
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMAL COMMUNITY DETECTION WITH GRAPHICAL
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the theoretical optimality of community detection in net-
works using graph neural networks (GNNs). We show that appropriately designed
GNNs for supervised community detection can match the performance of classical
spectral and likelihood-based methods, achieving information-theoretic optimality
under the stochastic block model (SBM). These results provide the first rigorous
connection between deep learning algorithms and their statistical guarantees for
community detection. We extend existing GNN-based methods into a two-stage
framework, where the second stage is critical for ensuring theoretical optimal-
ity. Our algorithm is trained on synthetic and/or real-world graphs with known
community labels and can be subsequently applied as generic algorithms to any
network in an off-the-shelf manner, offering strong practicality. Extensive exper-
iments on both synthetic and real-world datasets support our theoretical findings,
demonstrating that the proposed two-stage GNN framework delivers high accu-
racy and remains robust under model mis-specification. These results establish
GNNs as both a theoretically sound and practically effective approach to commu-
nity detection.

1 INTRODUCTION

Community detection is a central task in network analysis, with broad implications across disci-
plines such as sociology, biology, computer science, and physics. Advances in community detection
contribute not only to theoretical developments in graph theory and machine learning but also to
practical applications across scientific, industrial, and societal contexts. Over the past decade, re-
search on community detection has seen rapid and substantial progress. Under canonical models
such as the stochastic blockmodel (SBM) and degree-corrected blockmodel (DCBM), existing work
have investigated thoroughly e.g., recoverability conditions, information-theoretic thresholds and
minimax misclassification rates (Abbe et al., 2016; Zhang & Zhou, 2016; Yan, 2016; Gao & Ma,
2021; Gao et al., 2018; Mossel et al., 2023).

When considered in the context of community detection, algorithmic advances outpace theoretical
developments in deep learning. On the algorithmic front, there is a growing use of deep learning
algorithms in community detection beyond traditional statistical methods. These algorithms include
e.g., graph convolutional network (GCN) (Kipf & Welling, 2017; Wang et al., 2021; Liu et al.,
2023), graph neural network (GNN) (Chen et al., 2019; Sun et al., 2021; Jiang & Ke, 2023), graph
autoencoders (Kipf & Welling, 2016; He et al., 2022). To further improve the effectiveness of rep-
resentation learning, attention mechanisms have also been incorporated into the neural networks
(Veličković et al., 2018; Wang et al., 2023; Zhao et al., 2022). We refer interested readers to the
survey paper Su et al. (2024). While these deep learning algorithms have significantly advanced the
effectiveness of community detection, not enough attention has been devoted to developing theo-
retical understandings of their performance. Chen et al. (2019) state the analogy of GNN with the
power iteration method, but rigorous analysis on approximation error is absent. Their work also does
not answer the question of whether GNN can attain good theoretical bounds in terms of misclassi-
fication rate. To the best of the authors’ knowledge, there has not been any solid or comprehensive
theoretical analysis on the statistical properties of deep learning methods for community detection.

In the broader field of learning, a body of work has established results concerning the statistical
properties that deep neural networks can achieve. Yarotsky (2017) is one of the pioneering works

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to study the approximation bounds of deep ReLU networks. Schmidt-Hieber (2020) illustrate how
ReLU networks’ depth and sparsity govern approximation power and convergence rates in non-
parametric regression setting. Under such setting, Hu et al. (2021) and Suh et al. (2022) study the
generalization properties in overparametrized ReLU neural networks. There are also several re-
sults on convergence rates of deep neural networks in classification setting (Kim et al., 2021; Bos &
Schmidt-Hieber, 2022; Meyer, 2023), and density estimation setting (Bos & Schmidt-Hieber, 2024).
Readers are referred to the survey paper Suh & Cheng (2025) for more details. All these studies fo-
cus on deep neural networks with conventional problems such as regression and classification, rather
than graph-structured data considered in this paper. Nonetheless, they constitute one of the major
motivations for the present work.

This paper aims to close the gap between deep learning-based community detection algorithms and
their theoretical properties. We try to answer the following theoretical questions in the community
detection context: (i) Can a well-designed GNN perform approximately the computations that are
needed in traditional statistical methods, and if so, what is the network depth requirement to reach
certain level of approximation accuracy? (ii) Can GNN achieve the minimax rate of community
detection in classical models such as SBM? (iii) How good is the trained GNN on the unseen sam-
ples? In other words, can the trained GNN achieve strong performance for out-of-sample networks?
By addressing these questions, we establish, possibly for the first time in the statistical community,
the theoretical properties of deep learning–based methods for community detection. Furthermore,
this paper improves upon the existing GNN community detection algorithm by leveraging insights
from established statistical theory. In particular, we incorporate a second stage GNN devised to
carry out local refinement of normalized edge counting that improves the accuracy of community
assignments. This stage is essential for the GNN to achieve the minimax rate.

There are several technical challenges in our theoretical analysis. First, while existing frameworks
for conventional deep neural networks offer a comprehensive set of theoretical tools, GNN exhibits
substantial differences from those conventional neural networks designed for regression-type data.
In particular, GNN computations involve more intricate operations, such as spectral decomposition
(or more specifically, orthogonal iteration) on matrices, whose approximation errors and conver-
gence properties that has not been established in prior literature. Second, by establishing a general-
ization bound, we go beyond the typical existing analysis focused on the error rate only on training
(in-sample) data, and prove rigorously that the trained GNN performs well also on out-of-sample
networks.

Contributions. We summarize the main contributions of this paper as follows:

• We establish, for the first time in the literature, a statistical theoretic foundation for deep
learning–based community detection algorithms. We derive error bounds for GNN approx-
imations. We demonstrate that GNN, with ReLU-based activations, can achieve the mini-
max rate. In SBM with a typical parameter setting, the number of layers needed to achieve
minimax rate is at most O((log n)c), where n is the network size and c is an positive con-
stant. This result bridges the gap between deep learning algorithms and their underlying
theoretical guarantees for community detection.

• We propose a two-stage GNN training scheme, where the second stage augments the exist-
ing GNN-based supervised community detection with a local refinement stage. This two-
stage approach not only enhances empirical performance but, more importantly, guarantees
that the resulting estimator attains the statistically minimax rate.

• We provide a reusable framework to establish generalization bounds of the GNN-based
community detection algorithms by investigating the complexity of the underlying GNN-
based function class.

Notations. We write In as the identity matrix of size n (or I as the identity matrix in general)
and Jn as the n × n matrix of ones, i.e., Jn = 1n×n. We use 1n to represent the n-dimensional
vector of all ones. For a vector x ∈ Rk, we use ∥x∥ to denote the Euclidean norm of x, and
∥x∥max = max1≤j≤k |xj | to denote its infinity norm. For a matrix Y ∈ Rn×k, let Yi· and Y·j
represent its ith row and jth column respectively. Also, let ∥Y ∥max = maxi,j |Yij |, ∥Y ∥F and
∥Y ∥2 denote its infinity norm, Frobenius norm and spectral norm respectively. Let σmin(Y) be the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

smallest singular value of Y , and col(Y) be the column space of Y . For a positive integer n, we use
[n] to denote the set {1, . . . , n}. For a set S, we use |S| to denote its cardinality.

2 MODEL AND ALGORITHM

2.1 THE SBM SETUP

We consider the classical SBM setup. Assume the undirected network has n nodes and a known
number of communities K, with K = O(1). The cases of unknown K, and/or K with a larger
order, are left to future research. Suppose the true community labels are σ = (σ1, . . . , σn) ∈ [K]n.
The size of the kth community is denoted by nk =

∑n
i=1 1{σi=k}. Let n = [n1, . . . , nK]⊤,

nmin = mink∈[K] nk, and nmax = maxk∈[K] nk. The adjacency matrix A ∈ Rn×n has (i, j)
entry associated with the edge between every pair of nodes such that Aii = 0 and

Aij = Aji
ind.∼ Bernoulli(pij) for 1 ≤ i < j ≤ n, (1)

where the underlying probability matrix P ∈ Rn×n is defined by

Pij = 1{σi=σj}p+ 1{σi ̸=σj}q (2)

with 0 < q < p < 1. The relationship p > q assures that the network is assortative. It is possible
to relax (2) to the form Pij = pσiσj , meaning that the connection probabilities within and between
communities may depend on the specific pair of communities involved. However, for the theoretical
derivation presented in this paper, we retain the simpler form given in (2). We write the model
determined by (1) and (2) as SBM(n, p, q).

For estimated labels σ̂ = (σ̂1, . . . , σ̂n), we focus on the misclassification rate ℓ0(σ, σ̂) =
minπ∈SK

1
n

∑
i∈[n] 1{π(σi)̸=σ̂i}, where SK represents the set of all possible permutations of [n].

Some notations are in order. Assume A has eigenvalues λ1, . . . , λn satisfying |λ1| ≥ · · · ≥ |λn|,
and associated eigenvectors v1, . . . , vn ∈ Rn. Let η = |λK |/|λK+1|. Define V = [v1, . . . , vn],
V1 = [v1, . . . , vK], V2 = [vK+1, . . . , vn], Λ = diag(λ1, . . . , λn), Λ1 = diag(λ1, . . . , λK), Λ2 =
diag(λK+1, . . . , λn).

2.2 THE GNN FRAMEWORK

To conduct supervised community detection, we adopt the line GNN framework in Chen et al.
(2019). Suppose the mth layer of the GNN has node features of dimension dm, and these node
features are presented by a vector x(m) ∈ Rn×dm . That is, the ith row of x(m) is the features of node
i. The GNN is characterized by a group of linear operators on x(m), where these linear operators
are precisely the multiplication on the left by n × n matrices. Following the usual notation, we
write a graph G = (V,E). For a graph G with size |V | = n and adjacency matrix A, we choose
the family of n × n matrices F(A) = {In, Jn, D,A,A1 . . . , Ah} with some positive integer h, in
which D is the degree matrix that is diagonal and whose (i, i) entry Dii is the degree of node i, and
Ah = min(1, A2h). We only allow |F(A)| = O(1). Unlike Chen et al. (2019), we have included an
additional matrix Jn in F(A) in our model. This facilitates our theoretical analysis, while leaving
the practical results nearly unaffected.

The GNN maps features of one layer to those of the next via linear operators induced by the matrices
in F(A), followed by the ReLU activation function. In particular, it first computes

z̄(m+1) =
∑

Oi∈F(A)

Oix
(m)θ

(m)
i , z(m+1) = ρ

 ∑
Oi∈F(A)

Oix
(m)θ

(m)
i

 , (3)

where θ(m)
i ∈ Rdm× dm+1

2 are GNN parameters, and ρ(·) is the celebrated ReLU function ρ(z) =

max(0, z) with entry-wise action on matrices. Then it concatenates z(m+1) and z̄(m+1) to get the
features of the next layer

x(m+1) =
[
z(m+1), z̄(m+1)

]
∈ Rn×dm+1 . (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We concatenate {θ(m)
i : Oi ∈ F(A)} into a vector θ(m) with length dm(dm+1/2)|F(A)|, and

denote θ = {θ(0), . . . , θ(M)} as the collection of parameters in each layer. Essentially, a GNN
is fully determined by the parameters θ, and does not depend on the particular graph G. Define
∥d∥max = max1≤m≤M dm the width of the GNN. With chosen initial features x(0) ∈ Rn×d0 , we
write the effect of GNN with parameters θ on graph G as a mapping fθ,x(0)(·)

fθ,x(0)(G) = σθ(M) ◦ σθ(M−1) ◦ · · · ◦ σθ(0)(x(0)), (5)

where σθ(m) means the GNN operators defined by (3) and (4) with parameter θ(m). Note that x(0)
does not depend on θ in any way, but is allowed to be random.

We attach a softmax layer at the end of the GNN to formulate the community assignment. The result
of softmax function on each row of x(M), is a probability matrix Ψ(A, x(0); θ) ∈ Rn×K , whose
rows all sum up to 1. With this probability matrix, one can determine the estimated community
labels σ(A, x(0); θ) by σi(A, x(0); θ) = maxk∈[K] Ψi,k(A, x

(0); θ).

Define the loss function with respect to G as the cross-entropy

ℓ1(σ,Ψ(A, x(0); θ)) = − min
π∈SK

1

n

∑
i∈[n]

log
(
Ψi,π(σi)(A, x

(0); θ)
)
. (6)

The sum in (6) can also be regarded as the log-likelihood function of a multinomial logistic regres-
sion with x(M) as the design matrix and π(σ) as the response. When the training set consists of
graphs G1, . . . , Gm with adjacency matrices A(1), . . . , A(m), and initial features x(01), . . . , x(0m),
the objective of training is to minimize the empirical risk R̂m

(
{A(i)}mi=1, {x(0i)}mi=1; θ

)
=∑m

i=1 ℓ1(σ,Ψ(A(m), x(0); θ))/m.

2.3 A TWO-STAGE GNN SCHEME

The classical two-stage algorithm (Gao et al., 2017; 2018; Gao & Ma, 2021; Gao et al., 2022),
introduced in the unsupervised community detection context, consists of a spectral clustering stage
and a local refinement stage. We summarize its supervised counterpart as Algorithm 2 in Appendix
A. The local refinement procedure, as described by lines 4–6 in Algorithm 2, updates community
labels according to the community with which each node has the highest proportion of connections.
It is repeated t times to ensure sufficient improvement.

