least 1 — n~°, for some absolute constant ¢ that depends on cy.
Remark 3. If p+ q < p — q, then the bound in Theorem[2]becomes O((np +logn)/(n%(p — q)?)).
Because ofAssumption the bound is o(1), which implies consistency of the GNN classification.

The purpose of the second stage of Algorithm[I]is to devise an emulation to local refinement proce-
dure. Define I(p,q) = —2log (\/pq +/(1=p)(1- q)), and make the following assumption:

Assumption 3. nl(p,q) — oc.

Theorem 3. Suppose Assumption E] holds. For any € > 0, there exists a GNN with depth M and
parameters 0", such that for any graph G ~ SBM(n, p, q) with true labels o, as long as its initial

label estimate o(©) satisfies £o(o,c(?)) = o(1), it holds that

SUD_ Pupg (o(0,0(4, 2(0);0") = exp [~(1 = il (p, 0)]) = 0,

(n,p,q)€EQ

where i =n/2 when K = 2 and n = n/(8K) when K > 3. The GNN depth M"' satisfy

3K
M" < Tog 2 (—loge—logf(pvq) +vp(1 = q)/va(1 —p) +10g88) + 20K.

The error rate in Theoremmatches the minimax rate derived in |Zhang & Zhou|(2016), Gao et al.
(2017) and|Gao & Mal(2021)).

Remark 4. In the typical setting of p = alogn/n, ¢ = blogn/n where a,b are absolute constants,
one can show that I(p,q) =< (p — q)?/p. If one takes € > n=° for § > 0, then M" is upper bounded
by O(logn).

The two GNNs constructed in Theorems [2]and [3| can serve as a device for GNNs in approximately
executing the classical two-stage algorithm. However, as the training procedure optimizes GNN
parameters by minimizing the cross-entropy loss, the parameters of the trained GNNs may differ
from those of the constructed GNNs. In general, there is no guarantee that a small misclassification
rate leads to a small cross-entropy, as the probabilities may lack enough margin between correct
and incorrect label assignments. But in our model, it is possible to obtain a sufficient margin with
high probability. We analyze a “truncated version” of cross-entropy, that can be related to misclas-
sification rate. By bounding this truncated cross-entropy, we can derive an upper bound for the full
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cross-entropy. When combined with the inequality misclassification rate < cross-entropy/ log 2,
this bound allows us to establish theoretical guarantees on the in-sample misclassification perfor-
mance.

Assume graphs G, ..., G, in the training set are generated i.i.d. following some prior 7. Let

(1) (m)
0 -

their adjacency matrices be A AU and initial features be Q .., Qg 7, which satisfy

for each graph.

Theorem 4. Assume the first trained GNN in Algorithm |I| has parameters 0, and satisfies
R, ({A(i)}g’il, {Q(()i) ™5 é) < Rn, ({A(i)};’il, {Qg) ™ 9'), where 0" are parameters of the
GNN constructed in Theorem [2] For any ¢y > 0 and any € > 0, if the training sample size
m > R-(+e) (log )¢, the the first trained GNN outputs in-sample estimated community labels
o(AD, Qéi); é) that satisfy

1 & . -
=3 to(0,0(AD,Qf;0)) < &1 R
m

i=1

with probability at least 1 — n~, for some constant ¢ that depends on cy.

Let 6 = o(A®), Q(()i); 0) be the estimated labels from the first trained GNN for graph G in the
training set.

Theorem 5. Suppose Assumption [3|holds. Assume the second trained GNN in Algorithm[l| has pa-
rameters 0, and satisfies R, ({A(i)}ﬁl, {Z(FD)}m é) < Ry, ({ADYym, {Z(6D)}m 507,
where 0" are parameters of the GNN constructed in Theorem|3| For any ¢ > 0 and any cq > 0,
if the training sample size m > exp {271 (p,q)} (logn)'T¢, then the second trained GNN outputs
in-sample estimated community labels o(A® | Z(5(); é) that satisfy

= (0. 0(AD, 25 )38) < exp (1 — 36)l (. 0)
i=1

with probability at least 1 — n=°.

Remark 5. Theorems [| and 5] hinge on the assumption that the GNN training can effectively de-
crease the empirical risk. In practice, the convergence of the training is influenced by the optimiza-
tion landscape ((Chen et al.| 2019), a topic beyond the scope of the present study.

3.3 GENERALIZATION BOUNDS

‘We focus on the class of GNN functions.

M |F]|
G(M,d,s) := { fs 4 of the form (3 : o max 10™ | inaxe < 1, ZOZ; 165 10 < s}, (10)

where we abuse the notation slightly by defining |0 = 3=, ; 1F,, 0} for matrix F". We call the
class of GNN clustering algorithms SG(M, d, s) := {softmaxo f : f € G(M,d,s)}.

The specification of (M, d,s) follows what the GNN that approximate the orthogonal iterations,
which is used to restrict our parameter search in training GNN'’s.
Theorem 6. Fix M = O(log*(n)), d with ||d|max = O(n) and s = O(nlog(n)). Under the
condition of Theorem 4} by taking m = O(R~1+2) max((log' t¢ n), nlog4(n))), we have with
probability 1 —n~¢ for some ¢ < 1, the expected misclassification rate on A ~ SBM(n, p, q) of the
trained GNN characterized by 8 on SG(M, d, s) can be bounded

Elto(0, (A, Q;0) | 0] < ¢ R'™F,
where the constant ¢’ depends on € and c.
The theorem establishes that the obtained GNN community detection algorithm trained on SBM
synthetic data attains the same mischassification rate as in Theorem ] if the algorithm is applied on

SBM networks generated following the same SBM laws. The GNN community detection algorithm,
thus, is effective not just on in-sample networks, but also on out-of-sample networks.
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4 NUMERICAL STUDIES

We conduct comprehensive experiments to assess our two-stage GNN scheme. The objectives are
twofold: (i) to benchmark its performance against the baseline GNN model, and (ii) to validate its
improved generalization capability when trained on diverse graph models.

4.1 SYNTHETIC EXPERIMENTS ON SBM

We adopt the typical setting p = alogn/n, ¢ = blogn/n. Note that a, b are uniquely determined
by C = a+ (K —1)band SNR = (a — b)?/[K (a + (K — 1)b)], where C controls the node degree
and SNR represents signal-to-noise ratio. We examine three community counts, K = 2,4, 8, and
for each we employ a two-stage training scheme. For a fixed K, we construct a training set with
4,500 graphs, by varying the parameters C, SNR, and community sizes n. The test set, consisting
of 1,800 graphs, is also constructed using combinations of C', SNR, and community sizes n. The
detailed data generating mechanism and training configuration is described in Appendix [L.1]

The performance of the base (one-stage) GNN and two-stage GNN, grouped by SNR and n, are
shown in Table[I] The experimental results clearly show that our two-stage GNN method achieves
higher accuracy across almost all test scenarios. The two-stage GNN demonstrates particularly
pronounced advantages when K is large, the communities are imbalanced, and the SNR is low.

Table 1: Test accuracy of base and two-stage GNN’s on the SBM. All values are percentages,
reported in the mean (standard deviation) format. n(®» n(® n® n® correspond to balanced,
slightly imbalanced, moderately imbalanced, extremely imbalanced community sizes, respectively.

n SNR Base Two-stage Base Two-stage Base Two-stage

025 | 52.8(3.26) | 529 (3.34) | 472 (13.2) | 50.3 (16.1) | 44.1 (1.13) | 50.4 (2.16)
0.75 | 98.8(0.06) | 99.0 (0.05) | 98.9 (0.18) | 99.0 (0.08) | 77.1 (0.76) | 82.7 (0.73)
n® | 1.50 | 100(0.00) | 100 (0.02) | 99.9(0.17) | 100 (0.01) | 81.5(1.35) | 83.1(1.33)

0.25 | 73.1(8.43) | 75.0(7.03) | 57.7(10.7) | 62.8 (11.6) | 47.9 (0.57) | 54.4 (1.55)
0.75 | 98.9(0.02) | 99.0 (0.05) | 99.0 (0.12) | 99.0(0.03) | 79.0 (1.31) | 85.5(0.55)
n® | 1.50 | 100 (0.01) | 100 (0.01) | 100 (0.06) | 100 (0.01) | 81.9 (1.59) | 86.5 (0.66)

025 | 814 (4.15) | 83.0 (3.01) | 774 (2.77) | 80.4 (1.54) | 68.3 (1.83) | 72.9 (1.71)
0.75 | 98.9 (0.03) | 99.1 (0.05) | 98.9 (0.10) | 99.0 (0.07) | 87.8 (1.05) | 94.7 (0.66)
n® | 1.50 | 100(0.02) | 100(0.02) | 100 (0.01) | 100 (0.01) | 90.4 (1.26) | 97.2 (0.36)

0.25 | 86.3(2.20) | 872 (1.64) | 80.2 (0.40) | 79.7 (0.65) | 51.8 (4.61) | 59.4 (7.98)
0.75 | 99.1(0.03) | 99.2 (0.04) | 89.1(0.82) | 91.2 (0.53) | 63.8(9.09) | 70.6 (5.81)
n® | 1.50 | 100(0.01) | 1000.01) | 97.5(0.38) | 97.3 (0.45) | 80.0 (4.06) | 85.7 (6.31)

4.2 SYNTHETIC EXPERIMENTS ON MIXED MODELS

To assess robustness to model mis-specification, we implement an evaluation protocol using a
mixed-data training approach. Specifically, we construct a training set with 4,500 graphs, and a test
set with 1,800 graphs, both comprising equally numbered instances from both SBM and DCBM. For
both models, we keep the choices of K, C, SNR and n the same as the first experiment in Section

See Appendix [L.2]for details.

Table [2] summarizes the performance of this mixed-data training approach, compared with the train-
ing only with SBM graphs. Mixed training significantly improves model performance. Compared
to training on SBM alone, this mixed approach yields higher accuracy and lower variance across all
conditions, indicating a more robust and stable model.

To further evaluate our model’s generalization capabilities, we conducted additional experiments
by training on the latent space model (LSM). The results demonstrated that the model trained on
LSM achieved a performance similar to that of the SBM + DCBM mixed-trained model. For a
comprehensive overview of these findings, see Appendix
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Table 2: Test accuracy under different training sets tested on mixed SBM and DCBM graphs. All
values are percentages, reported in the mean (standard deviation) format.

Training SNR K =2 K=1 K =28
set Base Two-stage Base Two-stage Base Two-stage
0.25 | 68.4(13.0) | 69.4(13.5) | 51.3(19.7) | 53.5(20.5) | 42.6 (18.0) | 46.7 (20.0)
SBM 0.75 | 82.3(18.7) | 82.1(19.1) | 74.6 (24.2) | 75.8 (23.8) | 65.6 (15.8) | 72.6 (13.8)
1.50 | 89.0(16.0) | 86.6 (17.3) | 90.2 (11.1) | 92.8(9.1) 76.1(9.2) 81.7 (8.8)
SBM + 0.25 | 74.6 (11.1) | 75.7(10.8) | 64.8(8.2) | 67.9(7.9) | 443 (11.7) | 49.8(9.3)
DCBM 075 | 97.02.1) | 97.2(2.0) | 94.0(4.6) | 94.7(3.9) 72.0 (5.5) 83.8 (4.5)
1.50 | 99.2(0.9) | 99.2(0.8) | 98.3(1.6) | 98.5(1.4) 79.3 (3.7) 89.3 (4.7)

4.3 REAL DATA EXPERIMENTS

We evaluate the proposed method on five real-world networks: the political blog network (Adamic &
Glance}, 2005) with n = 1,222, K = 2; the Simmons College network withn = 1,137, K = 4 and
the Caltech network with n = 590, K = 8 (Traud et al.,[2011}[2012))), both preprocessed following
(Chen et al.| |2018); a manufacturing company network (Weng & Feng}, 2022)) with n = 74, K = 4;
and the French high school friendship network (Mastrandrea et al.|[2015) with n = 329, K = 9.