In this paper, we introduce a two-stage GNN training scheme based on the GNN framework de-
scribed in Section 2.2. This training scheme, devised to mimic Algorithm 2, is described as Algo-
rithm 1. The first stage trains a regular GNN. For each graph in the training set, the second stage
GNN takes Z(σ̃) ∈ Rn×K , the one-hot matrix of the estimated labels σ̃ from the first stage, as initial
features and train another GNN.

1: Train the first GNN with initial features x(0) ∈ Rn×d0 . For each graph G with adjacency
matrix A in the training set, let σ̃ = σ(A, x(0); θ̃) be its estimated community labels from the
first GNN.

2: For each graph G, compute Z(σ̃) ∈ Rn×K , where Zi,k(σ̃) = 1{σ̃i=k} for i ∈ [n] and k ∈ [K].
3: Train the second GNN initial features Z(σ̃) for graph G.

Algorithm 1: A two-stage GNN training scheme for supervised community detection.

The testing is also divided into two stages. For a testing graph Atest, we use the first trained GNN to
obtain its initial label prediction σ̃test. Based on σ̃test, we compute matrix Z(σ̃test). We then apply
the second trained GNN, with Z(σ̃test) as initial features, to obtain a renewed label prediction σ̂test.
When necessary, the second GNN can be applied iteratively, using Z(σ̂test) from the last iteration
as the input, to obtain the next label prediction σ̂test(2). This process can be repeated several times
until a pre-specified number of repetitions is reached or the label prediction is stable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 THEORETICAL RESULTS

Rohe et al. (2011), Sussman et al. (2012), Lei & Rinaldo (2015) and numerous other studies analyze
the consistency of spectral clustering algorithm for community detection. Gao et al. (2017) and Gao
& Ma (2021) show that the classical two-stage algorithm achieves the minimax misclassification rate
in SBM. Our objective is to show that the two-stage GNN can attain nearly the same misclassification
rate in-sample. More importantly, we also establish generalization guarantees to ensure optimal
misclassification rate for out-of-sample data, assuming the out-of-sample data follows the same
generating mechanism of the training network data.

The following two assumptions are assumed to hold throughout the entire theoretical derivation, so
we do not restate the conditions in the theoretical results.
Assumption 1. nmin ≥ n/(βK) and nmax ≤ βn/K, where β is an absolute constant.
Assumption 2. n(p− q)≫

√
log n and n(p− q)≫ √np.

Assumption 1 assures that allK communities are of the same order. Assumption 2 is a condition that
assures certain level of assortativity. In the typical setting of p = a logn/n, q = b logn/n where
a, b are absolute constants, it is satisfied. We denote Ωn as the parameter space for SBM(n, p, q)
that satisfy Assumptions 1 and 2.

3.1 ERROR BOUND OF GNN APPROXIMATION TO ORTHOGONAL ITERATION

Observe that the multinomial regression in line 2 of Algorithm 2 can take any matrix spanning
col(V1) as the design matrix, rather than requiring the precise matrix V1. The orthogonal iteration
method (Golub & Van Loan, 2013), detailed as Algorithm 3 in Appendix A, can be used to construct
a matrix with column space close enough to col(V1).

Using a heuristic argument, Chen et al. (2019) point out the analogy of GNN with the power iteration
method to obtain v1, . . . , vK (i.e. the columns of V1) sequentially. We, on the other hand, rigorously
establish that a properly designed GNN can approximate the output of orthogonal iteration with
high accuracy. Notably, orthogonal iteration requires less conditions on A and a shallower GNN
compared to power iteration.

For a matrix Q ∈ Rn×K with orthonormal columns, the distance between col(Q) and col(Vj)
is measured by dist(col(Q), col(Vj)) := ∥HQ − HVj

∥2 for j = 1, 2, where HQ and HVj
are

projection matrices of Q and Vj respectively. We also have dist(col(Q), col(Vj)) = ∥V ⊤
3−jQ∥2,

since V = [V1, V2] is orthonormal.

Assume one chooses Q0 as initial features of the GNN. We impose the following condition on Q0:

σmin

(
Λ1V

⊤
1 Q0

)
≥ n−(r−1) (7)

for some r > 1. Condition (7) means that col(Q0) cannot be too close to col(V2), thus must retain
certain directions in col(V1). This is a sensible assumption, because otherwise it becomes difficult
for the orthogonal iteration to generate directions in col(V1). In Appendix D, we show that a matrix
sampled from the Haar distribution satisfies (7) with high probability.

The following results characterize the error bound of a properly structured GNN in approximating
the orthogonal iteration.
Theorem 1. For any s > 0 and any c0 > 0, there exists a GNN with parameters θ, such that for
any graphG ∼ SBM(n, p, q), if initial featuresQ0 satisfies (7) for its adjacency matrixA, the GNN
produces features of its last layer Q̂ ∈ Rn×K that satisfies

dist(col(Q̂), col(V1)) ≤ n−s (8)

with probability at least 1− n−c0 . The depth M for such GNN satisfies

M ≤ 8K2(s+ r)2r
(log n)3

ξ2
+ 8K2((K + 1)r + s)(s+ r)

(logn)2

ξ
, (9)

where ξ = log
(
c2n(p− q)/max{√np,

√
log n}

)
with an absolute constant c2 > 0 depending on

c0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 1 provides a general error bound for spectral decomposition using GNNs. It also has
independent theoretical significance beyond the context of community detection.
Remark 1. The order of M depends on how much larger n(p − q) is than max{√np,

√
log n}.

In the typical setting of p = a log n/n, q = b log n/n where a, b are absolute constants, we have
ξ ≍ log log n, so that M is upper bounded by (logn)c with c < 3.
Remark 2. The convergence of orthogonal iteration relies on the condition that η is bounded away
from 0. This is guaranteed by the fact the fact that ∥A − P∥2 ≤ c1

√
np+ log n, which holds

with probability at least 1− n−c0 (Lei & Rinaldo, 2015). In contrast, as power iteration generates
v1, . . . , vK in a sequential manner, it requires |λk|/|λk+1| to be bounded away from zero for all
k ∈ [K]. Hence orthogonal iteration imposes weaker conditions on A. Furthermore, the sequential
nature of power iteration leads to more severe accumulation of GNN approximation errors. As a
result, orthogonal iteration can achieve sufficient accuracy with a shallower GNN.

3.2 THE IN-SAMPLE MISCLASSIFICATION RATES

The GNN introduced in Theorem 1 can be extended by adding one more layer and a softmax output
layer to approximate the multinomial regression. This is precisely what the first stage of Algorithm
1 is designed to address. Define R = [(np + logn)(p + (K − 1)q)2]/[n2(p − q)4]. We provide
theoretical upper bounds on the misclassification rate this extended GNN in Theorem 2.
Theorem 2. For any c0 > 0, there exists a GNN with parameters θ′ and depth M ′ satisfying (9),
such that for any graphG ∼ SBM(n, p, q) with true labels σ, by feeding to this GNN initial features
Q0 satisfying (7) for G’s adjacency matrix A, it outputs estimated labels σ(A,Q0; θ

′) that satisfy

ℓ0(σ, σ(A,Q0; θ
′)) ≤ c′1R.

with probability at least 1− n−c0 , for some absolute constant c′1 that depends on c0.
Remark 3. If p+ q ≍ p− q, then the bound in Theorem 2 becomes O((np+ logn)/(n2(p− q)2)).
Because of Assumption 2, the bound is o(1), which implies consistency of the GNN classification.

The purpose of the second stage of Algorithm 1 is to devise an emulation to local refinement proce-
dure. Define I(p, q) = −2 log

(√
pq +

√
(1− p)(1− q)

)
, and make the following assumption:

Assumption 3. nI(p, q)→∞.
Theorem 3. Suppose Assumption 3 holds. For any ϵ > 0, there exists a GNN with depth M ′′ and
parameters θ′′, such that for any graph G ∼ SBM(n, p, q) with true labels σ, as long as its initial
label estimate σ(0) satisfies ℓ0(σ, σ(0)) = o(1), it holds that

sup
(n,p,q)∈Ωn

Pn,p,q

(
ℓ0(σ, σ(A,Z(σ

(0)); θ′′)) ≥ exp [−(1− ϵ)ñI(p, q)]
)
→ 0,

where ñ = n/2 when K = 2 and ñ = n/(βK) when K ≥ 3. The GNN depth M ′′ satisfy

M ′′ ≤ 3K

log 2

(
− log ϵ− log I(p, q) +

√
p(1− q)/

√
q(1− p) + log 88

)
+ 20K.

The error rate in Theorem 3 matches the minimax rate derived in Zhang & Zhou (2016), Gao et al.
(2017) and Gao & Ma (2021).
Remark 4. In the typical setting of p = a logn/n, q = b log n/n where a, b are absolute constants,
one can show that I(p, q) ≍ (p− q)2/p. If one takes ϵ ≥ n−δ for δ > 0, then M ′′ is upper bounded
by O(logn).

The two GNNs constructed in Theorems 2 and 3 can serve as a device for GNNs in approximately
executing the classical two-stage algorithm. However, as the training procedure optimizes GNN
parameters by minimizing the cross-entropy loss, the parameters of the trained GNNs may differ
from those of the constructed GNNs. In general, there is no guarantee that a small misclassification
rate leads to a small cross-entropy, as the probabilities may lack enough margin between correct
and incorrect label assignments. But in our model, it is possible to obtain a sufficient margin with
high probability. We analyze a “truncated version” of cross-entropy, that can be related to misclas-
sification rate. By bounding this truncated cross-entropy, we can derive an upper bound for the full

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

cross-entropy. When combined with the inequality misclassification rate ≤ cross-entropy/ log 2,
this bound allows us to establish theoretical guarantees on the in-sample misclassification perfor-
mance.

Assume graphs G1, . . . , Gm in the training set are generated i.i.d. following some prior πG. Let
their adjacency matrices be A(1), . . . , A(m), and initial features be Q(1)

0 , . . . , Q
(m)
0 , which satisfy

(7) for each graph.

Theorem 4. Assume the first trained GNN in Algorithm 1 has parameters θ̃, and satisfies
R̂m

(
{A(i)}mi=1, {Q

(i)
0 }mi=1; θ̃

)
≤ R̂m

(
{A(i)}mi=1, {Q

(i)
0 }mi=1; θ

′
)

, where θ′ are parameters of the
GNN constructed in Theorem 2. For any c0 > 0 and any ϵ > 0, if the training sample size
m ≥ R−(1+ϵ)(log n)1+ϵ, the the first trained GNN outputs in-sample estimated community labels
σ(A(i), Q

(i)
0 ; θ̃) that satisfy

1

m

m∑
i=1

ℓ0(σ, σ(A
(i), Q

(i)
0 ; θ̃)) ≤ c̃1R1−ϵ

with probability at least 1− n−c0 , for some constant c̃1 that depends on c0.

Let σ̃(i) = σ(A(i), Q
(i)
0 ; θ̃) be the estimated labels from the first trained GNN for graph Gi in the

training set.
Theorem 5. Suppose Assumption 3 holds. Assume the second trained GNN in Algorithm 1 has pa-
rameters θ̂, and satisfies R̂m

(
{A(i)}mi=1, {Z(σ̃(i))}mi=1; θ̂

)
≤ R̂m

(
{A(i)}mi=1, {Z(σ̃(i))}mi=1; θ

′′),
where θ′′ are parameters of the GNN constructed in Theorem 3. For any ϵ > 0 and any c0 > 0,
if the training sample size m ≥ exp {2ñI(p, q)} (log n)1+ϵ, then the second trained GNN outputs
in-sample estimated community labels σ(A(i), Z(σ̃(i)); θ̂) that satisfy

1

m

m∑
i=1

ℓ0(σ, σ(A
(i), Z(σ̃(i)); θ̂)) ≤ exp [−(1− 3ϵ)ñI(p, q)]

with probability at least 1− n−c0 .
Remark 5. Theorems 4 and 5 hinge on the assumption that the GNN training can effectively de-
crease the empirical risk. In practice, the convergence of the training is influenced by the optimiza-
tion landscape (Chen et al., 2019), a topic beyond the scope of the present study.

3.3 GENERALIZATION BOUNDS

We focus on the class of GNN functions.

G(M,d, s) :=
{
fθ,x(0) of the form (5) : max

0≤m≤M
∥θ(m)∥max ≤ 1,

M∑
m=0

|F|∑
i=1

∥θ(m)
k ∥0 ≤ s

}
, (10)

where we abuse the notation slightly by defining ∥F∥0 =
∑

i,j 1{Fij ̸=0} for matrix F . We call the
class of GNN clustering algorithms SG(M,d, s) := {softmax ◦ f : f ∈ G(M,d, s)}.
The specification of (M,d, s) follows what the GNN that approximate the orthogonal iterations,
which is used to restrict our parameter search in training GNN’s.
Theorem 6. Fix M = O(log2(n)), d with ∥d∥max = O(n) and s = O(n log(n)). Under the
condition of Theorem 4, by taking m = O

(
R−(1+ε) max((log1+ε n), n log4(n))

)
, we have with

probability 1−n−c for some c < 1, the expected misclassification rate on A ∼ SBM(n, p, q) of the
trained GNN characterized by θ̃ on SG(M,d, s) can be bounded

E[ℓ0(σ, σ(A,Q; θ̃) | θ̃] ≤ c′R1−ε,

where the constant c′ depends on ε and c.

The theorem establishes that the obtained GNN community detection algorithm trained on SBM
synthetic data attains the same mischassification rate as in Theorem 4, if the algorithm is applied on
SBM networks generated following the same SBM laws. The GNN community detection algorithm,
thus, is effective not just on in-sample networks, but also on out-of-sample networks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 NUMERICAL STUDIES

We conduct comprehensive experiments to assess our two-stage GNN scheme. The objectives are
twofold: (i) to benchmark its performance against the baseline GNN model, and (ii) to validate its
improved generalization capability when trained on diverse graph models.

4.1 SYNTHETIC EXPERIMENTS ON SBM

We adopt the typical setting p = a logn/n, q = b log n/n. Note that a, b are uniquely determined
by C = a+ (K − 1)b and SNR = (a− b)2/[K(a+ (K − 1)b)], where C controls the node degree
and SNR represents signal-to-noise ratio. We examine three community counts, K = 2, 4, 8, and
for each we employ a two-stage training scheme. For a fixed K, we construct a training set with
4,500 graphs, by varying the parameters C, SNR, and community sizes n. The test set, consisting
of 1,800 graphs, is also constructed using combinations of C, SNR, and community sizes n. The
detailed data generating mechanism and training configuration is described in Appendix I.1.

The performance of the base (one-stage) GNN and two-stage GNN, grouped by SNR and n, are
shown in Table 1. The experimental results clearly show that our two-stage GNN method achieves
higher accuracy across almost all test scenarios. The two-stage GNN demonstrates particularly
pronounced advantages when K is large, the communities are imbalanced, and the SNR is low.

Table 1: Test accuracy of base and two-stage GNN’s on the SBM. All values are percentages,
reported in the mean (standard deviation) format. n(1),n(2),n(3),n(4), correspond to balanced,
slightly imbalanced, moderately imbalanced, extremely imbalanced community sizes, respectively.

n SNR K = 2 K = 4 K = 8
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 52.8 (3.26) 52.9 (3.34) 47.2 (13.2) 50.3 (16.1) 44.1 (1.13) 50.4 (2.16)
0.75 98.8 (0.06) 99.0 (0.05) 98.9 (0.18) 99.0 (0.08) 77.1 (0.76) 82.7 (0.73)
1.50 100 (0.00) 100 (0.02) 99.9 (0.17) 100 (0.01) 81.5 (1.35) 83.1 (1.33)

n(2)

0.25 73.1 (8.43) 75.0 (7.03) 57.7 (10.7) 62.8 (11.6) 47.9 (0.57) 54.4 (1.55)
0.75 98.9 (0.02) 99.0 (0.05) 99.0 (0.12) 99.0 (0.03) 79.0 (1.31) 85.5 (0.55)
1.50 100 (0.01) 100 (0.01) 100 (0.06) 100 (0.01) 81.9 (1.59) 86.5 (0.66)

n(3)

0.25 81.4 (4.15) 83.0 (3.01) 77.4 (2.77) 80.4 (1.54) 68.3 (1.83) 72.9 (1.71)
0.75 98.9 (0.03) 99.1 (0.05) 98.9 (0.10) 99.0 (0.07) 87.8 (1.05) 94.7 (0.66)
1.50 100 (0.02) 100 (0.02) 100 (0.01) 100 (0.01) 90.4 (1.26) 97.2 (0.36)

n(4)

0.25 86.3 (2.20) 87.2 (1.64) 80.2 (0.40) 79.7 (0.65) 51.8 (4.61) 59.4 (7.98)
0.75 99.1 (0.03) 99.2 (0.04) 89.1 (0.82) 91.2 (0.53) 63.8 (9.09) 70.6 (5.81)
1.50 100 (0.01) 100(0.01) 97.5 (0.38) 97.3 (0.45) 80.0 (4.06) 85.7 (6.31)

4.2 SYNTHETIC EXPERIMENTS ON MIXED MODELS

To assess robustness to model mis-specification, we implement an evaluation protocol using a
mixed-data training approach. Specifically, we construct a training set with 4,500 graphs, and a test
set with 1,800 graphs, both comprising equally numbered instances from both SBM and DCBM. For
both models, we keep the choices of K, C, SNR and n the same as the first experiment in Section
4.1. See Appendix I.2 for details.

Table 2 summarizes the performance of this mixed-data training approach, compared with the train-
ing only with SBM graphs. Mixed training significantly improves model performance. Compared
to training on SBM alone, this mixed approach yields higher accuracy and lower variance across all
conditions, indicating a more robust and stable model.

To further evaluate our model’s generalization capabilities, we conducted additional experiments
by training on the latent space model (LSM). The results demonstrated that the model trained on
LSM achieved a performance similar to that of the SBM + DCBM mixed-trained model. For a
comprehensive overview of these findings, see Appendix I.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Test accuracy under different training sets tested on mixed SBM and DCBM graphs. All
values are percentages, reported in the mean (standard deviation) format.

Training SNR K = 2 K = 4 K = 8
set Base Two-stage Base Two-stage Base Two-stage

SBM
0.25 68.4 (13.0) 69.4 (13.5) 51.3 (19.7) 53.5 (20.5) 42.6 (18.0) 46.7 (20.0)
0.75 82.3 (18.7) 82.1 (19.1) 74.6 (24.2) 75.8 (23.8) 65.6 (15.8) 72.6 (13.8)
1.50 89.0 (16.0) 86.6 (17.3) 90.2 (11.1) 92.8 (9.1) 76.1 (9.2) 81.7 (8.8)

SBM +
DCBM

0.25 74.6 (11.1) 75.7 (10.8) 64.8 (8.2) 67.9 (7.9) 44.3 (11.7) 49.8 (9.3)
0.75 97.0 (2.1) 97.2 (2.0) 94.0 (4.6) 94.7 (3.9) 72.0 (5.5) 83.8 (4.5)
1.50 99.2 (0.9) 99.2 (0.8) 98.3 (1.6) 98.5 (1.4) 79.3 (3.7) 89.3 (4.7)

4.3 REAL DATA EXPERIMENTS

We evaluate the proposed method on five real-world networks: the political blog network (Adamic &
Glance, 2005) with n = 1, 222, K = 2; the Simmons College network with n = 1, 137, K = 4 and
the Caltech network with n = 590, K = 8 (Traud et al., 2011; 2012)), both preprocessed following
(Chen et al., 2018); a manufacturing company network (Weng & Feng, 2022) with n = 74, K = 4;
and the French high school friendship network (Mastrandrea et al., 2015) with n = 329, K = 9.

As in Section 4.2, we introduce the model structures and compare training only based on SBM
graphs and training based on SBM+DCBM graphs. Table 3 summarizes the resulting accuracies
on these datasets. Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. We notice that these real-world networks exhibit certain levels of heterogeneity, a structure
not adequately captured by SBM. By incorporating DCBM into the training data, the model learns
to take into account degree heterogeneity, which improves its generalization ability to real data.
Furthermore, applying the two-stage GNN consistently improves performance on these datasets.

Table 3: Test accuracy under different training schemes tested on real datasets.

Dataset SBM SBM+DCBM
Base Two-stage Base Two-stage

Political Blog 89.2% 93.3% 94.8% 95.3%
Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%
High school 73.6% 85.4% 89.4% 98.5%

5 CONCLUSION

In this paper we establish a rigorous theoretical foundation for GNNs in supervised community de-
tection, showing that they can achieve information-theoretic optimality while remaining effective
and robust in practice. The proposed two-stage GNN framework not only bridges the gap between
deep learning and classical statistical methods but also offers a practical and versatile tool for ana-
lyzing real-world networks.

A natural way of extending our model setup is to study DCBM and latent space model (LSM). Prior
work has shown that the two-stage algorithm achieves the minimax rates under both DCBM (Gao
et al., 2018) and LSM (Gao et al., 2022). This provides a basis for future theoretical development of
GNNs on these models. Another interesting direction is to establish theoretical guarantees for unsu-
pervised community detection with deep neural networks. Unsupervised learning requires the net-
work to emulate clustering rather than classification. Developing principled methods and analyses
in this context would be a new venue to study GNN-based methods and strengthen their theoretical
foundations. We omitted a detailed examination of the training landscape for GNNs. Characteriz-
ing the basin of attraction leading to estimators of statistical precision would further enhance our
findings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

REFERENCES

Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on Information Theory, 62(1):471–487, Jan 2016. ISSN 1557-9654.
doi: 10.1109/TIT.2015.2490670.

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided
they blog. In Proceedings of the 3rd international workshop on Link discovery, pp. 36–43. ACM,
2005.

Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep ReLU networks for multi-
class classification. Electronic Journal of Statistics, 16(1):2724–2773, 2022. doi: 10.1214/
22-EJS2011.

Thijs Bos and Johannes Schmidt-Hieber. A supervised deep learning method for nonparametric
density estimation. Electronic Journal of Statistics, 18(2):5601 – 5658, 2024. doi: 10.1214/
24-EJS2332. URL https://doi.org/10.1214/24-EJS2332.

Yuxin Chen, Xiaodong Li, and Jiaming Xu. Convexified modularity maximization for degree-
corrected stochastic block models. The Annals of Statistics, 46(4):1573–1602, 2018.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=H1g0Z3A9Fm.

Chandler Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal
on Numerical Analysis, 7(1):1–46, 1970. doi: 10.1137/0707001.

Chao Gao and Zongming Ma. Minimax rates in network analysis. Statistical Science, 36(1):16–33,
2021.

Chao Gao, Zongming Ma, Anderson Y Zhang, and Harrison H Zhou. Achieving optimal misclas-
sification proportion in stochastic block models. Journal of Machine Learning Research, 18(60):
1–45, 2017.

Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. Community detection in
degree-corrected block models. The Annals of Statistics, 46(5):2153–2185, 2018.

Fengnan Gao, Zongming Ma, and Hongsong Yuan. Community detection in sparse latent space
models. Journal of Machine Learning Research, 23(322):1–50, 2022.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, 4th edition, 2013. ISBN 978-1421407944.

Chaobo He, Yulong Zheng, Junwei Cheng, Yong Tang, Guohua Chen, and Hai Liu. Semi-supervised
overlapping community detection in attributed graph with graph convolutional autoencoder. In-
formation Sciences, 608:1464–1479, 2022. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2022.07.036. URL https://www.sciencedirect.com/science/article/pii/
S0020025522007253.

Tianyang Hu, Wenjia Wang, Cong Lin, and Guang Cheng. Regularization matters: A nonparamet-
ric perspective on overparametrized neural network. In Arindam Banerjee and Kenji Fukumizu
(eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pp. 829–837. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/v130/hu21a.html.

Yicong Jiang and Tracy Ke. Semi-supervised community detection via structural similarity metrics.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=cxvEGLCHpgl.

10

https://doi.org/10.1214/24-EJS2332
https://openreview.net/forum?id=H1g0Z3A9Fm
https://openreview.net/forum?id=H1g0Z3A9Fm
https://www.sciencedirect.com/science/article/pii/S0020025522007253
https://www.sciencedirect.com/science/article/pii/S0020025522007253
https://proceedings.mlr.press/v130/hu21a.html
https://openreview.net/forum?id=cxvEGLCHpgl
https://openreview.net/forum?id=cxvEGLCHpgl

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for
classification. Neural Networks, 138:179–197, 2021. ISSN 0893-6080. doi: https://doi.org/
10.1016/j.neunet.2021.02.012. URL https://www.sciencedirect.com/science/
article/pii/S089360802100054X.

T. N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017),
Toulon, France, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.
URL http://arxiv.org/abs/1611.07308.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, pp. 215–237, 2015.

Hongtao Liu, Jiahao Wei, and Tianyi Xu. Community detection based on community perspec-
tive and graph convolutional network. Expert Systems with Applications, 231:120748, 2023.
ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023.120748. URL https://www.
sciencedirect.com/science/article/pii/S0957417423012502.

Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: a compar-
ison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS
ONE, 10(9):e0136497, 2015.

Joseph T. Meyer. Optimal convergence rates of deep neural networks in a classification setting.
Electronic Journal of Statistics, 17(2):3613 – 3659, 2023. doi: 10.1214/23-EJS2187. URL
https://doi.org/10.1214/23-EJS2187.

Elchanan Mossel, Allan Sly, and Youngtak Sohn. Exact phase transitions for stochastic block models
and reconstruction on trees. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pp. 96–102, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585155. URL https://doi.
org/10.1145/3564246.3585155.

Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. The Annals of Statistics, 39(4):1878–1915, 2011.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: Extreme
singular values. In Proceedings of the International Congress of Mathematicians 2010 (ICM
2010), pp. 1576–1602, 2011. doi: 10.1142/9789814324359 0111. URL https://www.
worldscientific.com/doi/abs/10.1142/9789814324359_0111.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activa-
tion function. The Annals of Statistics, 48(4):1875–1897, Aug 2020. doi: 10.1214/19-AOS1875.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Di Jin, Quan Z. Sheng, and Philip S. Yu. A comprehensive survey on community detection
with deep learning. IEEE Transactions on Neural Networks and Learning Systems, 35(4):4682–
4702, 2024. doi: 10.1109/TNNLS.2021.3137396.

Namjoon Suh and Guang Cheng. A survey on statistical theory of deep learning: Ap-
proximation, training dynamics, and generative models. Annual Review of Statis-
tics and Its Application, 12(Volume 12, 2025):177–207, 2025. doi: https://doi.org/
10.1146/annurev-statistics-040522-013920. URL https://www.annualreviews.org/
content/journals/10.1146/annurev-statistics-040522-013920.