As in Section we introduce the model structures and compare training only based on SBM
graphs and training based on SBM+DCBM graphs. Table [3] summarizes the resulting accuracies
on these datasets. Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. We notice that these real-world networks exhibit certain levels of heterogeneity, a structure
not adequately captured by SBM. By incorporating DCBM into the training data, the model learns
to take into account degree heterogeneity, which improves its generalization ability to real data.
Furthermore, applying the two-stage GNN consistently improves performance on these datasets.

Table 3: Test accuracy under different training schemes tested on real datasets.

SBM SBM+DCBM
Dataset
Base  Two-stage  Base  Two-stage

Political Blog  89.2% 93.3% 94.8% 95.3%
Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%
High school 73.6% 85.4% 89.4% 98.5%

5 CONCLUSION

In this paper we establish a rigorous theoretical foundation for GNN in supervised community de-
tection, showing that they can achieve information-theoretic optimality while remaining effective
and robust in practice. The proposed two-stage GNN framework not only bridges the gap between
deep learning and classical statistical methods but also offers a practical and versatile tool for ana-
lyzing real-world networks.

A natural way of extending our model setup is to study DCBM and latent space model (LSM). Prior
work has shown that the two-stage algorithm achieves the minimax rates under both DCBM (Gao
et al.|[2018) and LSM (Gao et al.| [2022). This provides a basis for future theoretical development of
GNNs on these models. Another interesting direction is to establish theoretical guarantees for unsu-
pervised community detection with deep neural networks. Unsupervised learning requires the net-
work to emulate clustering rather than classification. Developing principled methods and analyses
in this context would be a new venue to study GNN-based methods and strengthen their theoretical
foundations. We omitted a detailed examination of the training landscape for GNNs. Characteriz-
ing the basin of attraction leading to estimators of statistical precision would further enhance our
findings.
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A

DESCRIPTIONS RELEVANT ALGORITHMS

The supervised version of the classical two-stage algorithm for community detection is described as
follows:

N =

A A

: Perform spectral decomposition on A to get V;.
Fit a multinomial regression with V; as the design matrix and o as the response. Let () be the
fitted community labels.
fort=1,2,...tdo

fori=1,2,...,ndo

Let OET) = argmaxge|K] m Z{j:(,yfl):k} Aij-

end for
end for
Output ¢ = (0@, o).

Algorithm 2: The classical two-stage algorithm for supervised community detection.

The orthogonal iteration method (Golub & Van Loan, [2013)) is described as follows:

AN

B

. Initialize with Qo € R™* ¥, which has orthonormal columns.

:fort=1,2,... do
Compute Y; = AQ;:_1.
Implement QR decomposition Y; = Q; R, where Q; € R™*X has orthonormal columns,
and R; € RE>K is upper-triangular.

end for

: Output Q.

Algorithm 3: Orthogonal iteration

ERROR BOUNDS OF GNN APPROXIMATIONS TO BASIC ARITHMETIC
OPERATORS

Lemma [/| provides the basic building blocks to analyze the approximation errors of GNNs. Our

an

alysis leverages techniques from [Schmidt-Hieber] (2020); Bos & Schmidt-Hieber| (2024)).

Lemma 7 (Basic arithmetic operations with GNN). Suppose we have v,y € R™*1,

1. (Inner product) For ||v||max, |Y|lmax < K for some integer k and some width config-
uration d such that ||d||max = max(22,2k% + 6), there exists a GNN architecture

—

G(m+10,d,41m+9x2+179, (v, y, 1)) that maps (v, y, L x1) to ({0, 9) L x1, 0,9, Lnx1)
such that |(v,y) — (v,y)| < 4nk?27™.

2. (Column norm) Suppose ||V||max < K for some integer k and ||v||2 > 2e for some fixed

e. Assume 4nk?2™™ < ¢ < 1. There exists a GNN architecture G(M,d, s, (v,v, 1)) that
maps (v,v, Lnx1) to (||| 1nx1, v, Lux1), where M = 3m+23, ||d||max < max(22,2k%+
6,24 - 2™ +6), 5 < ATm + 92 + 11421(2m + 6)2™ + 218 and |[|v]2 — [|v]2]
(2nk? + 38)e~12—™,

IA

3. (Inversion) Suppose for u € R™1 min; u; > € with 27™ < ¢ < 1. Suppose u™! =

(u; M)P_,. There exists a GNN architecture G(M,d, s, (u,v, 1)) that maps (u,v, 1,x1) to
(u=h v, 1,x1), where M = 2m + 13, ||d||max < 24 -2™ + 6,5 < 11421(2m + 6)2™ +

6m + 39 and ||u— — u™ Y |max < 577227,

Proof of Lemmal[7] With loss of generality, we assume « is an integer, since otherwise we can always
take a new upper bound [x].

13
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For the family of matrices F = {I,, 1nxn, D, ...}, we always denote O1 = I, O3 = 1,,x, and
O3 = D.

We prove the first claim on the inner product. Set the starting state z(?) = (v,y,1). We set 950) =0
foralli € {2,3,...} and

0 0 0 00
0 0 0 00
PIONS 0 0 0 0 O
1 Yo 0 0 1 O
0 Y2 0 0 1
2 12 1 0 0

and correspondingly (1) is (9, 7, 1,v,y) := (v/26 + 1/2,9/2x + 1/2, 1,0, 7).

For the next layer of the GNN, we set 01(1) =0foralli # 1 and

Os5x5 . 05x4 Vs 12 1y 1y 1
0 00 0 O Yy Vs iy 1y i
o) — 00 1000 ith Ky=|-1/a 0 0 0 -l
1 wit 1 / /
K, |1 0010 0 0 0 o0 ¢
0O 00 0 10 0 0 0 0 0

0O 0 0 0 0 1

The first row of 22 is

(01/4 = G1/4=1/4,01/2 = §1/2,01/2+§1/2,01 /4 +§1/4,01/2 + §1/2 = 1/2,1,01, 31,1, v, y)

The first row of 2(2) is

(T+ (%) ,T! (‘71‘31“) P (’;”“’) Ty (%) Tt (%) ,l,p(@l),p(ﬂl),Lp(vl),p(yl))

where T* : [0,2272%] — [0,272*] and T* defined by

Th (@) = pla — 22),
Ty (@) = p(a/2),
TH(x) == (z/2) A (212% —2/2) = Ty (z) — T" ().
Combine both 2(?) and 23 for (.

Furthermore, fort = 2,...,m + 4,

K  0Ogxs

0 0 t) .
o) = | ¢ o0 do” =0,vi#1
1 Ooxs Ogxs |2 07 Vi L

Os5x6 I

where K; € R is the corresponding weight matrix arising from the NN setup in|Schmidt-Hieber
(2020, Lemma A.2), with the only change of the role of the constant 1/4 term being replaced by our
constant term 1. For ¢t = m + 5,

Kiis Ogxs
(m+5) O5x1  Osx5 (m+5) .
0; = | 0xy Opve | and 0; =0,Vi # 1,
0551 I5

where K,, 5 € R6*!.  Applying Schmidt-Hieber (2020, Lemma A.2), the first row of (z(™+9))
arrives at

(’lf/glvp(@l)vp(gl)v 1,p(vl),p(y1)),

where \17?7}1 —0191| < 27™. In other words, the first column of 2(m+6) i the approximate element-
wise product of v and g. For the first row of zZ(m+7)  the last five elements are (01,91, L, v1,11),
and the first element is the value of v;y; before being applied the ReLU activation function (and the
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value will be discarded immediately in the next GNN layer). We now go back to v;y;. Keeping in
mind v1y; = k?(40191 — 201 — 291 + 1), we devise the following two layers:

1ix4 O1x7
0554 O5x7
0O 0 0 0 00 0
pim+o) — _01 _01 91 91 8 8 8 , and 0" = 0,vi # 1.
Osxa g 0 0 0 1 00
0O 0 0 0 0 1 0
0O 0 0 0 00 1

Or1xkz O11x3

9§m+7) = (18xn2 08><3> , and 9§m+7) =0,Vi # 1.
0312 I3

The first row of the resulting state z(m+8) g (45;;}1 — 201 — 291 + 1,... ,451?31 — 201 — 291 +

1,1,v1,91), where 40191 — 207 — 2¢1 + 1 is repeated k2 times. We proceed to arrange another

rescaling layers of GNN as follows:

O213)x1 O(kz43)x3

1K2><1 0n2><3

oimte) = 0 0 1\ |,ando™"™® =0,vi#1.
0351 100
01 0

The resulting 2™+ has its first row as (0131, v1, y1, 1), where [0771 — viy1| < 4K227™.

In the next GNN layer, we get the approximate inner product (v, y) by setting 9§m+9) = 0 for all
1¢1,2and

0 o 0541 Os5x1 Os5x3
(m+9) o (m+9) 1
o = 1 o), 6= ()

03x1 O3x4 3xd 0 3

— —~—

) We now have z("+10) — ((v,y)lnxl,v,v,y, 1n><1)7 where [(v,y) — (v,y)| < 4nk?2™™.

For the second claim, we first apply the first claim, that there exists a GNN architecture G(m +

10,d,41m + 92 + 179, (v, v, 1)) mapping (v, v, 1) to (||v]|31, v, v, 1) such that |||v||3 — ||v]]3] <
4nk227™, where ||d||max = max(22, 2k 4 6). Now we need to take the square root. Note f : x €
[€2,00) + /T € [, 00) has at Holder smoothness 1 with radius ¢! /2. Applying Schmidt-Hieber
(2020, Theorem 5) and using € > 4nk%2=™, we can build a GNN of 2m + 13 layers with maximal

width 12-2™ 46 and sparsity s < 11421(2m+6)2™ +6m+ 39 such that the output is (|m21, v, 1)
and HWQ —1/ H/UW%| < 38¢127™. Combining the two GNNs gives the statement.

We show the third claim. Assumption 2-m/2 < ¢ < 1 and min; u; > €. Note f : x € [g,00) —
x~1 € [e71,0) has Holder smoothness 1 with radius e 2. For (u, v, 1,,x1) Apply Schmidt-Hieber
(2020, Theorem 5) again, and using we can explicitly construct a GNN of 2m 4 13 layers with
maximal width 12 - 27" + 6 and sparsity s < 11421(2m + 6)2™ + 6m + 39 such that the first row

of the output is (uy ', vy, 1) with max; |u; ' — u; | < 57e227™. O

C PROOF OF THEOREMI]

Properties of orthogonal iteration. We first provide a convergence rate result for orthogonal it-
eration. Assume the orthogonal iteration, described as Algorithm [3] takes () as the initial value.
Let d; = ||V, Q¢ll2 = dist(col(Q;),col(V3)) fort = 0,1,..., which we expect to get small for
sufficiently large ¢.

15
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Lemma 8. Assume Q satisfies (7). For any s > 0, with T' defined by
T (s +7)logn + log?2
B logn ’
Algorithmoutputs Qr that satisfies dp < n=%/2.

Y

Proof. The QR decomposition of Y; is equivalent to the Gram-Schmidt process applied to the
columns of Y;. Denote the kth column of Y; by vy, . The Gram-Schmidt process has the following
steps:

* The first step:

Y1,
0= Tyl 12
e The kth step (k = 2,..., K):

k—1
Ukt = Ykt — Z(ykm Q5,6) Tt (13)

j=1

U
Qg = T (14)
[[we,ell
Then, Q¢ = [q1.1, - , gK.¢] is the Q-component of the QR decomposition of Y;.

By the description of Algorithm (3 we have Qi(R;R;—1---R;) = A'Qo. Denote S; =
RiRi_1---Ry. Since A* = VAV " then

V'Q:iS: = AV Q.
By the block structure of V' and A, we get
AﬁvlTQO = V1TQtSt> At2V2TQ() = ‘/QTQtSt'
Letting VjTQt =W,sforj=1,2andt =0,1,..., it then follows that

Was = NsWo oWy g AT W (15)
Since Tpmin (A1 W1,0) < [A1]0min(W1,0) < nomin(W1,0), condition (7) has the implication that
Omin(Wig) >n™". (16)
Using (16), and [|[W1 g2 < 1, |[Wi]l2 < 1, we therefore get
de = [[Waell2

< [IAS]lz - [1Wayollz - Wig ll2 - AT |2 - [[W.e2

—t
S( Ak | ) o
[Arc 1]

<ntn".

Forany s > 0,if t > ((s + r)logn + log 2)/ logn, we have d;, < n~*%/2. O

To proceed with the analysis, we introduce two elementary but useful lemmas.

Lemma 9. Suppose Y € R™*X has the smallest singular value o,y (Y) > 0, where K < n. Let
Yy represent the kth column of Y. Then,

Hyk“ > omin(Y),
foralll <k < K.

Proof. Let e;, € R¥ be the elementary vector where the kth entry is 1 and all other entries are 0.
Then y = Yey. The conclusion is clear by noting oin (Y) = minjz—; [|Yz|. O

16
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Lemma 10. Suppose Y € R"*X has the smallest singular value i, (Y) > 0, where K < n. Let
yi. represent the kth column of Y. Assume the Gram-Schmidt process on'Y produces

¢ = Y1
I T
ly1l]
k—1
uk =Yk — > (U 4)¢5, 2< k<K,
j=1
@=Lt 2<k<K.
(|

Then
[ukll = omin(Y)
foralll <k <K.

Proof. From the Gram-Schmidt process, we know that u; can be expressed as uy = Y ¢, where ¢
has 1 in its kth entry. This implies ||¢|| > 1. Then,

@
[[urll = llll - HYMH Z [lell - omin(Y) 2 omin(Y).

O

If [Ag| is not too small, then throughout the iterations, Y; satisfies certain bounds uniformly, as
demonstrated by Lemma The condition on | A i | will be discussed towards the end of this section.

Lemma 11. Assume Q) satisfies @ If | Ak| > V2= =1 holds, then for any t > 0, one has
3
Fmin(Yip1) > G0~ 7Y, (17)
lye,e+1]] < n. (18)

Proof. Observe that
Yip1 = AQr = Vil Vy" + VaAoVy )Qp = ViAW, 4 + VaAoWo
and that the columns of V; and V5 are orthonormal, we have for any x € RX,
[Yiprz|? = [[Vid Wiz + Voo Wa 2
= ViAW gz + || VoA Wo s
> ViAW |
= [|A Wy ]2
Therefore, omin(Yi41) > Omin(A1W1,). We next derive a lower-bound of oyin(A1 W1 ;). From
the relation , we know that W (A1W17,5)71 = A} (WQ’() (Ay leo)fl) AT". Hence,
[Wae (A W)™ [l2 < A2 - [Wasolla - [ (AsWa0) ™" 2 - 1Al
< (A Wi0) 7" l2
= Opnin (M1 W10)
<prl
The last inequality follows from (7). By the definitions of W ; and W5 ;, we also have
W Wi+ Wal,Wae = QF (ViVT +1215)Q = QF Q¢ = Ik
Note that
Was (A1W1,t)_1} ! {W&t (A1W1,t)_1} = A1_1W1_,tTW2T,tW2,tW1_,t1A1_1
=AW (I — W W)W PATT
= AT WL W = ToAT
= (MWie) T (AM W) = A2,

17
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it then follows that

.
[Wae (AW1) ™" |3 = H (Wou (0awr) 7] [ (W)

2
> | (A We) 7 5 = AT 2.

We have shown the left-hand-side is upper-bounded by (" ~1) earlier, and we know that || A 2|2 =
A2 < n2=1 /2 holds. Therefore we get

. . 16
(AW ) ™H 5 < [Wae (A W) ™[5+ M%7 < gnz( Y.
This leads to

3
Omin (MW7) > Zn_(r_l)-

We therefore establish the following lower-bound of oy, (Y;41) uniformly for all ¢ > 0:

3
O'min(th+1) > Umin(AIWLt) > Zn—(r—l)'

Further, since || A||2 < n, we have an uniform upper-bound of ||y 41 forallt > 0,1 < k < K:

1Ykl = [ Al < [|All2llgr.e]l < 7.
O

The GNN Approximation. The GNN can be designed to emulate each step of orthogonal iteration
method. It starts with z(©) = (@0, 1,) € R™(K+D) where Qo = Qo serves as the initial value
of the GNN iterations. For the ¢-th iteration, the first procedure is to compute }A/t = A@t,l, which
can be realized by one layer of GNN. The next procedure is the QR decomposition of Y,. Let Uk t

represent the kth column of Y;. We devise the architecture shown in Figure EI to approximate the
first step of the QR decomposition. In this chart, we have suppressed the superscript of z in
each layer for convenience. Also note that the full node feature is © = (p(Z), Z) in each layer, of
which we omitted the first component p(Z) in the chart. We assume m satisfy

2 2
_— { (s +7)r(logn)
logn

+2((K+1)r+s)1ogn—‘ . (19)

As illustrated in Figure in the last layer of the first step, z = ()A/t, q1ts 1n) is produced. The next
batch of GNN layers resumes from this layer, and tries to approximate the subsequent steps of QR
decomposition. In general, assuming the GNN has generated z = (}AQ, ity Qr—1,t, ln) in the

last layer of the (k — 1)th step of QR decomposition (2 < k < K — 1), we design the GNN structure
in Figure [2| to implement the kth step. Again the superscript of Z, that denotes which layer this
node belongs to, is suppressed. After all K steps of QR decomposition are carried out, we obtain

@t = [G1,t, 4K t], which is then used for the (¢ + 1)-th iteration.

We analyze how errors accumulate across layers and iterations in the designed GNN. Let by =
n 27", by =4n", by = 49n", Ny denote the set of all nonnegative integers, and

k
Skt = s:(s()7...7sk):Zsj:t—l,andsj eNgforall0 <j<k.
j=0

Then define
Ry =0, (20)

Rey=bob5™ " > JJbri)¥, 1<t<T 1)
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E)

(91,+ is the first column of Y2)

(m + 6) layers

2= (Tl gt.1,)|

(with [a{!) — |g1,]l] < 2™

(2m + 13) layers

[2 = (}77-57 Oég?t)]-nv Ql,tv 1n)}

(2 1

(6
1, [E))
oy

(with <21-27™)

l(m + 6) layers

= (Fenins) |

(Wlth ”qu’t — afggl,thax < 27771)

Figure 1: The GNN architecture to approximate the first step of QR decomposition.
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L(tha le,ta ey qkfl,t; ]-n)}

1 layer

LZ = (}/;5741,157 s 7qA]€*1’t7,gk?:t’ 1”)}

(Y, is the kth column of Y))

(k —1)(m + 6) layers

i S . R 0,1 0,k—1 N
LZ = (Y%a qi,ty - qk—1,t, aé’t )1n7 .o 7a](€1t )]—na Ykt 1n)}

with a7 — (e, @) <n2 ™ for1 < j <k —1)
(k —1)(m + 6) layers

{Z = (Y;ta dl,ta oo 7@1@*1,1‘/’&]@51‘/’ 1")}

with [k — (e — 2021 05,0 lmax < (k= 1)27™)

(m + 6) layers

_ oA ~ 1 ~
{Z = (th’ qi,ty - qk—1,t, a2721n7 Ukt 1n)}

(with Jag’) — lax]l| < 27™)

(2m + 13) layers

_ N ~ 2 ~
{Z = (th’ qits---sqk—1.t, a](ﬁyzlna Uk, t, 1n)}

(with |af?) —1/afl)| <21-27™)

(m + 6) layers

{zz (1@,41,t,~--,dk—l,n@k,taln)}

(Wlth ||(jkt — ali%zak,t”max < 2—m)

Figure 2: The GNN architecture to approximate the kth step of QR decomposition.
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We adopt an induction to prove the following bound holds for¢ = 0,1,... andall 1 < k < K:
(22)

A few properties of Ry, ; that will be used in the induction are summarized in Lemma@ and@
Lemma 12. Suppose Ry ; is defined by (20) and (20). Then,

Rit=bikRps—1 +baRi—14 (23)
for2 <k < Kandl <t <T. Moreover, Ry, is strictly increasing in both t and k.

Proof. S, ; can be split into two subsets: S(l) and Sgg, where elements of S( ) ; satisfy s, > 1 and
elements of S,(m satisfy sy = 0. Elements of Sk’t have a one-to-one mapping s — s’ to elements of

Sk,¢—1 in the sense that, for any s = (sg,...,s) € S,(Clz, one has s’ = (sg,...,5, — 1) € Sk 4—1.
Therefore

k k
S T[ew)e =tk Y T

(1) j=1 Sk i1 =1
SeSk,t] SESK,t—1 ]

On the other hand, elements of ng have a one-to-one mapping to elements of Sy,_; ; since s = 0.
Then

k k
ST = > [

seSg‘Tijzl sCSk_1,¢ j=1
Combining the last two equalities, we get the desired result (23). O
Lemma 13. Ry ;, defined by (20) and (21), satisfies
Ry < bobh™ ¥ (kby)' ", (24)
1
VERir < 507", (25)
1
(12 + K)RK’T < gnir, (26)
k-1
Rps > Ri1y. 27)
j=1

Proof. For any s € Sy, +, we have

k

k . _1—s
[T H % = (bik)>o=1 % = (bik)' o0
j=1

=

Plugging this into (Z2I), we get
Riy <bobs™" D (byk)— 7

SESk. ¢

t+k
SIS0 S (R [T

So= 0
t—1 .
_ k+i—1 .
= bobk 12( b1 )(blk;)
=0
i (ki1 t—1
<bob3T Y (T, )ik
=0

L (t+k—1 _
:b0b§1< L )(blk)t L

21
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From the inequality (tHIZ_l) < tk, is established.
From (24), we know that

log (VE Ricr) — log <1n>

2
1
< 510gK+logbo+(Kfl)logb2+KlogT+(Tf1)(10gK+10gb1)+log2+slogn
1 1 log 2
< —log K +rlogn —mlog2+ (K — 1)(log49 + rlogn) + K log (8+T)12i:;+0g +1

+

2

[(S +7) 11222 + log2] (log K 4 log4 + rlogn) +log2 + slogn

(21log 2)(s + 7)r(log n)?
logn

The choice of m in (T9) guarantees that

2(s + 7)r(logn)?

logn

(2log2)(s + r)r(logn)?

logn

< —mlog?2+

+ (21log 2)(Kr + s) logn.

mlog2 > [ +2((K + 1)r+s)logn| log?2

>

+ (2log2)(Kr + s)logn.
So (23) is proved.
Similarly, we have
1
log ((12+ K)Rk ) — log <8nr>

<log(12+ K) + logby + (K — 1)logby + KlogT + (T — 1)(log K + logb,) + log8 + rlogn
(s +r)logn + log?2

<log(12+ K) 4+ rlogn —mlog2 + (K — 1)(log49 + rlogn) + K log Tog

+1

+ [(S—FT)E?Z—HOgﬂ (log K 4+ log4 + rlogn) +log8 + rlogn

< “mlog2+ (2log2)(s + 7)r(logn)?
logn

- |:2(8 + 7)r(logn)?