Namjoon Suh, Hyunouk Ko, and Xiaoming Huo. A non-parametric regression viewpoint : general-
ization of overparametrized deep relu network under noisy observations. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
bZJbzaj_IlP.

Jianyong Sun, Wei Zheng, Qingfu Zhang, and Zongben Xu. Graph neural network encoding for
community detection in attribute networks. IEEE Transactions on Cybernetics, 52(8):7791–7804,
2021.

11

https://www.sciencedirect.com/science/article/pii/S089360802100054X
https://www.sciencedirect.com/science/article/pii/S089360802100054X
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1611.07308
https://www.sciencedirect.com/science/article/pii/S0957417423012502
https://www.sciencedirect.com/science/article/pii/S0957417423012502
https://doi.org/10.1214/23-EJS2187
https://doi.org/10.1145/3564246.3585155
https://doi.org/10.1145/3564246.3585155
https://www.worldscientific.com/doi/abs/10.1142/9789814324359_0111
https://www.worldscientific.com/doi/abs/10.1142/9789814324359_0111
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040522-013920
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040522-013920
https://openreview.net/forum?id=bZJbzaj_IlP
https://openreview.net/forum?id=bZJbzaj_IlP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniel L. Sussman, Minh Tang, Donniell E. Fishkind, and Carey E. Priebe. A consistent adja-
cency spectral embedding for stochastic blockmodel graphs. Journal of the American Statistical
Association, 107(499):1119–1128, 2012.

Amanda L. Traud, Eric D. Kelsic, Peter J. Mucha, and Mason A. Porter. Comparing community
structure to characteristics in online collegiate social networks. SIAM Review, 53(3):526–543,
2011.

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Bang Wang, Xiang Cai, Minghua Xu, and Wei Xiang. A graph-enhanced attention model for com-
munity detection in multiplex networks. Expert Systems with Applications, 230:120552, 2023.

Xiaofeng Wang, Jianhua Li, Li Yang, and Hongmei Mi. Unsupervised learning for community de-
tection in attributed networks based on graph convolutional network. Neurocomputing, 456:147–
155, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.05.058. URL https:
//www.sciencedirect.com/science/article/pii/S0925231221008110.

Haolei Weng and Yang Feng. Community detection with nodal information: Likelihood and its
variational approximation. Stat, 11(1):e428, 2022.

Xiaoran Yan. Bayesian model selection of stochastic block models. In Proceedings of the 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pp. 323–328. IEEE/ACM, 2016. doi: 10.1109/ASONAM.2016.7752253.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Anderson Y. Zhang and Harrison H. Zhou. Minimax rates of community detection in stochastic
block models. The Annals of Statistics, 44(5):2252–2280, 2016.

Qiqi Zhao, Huifang Ma, Lijun Guo, and Zhixin Li. Hierarchical attention network for attributed
community detection of joint representation. Neural Computing and Applications, 34(7):5587–
5601, 2022.

12

https://openreview.net/forum?id=rJXMpikCZ
https://www.sciencedirect.com/science/article/pii/S0925231221008110
https://www.sciencedirect.com/science/article/pii/S0925231221008110

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DESCRIPTIONS RELEVANT ALGORITHMS

The supervised version of the classical two-stage algorithm for community detection is described as
follows:

1: Perform spectral decomposition on A to get V1.
2: Fit a multinomial regression with V1 as the design matrix and σ as the response. Let σ(0) be the

fitted community labels.
3: for τ = 1, 2, . . . t do
4: for i = 1, 2, . . . , n do
5: Let σ(τ)

i = argmaxk∈[K]
1

|{j:σ(τ−1)
j =k}|

∑
{j:σ(τ−1)

j =k}Aij .

6: end for
7: end for
8: Output σ(t) = (σ

(t)
1 , . . . , σ

(t)
n).

Algorithm 2: The classical two-stage algorithm for supervised community detection.

The orthogonal iteration method (Golub & Van Loan, 2013) is described as follows:

1: Initialize with Q0 ∈ Rn×K , which has orthonormal columns.
2: for t = 1, 2, . . . do
3: Compute Yt = AQt−1.
4: Implement QR decomposition Yt = QtRt, where Qt ∈ Rn×K has orthonormal columns,

and Rt ∈ RK×K is upper-triangular.
5: end for
6: Output Qt.

Algorithm 3: Orthogonal iteration

B ERROR BOUNDS OF GNN APPROXIMATIONS TO BASIC ARITHMETIC
OPERATORS

Lemma 7 provides the basic building blocks to analyze the approximation errors of GNNs. Our
analysis leverages techniques from Schmidt-Hieber (2020); Bos & Schmidt-Hieber (2024).
Lemma 7 (Basic arithmetic operations with GNN). Suppose we have v, y ∈ Rn×1.

1. (Inner product) For ∥v∥max, ∥y∥max ≤ κ for some integer κ and some width config-
uration d such that ∥d∥max = max(22, 2κ2 + 6), there exists a GNN architecture
G(m+10,d, 41m+9κ2+179, (v, y,1)) that maps (v, y,1n×1) to (⟨̃v, y⟩1n×1, v, y,1n×1)

such that |⟨̃v, y⟩ − ⟨v, y⟩| ≤ 4nκ22−m.

2. (Column norm) Suppose ∥v∥max ≤ κ for some integer κ and ∥v∥2 ≥ 2ε for some fixed
ε. Assume 4nκ22−m < ε < 1. There exists a GNN architecture G(M,d, s, (v, v,1)) that
maps (v, v,1n×1) to (∥̃v∥1n×1, v,1n×1), whereM = 3m+23, ∥d∥max ≤ max(22, 2k2+

6, 24 · 2m + 6), s ≤ 47m + 9κ2 + 11421(2m + 6)2m + 218 and |∥̃v∥2 − ∥v∥2| ≤
(2nκ2 + 38)ε−12−m.

3. (Inversion) Suppose for u ∈ Rn×1, mini ui ≥ ε with 2−m ≤ ε ≤ 1. Suppose u−1 =
(u−1

i)ni=1. There exists a GNN architecture G(M,d, s, (u, v,1)) that maps (u, v,1n×1) to
(ũ−1, v,1n×1), where M = 2m + 13, ∥d∥max ≤ 24 · 2m + 6, s ≤ 11421(2m + 6)2m +

6m+ 39 and ∥ũ−1 − u−1∥max ≤ 57ε−22−m.

Proof of Lemma 7. With loss of generality, we assume κ is an integer, since otherwise we can always
take a new upper bound ⌈κ⌉.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

For the family of matrices F = {In,1n×n, D, . . . }, we always denote O1 = I , O2 = 1n×n and
O3 = D.

We prove the first claim on the inner product. Set the starting state x(0) = (v, y,1). We set θ(0)i = 0
for all i ∈ {2, 3, . . . } and

θ
(0)
1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1/2κ 0 0 1 0
0 1/2κ 0 0 1
1/2 1/2 1 0 0

 ,

and correspondingly z̄(1) is (ṽ, ỹ,1, v, y) := (v/2κ + 1/2, y/2κ + 1/2,1, v, y).

For the next layer of the GNN, we set θ(1)i = 0 for all i ̸= 1 and

θ
(1)
1 =


05×5 05×4

K1


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 with K1 =


1/4 1/2 1/2 1/4 1/2
−1/4 −1/2 1/2 1/2 1/2
−1/4 0 0 0 −1/2
0 0 0 0 0
0 0 0 0 0

 .

The first row of z̄(2) is(
ṽ1/4− ỹ1/4− 1/4, ṽ1/2− ỹ1/2, ṽ1/2+ ỹ1/2, ṽ1/4+ ỹ1/4, ṽ1/2+ ỹ1/2− 1/2, 1, ṽ1, ỹ1, 1, v, y

)
The first row of z(2) is(
T+

(
ṽ1−ỹ1+1

2

)
, T 1

−

(
ṽ1−ỹ1+1

2

)
, ρ
(

ṽ1+ỹ1

2

)
, T+

(
ṽ1+ỹ1

2

)
, T 1

−

(
ṽ1+ỹ1

2

)
, 1, ρ(ṽ1), ρ(ỹ1), 1, ρ(v1), ρ(y1)

)
where T k : [0, 22−2k]→ [0, 2−2k] and T k

− defined by

T k
−(x) := ρ(x− 21−2k),

T+(x) := ρ(x/2),

T k(x) := (x/2) ∧ (21−2k − x/2) = T+(x)− T k
−(x).

Combine both z(2) and z̄(2) for x(2).

Furthermore, for t = 2, . . . ,m+ 4,

θ
(t)
1 =

 Kt 06×5

05×6 05×5

06×6 06×5

05×6 I5

 , and θ(t)i = 0,∀i ̸= 1,

where Kt ∈ R6×6 is the corresponding weight matrix arising from the NN setup in Schmidt-Hieber
(2020, Lemma A.2), with the only change of the role of the constant 1/4 term being replaced by our
constant term 1. For t = m+ 5,

θ
(m+5)
1 =

Km+5 06×5

05×1 05×5

06×1 06×5

05×1 I5

 , and θ(m+5)
i = 0,∀i ̸= 1,

where Km+5 ∈ R6×1. Applying Schmidt-Hieber (2020, Lemma A.2), the first row of (z(m+6))
arrives at

(˜̃v1ỹ1, ρ(ṽ1), ρ(ỹ1), 1, ρ(v1), ρ(y1)),
where |˜̃v1ỹ1− ṽ1ỹ1| ≤ 2−m. In other words, the first column of z(m+6) is the approximate element-
wise product of ṽ and ỹ. For the first row of z̄(m+7), the last five elements are (ṽ1, ỹ1, 1, v1, y1),
and the first element is the value of ˜̃v1ỹ1 before being applied the ReLU activation function (and the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

value will be discarded immediately in the next GNN layer). We now go back to v1y1. Keeping in
mind v1y1 = κ2(4ṽ1ỹ1 − 2ṽ1 − 2ỹ1 + 1), we devise the following two layers:

θ
(m+6)
1 =



11×4 01×7

05×4 05×7

06×4


0 0 0 0 0 0 0
−1 −1 0 0 0 0 0
0 0 −1 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, and θ(m+6)

i = 0,∀i ̸= 1.

θ
(m+7)
1 =

(
011×κ2 011×3

18×κ2 08×3

03×κ2 I3

)
, and θ(m+7)

i = 0,∀i ̸= 1.

The first row of the resulting state z̄(m+8) is (4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 + 1, . . . , 4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 +

1, 1, v1, y1), where 4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 + 1 is repeated κ2 times. We proceed to arrange another
rescaling layers of GNN as follows:

θ
(m+8)
1 =


0(κ2+3)×1 0(κ2+3)×3

1κ2×1 0κ2×3

03×1

(
0 0 1
1 0 0
0 1 0

)
 , and θ(m+8)

i = 0,∀i ̸= 1.

The resulting z̄(m+9) has its first row as (ṽ1y1, v1, y1, 1), where |ṽ1y1 − v1y1| ≤ 4κ22−m.

In the next GNN layer, we get the approximate inner product ⟨v, y⟩ by setting θ(m+9)
i = 0 for all

i /∈ 1, 2 and

θ
(m+9)
2 =

(
0 04×4

1 01×4

03×1 03×4

)
, θ

(m+9)
1 =

05×1 05×1 05×3

03×1

(
1
0
0

)
I3

 .

) We now have z̄(m+10) =
(
⟨̃v, y⟩1n×1, v, v, y,1n×1

)
, where |⟨̃v, y⟩ − ⟨v, y⟩| < 4nκ22−m.

For the second claim, we first apply the first claim, that there exists a GNN architecture G(m +

10,d, 41m+ 9κ2 + 179, (v, v,1)) mapping (v, v,1) to (∥̃v∥221, v, v,1) such that |∥̃v∥22 − ∥v∥22| ≤
4nκ22−m, where ∥d∥max = max(22, 2κ2 + 6). Now we need to take the square root. Note f : x ∈
[ε2,∞) 7→

√
x ∈ [ε,∞) has at Hölder smoothness 1 with radius ε−1/2. Applying Schmidt-Hieber

(2020, Theorem 5) and using ε > 4nκ22−m, we can build a GNN of 2m+ 13 layers with maximal
width 12 ·2m+6 and sparsity s ≤ 11421(2m+6)2m+6m+39 such that the output is (∥̃v∥21, v,1)

and
∣∣∥̃v∥2 −√∥̃v∥22∣∣ ≤ 38ε−12−m. Combining the two GNNs gives the statement.

We show the third claim. Assumption 2−m/2 ≤ ε ≤ 1 and mini ui ≥ ε. Note f : x ∈ [ε,∞) 7→
x−1 ∈ [ε−1, 0) has Hölder smoothness 1 with radius ε−2. For (u, v,1n×1) Apply Schmidt-Hieber
(2020, Theorem 5) again, and using we can explicitly construct a GNN of 2m + 13 layers with
maximal width 12 · 2−m + 6 and sparsity s ≤ 11421(2m+ 6)2m + 6m+ 39 such that the first row

of the output is (ũ−1
1 , v1, 1) with maxi |ũ−1

i − u
−1
i | ≤ 57ε−22−m.