- logn

n (2log2)(s + 7)r(logn)?

logn

+ (21log2)(K + 1)rlogn

+2((K 4+ 1)r+s)logn| log 2

+ (2log 2)(K + 1)rlogn
<0.
Thus (26) also holds.

Finally, by (@) we know that Ry, 4 > baRj,_1 . For a fixed ¢, the value changes of R}, ; along the
direction of k is faster than a geometric sequence with common ratio by. Then is valid.

O
To start with the induction, for ¢ = 0, we have @0 = Qo, 0 ti holds. Now assume holds for

0,...,t—1with¢t > 1. For ¢, we first have Y; = AQ;_1. Based on ||Gx,t—1 — gr,t—1]] < R -1,
we can immediately obtain the following bounds:

19kt — Uil < nRg -1, (28)
Gr, -1 <2, (29)
19k.¢ 1l < 2n, (30)

~ 5
Omin(Y2) > gn—“-l% 31)
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In particular, (28) holds because ||Jk.: — yk.¢|| = [[A(Gk,e—1 — @ri—1]l < | All2lldrt—1 — qrp—1] <
1| Gt 1—qm 1l As Ryt < 1, we get [|g-1]| < [lde.e—1—are—1]+ | are—1]] < 2. Moreover,
using , we know that ||yka < ||yk7t — Ykl + [|yg,t|l < nRy¢—1 +n < 2n. Finally, by Weyl’s
inequality for singular values, we get

N ~ . 1 e
|0min(Ye) — omin(Y2)| < ||Y: — Yifl2 < ﬁlg}cf%{ N9kt — Yretl] < \/EnRK,tfl < 3" (r=1),

The last inequality is a consequence of in Lemma [13|and the fact that K < 12 + K. In view
of (T7), we have

~ ~ 3 1 5 _(r_
|Umin<Y;5)‘ 2 |0-min(Y;5)| - |Umin(}/t) - O-min(th)| Z Zn (r=1) _ gn (r—1) = gn (r 1)-

By the GNN structure in Figure[I] we get

2
o’} -

qi,t —

1
1
0 Tl
1
A |

(1)
Q¢

altyltH—i_ (

1

Hy1 I H a§
(
1

= H(jl,t - afzyALtH + aﬁz e Hgl,t” +

1t

The bound (30) . directly suggests that ||§;, tH < 2n. From (31) and Lemma[9] we also know that

Hy1 il > Omin(V2) > 50~ (=1 /8. Then [a{}}] > [|g1,4]| - ’0‘1 P = gell] = 5o 7V /8 —27m >
~(r=1) /2, since 2=™ < n~ ("= /8 by (1 . Therefore,

—m

41t — 27 42127 2n + <n"27" = b.

nh3 =

||y1 t” H

Next we derive an upper bound for ||¢1,; — ¢1,¢||- The triangle inequality implies

. 1t
qi,t — 7=
[91,¢|l

’ H ?1,1: Y ‘ H Yi,t 1,t
Gl (190l 9160 ||y1 ¢ll

— 1.l

[19.¢l

According to (28) and (31), the second and third terms in the display are controlled by

e — avell < ‘

1 .
<bo+ ——l101,e — yrell +
92,0l

_||?31,t||‘< 1 N an,t—l

- < = i —y1ell < —vm =20 "Ry 1.
el L e =y Li-1

Hence, we obtain

g1, — quell < bo+4n"Ry4—1 = bo + b1 Ry 1.

Note that Ry ; = by ZS o b3t = bo(bt — 1)/(by — 1) by its definition || the previous display
leads to
bimt—1 —1

=b = Ry ;.
by — 1 0b1—1 L

ld1,: — gl < bo + bibo

Thus we have proved fortand k = 1.

Next we apply an inner induction on & with the current ¢. Assume (22)) holds for the current ¢ and
1,...,k—1. Wefirsthavefor 1 < j <k —1

[CGk,ts Gg6) — (Yot @00 < |Gkt Gt — @00 ] + [kt — Ykt 25,00
NGt — gjell + 19, —
<2nRjs +nRgi—1, (32)

where in the last inequality we have used (22), (28) and (30).
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Let G ¢ = gt — 25;11 (Ut dj,¢)qj,c. From l| and the inequalities and , we have

k-1 k-1
[Tk, — wi,ell = (| Gr,e — Z<Qk7t7dj7t>‘jj,t — Ykt + Z<yk,t; 4j,6)05.¢
j=1 j=1
k—1 k—1
<Gkt — Yr,ell + Z |Gk, 45,0015, — ajell + Z Gkt @ity — (Yot @) 1.4
j=1 j=1
k—1 k—1
<nRiyo1+ 3 kel - 1G5.ll - 1656 — gy.ell + D> (2nR; 4 + nRiy 1)
J=1 Jj=1
k—1 k—1
<nRpi1+ Y 4R+ Y (2nRj, +nRis 1)
j=1 j=1
k-1
=6nY Rji+knRk;
=1
<12nRp_14 + knRy 41, (33)

where the last inequality holds because 25;11 R;: < 2Ry_ 4 according to 1|

In view of in Lemma 12nRy—1 1+ knRy -1 < (12+K)nRg r < n~("=1) /8. We thereby
have that

ik, — wpel <= 7H/8. (34)
By Lemmamand 7), we know that [|ug ¢|| > omin(Y:) > 5n~(""1) /8. By , we get

5 o0 1 e 1
kel = Nunell = llane = wnall = g - 1)—§n ( 1):§n (r=1), (35)

Meantime, since 12nRy_1 ¢ + knRy 1 < n, from and , we also get
kel < el + [[Tn,e — wrell < lywell + [k, — ukel] <n+n=2n. (36)

By the GNN structure in Figure[2] we have

k—1

ikt = tpal| < lline = (e — > g a0 + Z o) — (G 4| sl
]:1

< Vil = (Gre — Zak D85 lmas + Z o = (e )] - 1z
< (k—1)27"n + 2( ~1n2
< 2%kn2~™, 37)

Observe that m > rlogn/log 2 by condition , thus 2kn2~™ < 2kn~" < n~("=1 /4, It then
follows that

X 5 X 5 1, 1, 1
el > [Jaigell = Nan,e — Ggel] > 2n~ Y — —p==D = Zp=(r=1), (38)
2 4 4
Also notice that 2kn2~™ < n, it follows that
kel < kel + ke — el < 2n 4+ n = 3n. (39)
We also have
~ 1 —(r— —m 1 —(r—
lagor] > [[a®0] — g}y — a0 > gn=0D 97 > 27D @)

where the last inequality is implied by 2=™ < n=("—1) /8, which can be derived from .
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Using (33), (36), (37) and (38), we can further get

U m 1 . N m | -
’ LB ‘ < X iy — g + Wl =20l
kel (ke (ke l [kt | - [lag,e ]
1 T,
S Hak,t _ ak‘,t” + |||uk,t _ ||Uk,t|H
(ke l [t
2kn2—m™ 2kn2—m™
YT Ty
< 16kn"27™. 41
Combining (39), (@0), @I)), we have
S(kt) Ukt (kt ), (2) My,
40— ot | < — ol + 02 ol D
1 1 . Ut Uk, ‘
[ = e | || || —
H <a,<;g ||u<<kvt>||> I+ - e

< Vl|§®0 — aPagl|, o+ o) — /o] il
ag) = llan| ‘ e e ‘
o) lanell el
<Vn-27M 4 (21-27™)3n 4 80" 27 4 16kn"27™
< 17kn"27™.

Now we are ready to bound ||G(%*) — ¢*!)||. Note that ¢(**) = w1 /||u*:V)||, so

R R U, 1 - U ¢ || — || Uk,
) =g < a0 = g2t | b el + el
(o7 || | ek, el - kel
R U . U —|la

o - By Dl =l
(o7 ([, [k, ¢

< 1Tkn'2-™ 4 12’1’LRk,1’t + k’an,t—l 12an—1,t + kan7t,1

— nf(rfl)/2 nf(rfl)/Q

=1Tkn"2™™ + 4kn" Ry ;1 + 48n" Ri_1 4
< 4kn”Rk7t_1 + 497LTR]§_1¢ = Ry,

where the last inequality holds because 17kn"2=™ < n2r2—m = n"Ry1 < n"Ri_1,4, and the last
equality is due to Lemma [I2} Therefore, (22)) is established for ¢ and k. Both the inductions on k&
and the induction on ¢ are now complete.

We now derive a bound for dy := dist(col(Qr), col(V1)) = ||V5' Qrl|2. Using and , we
can get

N n—*
gk — qr.7ll < Nid k=1,...,

K. (42)
Therefore,
~ 1 .
QT — Qrll2 < \/Eé}gagxi( lgx.r — arrl| < VKRg 1 < o
Then by Lemma 8] we have
~ A 1 _3 o 1 —s - —S
dr <dr +|dr —dr| < ot V2" (Qr — Qr)ll2 < Jn Tt QT — Qrll2 <n™*.  (43)

The first result in Theoremis established by letting @ = @T.
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According to Figures |1| and [2] the number of layers needed in GNN for the kth step in the ¢-th

orthogonal iteration is (2k + 2)m + 12k + 14. Also count in the layer to produce Y, = A@t_l in
each iteration. So the total number of layers is at most

K
((2k + 2)m + 12k + 14) T}, + T},

1
=[K(K+1)(m+6)+2K(m+7)+1]T
< 2K?*mTy,

2(s +7)r(logn)?
logn

(logn)?

(logn)?

High probability bounds concerning eigenvalues of A. The eigenvalues A\ i and A\ 11 of A affects
the approximation results of GNN. Specifically, condition [Ag| > v/2n~ ("1 required in Lemma
and the total number of layers depends on ) = |Ax|/|Ak+1]. We provide high-probability
bounds on |Ax| and 7.

(s + 1) logn + log 2
logn
(logn)?
logn

§2K2{ —|—2((K—|—1)T+s)10gn] [

< 8K?%*(s+71)%r +8K2(K +1)r+s)(s+r)

Let v1,...,7k be the first K eigenvectors of P with |y1| > .-+ > |yk|, and uq,...,ux
be associated eigenvectors. Denote U = [ug,...,ux] and I' = diag(y1,...,7kx). Define
Py = (p—q) Ik +qlglj, € REXE (0 be a “collapsed” version of P, and N = diag(ni,...,nk).
Further, let Z € R™*X be the one-hot matrix of the true community labels. That s, Z; ;, = Tio,=1}
fori € [n], k € [K]. We first state several preliminary lemmas.

Lemma 14. The first K eigenvalues ~1,...,7x of P are equal to the eigenvalues of G =
N1/2 P0N1/2.

Proof. First we have the equalities P = ZPyZ " and Z'Z = N. Assume nonzero vector x € RX
satisfies Gz = . Define y = ZN /22 € R™. Then
Py=ZPZ " ZN V%3 = ZP,N'Y?0 = ZN"Y2GQx = yZN 20 = .

On the other hand, suppose nonzero vector y € R” satisfies Py = vy. Letz = N~1/2ZTy ¢ RX,
Then

G =N'"PZTy=N"Y22T72PZ y=N"1Y22TPy=yN~"1272Ty = ya.
This completes the proof. O
Lemma 15. Let G = NY/2PyNY/2. Then we have
Umin(G) Z (p - Q)nmin~
The equality holds whenn; = --- = ng.
Proof. We first write G = (p — q)N + qyp ", where ¢ = (\/n1,...,/nx) . For any vector
z € RX, we have
Gz =(p—qla' Ne+q(z"¢)* > (p—g)a" Na > (p — ¢)numin-

Hence the conclusion holds. The last statement follows by direct calculation. O

The following result on spectral bound is essentially Theorem 5.2 in|Lei & Rinaldo (2015) with a
slightly different statement:

Lemma 16 ((Lei & Rinaldo| 2015)). For any co > 0, there exists a constant ¢y that depends on cg

such that
IA = Plly < 1 /np + logn

with probability at least 1 — n™=.
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In view of Lemma we constrain the analysis in the event that ||A — P||2 < ¢14/np + logn. By
Weyl’s inequality,

Ak — x| < A= Pl2.
Combining Lemmas[T4]and[I5] we have that

Akl > [ve| = [[A = Pll2 > (p — @)nmin — c1/np +logn > con(p — q) > /logn.

The last two inequalities holds because 7,in < n, n(p — q) > /np, and n(p — ¢) > v/log n, from
Assumptionsmand We get [Ax| > v/2n~("~1) as required.

To derive a bound of log 7, observe that the (K + 1)th eigenvalue of P is 0. By Weyl’s inequality,

we have
[Ak41| < [[A = Pll2 < c1v/np + logn.

Then it holds that

(P — @)nmin > can(p — q)
1 >1 —— -1 >1 =¢.
o8N =108 <c1\/np+ logn =08 max{,/np, /logn} ¢

This concludes the proof of Theorem [T}

D AN INITIALIZATION PROCEDURE

A natural way of getting the initial features Q¢ is to draw from the Haar distribution. Suppose
Sp € R™*K is a random matrix where its entries are i.i.d. N(0,1). Let its QR decomposition
obtained from the Gram-Schmidt process be Sy = QgRy. Then @ is Haar-distributed on the
orthogonal group.

We first have the following result.
Lemma 17. For a given A, Qq satisfies

|Ag|n~(cot1/2)

. T
P (Umln(Alvl QO) 2 (1 + (5)\/?

> >1—-2n"¢
forany 6 > 0 and any ¢y > 0.

Proof. By definition, we have SJ Sy = RJ Ro. Then ||Ry|l2 = ||So|l2. Following the result in
Rudelson & Vershynin|(2011) with respect to the largest singular value, we have

P <||So||2 > Vit JEH) <22 >0

For an absolute constant cg, take t = \/21og 2 + 2¢q log n. The probability bound of the last display
becomes n . Since \/n + VK +t < (1 +6)/n forany § > 0, we get

P([|Sollz > (1 +6)v/n) <P (||So||2 > /n+ \/E+t) <pe

for any 6 > 0, with n large enough. Therefore, we obtain

P (mn(R") < o) <0

Since columns of V; are all orthonormal, V;" Sy € RE*X hasi.i.d. N(0,1) entries. Following the
result in Rudelson & Vershynin|(2011)) on the smallest singular value, we have

€
P (Umin(‘/lTSQ) < \/R) <e.

We take € = n—“.
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Note V;'Qo = V;" So Ry '. When oin (V' So) and omin(Ry ') are both bounded away from 0, we
have umin(Vi' Q0) > Tumin(Vy' So) - 0min(Ry ). It then follows that
‘)\K|n—(co+1/2) )

) T
P(omm(AlVl Q)2 =TS VR

> P (amin(VfQo) > 71/_; and oin(Ry ') > 1 +t;)\/5>
>1_P <amin(V1TQo) < 7\7;) —P (O’min(Rol) < W)

>1—2n"%,
O
The lower bound given in Lemma |17 still depends on |Ag|. Lemma |18 further assures that Qg

satisfies (7) with high probability.
Lemma 18. If Qo € R™*¥ is Haar distributed on the orthogonal group, then

P (omin(AV)T Qo) = 0 (0F1/2) > 1 — 37
forany cy > 0.

Proof. The magnitude of A is analyzed at the end of Appendix [C} Using Assumptions [T]and 2] we
have that, with probability at least 1 — n=°°,

M| = [y = [ A= Pll2 > (p = @)nmin — c1/np +logn > con(p — q) > c21/logn
for some ¢y > 0.
In view of with Lemma we get that with probability at least 1 — 3n=<,
|\ |~ (cot1/2) N coy/logn - n~(cot1/2)
(L+0VK — (14 0)VK

O'min(Al‘/lTQO) Z Z n*(COJFl/Q)'

E PROOF OF THEOREM [2

We have the equality PZ = ZFPyN, or equivalently, PZN’1P071 = 7. AsP = UTUT, by
letting B = FUTZN_ngl, we get Z = UB. For a scalar « > 0, denoting B(a) = aB and
Z(a) = aZ, we further get Z(a)) = UB(«). Applying softmax function on the rows of Z(«), we
get the probability that node ¢ belongs to community &

e*/(e*+ K —1), ifo; =k,
Uk = .
1/(e*+ K —1), otherwise.

)

When o — oo, we have U; , — T5,—1). In other words, given the K eigenvectors U of P as
design matrix, and with regression coefficients B(«), one can recover the true community labels
exactly by multinomial regression, as oo — c0.

In reality, we are given @ from GNN instead of U. @ and U have the following relationship:

e dist(col(Qr), col(V1)) < n=* (by Theorem.
* ||Vi — U||2 is controlled by the Davis-Kahan theorem.

Let @ = Qr be the output of orthogonal iteration after 7" iterations, as defined in Lemma[§] We
have Q = V1 W1 + VoWs, where ||[Wa]|2 < n™°/2. So

Z=UB=(U-W)B+(Q—-QW;'B+QW;'B—V,W,W; !B,
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or equivalently,
QW;'B=27—E,

where E = [(U—V1)+(Q—@)W;1—V2W2W;1 B.  Multiplying by o, we get

@W{lB(a) = «a(Z — E). Regarding Q as design matrix, and W, 'B(a) as regression coeffi-
cients, the multinomial regression generates the probability that node ¢ belongs to community k

~ exp{a(Zir — Ei )}

U= —f . (44)
> jm1exp{a(Zi; — Eij)}
The estimated label assignment is
0; = arg max \Ili,k =argmax(Z;  — Ei ). (45)

1<k<K 1<k<K

Note that Z;. (the ith row of Z) is e; , where e, € RE is the elementary vector with 1 in its o;-th
entry, and O elsewhere. Then arg max; < (Zi x — Eix) is still o; if || E;.||max < 1/2. Define
S={1 <i<n:|Fillmx > 1/2}. Then we have {y(c,5) < |S|/n. On the other hand,
1S| < X ies 4l1Ei||? < 4]|E|)%. Therefore,

. 4
lo(,5) < —|IEll%
n
To derive an upper bound of || E|| g, first we know that the Davis-Kahan Theorem (Davis & Kahan,

1970; [Yu et al.,[2015) and Lemma guarantees that

|A = P2 < O(v/np +1logn)
vkl T Ik |

U -Willr <

with probability at least 1 — n=°.

The term (Q) — @)Wl_ ! depends on Q — @, which is controlled well by GNN. In particular, using
(@2)), we can get

n_°.

DN | =

K
1Q = Qllr = | Y llgk.r — ar.rll? <
k=1

Then, from ||, || = 1, we have
O(v/np + logn)
I |

when s is large enough. The term VoW Wfl is controlled well by orthogonal iteration. Lemma
leads to

~ . B 1,
1@ = QW Hlr <1Q = Qllr - Wyl < 5n7° <

- _ 1 o 1 O(vnp +logn
VaWa W e < Vol - [Wallo - [W o < VA~ K - 5n g2n<ng“ﬁidg>

when s is large enough.

To control for B, we have ||[T'|2 = |y, |[U"|l2 = 1, and ||[ZN~1||2 = 1/,/fimm by noting
(ZN-1H)TZN-1 = N~L Also, since P, is a full-rank matrix with two eigenvalues p + (K — 1)q
and (p — q), we know that || Py !||2 = 1/(p — q). Therefore,

|71|

IBll2 <ITll2 - 1UT Iz - 1ZN " 2 - 1Py 2 € ———=—-
0 nmin(p_CD

Finally, we reach the bound
1Bl < (10 = Ville + 1@ = QW e + IVaWa Wi ) 1Blla

. O(Wnp+logn) |
|’YK| V nmin(p - Q)
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The misclassification rate is bounded by

. O(np +logn 2
60(0_70_)§ (p 2g) 71 5
"k Tamin (P — 4)
From Lemma|[T4] we get
Ml _ _llGll2  _ Pmax(p £ (K —1)g) _ B+ (K —1)q)
vkl owin(G) T nmm(p—q) T pP—q

So we have
O(np +logn)(p + (K — 1)q)?

ble:8) < n?(p — q)*

F PROOF OF THEOREM 3]

It is clear that y; , = (AZ (0(0)))1‘, % is the number of edges that node ¢ has with all nodes that are
labeled as & by o), and .J,, Z(c(?)) has identical rows where each row represents community sizes
determined by o©. Let n\”) = (.J, Z(5®)); ». Then, g; , = (AZ(0®)); x/n(®) is the proportion
of connections of node ¢ to community &, and the local refinement procedure updates according to

oM = arg max g, .
7 ke(K] »

Letyx = Y1k > Ynk) > Gk = [q1ks- -+ qni] | for k € [K]. We design the GNN illustrated in

Figure[3|to approximate gy.

Lz =[Z(c©),1,] }

1 layer

Lz: [yl,...,yK,ngo)ln,...,nﬁ?ln,lnu

(with [y1,.. ., yx] = AZ(c@) and [n{V1,,,...,nV1,] = JZ(c®))

K (2m + 13) layers

[Z: [ylﬂ"'vyK7a11n7"' 7aK1n71n}}

(with Jay, — 1/n\| < 21- 277 forall k € [K])

K(m + 6) layers

Lzz [41,-~-7QK71n]}

(with [|Gk — kyillmax < 27" for all k € [K])

Figure 3: The GNN architecture to approximate the local refinement procedure.

The probability matrix U is given by

P (46)
> i1 ¢xp (i k)
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for a scalar o > 0. The estimated label is

0; = argmax V¥, , = arg maxd; j. 47
1<k<K 1<k<K

Since y; , < n, we have

1
+ |akyi,k - W%‘,IJ
Ny,

Gik — @ikl < ik — lik

<2 ™4 921.27mp
<22.27p,

Gao & Ma) (2021) provide an argument to show that minimax bound is closely related to a fun-
damental hypothesis testing problem. The problem is stated as follows. Suppose we observe

X = (X1, Xonytms,) € {0,1}71FM2 we want to test
my mi+mso
Hy: X~ ® Bernoulli(p) ® ® Bernoulli(q)
i=1 i=my+1
my myi+ma
vs., Hy: X ~ ® Bernoulli(g) ® ® Bernoulli(p). (48)
i=1 i=my+1

The local refinement procedure is designed to solve this testing problem, hence the misclassification
rate after the local refinement procedure is determined by the error bound of the local refinement.
Lemma 17 in|Gao et al.|(2017) gives detailed calculation of this error bound.