C PROOF OF THEOREM 1

Properties of orthogonal iteration. We first provide a convergence rate result for orthogonal it-
eration. Assume the orthogonal iteration, described as Algorithm 3, takes Q0 as the initial value.
Let dt = ∥V ⊤

2 Qt∥2 = dist(col(Qt), col(V1)) for t = 0, 1, . . . , which we expect to get small for
sufficiently large t.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 8. Assume Q0 satisfies (7). For any s > 0, with T defined by

T =

⌈
(s+ r) logn+ log 2

log η

⌉
, (11)

Algorithm 3 outputs QT that satisfies dT ≤ n−s/2.

Proof. The QR decomposition of Yt is equivalent to the Gram-Schmidt process applied to the
columns of Yt. Denote the kth column of Yt by yk,t. The Gram-Schmidt process has the following
steps:

• The first step:

q1,t =
y1,t
∥y1,t∥

. (12)

• The kth step (k = 2, . . . ,K):

uk,t = yk,t −
k−1∑
j=1

⟨yk,t, qj,t⟩qj,t, (13)

qk,t =
uk,t
∥uk,t∥

. (14)

Then, Qt = [q1,t, · · · , qK,t] is the Q-component of the QR decomposition of Yt.

By the description of Algorithm 3, we have Qt(RtRt−1 · · ·R1) = AtQ0. Denote St =
RtRt−1 · · ·R1. Since At = V ΛtV ⊤, then

V ⊤QtSt = ΛtV ⊤Q0.

By the block structure of V and Λ, we get

Λt
1V

⊤
1 Q0 = V ⊤

1 QtSt, Λt
2V

⊤
2 Q0 = V ⊤

2 QtSt.

Letting V ⊤
j Qt =Wj,t for j = 1, 2 and t = 0, 1, . . . , it then follows that

W2,t = Λt
2W2,0W

−1
1,0Λ

−t
1 W1,t. (15)

Since σmin(Λ1W1,0) ≤ |λ1|σmin(W1,0) ≤ nσmin(W1,0), condition (7) has the implication that

σmin(W1,0) ≥ n−r. (16)

Using (16), and ∥W1,0∥2 ≤ 1, ∥W1,t∥2 ≤ 1, we therefore get

dt = ∥W2,t∥2
≤ ∥Λt

2∥2 · ∥W2,0∥2 · ∥W−1
1,0 ∥2 · ∥Λ

−t
1 ∥2 · ∥W1,t∥2

≤
(
|λK |
|λK+1|

)−t

nr

≤ η−tnr.

For any s > 0, if t ≥ ((s+ r) logn+ log 2)/ log η, we have dt ≤ n−s/2.

To proceed with the analysis, we introduce two elementary but useful lemmas.
Lemma 9. Suppose Y ∈ Rn×K has the smallest singular value σmin(Y) > 0, where K ≤ n. Let
yk represent the kth column of Y . Then,

∥yk∥ ≥ σmin(Y),

for all 1 ≤ k ≤ K.

Proof. Let ek ∈ RK be the elementary vector where the kth entry is 1 and all other entries are 0.
Then yk = Y ek. The conclusion is clear by noting σmin(Y) = min∥x∥=1 ∥Y x∥.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma 10. Suppose Y ∈ Rn×K has the smallest singular value σmin(Y) > 0, where K ≤ n. Let
yk represent the kth column of Y . Assume the Gram-Schmidt process on Y produces

q1 =
y1
∥y1∥

,

uk = yk −
k−1∑
j=1

⟨yk, qj⟩qj , 2 ≤ k ≤ K,

qk =
uk
∥uk∥

, 2 ≤ k ≤ K.

Then
∥uk∥ ≥ σmin(Y)

for all 1 ≤ k ≤ K.

Proof. From the Gram-Schmidt process, we know that uk can be expressed as uk = Y φ, where φ
has 1 in its kth entry. This implies ∥φ∥ ≥ 1. Then,

∥uk∥ = ∥φ∥ · ∥Y
φ

∥φ∥
∥ ≥ ∥φ∥ · σmin(Y) ≥ σmin(Y).

If |λK | is not too small, then throughout the iterations, Yt satisfies certain bounds uniformly, as
demonstrated by Lemma 11. The condition on |λK |will be discussed towards the end of this section.

Lemma 11. Assume Q0 satisfies (7). If |λK | ≥
√
2n−(r−1) holds, then for any t ≥ 0, one has

σmin(Yt+1) ≥
3

4
n−(r−1). (17)

∥yk,t+1∥ ≤ n. (18)

Proof. Observe that

Yt+1 = AQt = (V1Λ1V
⊤
1 + V2Λ2V

⊤
2)Qt = V1Λ1W1,t + V2Λ2W2,t,

and that the columns of V1 and V2 are orthonormal, we have for any x ∈ RK ,
∥Yt+1x∥2 = ∥V1Λ1W1,tx+ V2Λ2W2,tx∥2

= ∥V1Λ1W1,tx∥2 + ∥V2Λ2W2,tx∥2

≥ ∥V1Λ1W1,tx∥2

= ∥Λ1W1,tx∥2.
Therefore, σmin(Yt+1) ≥ σmin(Λ1W1,t). We next derive a lower-bound of σmin(Λ1W1,t). From

the relation (15), we know that W2,t (Λ1W1,t)
−1

= Λt
2

(
W2,0 (Λ1W1,0)

−1
)
Λ−t
1 . Hence,

∥W2,t (Λ1W1,t)
−1 ∥2 ≤ ∥Λt

2∥2 · ∥W2,0∥2 · ∥ (Λ1W1,0)
−1 ∥2 · ∥Λ−t

1 ∥2
≤ ∥ (Λ1W1,0)

−1 ∥2
= σ−1

min (Λ1W1,0)

≤ nr−1.

The last inequality follows from (7). By the definitions of W1,t and W2,t, we also have

W⊤
1,tW1,t +W⊤

2,tW2,t = Q⊤
t (V1V

⊤
1 + V2V

⊤
2)Qt = Q⊤

t Qt = IK .

Note that[
W2,t (Λ1W1,t)

−1
]⊤ [

W2,t (Λ1W1,t)
−1
]
= Λ−1

1 W−⊤
1,t W

⊤
2,tW2,tW

−1
1,t Λ

−1
1

= Λ−1
1 W−⊤

1,t (IK −W⊤
1,tW1,t)W

−1
1,t Λ

−1
1

= Λ−1
1 (W−⊤

1,t W
−1
1,t − IK)Λ−1

1

= (Λ1W1,t)
−⊤

(Λ1W1,t)
−1 − Λ−2

1 ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

it then follows that

∥W2,t (Λ1W1,t)
−1 ∥22 =

∥∥∥∥ [W2,t (Λ1W1,t)
−1
]⊤ [

W2,t (Λ1W1,t)
−1
] ∥∥∥∥

2

≥ ∥ (Λ1W1,t)
−1 ∥22 − ∥Λ−2

1 ∥2.

We have shown the left-hand-side is upper-bounded by n2(r−1) earlier, and we know that ∥Λ−2
1 ∥2 =

λ−2
K ≤ n2(r−1)/2 holds. Therefore we get

∥ (Λ1W1,t)
−1 ∥22 ≤ ∥W2,t (Λ1W1,t)

−1 ∥22 + λ−2
K ≤ 16

9
n2(r−1).

This leads to

σmin (Λ1W1,t) ≥
3

4
n−(r−1).

We therefore establish the following lower-bound of σmin(Yt+1) uniformly for all t ≥ 0:

σmin(Yt+1) ≥ σmin(Λ1W1,t) ≥
3

4
n−(r−1).

Further, since ∥A∥2 ≤ n, we have an uniform upper-bound of ∥yk,t+1∥ for all t ≥ 0, 1 ≤ k ≤ K:

∥yk,t+1∥ = ∥Aqk,t∥ ≤ ∥A∥2∥qk,t∥ ≤ n.

The GNN Approximation. The GNN can be designed to emulate each step of orthogonal iteration
method. It starts with x(0) = (Q̂0,1n) ∈ Rn×(K+1), where Q̂0 = Q0 serves as the initial value
of the GNN iterations. For the t-th iteration, the first procedure is to compute Ŷt = AQ̂t−1, which
can be realized by one layer of GNN. The next procedure is the QR decomposition of Ŷt. Let ŷk,t
represent the kth column of Ŷt. We devise the architecture shown in Figure 1 to approximate the
first step (12) of the QR decomposition. In this chart, we have suppressed the superscript of z̄ in
each layer for convenience. Also note that the full node feature is x = (ρ(z̄), z̄) in each layer, of
which we omitted the first component ρ(z̄) in the chart. We assume m satisfy

m =

⌈
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

⌉
. (19)

As illustrated in Figure 1, in the last layer of the first step, z̄ =
(
Ŷt, q̂1,t,1n

)
is produced. The next

batch of GNN layers resumes from this layer, and tries to approximate the subsequent steps of QR
decomposition. In general, assuming the GNN has generated z̄ =

(
Ŷt, q̂1,t, . . . , q̂k−1,t,1n

)
in the

last layer of the (k−1)th step of QR decomposition (2 ≤ k ≤ K−1), we design the GNN structure
in Figure 2 to implement the kth step. Again the superscript of z̄, that denotes which layer this
node belongs to, is suppressed. After all K steps of QR decomposition are carried out, we obtain
Q̂t = [q̂1,t, · · · , q̂K,t], which is then used for the (t+ 1)-th iteration.

We analyze how errors accumulate across layers and iterations in the designed GNN. Let b0 =
nr2−m, b1 = 4nr, b2 = 49nr, N0 denote the set of all nonnegative integers, and

Sk,t =

s = (s0, . . . , sk) :

k∑
j=0

sj = t− 1, and sj ∈ N0 for all 0 ≤ j ≤ k.


Then define

Rk,0 = 0, (20)

Rk,t = b0b
k−1
2

∑
s∈Sk,t

k∏
j=1

(b1j)
sj , 1 ≤ t ≤ T. (21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

z̄ =
(
Ŷt,1n

)

z̄ =
(
Ŷt, ŷ1,t,1n

)
(ŷ1,t is the first column of Ŷt)

z̄ =
(
Ŷt, α

(1)
1,t1n, ŷ

(1,t),1n

)
(with |α(1)

1,t − ∥ŷ1,t∥| ≤ 2−m)

z̄ =
(
Ŷt, α

(2)
1,t1n, ŷ1,t,1n

)
(with

∣∣∣∣α(2)
1,t − 1

α
(1)
1,t

∣∣∣∣ ≤ 21 · 2−m)

z̄ =
(
Ŷt, q̂1,t,1n

)
(with ∥q̂1,t − α(2)

1,t ŷ1,t∥max ≤ 2−m)

1 layer

(m+ 6) layers

(2m+ 13) layers

(m+ 6) layers

Figure 1: The GNN architecture to approximate the first step of QR decomposition.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(
Ŷt, q̂1,t, . . . , q̂k−1,t,1n

)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, ŷk,t,1n

)
(ŷk,t is the kth column of Ŷt)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(0,1)
k,t 1n, . . . , α

(0,k−1)
k,t 1n, ŷk,t,1n

)
(with |α(0,j)

k,t − ⟨ŷk,t, q̂j,t⟩| ≤ n2−m for 1 ≤ j ≤ k − 1)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, ûk,t,1n

)
(with ∥ûk,t − (ŷk,t −

∑k−1
j=1 α

(0,j)
k,t q̂j,t)∥max ≤ (k − 1)2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(1)
k,t1n, ûk,t,1n

)
(with |α(1)

k,t − ∥ûk,t∥| ≤ 2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(2)
k,t1n, ûk,t,1n

)
(with |α(2)

k,t − 1/α
(1)
k,t | ≤ 21 · 2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, q̂k,t,1n

)
(with ∥q̂k,t − α(2)

k,t ûk,t∥max ≤ 2−m)

1 layer

(k − 1)(m+ 6) layers

(k − 1)(m+ 6) layers

(m+ 6) layers

(2m+ 13) layers

(m+ 6) layers

Figure 2: The GNN architecture to approximate the kth step of QR decomposition.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We adopt an induction to prove the following bound holds for t = 0, 1, . . . and all 1 ≤ k ≤ K:

∥q̂k,t − qk,t∥ ≤ Rk,t. (22)

A few properties of Rk,t that will be used in the induction are summarized in Lemma 12 and 13.
Lemma 12. Suppose Rk,t is defined by (20) and (20). Then,

Rk,t = b1kRk,t−1 + b2Rk−1,t (23)

for 2 ≤ k ≤ K and 1 ≤ t ≤ T . Moreover, Rk,t is strictly increasing in both t and k.

Proof. Sk,t can be split into two subsets: S(1)k,t and S(2)k,t , where elements of S(1)k,t satisfy sk ≥ 1 and

elements of S(2)k,t satisfy sk = 0. Elements of S(1)k,t have a one-to-one mapping s→ s′ to elements of

Sk,t−1 in the sense that, for any s = (s0, . . . , sk) ∈ S(1)k,t , one has s′ = (s0, . . . , sk − 1) ∈ Sk,t−1.
Therefore ∑

s∈S(1)k,t

k∏
j=1

(b1j)
sj = b1k

∑
s∈Sk,t−1

k∏
j=1

(b1j)
sj .

On the other hand, elements of S(2)k,t have a one-to-one mapping to elements of Sk−1,t since sk = 0.
Then ∑

s∈S(2)k,t

k∏
j=1

(b1j)
sj =

∑
s∈Sk−1,t

k∏
j=1

(b1j)
sj .

Combining the last two equalities, we get the desired result (23).