To fix ideas, we focus on the local refinement of node 1 and assume without loss of generality
o1 = 1. One can show, by following the steps of Lemma 17 in|Gao et al.|(2017), that

. +
Plans < o) < o { (o) (M5 ) 1)) @)

When k = 2, ming (2£2) = n/2, and when k > 3, mingy; (232) > n/(BK). When
using GNN to approximate the local refinement process, one needs some buffer for the difference
g1,1 — q1,%- Note that @I) is proved by a Chernoff bound derivation, the first step of which is

Plgig <qip) = P(e! (@r—01) > 1) < E(et (01x—a))
with e!” = \/p(1 — q)/1/q(1 — p). Similarly, for any § > 0, we have
P(qi1 < g +0) = P! (0rmaa) T80 > 1) < R (e (nrmann)),
We can use the same derivation to obtain
Plgry < maxqyp +96) < exp {~(1+0(1))al(p,q) + "3}

For a given constant € > 0, we choose § such that t*6 = $7l(p, q). Then we have
Plavs < maxau +8) < exp{~(1+o(1) = ¢/2)il (p.q)}

<exp{-(1—e)nl(p.q)}.
For the GNN, we choose m such that

—loge —logI(p,q) +/p(1 — q)/\/a(1 — p) + log 88
log 2

m =
Then we can guarantee 22-2~™n < §/2. In other words, |§; . — i 1| < 6/2foralli € [n], k € [K].
Therefore,
P(g11 < q <P < 1)
(11 < Iil#ai(%,k) <Plga < max g1k + )
< exp {—(1 —¢)nl(p,q)}-

We get the desired rate. The derivation from the local refinement error bound to the overall misclas-
sification rate bound is provided in|Gao et al.|(2017) and is omitted here for brevity.

The depth M” of the constructed GNN is 3K'm + 19K + 1, and is bounded by 3K'm + 20K.
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G PROOFS OF THEOREMS [4] AND

We first define a “truncated version” of cross-entropy loss. For L > 0, define

(D) (g, 0) = min © > {108 (Wino)] AL}

for a probability matrix ¥ € R™*X_ When L — oo, £{%) (0, ¥) — (0, 1).

Proof of Theoremd In the proof of Theorem 2] we have constructed a GNN that, for any graph G

in the training set with adjacency matrix A, produces the probability matrix ¥ and estimated label
assignment &, defined by and ([@3) respectively.

Note that & does not depend on a but ¥ does. Define S = {1 < i < n : ||E;.||max > 1/3}. Then
foranyi ¢ S', Z;», — Eio, > 2/3and Z; ), — E; , < 1/3 for all k # ;. We choose « large
enough such that

log(1+ (K —1)e™*/?) < R.
Then for any i ¢ S’, we get

—log(¥;5,) =log | 1+ Y exp{a(Zi; — Eij) — a(Zig, — Ei,)}
Jj#oi
<log(1+ (K —1)e%/3)
< R.

For any 7 € S’, we have — log(\flim) < L. Then,
157
-

(o, 0) < R+ L

On the other hand, |S'| < 3, ¢ 9]|E;.||* < 9] E||%.. Using the upper bound of || E|| » derived in the
proof of Theorem we get for any ¢, > 0,

(P (0, 7)< R+ L-O(R)
with probability at least 1 — n~. Then
EAY (0, %) < R+ L- O(R) + Ln~%.

We need to following lemma to proceed.

Lemma 19. For any community detection algorithm f, suppose graphs G; are generated i.i.d.
following some prior wg, we have

P (1R(6) — R(0)] 2 1) < 2emp (-2 (50

Proof. Note by definitions R(g) — R, (g) = + > i1 Ly, 1(Gj) —EGanrly,r(G). Apply Hoeffding’s

n

inequality and use the fact that each ¢, 1, (G) is naturally bounded by L. O

Suppose graph G; in the training set has true community labels ¢(*), and when the GNN designed

in Theorem [2|is applied to (G;, probability matrix ORN produced. Take ¢ = R in Lemma We
get

S0P (0D, 9D) <E6P(0,0) + R < 2R+ L - O(R) + Ln~°%.

=1

with probability at least 1 — 2 exp (—2mit?/L?).
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We choose L = R~</2, which tends to co. Then 2R + L - O(R) + Ln~% = O(R'~</2) when ¢,
is large enough. By the continuity of E(L) with respect to L, we get

Zgl (z i O(Rl 5/2)

With m > R~(1+9) (logn)!*<, one can show that the probability 1 — 2 exp (—2mt?/L?) is bigger
than 1 — n=°° for any ¢y > 0.

For graph G, denote the probability matrix generated by the trained GNN as 0N Assuming the
empirical risk is decreased, we have

—ZE& ) ) <*Z£1 O gy < O(R¢/?).

We finally get
1 & , . - 1 & o
— ZZQ(U(1)7U(A(1)’QO;9)) < ;mgu)’ U@ /log2 < R,

Proof of Theorem 5} Fix any graph G in the training set with adjacency matrix A. In the proof of

Theorem |3} we have constructed a GNN that produces probability matrix ¥ and estimated labels &
based on g; 3 by (46) and (47| . To derive a bound for the cross-entropy loss, we need a better control
on the difference cji,gi — ¢, for k # o,. We still focus on node 1. Using the same argument as the
proof of Theorem 3] one can get

P(gi,1 < I]?;%i((jl,k +6) <P(q11 < Iiljiiqu + 29)
<exp{—(1—-2¢)nl(p,q)}.
Denote the right-hand-side of the last display by R2. We choose « such that
log(1 + (K — 1)e”*%) < R,.
So when §i1,1 > maxy21 ¢1,k + 0, the cross-entropy is upper bounded by R».
Then

—log (W < LP(G14 < i —P(G11 < i
E ({ log (‘1’1,1)} A L) < LP(G1y < Iili{((h,k +90)+ Ry (1 P(gi1 < T}?ﬁ“]l,k + 5))
< LR; + Rs.

Therefore, we have

EXP (o, T) Z ]E{[—log( )} AL} < LRy + Rs.

Suppose graph G; in the training set has true community labels o(*), and when the GNN designed

in Theorem |3|is applied to GG;, probability matrix T s produced. Take ¢ = Ry in Lemma We
get

69 (019, §9) < B (0,8) + Ry < LRa + 28
i=1

with probability at least 1 — 2 exp (—2mt?/L?).
Choose L = exp{(e/2)nl(p,q)} which goes to oo slowly. Then LRy + 2Ry <
exp {—(1 — 11e¢/4)nI(p, q)}. By the continuity of £§L> with respect to L, we have

Zel TO) < exp{—(1—11e/9)nl(p,q)} .
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With m > exp(271(p, ¢))(logn){1+¢€)), one can prove that the probability 1 —2 exp (—2mt?/L?)
is bigger than 1 — n=“ for any ¢y > 0.

For graph G, denote the probability matrix generated by the trained GNN as 0N Assuming the
empirical risk is decreased, we have

m

1 & N~
~ ZE& D,00) < 5;&(0“%@@) < exp {(1 — 11e/4)7l(p,q)} -
We finally get

N 1 & P
— Zfo O o(AD, Z(5D);0)) < - Zﬁl(a(l),\lﬂ(z))/logQ <exp{(1-3e)nl(p,q)}.
i=1

H PROOF OF THEOREM

Assume that the graph are generated i.i.d. according to some prior wg. Suppose we are interested
in a class of community detection algorithms & = softmax o . For a community detection
algorithm f, .y € § outputting a matrix f, ,© (G) € R™*X, which is then used to generate a
probability matrix after the softmax operation, and we write 9g o0 = softmax o fy . € &, and

96,40 (G) = SOftHlaX(fQ,m(O) (G))
To establish the generalization bound, we revise the cross entropy to a “truncated” version

n

0,1(G) = CE 1 (G) = min ~ 3" (108((9(G))i ptocr) " A L),

HESK M “
1=

where L is some large but fixed constant and o(G); extracts the community assignment of node 7 in
graph G. We also suppress the dependence on z(°) in the above notation.

Define the empirical risk for any community detection algorithm g = softmax o f by
R (9) = Rn(f) = LS £y,0(G;). The empirical risk minimizer is defined to be g =

arg min e g % Yot £g.n(G;). Define the population risk for any community detection algorithm

R (g) = Bgrome by (G').

For a metric space F equipped with metric d, the covering number N (e, F, d) is the smallest number
of balls of radius ¢ with respect to d that can cover F, i.e., for every € > 0, there exists an F. with

| F.| = N(e, F,d) such that for every f € F, there exists a f € F. such that d(f, f) <
Lemma 20. For § <1 and doo(f1, f2) = maxg SUD||2.(0) | nax <1 If1(G,z©) — fo(G ,Jc( N lmase

log N (8,G(M,d,s),ds) < (s+ 1)log(20'n™ 1 FIM(M + 1)V?).

Proof of Lemma 20} Write AL(f) as the mapping u € R% — oy 0 -+ 0 gpu (u) € R, and
AR(f) as the mapping u € R% — gy 0 - -+ gy (u).

We note ||ABlmax < || A|lmax||Bllmax X (# of columns of A). Given two community detection
algorithms f an f with corresponding parameters (6))M and (§®))M ) with || — 0]|max < &, We
bound the difference

sup f(G»x(o)) _J;(Gv$(0))‘|max

”w(U) Hmaxgl

M
< Z‘A%H(f) o g 0 A (F)(X) - A%+1(f) © 04w © A?A(f)(X)‘
=0
M

e(n|FNM M + 1) T (de + 1).
£=0
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where in the above we have used || X|lmax < 1, which is a simple consequence if we assume
every column of X has unit length. Furthermore, we have used the fact ||6||max < 1 forall 6 €
G(M,d,s, X), as well as that ||O||max < 1 forany O € F.

The total number of parameters in G(M, b) is

U—ded <|f‘2—<M—1>M 1Md 1<}'Md 1) =:V.
—T;em,? (M + 415” ) <| \E}(w )= V.

We take the grid size 6/(nM+1(M + 1)|F|MV to discretize the active parameters on [0, 1], and
there are (g) < V* ways to choose the active parameters, and therefore

N(5,G(M,d,s),ds) < Y (26~ 'nMTHFM (M +1)V2)" < (20~ M FM (M +1)V2)*

u=1

where we used the sum of the geometric sequence in the last inequality. O

For the generalization bounds, we note the following facts.
Remark 6. For two vectors a € RY* and b € RYF such that ||a — b||max < € < 1, we write p, =

softmax(a) and py, = softmax(b). Recall p, = (Z explar)

I e’ By elementary algebra, we

have ||pa - pb”max < 626 —1 < 2625.

Remark 7. Note that with ||Py — Ps||max < 0 for two probability matrices P; = (p,(;é[n] S

= Le[K]
[0, 1]"*¥, we bound for any permutation y € S

1 (1) —ry_ 1 @) L L L
- Z (log(pi’u(ai) Ve ) — - Z log(p; (o) V€ )| <log(l+e”d) < e”d.

et i€
By Lipschitz continuity of the min functional, we have | CE(P;) — CE(P)| < eLé.

With slight abuse of notation, we write dog (1, g2) = maxg sup ;o ,...<1 | CEq, (G) —CEg, (G)|.
Combining the above two remarks, we have

log N (8,8G(M,d,s),dx) < (s + 1) log(4e* Lo~ 0T FIM(M 4 1)V?)