Lemma 13. Rk,t, defined by (20) and (21), satisfies

Rk,t ≤ b0bk−1
2 tk(kb1)

t−1, (24)
√
KRK,T ≤

1

2
n−s, (25)

(12 +K)RK,T ≤
1

8
n−r, (26)

Rk,t ≥
k−1∑
j=1

Rk−1,t. (27)

Proof. For any s ∈ Sk,t, we have
k∏

j=1

(b1j)
sj ≤

k∏
j=1

(b1k)
sj = (b1k)

∑k
j=1 sj = (b1k)

t−1−s0 .

Plugging this into (21), we get

Rk,t ≤ b0bk−1
2

∑
s∈Sk,t

(b1k)
t−1−s0

= b0b
k−1
2

t−1∑
s0=0

(
t+ k − 2− s0

k − 1

)
(b1k)

t−1−s0

= b0b
k−1
2

t−1∑
i=0

(
k + i− 1

k − 1

)
(b1k)

i

≤ b0bk−1
2

t−1∑
i=0

(
k + i− 1

k − 1

)
(b1k)

t−1

= b0b
k−1
2

(
t+ k − 1

k

)
(b1k)

t−1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

From the inequality
(
t+k−1

k

)
≤ tk, (24) is established.

From (24), we know that

log
(√

KRK,T

)
− log

(
1

2
n−s

)
≤ 1

2
logK + log b0 + (K − 1) log b2 +K log T + (T − 1)(logK + log b1) + log 2 + s logn

≤ 1

2
logK + r logn−m log 2 + (K − 1)(log 49 + r logn) +K log

[
(s+ r) logn+ log 2

log η
+ 1

]
+

[
(s+ r) logn+ log 2

log η

]
(logK + log 4 + r logn) + log 2 + s log n

≤ −m log 2 +
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(Kr + s) logn.

The choice of m in (19) guarantees that

m log 2 ≥
[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

]
log 2

≥ (2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(Kr + s) logn.

So (25) is proved.

Similarly, we have

log ((12 +K)RK,T)− log

(
1

8
n−r

)
≤ log(12 +K) + log b0 + (K − 1) log b2 +K log T + (T − 1)(logK + log b1) + log 8 + r logn

≤ log(12 +K) + r log n−m log 2 + (K − 1)(log 49 + r log n) +K log

[
(s+ r) logn+ log 2

log η
+ 1

]
+

[
(s+ r) logn+ log 2

log η

]
(logK + log 4 + r logn) + log 8 + r log n

≤ −m log 2 +
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(K + 1)r logn

≤ −
[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

]
log 2

+
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(K + 1)r logn

≤ 0.

Thus (26) also holds.

Finally, by (23) we know that Rk,t ≥ b2Rk−1,t. For a fixed t, the value changes of Rk,t along the
direction of k is faster than a geometric sequence with common ratio b2. Then (27) is valid.

To start with the induction, for t = 0, we have Q̂0 = Q0, so (22) holds. Now assume (22) holds for
0, . . . , t − 1 with t ≥ 1. For t, we first have Ŷt = AQ̂t−1. Based on ∥q̂k,t−1 − qk,t−1∥ ≤ Rk,t−1,
we can immediately obtain the following bounds:

∥ŷk,t − yk,t∥ ≤ nRk,t−1, (28)
∥q̂k,t−1∥ ≤ 2, (29)
∥ŷk,t∥ ≤ 2n, (30)

σmin(Ŷt) ≥
5

8
n−(r−1), (31)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

In particular, (28) holds because ∥ŷk,t − yk,t∥ = ∥A(q̂k,t−1 − qk,t−1∥ ≤ ∥A∥2∥q̂k,t−1 − qk,t−1∥ ≤
n∥q̂k,t−1−qk,t−1∥. AsRk,t−1 ≤ 1, we get ∥q̂k,t−1∥ ≤ ∥q̂k,t−1−qk,t−1∥+∥qk,t−1∥ ≤ 2. Moreover,
using (18), we know that ∥ŷk,t∥ ≤ ∥ŷk,t − yk,t∥+ ∥yk,t∥ ≤ nRk,t−1 + n ≤ 2n. Finally, by Weyl’s
inequality for singular values, we get

|σmin(Ŷt)− σmin(Yt)| ≤ ∥Ŷt − Yt∥2 ≤
√
K max

1≤k≤K
∥ŷk,t − yk,t∥ ≤

√
KnRK,t−1 ≤

1

8
n−(r−1).

The last inequality is a consequence of (26) in Lemma 13 and the fact that
√
K ≤ 12 +K. In view

of (17), we have

|σmin(Ŷt)| ≥ |σmin(Yt)| − |σmin(Ŷt)− σmin(Yt)| ≥
3

4
n−(r−1) − 1

8
n−(r−1) =

5

8
n−(r−1).

By the GNN structure in Figure 1, we get∥∥∥∥q̂1,t − ŷ1,t
∥ŷ1,t∥

∥∥∥∥ ≤ ∥∥q̂1,t − α(2)
1,t ŷ1,t

∥∥+ ∣∣∣∣α(2)
1,t −

1

α
(1)
1,t

∣∣∣∣∥ŷ1,t∥+ ∣∣∣∣ 1

α
(1)
1,t

− 1

∥ŷ1,t∥

∣∣∣∣∥ŷ1,t∥
=
∥∥q̂1,t − α(2)

1,t ŷ1,t
∥∥+ ∣∣∣∣α(2)

1,t −
1

α
(1)
1,t

∣∣∣∣∥ŷ1,t∥+ ∣∣∣∣α(1)
1,t − ∥ŷ1,t∥

α
(1)
1,t

∣∣∣∣
The bound (30) directly suggests that ∥ŷ1,t∥ ≤ 2n. From (31) and Lemma 9, we also know that
∥ŷ1,t∥ ≥ σmin(Ŷt) ≥ 5n−(r−1)/8. Then |α(1)

1,t | ≥ ∥ŷ1,t∥−
∣∣α(1)

1,t −∥ŷ1,t∥
∣∣ ≥ 5n−(r−1)/8− 2−m ≥

n−(r−1)/2, since 2−m ≤ n−(r−1)/8 by (19). Therefore,∥∥∥∥q̂1,t − ŷ1,t
∥ŷ1,t∥

∥∥∥∥ ≤ 2−m + 21 · 2−m · 2n+
2−m

n−(r−1)/2
≤ nr2−m = b0.

Next we derive an upper bound for ∥q̂1,t − q1,t∥. The triangle inequality implies

∥q̂1,t − q1,t∥ ≤
∥∥∥∥q̂1,t − ŷ1,t

∥ŷ1,t∥

∥∥∥∥+ ∥∥∥∥ ŷ1,t
∥ŷ1,t∥

− y1,t
∥ŷ1,t∥

∥∥∥∥+ ∥∥∥∥ y1,t
∥ŷ1,t∥

− y1,t
∥y1,t∥

∥∥∥∥
≤ b0 +

1

∥ŷ1,t∥
∥ŷ1,t − y1,t∥+

∣∣∥y1,t∥ − ∥ŷ1,t∥∣∣
∥ŷ1,t∥

.

According to (28) and (31), the second and third terms in the display are controlled by∣∣∥y1,t∥ − ∥ŷ1,t∥∣∣
∥ŷ1,t∥

≤ 1

∥ŷ1,t∥
∥ŷ1,t − y1,t∥ ≤

nR1,t−1

n−(r−1)/2
= 2nrR1,t−1.

Hence, we obtain

∥q̂1,t − q1,t∥ ≤ b0 + 4nrR1,t−1 = b0 + b1R1,t−1.

Note that R1,t = b0
∑t−1

s1=0 b
s1
2 = b0(b

t
1 − 1)/(b1 − 1) by its definition (21), the previous display

leads to

∥q̂1,t − q1,t∥ ≤ b0 + b1b0
bt−1
1 − 1

b1 − 1
= b0

bt1 − 1

b1 − 1
= R1,t.

Thus we have proved (22) for t and k = 1.

Next we apply an inner induction on k with the current t. Assume (22) holds for the current t and
1, . . . , k − 1. We first have for 1 ≤ j ≤ k − 1

|⟨ŷk,t, q̂j,t⟩ − ⟨yk,t, qj,t⟩| ≤ |⟨ŷk,t, q̂j,t − qj,t⟩|+ |⟨ŷk,t − yk,t, qj,t⟩|
≤ ∥ŷk,t∥ · ∥q̂j,t − qj,t∥+ ∥ŷk,t − yk,t∥ · ∥qj,t∥
≤ 2nRj,t + nRk,t−1, (32)

where in the last inequality we have used (22), (28) and (30).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Let ũk,t = ŷk,t −
∑k−1

j=1 ⟨ŷk,t, q̂j,t⟩q̂j,t. From (32) and the inequalities (28) and (29), we have

∥ũk,t − uk,t∥ = ∥ŷk,t −
k−1∑
j=1

⟨ŷk,t, q̂j,t⟩q̂j,t − yk,t +
k−1∑
j=1

⟨yk,t, qj,t⟩qj,t∥

≤ ∥ŷk,t − yk,t∥+
k−1∑
j=1

|⟨ŷk,t, q̂j,t⟩|∥q̂j,t − qj,t∥+
k−1∑
j=1

|⟨ŷk,t, q̂j,t⟩ − ⟨yk,t, qj,t⟩|∥qj,t∥

≤ nRk,t−1 +

k−1∑
j=1

∥ŷk,t∥ · ∥q̂j,t∥ · ∥q̂j,t − qj,t∥+
k−1∑
j=1

(2nRj,t + nRk,t−1)

≤ nRk,t−1 +

k−1∑
j=1

4nRj,t +

k−1∑
j=1

(2nRj,t + nRk,t−1)

= 6n

k−1∑
j=1

Rj,t + knRk,t−1

≤ 12nRk−1,t + knRk,t−1, (33)

where the last inequality holds because
∑k−1

j=1 Rj,t ≤ 2Rk−1,t according to (27).

In view of (26) in Lemma 13, 12nRk−1,t+knRk,t−1 ≤ (12+K)nRK,T ≤ n−(r−1)/8. We thereby
have that

∥ũk,t − uk,t∥ ≤ n−(r−1)/8. (34)

By Lemma 10 and (17), we know that ∥uk,t∥ ≥ σmin(Yt) ≥ 5n−(r−1)/8. By (34), we get

∥ũk,t∥ ≥ ∥uk,t∥ − ∥ũk,t − uk,t∥ ≥
5

8
n−(r−1) − 1

8
n−(r−1) =

1

2
n−(r−1). (35)

Meantime, since 12nRk−1,t + knRk,t−1 ≤ n, from (18) and (34), we also get

∥ũk,t∥ ≤ ∥uk,t∥+ ∥ũk,t − uk,t∥ ≤ ∥yk,t∥+ ∥ũk,t − uk,t∥ ≤ n+ n = 2n. (36)

By the GNN structure in Figure 2, we have

∥ûk,t − ũk,t∥ ≤ ∥ûk,t − (ŷk,t −
k−1∑
j=1

α
(0,j)
k,t q̂j,t)∥+

k−1∑
j=1

|α(0,j)
k,t − ⟨ŷk,t, q̂j,t⟩| · ∥q̂j,t∥

≤
√
n∥ûk,t − (ŷk,t −

k−1∑
j=1

α
(0,j)
k,t q̂j,t)∥max +

k−1∑
j=1

|α(0,j)
k,t − ⟨ŷk,t, q̂j,t⟩| · ∥q̂j,t∥

≤ (k − 1)2−m
√
n+ 2(k − 1)n2−m

≤ 2kn2−m. (37)

Observe that m > r logn/ log 2 by condition (19), thus 2kn2−m ≤ 2kn−r ≤ n−(r−1)/4. It then
follows that

∥ûk,t∥ ≥ ∥ũk,t∥ − ∥ûk,t − ũk,t∥ ≥
1

2
n−(r−1) − 1

4
n−(r−1) =

1

4
n−(r−1). (38)

Also notice that 2kn2−m ≤ n, it follows that

∥ûk,t∥ ≤ ∥ũk,t∥+ ∥ũk,t − ûk,t∥ ≤ 2n+ n = 3n. (39)

We also have

|α(1)
k,t | ≥ ∥û

((k,t)∥ − |α(1)
k,t − ∥û

((k,t)∥| ≥ 1

4
n−(r−1) − 2−m ≥ 1

8
n−(r−1). (40)

where the last inequality is implied by 2−m ≤ n−(r−1)/8, which can be derived from (19).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Using (35), (36), (37) and (38), we can further get∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥ ≤ 1

∥ûk,t∥
∥ûk,t − ũk,t∥+

|∥ũk,t∥ − ∥ûk,t∥|
∥ûk,t∥ · ∥ũk,t∥

· ∥ũk,t∥

=
1

∥ûk,t∥
∥ûk,t − ũk,t∥+

|∥ũk,t∥ − ∥ûk,t∥|
∥ûk,t∥

≤ 2kn2−m

n−(r−1)/4
+

2kn2−m

n−(r−1)/4

≤ 16knr2−m. (41)

Combining (39), (40), (41), we have∥∥∥∥q̂(k,t) − ũk,t
∥ũk,t∥

∥∥∥∥ ≤ ∥∥q̂(k,t) − α(2)
k,t ûk,t

∥∥+ ∥∥(α(2)
k,t − 1/α

(1)
k,t)ûk,t

∥∥
+

∥∥∥∥
(

1

α
(1)
k,t

− 1

∥û((k,t)∥

)
ûk,t

∥∥∥∥+ ∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥
≤
√
n
∥∥q̂(k,t) − α(2)

k,t ûk,t
∥∥
max

+ |α(2)
k,t − 1/α

(1)
k,t | · ∥ûk,t∥

+

∣∣∣∣α(1)
k,t − ∥ûk,t∥

α
(1)
k,t

∣∣∣∣+ ∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥
≤
√
n · 2−m + (21 · 2−m)3n+ 8nr−1 · 2−m + 16knr2−m

≤ 17knr2−m.