We choose an d-covering &5 of & = SG(M, d, s). By taking the standard empirical process argu-
ment, we have . .

sup [R(g) — Rim(9)] < max [R(g) — R (g)] + 20,

ge® g€

Take union bound for all f’s in §5 and apply (50), we have with probability 1 - u,

max IR(9) — Rin(9)| < \/ii (log(|®5]) + log(2/u))

Combining the above display with Lemma we have established the desired results by taking
u = 2/m? and

)

5 = log(Z) \/ 25(4 + L) +2 log(m)z—g1 (M + 2) log(n| F|d2)

where d, = ||d||max and note V' < | F|dM+1,
Combining the above, we have the following proposition.

Proposition 21. For & = SG(M,d,s) and any sufficiently large but fixed L, with probability
1—2/m?

R 2
sup IRE) (g) — BB (g)| < 3L\/2s(4 +L)+2logm+ (M+2) log(n\}"|d*).

9EGS(M,b,s,X) 2m
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Take M = O(log®(n)), d, = O(n), s = O(nlog(n)), and L = O(log(n)), the right hand side is of
O(nlog*(n)/m.

Combining the above proposition and Theorem[5] we have shown Theorem 6]

Assume the graphs A’s are generated i.i.d. following m4 = SBM(n, p, ¢). Under the condition of
Theorem 4] by taking m = O(R~(*%) max((log(n)!*¢),nlog*(n))), we have with probability
1 — n~¢ for some ¢ < 1, the expected mis-classification ratio on A ~ SBM(n, p, q) of the trained
GNN on o

E[lo(o,0(A,Q;0) | 0)] < /R'™2,

where the constant ¢’ depends on ¢ and c.

I DETAILED CONFIGURATIONS OF NUMERICAL EXPERIMENTS AND
ADDITIONAL NUMERICAL RESULTS

1.1 SYNTHETIC EXPERIMENTS ON SBM

For SBM training set, we choose 15 logarithmically spaced values of SNR in [0.5,3], and 15
logarithmically spaced values of C' in [3K,9K]. The community size vector n is determined by
n ~ Uniform[500, 1500], multiplied by a Dirichlet-distributed random variable with parameter
alg, where o € {0.3,1.2,3,4,5}. For each distinct combination of (SNR, C, «), we generate
4 independent graph instances. All parameter combinations considered, the resulting training set
comprises 4,500 graph instances.

The test set is constructed using combinations of SNR values from {0.25,0.5,0.75,1,1.5} and
C values from {5,10, 15} for K = 2, {15,20,25} for K = 4, and {25, 30,35} for K = 8. For
each value of K, we define four prototypical class-size vectors, {n(l), n® n® n® }, representing
a range from balanced to extremely imbalanced community sizes. The specific community size
vectors for each K are as follows:

K =2:{n® n® n® n®} = {[500,500]", [600,400]", [700,300]", [800,200]"},
K =4:{n® n® n® n®} = {250,250, 250,250] ", [300, 250, 250, 200] ',
[400, 300, 200, 100] ", [700, 100, 100, 100] "}
K =8:{nM n® n® n®} = {[125,125,125,125,125,125,125,125] ",
[150,125,125,125,125,125,125,100] ", [200, 180, 160, 140, 120, 100, 80,20] ",
[650, 50, 50, 50, 50, 50, 50, 50] " }.
For each distinct combination of (SNR, C,n), we generate 30 independent graph instances from
SBM(n, p, q), yielding 1,800 graphs in the test set.

Our two-stage GNN is configured as follows: The first-period GNN has 30 layers, 16 features, and
h = 1. The second-period GNNs are built with 3 layers, 8 features, and h = 0.

Table 4] presents the complete performance of the base and two-stage GNNs, with results grouped
by SNR and community size vector n.

Takeaways. Overall, we observe that accuracy increases monotonically with SNR, and quickly
saturates for smaller K. The two-stage GNN consistently delivers substantial gains in more chal-
lenging regimes, specifically with larger community counts (K =8) and low-to-moderate SNR. For
instance, at K = 8 and SNR, = 0.75, the two-stage model improves accuracy from 77.1% to 82.7%
for balanced communities (n(l)), and from 87.8% to 94.7% for moderately imbalanced communi-
ties (n(®)). This improvement is also accompanied by a reduction in variance, as seen in the n(®)
case where the standard deviation decreases from 1.05 to 0.66.

In easier regimes, such as with small K and high SNR (> 0.75), improvements are negligible due
to ceiling effects. We also observe a slight performance decrease in a few cases under extreme class
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Table 4: Test accuracy of base and two-stage GNNs on the SBM. Note: All values are percentages,
reported in the mean (standard deviation) format.

n SNR Base Two-stage Base Two-stage Base Two-stage

025 | 52.8(3.26) | 52.9 (3.34) | 47.2(13.2) | 50.3 (16.1) | 44.1(1.13) | 50.4 (2.16)
0.50 | 94.8 (1.91) | 95.4(1.35) | 93.6 (1.20) | 95.5 (0.45) | 70.5 (1.10) | 77.7 (1.05)
n® | 0.75 | 98.8(0.06) | 99.0 (0.05) | 98.9 (0.18) | 99.0 (0.08) | 77.1 (0.76) | 82.7 (0.73)
1.00 | 99.6 (0.05) | 99.7 (0.05) | 99.7 (0.11) | 99.8 (0.04) | 78.5 (1.42) | 83.5(0.20)
1.50 | 100 (0.00) | 100 (0.02) | 99.9 (0.17) | 100 (0.01) | 81.5(1.35) | 83.1 (1.33)

025 | 73.1(8.43) | 75.0 (7.03) | 57.7(10.7) | 62.8 (11.6) | 47.9(0.57) | 54.4 (1.55)
0.50 | 96.1(0.15) | 96.4(0.17) | 94.7 (0.05) | 96.0 (0.38) | 71.6 (0.47) | 81.3(0.77)
n® | 0.75 | 98.9(0.02) | 99.0 (0.05) | 99.0 (0.12) | 99.0 (0.03) | 79.0 (1.31) | 85.5 (0.55)
1.00 | 99.7 (0.03) | 99.7 (0.03) | 99.6 (0.25) | 99.8 (0.05) | 81.2 (0.81) | 87.6(1.10)
1.50 | 100 (0.01) | 100 (0.01) | 100 (0.06) | 100 (0.01) | 81.9 (1.59) | 86.5 (0.66)

025 | 814 (4.15) | 83.0 (3.01) | 774 (2.77) | 80.4 (1.54) | 68.3 (1.83) | 72.9 (1.71)
0.50 | 96.3(0.16) | 96.6 (0.05) | 96.2(0.14) | 96.6 (0.13) | 83.5(0.50) | 89.7 (0.99)
n® | 0.75 | 98.9(0.03) | 99.1 (0.05) | 98.9 (0.10) | 99.0 (0.07) | 87.8 (1.05) | 94.7 (0.66)
1.00 | 99.7 (0.01) | 99.7 (0.04) | 99.6 (0.09) | 99.7 (0.08) | 88.8 (0.33) | 95.5(0.35)
1.50 | 100 (0.02) | 100 (0.02) | 100 (0.01) | 100 (0.01) | 90.4 (1.26) | 97.2 (0.36)

0.25 | 86.3(2.20) | 87.2 (1.64) | 80.2 (0.40) | 79.7 (0.65) | 51.8 (4.61) | 59.4 (7.98)
0.50 | 96.9 (0.11) | 97.2 (0.05) | 84.6 (0.20) | 85.7 (0.34) | 56.5 (5.05) | 63.5(5.14)
n® | 075 | 99.1(0.03) | 99.2 (0.04) | 89.1 (0.82) | 91.2 (0.53) | 63.8 (9.09) | 70.6 (5.81)
1.00 | 99.7 (0.02) | 99.7 (0.03) | 93.0 (0.84) | 94.4 (0.40) | 69.6 (5.95) | 76.4 (1.81)
1.50 | 100 (0.01) | 100(0.01) | 97.5(0.38) | 97.3 (0.45) | 80.0 (4.06) | 85.7 (6.31)

imbalance (e.g., at K = 4, n(* and SNR = 0.25), where the base model marginally outperforms the
two-stage model. This behavior is likely due to majority-class drift during the self-training phase.

1.2 SYNTHETIC EXPERIMENTS ON MIXED

To assess our model’s robustness to model mis-specification and its generalization capabilities, we
conducted experiments with three distinct training datasets: SBM, a combination of SBM and
DCBM, and a combination of SBM, DCBM, and LSM. The trained models were then evaluated
on SBM, DCBM, and LSM test sets. The GNN architecture for this study is configured identically
to the one used in our synthetic SBM experiments, as described in Appendix

SBM+DCBM training data. For a fixed K and each (C,SNR, «), we draw one graph from
SBM or DCBM with equal probability. We set p = (alogn)/n and ¢ = (blogn)/n, where
(a,b) are uniquely determined by C = a + (K — 1)band SNR = (a — b)?/[K(a + (K — 1)b)]
under ¢ > b > 0. We form the block matrix B with B,,, = p and B,s; = ¢ for r # s, and
then inject structured heterogeneity as follows: apply a mild diagonal jitter B,., < B, - exp(&,.)
with & ~ Unif[—o,, 0, (we use o, = 0.08); and apply an off—diagonal multiplicative mask
B,.s + Bys - M,s for r # s, where M,,, = 1 and the off-diagonal entries are symmetrized and
renormalized so that mean M, = 1. Unless otherwise noted, we adopt a low—rank mask M =
oy + UUT) with U € RE*? d = 2, ay = 0, and logistic o(+); an optional fixed seed can be
used to control randomness. For ablations, we also consider lognormal masks M = exp(G) with
symmetric Gaussian G of s.d. o,,, = 0.35, beta masks with entrywise Beta(a, b) using (a,b) =
(2,6), and a tiered mask where communities are partitioned into three groups (default equal sizes)
and M,s = Ty(r),4(s) With 7 = 1+ sR, symmetric R ~ N(0,0.25), and scale s = 0.6; all masks are
symmetrized and renormalized as above. In the DCBM case, node factors {6, } are sampled i.i.d.
from I'(k, 1/k) with x drawn log—uniformly from [1.5,3]. For each K, the training set contains
4,500 graphs.

Latent Space Model In the LSM, the edge probability between nodes ¢ and j is
Py; = sigmoid(b; + b; + ¢, ¢;), b ~N(b,1), ¢ ~ N (o, 7°I).
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The global bias b satisfies exp(2b) = Clogn/n. To construct community embeddings
p(1),..., u(K), we sample K vectors uniformly on the K-simplex and scale by s > 0 to con-
trol separation. This yields approximate within/between-community probabilities
2
p = sigmoid (20 + s?), q=~ sigmoid(?b - KS 1 ),

and we tune s to match a target SNR = n (p — ¢)? /(logn - K(p + (K — 1)q)).

To induce additional heterogeneity, we apply community-wise multipliers r to the embeddings:
r =[1.0,1.2] for K =2,[0.8,0.9, 1.0, 1.1] for K = 4, and an arithmetic sequence from 0.85 to 1.2
for K = 8.

SBM+DCBM+LSM training data We vary 7 € {0,0.25,0.5}. When 7 > 0 the graphs follow
the LSM; when 7 = 0 the model reduces to DCBM. In particular, setting b; ~ N (b,1) yields
DCBM, while b; = b recovers SBM. For each fixed K, we assemble a training set of 4,800 graphs
by sampling 10 log-spaced SNR € [0.5, 3], 10 values of C € [3K,9K], o € {0.3,1.2,3,5} for the
Dirichlet size prior, and four independent realizations per (SNR, C, a, 7).