Now we are ready to bound ∥q̂(k,t) − q(k,t)∥. Note that q(k,t) = u(k,t)/∥u(k,t)∥, so

∥q̂(k,t) − q(k,t)∥ ≤
∥∥∥∥q̂(k,t) − ũk,t

∥ũk,t∥

∥∥∥∥+ 1

∥ũk,t∥
∥ũk,t − uk,t∥+

|∥uk,t∥ − ∥ũk,t∥|
∥uk,t∥ · ∥ũk,t∥

· ∥uk,t∥

=

∥∥∥∥q̂(k,t) − ũk,t
∥ũk,t∥

∥∥∥∥+ 1

∥ũk,t∥
∥ũk,t − uk,t∥+

|∥uk,t∥ − ∥ũk,t∥|
∥ũk,t∥

≤ 17knr2−m +
12nRk−1,t + knRk,t−1

n−(r−1)/2
+

12nRk−1,t + knRk,t−1

n−(r−1)/2

= 17knr2−m + 4knrRk,t−1 + 48nrRk−1,t

≤ 4knrRk,t−1 + 49nrRk−1,t = Rk,t,

where the last inequality holds because 17knr2−m ≤ n2r2−m = nrR1,1 ≤ nrRk−1,t, and the last
equality is due to Lemma 12. Therefore, (22) is established for t and k. Both the inductions on k
and the induction on t are now complete.

We now derive a bound for d̂T := dist(col(Q̂T), col(V1)) = ∥V ⊤
2 Q̂T ∥2. Using (22) and (25), we

can get

∥q̂k,T − qk,T ∥ ≤
n−s

2
√
K
. k = 1, . . . ,K. (42)

Therefore,

∥Q̂T −QT ∥2 ≤
√
K max

1≤k≤K
∥qk,T − qk,T ∥ ≤

√
KRK,T ≤

1

2
n−s.

Then by Lemma 8, we have

d̂T ≤ dT + |d̂T − dT | ≤
1

2
n−s + ∥V ⊤

2 (Q̂T −QT)∥2 ≤
1

2
n−s + ∥Q̂T −QT ∥2 ≤ n−s. (43)

The first result in Theorem 1 is established by letting Q̂ = Q̂T .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

According to Figures 1 and 2, the number of layers needed in GNN for the kth step in the t-th
orthogonal iteration is (2k + 2)m + 12k + 14. Also count in the layer to produce Ŷt = AQ̂t−1 in
each iteration. So the total number of layers is at most

K∑
k=1

((2k + 2)m+ 12k + 14)Tk + Tk

= [K(K + 1)(m+ 6) + 2K(m+ 7) + 1]T

≤ 2K2mTk

≤ 2K2

[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

] [
(s+ r) logn+ log 2

log η

]
≤ 8K2(s+ r)2r

(log n)3

(log η)2
+ 8K2((K + 1)r + s)(s+ r)

(log n)2

log η
.

High probability bounds concerning eigenvalues ofA. The eigenvalues λK and λK+1 ofA affects
the approximation results of GNN. Specifically, condition |λK | ≥

√
2n−(r−1) required in Lemma

11, and the total number of layers depends on η = |λK |/|λK+1|. We provide high-probability
bounds on |λK | and η.

Let γ1, . . . , γK be the first K eigenvectors of P with |γ1| ≥ · · · ≥ |γK |, and u1, . . . , uK
be associated eigenvectors. Denote U = [u1, . . . , uK] and Γ = diag(γ1, . . . , γK). Define
P0 = (p− q)IK + q1K1⊤

K ∈ RK×K to be a “collapsed” version of P , and N = diag(n1, . . . , nK).
Further, let Z ∈ Rn×K be the one-hot matrix of the true community labels. That is, Zi,k = 1{σi=k}
for i ∈ [n], k ∈ [K]. We first state several preliminary lemmas.
Lemma 14. The first K eigenvalues γ1, . . . , γK of P are equal to the eigenvalues of G =
N1/2P0N

1/2.

Proof. First we have the equalities P = ZP0Z
⊤ and Z⊤Z = N . Assume nonzero vector x ∈ RK

satisfies Gx = γx. Define y = ZN−1/2x ∈ Rn. Then

Py = ZP0Z
⊤ZN−1/2x = ZP0N

1/2x = ZN−1/2Gx = γZN−1/2x = γy.

On the other hand, suppose nonzero vector y ∈ Rn satisfies Py = γy. Let x = N−1/2Z⊤y ∈ RK .
Then

Gx = N1/2P0Z
⊤y = N−1/2Z⊤ZP0Z

⊤y = N−1/2Z⊤Py = γN−1/2Z⊤y = γx.

This completes the proof.

Lemma 15. Let G = N1/2P0N
1/2. Then we have

σmin(G) ≥ (p− q)nmin.

The equality holds when n1 = · · · = nK .

Proof. We first write G = (p − q)N + qψψ⊤, where φ = (
√
n1, . . . ,

√
nK)⊤. For any vector

x ∈ RK , we have

Gx = (p− q)x⊤Nx+ q(x⊤φ)2 ≥ (p− q)x⊤Nx ≥ (p− q)nmin.

Hence the conclusion holds. The last statement follows by direct calculation.

The following result on spectral bound is essentially Theorem 5.2 in Lei & Rinaldo (2015) with a
slightly different statement:
Lemma 16 ((Lei & Rinaldo, 2015)). For any c0 > 0, there exists a constant c1 that depends on c0
such that

∥A− P∥2 ≤ c1
√
np+ log n

with probability at least 1− n−c0 .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

In view of Lemma 16, we constrain the analysis in the event that ∥A − P∥2 ≤ c1
√
np+ log n. By

Weyl’s inequality,

|λK − γK | ≤ ∥A− P∥2.

Combining Lemmas 14 and 15, we have that

|λK | ≥ |γK | − ∥A− P∥2 ≥ (p− q)nmin − c1
√
np+ log n ≥ c2n(p− q) ≥

√
log n.

The last two inequalities holds because nmin ≍ n, n(p− q)≫ √np, and n(p− q)≫
√
log n, from

Assumptions 1 and 2. We get |λK | ≥
√
2n−(r−1) as required.

To derive a bound of log η, observe that the (K + 1)th eigenvalue of P is 0. By Weyl’s inequality,
we have

|λK+1| ≤ ∥A− P∥2 ≤ c1
√
np+ log n.

Then it holds that

log η ≥ log

(
(p− q)nmin

c1
√
np+ log n

− 1

)
≥ log

(
c2n(p− q)

max{√np,
√
log n}

)
= ξ.

This concludes the proof of Theorem 1.

D AN INITIALIZATION PROCEDURE

A natural way of getting the initial features Q0 is to draw from the Haar distribution. Suppose
S0 ∈ Rn×K is a random matrix where its entries are i.i.d. N(0, 1). Let its QR decomposition
obtained from the Gram-Schmidt process be S0 = Q0R0. Then Q0 is Haar-distributed on the
orthogonal group.

We first have the following result.

Lemma 17. For a given A, Q0 satisfies

P
(
σmin(Λ1V

⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

)
≥ 1− 2n−c0

for any δ > 0 and any c0 > 0.

Proof. By definition, we have S⊤
0 S0 = R⊤

0 R0. Then ∥R0∥2 = ∥S0∥2. Following the result in
Rudelson & Vershynin (2011) with respect to the largest singular value, we have

P
(
∥S0∥2 >

√
n+
√
K + t

)
≤ 2e−t2/2, t > 0.

For an absolute constant c0, take t =
√
2 log 2 + 2c0 log n. The probability bound of the last display

becomes n−c0 . Since
√
n+
√
K + t ≤ (1 + δ)

√
n for any δ > 0, we get

P
(
∥S0∥2 > (1 + δ)

√
n
)
≤ P

(
∥S0∥2 >

√
n+
√
K + t

)
≤ n−c0

for any δ > 0, with n large enough. Therefore, we obtain

P
(
σmin(R

−1
0) <

1

(1 + δ)
√
n

)
≤ n−c0 .

Since columns of V1 are all orthonormal, V ⊤
1 S0 ∈ RK×K has i.i.d. N(0, 1) entries. Following the

result in Rudelson & Vershynin (2011) on the smallest singular value, we have

P
(
σmin(V

⊤
1 S0) <

ϵ√
K

)
≤ ϵ.

We take ϵ = n−c0 .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Note V ⊤
1 Q0 = V ⊤

1 S0R
−1
0 . When σmin(V

⊤
1 S0) and σmin(R

−1
0) are both bounded away from 0, we

have σmin(V
⊤
1 Q0) ≥ σmin(V

⊤
1 S0) · σmin(R

−1
0). It then follows that

P
(
σmin(Λ1V

⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

)
≥ P

(
σmin(V

⊤
1 Q0) ≥

n−c0

√
K

and σmin(R
−1
0) ≥ 1

(1 + δ)
√
n

)
≥ 1− P

(
σmin(V

⊤
1 Q0) <

n−c0

√
K

)
− P

(
σmin(R

−1
0) <

1

(1 + δ)
√
n

)
≥ 1− 2n−c0 .

The lower bound given in Lemma 17 still depends on |λK |. Lemma 18 further assures that Q0

satisfies (7) with high probability.
Lemma 18. If Q0 ∈ Rn×K is Haar distributed on the orthogonal group, then

P
(
σmin(Λ1V

⊤
1 Q0) ≥ n−(c0+1/2)

)
≥ 1− 3n−c0

for any c0 > 0.

Proof. The magnitude of λK is analyzed at the end of Appendix C. Using Assumptions 1 and 2, we
have that, with probability at least 1− n−c0 ,

|λK | ≥ |γK | − ∥A− P∥2 ≥ (p− q)nmin − c1
√
np+ log n ≥ c2n(p− q) ≥ c2

√
log n

for some c2 > 0.

In view of with Lemma 17, we get that with probability at least 1− 3n−c0 ,

σmin(Λ1V
⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

≥ c2
√
log n · n−(c0+1/2)

(1 + δ)
√
K

≥ n−(c0+1/2).

E PROOF OF THEOREM 2

We have the equality PZ = ZP0N , or equivalently, PZN−1P−1
0 = Z. As P = UΓU⊤, by

letting B = ΓU⊤ZN−1P−1
0 , we get Z = UB. For a scalar α > 0, denoting B(α) = αB and

Z(α) = αZ, we further get Z(α) = UB(α). Applying softmax function on the rows of Z(α), we
get the probability that node i belongs to community k

Ψi,k =

{
eα/(eα +K − 1), if σi = k,

1/(eα +K − 1), otherwise.

When α → ∞, we have Ψi,k → 1{σi=k}. In other words, given the K eigenvectors U of P as
design matrix, and with regression coefficients B(α), one can recover the true community labels
exactly by multinomial regression, as α→∞.

In reality, we are given Q̂ from GNN instead of U . Q̂ and U have the following relationship:

• dist(col(Q̂T), col(V1)) ≤ n−s (by Theorem 1).
• ∥V1 − U∥2 is controlled by the Davis-Kahan theorem.

Let Q = QT be the output of orthogonal iteration after T iterations, as defined in Lemma 8. We
have Q = V1W1 + V2W2, where ∥W2∥2 ≤ n−s/2. So

Z = UB = (U − V1)B + (Q− Q̂)W−1
1 B + Q̂W−1

1 B − V2W2W
−1
1 B,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

or equivalently,

Q̂W−1
1 B = Z − E,

where E =
[
(U − V1) + (Q− Q̂)W−1

1 − V2W2W
−1
1

]
B. Multiplying by α, we get

Q̂W−1
1 B(α) = α(Z − E). Regarding Q̂ as design matrix, and W−1

1 B(α) as regression coeffi-
cients, the multinomial regression generates the probability that node i belongs to community k

Ψ̃i,k =
exp {α(Zi,k − Ei,k)}∑K
j=1 exp {α(Zi,j − Ei,j)}

. (44)

The estimated label assignment is

σ̃i = argmax
1≤k≤K

Ψ̃i,k = argmax
1≤k≤K

(Zi,k − Ei,k). (45)

Note that Zi· (the ith row of Z) is e⊤σi
, where eσi

∈ RK is the elementary vector with 1 in its σi-th
entry, and 0 elsewhere. Then argmax1≤k≤K(Zi,k − Ei,k) is still σi if ∥Ei·∥max < 1/2. Define
S = {1 ≤ i ≤ n : ∥Ei·∥max ≥ 1/2}. Then we have ℓ0(σ, σ̃) ≤ |S|/n. On the other hand,
|S| ≤

∑
i∈S 4∥Ei·∥2 ≤ 4∥E∥2F . Therefore,

ℓ0(σ, σ̃) ≤
4

n
∥E∥2F .