Test data To comprehensively assess performance, we evaluate the models on three distinct test
sets, each comprising 1,800 graphs per K.

For the SBM and DCBM test sets, we maintain the same configurations of C', SNR, and n as in the
first experiment. For each parameter combination (C, SNR, n), we generate 30 independent graph
instances from the SBM and another 30 from the DCBM. The degree correction parameters for the
DCBM are sampled in the same manner as during the training phase.

The LSM test data is constructed as follows. We generate test graphs with 7 = 0.25 and the same r
multipliers as in training. For each K, we take SNR € {0.25,0.5,0.75,1, 1.5} and C € {5,10,15}
for K = 2, {15,20,25} for K = 4, and {25, 30, 35} for K = 8, and the four n("™ above. For each
(SNR, C,n) we draw 30 i.i.d. graphs, yielding 1,800 test graphs per K.

Next, Tables[5] [6] and[7]present detailed results for our synthetic experiments on mixed models. The
results are stratified by community-size configuration and SNR. The columns labeled 'DCBM’ and
"LSM’ represent models trained on SBM+DCBM and SBM+DCBM+LSM data, respectively. The
accuracy values shown are averaged over three distinct test datasets generated from SBM, DCBM,
and LSM.

Takeaways. As shown in Table [5] [6] and our two-stage GNN consistently outperforms the
base model across all tables. This advantage becomes particularly clear as the problem complexity
increases, as seen with larger community counts (K=8) and smaller SNR. While our models show
a performance drop on these test sets compared to the model trained on SBM dataset, we attribute
this to the training strategy. With a fixed training set size, introducing more diverse graph models
(SBM+DCBM+LSM) reduces the parameter coverage for each individual model. This trade-off
can limit the model’s ability to perfectly capture the nuances of each graph type, resulting in lower
overall test accuracy, yet our two-stage architecture still manages to extract a performance gain.

1.3 REAL DATA EXPERIMENTS

We adopt two training settings—SBM, a mixture of SBM and DCBM —and train both first- and
second-period GNNs under each.For the first-period GNN, we use 30 layers with 16 features and
h=1 when K € {2,4}, and 30 layers with 32 features and h=1 when K € {8,9}. For the second-
period GNN, we adopt a lighter architecture: 3 layers with 8 features and h=0 when K € {2,4},
and 3 layers with 16 features and h=0 when K € {8,9}.

We evaluate on five real-world networks: the Political Blog network (1,222 nodes, 16,714 edges,
2 communities; |[Adamic & Glance| (2005); Simmons College (1,137 nodes, 24,257 edges, 4 com-
munities) and Caltech (590 nodes, 12,822 edges, 8 communities; [Traud et al.[ (2011} |2012)), both
preprocessed following|Chen et al.|(2018)); a manufacturing company network (74 nodes, 235 edges,
4 communities; Weng & Feng| (2022)); and the French high school friendship network (329 nodes,
5,818 edges, 9 communities; [Mastrandrea et al.| (2015)). TableE]reports accuracy (%) across these
datasets.
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Table 5: Accuracy (%) by class sizes and SNR for K = 2; columns group three test models with
subcolumns Base/ Two-stage.

SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

025 546(6.8) 556(6.6) 53.7(53) 54.1(64) 51.1(20) 509 (2.4)
0.5 874(142) 90.5(11.2) 63.2(189) 63.4(19.8) 53.7(8.9) 53.8(10.1)

n 075 89.6(183) 943(9.3) 66.7(21.4) 66.1(22.0) 57.0(12.9) 57.1(14.3)
1.0 942(14.1) 98.1(4.6) 72.0(21.8) 70.6(22.3) 58.6(15.7) 58.8(17.0)

15  97.8(64) 99.9(0.1) 80.4(22.0) 78.6(22.1) 60.9(17.0) 61.1(18.3)

025 704(9.9) 727(92) 629(54) 63.7(.9) 59.6(13) 60.3(0.7)
0.5  89.0(14.8) 92.0(10.0) 70.5(16.1) 70.8(162) 61.9(6.1) 62.8(6.4)

n® 075 913(160) 954(8.1) 73.6(17.6) 742(17.4) 63.6(9.6) 64.4(9.7)
1.0 955(11.2) 99.2(1.5) 78.4(18.0) 78.0(182) 655(11.5) 66.6(11.8)

15  98.6(41) 100.0(0.0) 85.1(16.8) 83.3(17.7) 67.4(13.4) 68.4(13.7)

025 76.6(10.8) 78.0(10.7) 71.0(3.3) 71.8(32) 69.0(1.9) 70.3(1.0)
0.5 89.6(13.6) 91.8(9.2) 77.1(10.9) 77.4(10.9) 709(5.8) 72.3(5.3)

n® 075 935(11.7) 96.8(4.6) 80.1(12.2) 80.2(12.4) 72.0(6.9) 73.2(6.6)
1.0 96.1(9.0) 989(2.2) 832(132) 82.9(13.5) 73.1(8.6) 74.7(8.3)

1.5  97.3(7.8) 99.7(0.8) 883(122) 88.1(12.7) 754(11.0) 76.8(10.6)

025 80.4(12.6) 80.6(13.9) 789(1.5) 79.7(03) 77727  79.7(0.7)
0.5 89.1(150) 89.1(15.6) 829(5.6) 83.6(54) 789(3.6) 80.9(2.1)

n® 075 922(14.6) 92.8(13.6) 852(7.3) 855(7.1) 794(3.9) 81.2(27)
1.0 943(13.5) 955(11.8) 87.5(83) 87.5(82) 80.3(5.6) 822 (4.4)

1.5  955(13.0) 96.1(11.3) 91.0(8.4) 90.9(8.0) 81.9(64) 83.5(5.8)

n SNR

From the table [§}Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. This is because real-world networks often exhibit heterogeneity, a structure not adequately
captured by SBM-only training. By incorporating DCBM, the model learns to recognize this het-
erogeneity, which enhances its generalization ability to real data. Furthermore, applying the second-
period GNN reliably improves performance on these datasets by performing local refinement to
achieve more accurate community assignments.
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Table 6: Accuracy (%) by class sizes and SNR for K = 4; columns group three test models with
subcolumns Base/ Two-stage.

SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

025 547(9.1) 59.6(10.2) 36.5(13.7) 36.8(15.6) 26.0(0.7) 26.0(0.8)
0.5 91.8(4.0) 945(2.1) 565(242) 57.8(255) 267(2.0) 269(1.7)
n 075 97.4(23) 98.3(1.2) 69.8(24.0) 724(23.1) 27.6(40) 27.8(3.4)
1.0 98.0(2.8) 99.0(1.5) 80.0(17.1) 83.0(16.9) 29.6(7.4) 30.7(7.7)
1.5 99.5(0.9) 99.9(0.3) 90.6(6.0) 93.8(4.1) 351(13.7) 37.2(13.8)

025 62.8(7.4) 68.1(7.3) 39.3(132) 404 (14.8) 29.9(04) 29.8(0.2)
05 941(1.7) 958(0.7) 59.2(22.8) 61.2(23.8) 302(0.9) 30.1(0.3)
n® 075 985(0.7) 99.0(0.2) 74.8(21.5) 76.6(21.9) 30.7(2.3) 30.7(1.3)
1.0 995(0.7) 99.7(0.2) 83.7(154) 863(14.6) 323(54) 32.9(5.7)
1.5  99.8(0.3) 100.0(0.0) 932(52) 955(.1) 350(92) 36.4(10.2)

025 77.9(2.1) 802(1.8) 520(13.4) 53.6(14.0) 39.2(1.2) 39.0(1.1)
0.5 949(12) 958(0.6) 71.6(185) 743(17.1) 393(l.1) 39.2(1.2)
n® 075 982(0.6) 98.7(0.3) 80.6(15.7) 83.0(14.4) 39.7(1.5) 39.7(1.6)
1.0 993(0.3) 99.5(0.2) 87.3(9.9) 89.7(9.3) 40.6(3.4) 40.6(3.6)
1.5 99.8(02) 99.9(0.0) 93.0(53) 955(3.2) 427(6.6) 438(7.1)

025 74.0(9.5) 758(6.1) 63.8(9.0) 655(82) 656(5.7) 63.3(7.3)
0.5 83.1(43) 848(2.0) 69.9(11.4) 69.8(13.5) 662(54) 63.3(8.3)
n® 075 88.4(1.9) 903(1.6) 73.9(12.1) 745(140) 665(5.1) 62.6(8.9)
1.0 927(2.0) 943(1.7) 76.8(12.4) 78.6(13.1) 67.0(4.7) 63.6(9.0)
15 972(12) 97.7(0.9) 81.8(12.5) 852(10.7) 67.8(4.6) 63.8(8.8)

n SNR

Table 7: Accuracy (%) by class sizes and SNR for K = 8; columns group three test models with
subcolumns Base/ Two-stage.

SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

025 40.6(7.8) 47.1(8.0) 267(8.9) 31.9(122) 150(1.2) 14.2(1.5)
0.5  655(7.5) 773(23) 439(13.0) 553(17.1) 154(1.6) 14.7(2.1)
n® 075 73.04.0) 83.6(3.0) 555(10.3) 68.0(124) 159(22) 153(2.9)
1.0 75.0(3.0) 84348 62.7(74) 748(9.3) 174(3.8) 17.4(5.1)
1.5  782(3.0) 852(6.0) 699(57) 793(7.9) 19.1(5.7) 20.0(7.9)

025 43.1(8.8) 49.9(8.9) 275(84) 324(11.5) 16.0(0.6) 15.7(0.6)
0.5  66.6(8.6) 79.1(3.6) 44.6(12.9) 563(155 164(1.1) 16.1(1.0)
n® 075 740(54) 852(1.4) 562(10.7) 69.2(123) 168(1.4) 16.6(1.6)
1.0 766(4.0) 875(3.5) 642(7.0) 755(83) 17.6(2.5) 18.2(3.4)
1.5 78.8(25) 87.1(44) 70.6(6.1) 803(6.7) 19.1(4.1) 19.8(5.1)

025 60.6(12.3) 66.8(10.2) 40.1(9.5) 46.5(12.2) 20.1(0.2) 20.2(0.1)
05  797(54) 872(3.6) 604(9.7) 702(9.9) 202(0.1) 20.4(0.4)
n® 075 85028 926(1.8) 70.7(6.4) 78.5(7.1) 20.6(0.5) 20.9(0.8)
1.0 863(2.1) 936(L.7) 753(57) 83.1(6.0) 209(1.0) 21.6(1.6)
1.5  87.7(22) 950(2.1) 80.6(3.5 88.3(34) 222(22) 234(3.7)

025 628(100) 61.5(83) 626(48) 64.7(2.0) 525(82) 58.9(6.8)
05  69.0(9.9 712(66) 705(3.0) 70.7(29) 53.1(8.6) 59.7(5.9)
n® 075 73186 757(5.0) 732(34) 73.640) 554(6.6) 61.0(4.8)
1.0 764(66) 788(23) 752(3.9) 762(50) 57.9(4.7) 63.0(2.6)
15 81.6(4.0) 83837 77546 788(.1) 59.0(4.0) 64.2(2.0)

n SNR
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Table 8: Real-world evaluation: accuracy (%) across five datasets. Stage-2 applies the second period
GNN.

SBM SBM+DCBM
Base  Two-stage Base  Two-stage
Political Blog  89.2% 93.3% 94.8% 95.3%

Dataset

Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%

High school 73.6% 85.4% 89.4% 98.5%
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