To derive an upper bound of ∥E∥F , first we know that the Davis-Kahan Theorem (Davis & Kahan,
1970; Yu et al., 2015) and Lemma 16 guarantees that

∥U − V1∥F ≤
∥A− P∥2
|γK |

≤ O(
√
np+ logn)

|γK |
.

with probability at least 1− n−c0 .

The term (Q − Q̂)W−1
1 depends on Q − Q̂, which is controlled well by GNN. In particular, using

(42), we can get

∥Q̂−Q∥F =

√√√√ K∑
k=1

∥qk,T − qk,T ∥2 ≤
1

2
n−s.

Then, from ∥W1∥2 = 1, we have

∥(Q− Q̂)W−1
1 ∥F ≤ ∥Q− Q̂∥F · ∥W

−1
1 ∥2 ≤

1

2
n−s ≤ O(

√
np+ log n)

|γK |

when s is large enough. The term V2W2W
−1
1 is controlled well by orthogonal iteration. Lemma 8

leads to

∥V2W2W
−1
1 ∥F ≤ ∥V2∥F · ∥W2∥2 · ∥W−1

1 ∥2 ≤
√
n−K · 1

2
n−s ≤ 1

2
n−(s−1) ≤ O(

√
np+ log n)

|γK |
when s is large enough.

To control for B, we have ∥Γ∥2 = |γ1|, ∥U⊤∥2 = 1, and ∥ZN−1∥2 = 1/
√
nmin by noting

(ZN−1)⊤ZN−1 = N−1. Also, since P0 is a full-rank matrix with two eigenvalues p + (K − 1)q
and (p− q), we know that ∥P−1

0 ∥2 = 1/(p− q). Therefore,

∥B∥2 ≤ ∥Γ∥2 · ∥U⊤∥2 · ∥ZN−1∥2 · ∥P−1
0 ∥2 ≤

|γ1|√
nmin(p− q)

.

Finally, we reach the bound

∥E∥F ≤
(
∥U − V1∥F + ∥(Q− Q̂)W−1

1 ∥F + ∥V2W2W
−1
1 ∥F

)
∥B∥2

≤ O(
√
np+ log n)

|γK |
· |γ1|√

nmin(p− q)
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The misclassification rate is bounded by

ℓ0(σ, σ̃) ≤
O(np+ log n)

nγ2K
· γ21
nmin(p− q)2

.

From Lemma 14, we get
|γ1|
|γK |

=
∥G∥2
σmin(G)

≤ nmax(p+ (K − 1)q)

nmin(p− q)
≤ β(p+ (K − 1)q)

p− q
.

So we have

ℓ0(σ, σ̃) ≤
O(np+ log n)(p+ (K − 1)q)2

n2(p− q)4
.

F PROOF OF THEOREM 3

It is clear that yi,k = (AZ(σ(0)))i,k is the number of edges that node i has with all nodes that are
labeled as k by σ(0), and JnZ(σ(0)) has identical rows where each row represents community sizes
determined by σ(0). Let n(0)k = (JnZ(σ

(0)))i,k. Then, qi,k = (AZ(σ(0)))i,k/n
(0) is the proportion

of connections of node i to community k, and the local refinement procedure updates according to

σ
(1)
i = arg max

k∈[K]
qi,k.

Let yk = [y1,k, . . . , yn,k]
⊤, qk = [q1,k, . . . , qn,k]

⊤ for k ∈ [K]. We design the GNN illustrated in
Figure 3 to approximate qk.

z̄ =
[
Z(σ(0)),1n

]

z̄ =
[
y1, . . . , yK , n

(0)
1 1n, . . . , n

(0)
K 1n,1n

]
(with [y1, . . . , yK] = AZ(σ(0)) and [n

(0)
1 1n, . . . , n

(0)
K 1n] = JZ(σ(0)))

z̄ = [y1, . . . , yK , α11n, · · · , αK1n,1n]

(with |αk − 1/n
(0)
k | ≤ 21 · 2−m for all k ∈ [K])

z̄ = [q̂1, . . . , q̂K ,1n]

(with ∥q̂k − αkyk∥max ≤ 2−m for all k ∈ [K])

1 layer

K(2m+ 13) layers

K(m+ 6) layers

Figure 3: The GNN architecture to approximate the local refinement procedure.

The probability matrix Ψ̂ is given by

Ψ̂i,k =
exp (αq̂i,k)∑K
j=1 exp (αq̂i,k)

. (46)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

for a scalar α > 0. The estimated label is
σ̂i = argmax

1≤k≤K
Ψ̂i,k = argmax

1≤k≤K
q̂i,k. (47)

Since yi,k ≤ n, we have

∥q̂i,k − qi,k∥ ≤ |q̂i,k − αkyi,k|+ |αkyi,k −
1

n
(0)
k

yi,k|

≤ 2−m + 21 · 2−mn

≤ 22 · 2−mn.

Gao & Ma (2021) provide an argument to show that minimax bound is closely related to a fun-
damental hypothesis testing problem. The problem is stated as follows. Suppose we observe
X = (X1, . . . , Xm1+m2

) ∈ {0, 1}m1+m2 , we want to test

H1 : X ∼
m1⊗
i=1

Bernoulli(p)⊗
m1+m2⊗
i=m1+1

Bernoulli(q)

v.s. H2 : X ∼
m1⊗
i=1

Bernoulli(q)⊗
m1+m2⊗
i=m1+1

Bernoulli(p). (48)

The local refinement procedure is designed to solve this testing problem, hence the misclassification
rate after the local refinement procedure is determined by the error bound of the local refinement.
Lemma 17 in Gao et al. (2017) gives detailed calculation of this error bound.

To fix ideas, we focus on the local refinement of node 1 and assume without loss of generality
σ1 = 1. One can show, by following the steps of Lemma 17 in Gao et al. (2017), that

P(q1,1 ≤ max
k ̸=1

q1,k) ≤ exp

{
−(1 + o(1))min

k ̸=1

(
n1 + nk

2

)
I(p, q)

}
. (49)

When k = 2, mink ̸=1

(
n1+nk

2

)
= n/2, and when k ≥ 3, mink ̸=1

(
n1+nk

2

)
≥ n/(βK). When

using GNN to approximate the local refinement process, one needs some buffer for the difference
q1,1 − q1,k. Note that (49) is proved by a Chernoff bound derivation, the first step of which is

P(q1,1 ≤ q1,k) = P(et
∗(q1,k−q1,1) ≥ 1) ≤ E(et

∗(q1,k−q1,1))

with et
∗
=
√
p(1− q)/

√
q(1− p). Similarly, for any δ > 0, we have

P(q1,1 ≤ q1,k + δ) = P(et
∗(q1,k−q1,1)+t∗δ ≥ 1) ≤ et

∗δE(et
∗(q1,k−q1,1)).

We can use the same derivation to obtain
P(q1,1 ≤ max

k ̸=1
q1,k + δ) ≤ exp {−(1 + o(1))ñI(p, q) + t∗δ} .

For a given constant ϵ > 0, we choose δ such that t∗δ = ϵ
2 ñI(p, q). Then we have

P(q1,1 ≤ max
k ̸=1

q1,k + δ) ≤ exp {−(1 + o(1)− ϵ/2)ñI(p, q)}

≤ exp {−(1− ϵ)ñI(p, q)} .
For the GNN, we choose m such that

m =

⌈
− log ϵ− log I(p, q) +

√
p(1− q)/

√
q(1− p) + log 88

log 2

⌉
Then we can guarantee 22 ·2−mn ≤ δ/2. In other words, |q̂i,k−qi,k| ≤ δ/2 for all i ∈ [n], k ∈ [K].
Therefore,

P(q̂1,1 ≤ max
k ̸=1

q̂1,k) ≤ P(q1,1 ≤ max
k ̸=1

q1,k + δ)

≤ exp {−(1− ϵ)ñI(p, q)} .
We get the desired rate. The derivation from the local refinement error bound to the overall misclas-
sification rate bound is provided in Gao et al. (2017) and is omitted here for brevity.

The depth M ′′ of the constructed GNN is 3Km+ 19K + 1, and is bounded by 3Km+ 20K.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G PROOFS OF THEOREMS 4 AND 5

We first define a “truncated version” of cross-entropy loss. For L > 0, define

ℓ
(L)
1 (σ,Ψ) = min

π∈SK

1

n

∑
i∈[n]

{[
− log

(
Ψi,π(σi)

)]
∧ L
}
.

for a probability matrix Ψ ∈ Rn×K . When L→∞, ℓ(L)
1 (σ,Ψ)→ ℓ1(σ,Ψ).

Proof of Theorem 4. In the proof of Theorem 2, we have constructed a GNN that, for any graph G
in the training set with adjacency matrix A, produces the probability matrix Ψ̃ and estimated label
assignment σ̃, defined by (44) and (45) respectively.

Note that σ̃ does not depend on α but Ψ̃ does. Define S′ = {1 ≤ i ≤ n : ∥Ei·∥max ≥ 1/3}. Then
for any i /∈ S′, Zi,σi − Ei,σi ≥ 2/3 and Zi,k − Ei,k ≤ 1/3 for all k ̸= σi. We choose α large
enough such that

log(1 + (K − 1)e−α/3) ≤ R.

Then for any i /∈ S′, we get

− log(Ψ̃i,σi) = log

1 +
∑
j ̸=σi

exp {α(Zi,j − Ei,j)− α(Zi,σi − Ei,σi)}


≤ log(1 + (K − 1)e−α/3)

≤ R.

For any i ∈ S′, we have − log(Ψ̃i,σi
) ≤ L. Then,

ℓ
(L)
1 (σ, Ψ̃) ≤ R+ L

|S′|
n
.

On the other hand, |S′| ≤
∑

i∈S 9∥Ei·∥2 ≤ 9∥E∥2F . Using the upper bound of ∥E∥F derived in the
proof of Theorem 2, we get for any c′0 > 0,

ℓ
(L)
1 (σ, Ψ̃) ≤ R+ L ·O(R)

with probability at least 1− n−c′0 . Then

Eℓ(L)
1 (σ, Ψ̃) ≤ R+ L ·O(R) + Ln−c′0 .

We need to following lemma to proceed.
Lemma 19. For any community detection algorithm f , suppose graphs Gi are generated i.i.d.
following some prior πG, we have

P
(
|R(g)− R̂m(g)| ≥ t

)
≤ 2 exp

(
−2mt2

L2

)
. (50)

Proof. Note by definitionsR(g)−R̂m(g) = 1
n

∑m
j=1 ℓg,L(Gj)−EG∼πℓg,L(G). Apply Hoeffding’s

inequality and use the fact that each ℓg,L(G) is naturally bounded by L.

Suppose graph Gi in the training set has true community labels σ(i), and when the GNN designed
in Theorem 2 is applied to Gi, probability matrix Ψ̃(i) is produced. Take t = R in Lemma 19. We
get

m∑
i=1

ℓ
(L)
1 (σ(i), Ψ̃(i)) ≤ Eℓ(L)

1 (σ, Ψ̃) +R ≤ 2R+ L ·O(R) + Ln−c′0 .

with probability at least 1− 2 exp
(
−2mt2/L2

)
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We choose L = R−ϵ/2, which tends to∞. Then 2R + L · O(R) + Ln−c′0 = O(R1−ϵ/2) when c′0
is large enough. By the continuity of ℓ(L)

1 with respect to L, we get
m∑
i=1

ℓ1(σ
(i), Ψ̃(i)) = O(R1−ϵ/2).

With m ≥ R−(1+ϵ)(log n)1+ϵ, one can show that the probability 1 − 2 exp
(
−2mt2/L2

)
is bigger

than 1− n−c0 for any c0 > 0.

For graph Gi, denote the probability matrix generated by the trained GNN as Ψ̃′(i). Assuming the
empirical risk is decreased, we have

1

m

m∑
i=1

Eℓ1(σ(i), Ψ̃′(i)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̃(i)) ≤ O(R1−ϵ/2).

We finally get

1

m

m∑
i=1

ℓ0(σ
(i), σ(A(i), Q0; θ̃)) ≤

1

m

m∑
i=1

ℓ1(σ
(i), Ψ̃′(i))/ log 2 ≤ R1−ϵ.

Proof of Theorem 5. Fix any graph G in the training set with adjacency matrix A. In the proof of
Theorem 3, we have constructed a GNN that produces probability matrix Ψ̂ and estimated labels σ̂
based on q̂i,k by (46) and (47). To derive a bound for the cross-entropy loss, we need a better control
on the difference q̂i,σi

− q̂i,k for k ̸= σi. We still focus on node 1. Using the same argument as the
proof of Theorem 3, one can get

P(q̂1,1 ≤ max
k ̸=1

q̂1,k + δ) ≤ P(q1,1 ≤ max
k ̸=1

q1,k + 2δ)

≤ exp {−(1− 2ϵ)ñI(p, q)} .

Denote the right-hand-side of the last display by R2. We choose α such that

log(1 + (K − 1)e−αδ) ≤ R2.

So when q̂1,1 > maxk ̸=1 q̂1,k + δ, the cross-entropy is upper bounded by R2.

Then

E
([
− log

(
Ψ̂1,1

)]
∧ L
)
≤ LP(q̂1,1 ≤ max

k ̸=1
q̂1,k + δ) +R2

(
1− P(q̂1,1 ≤ max

k ̸=1
q̂1,k + δ)

)
≤ LR2 +R2.

Therefore, we have

Eℓ(L)
1 (σ, Ψ̂) ≤ 1

n

∑
i∈[n]

E
{[
− log

(
Ψ̂i,σi

)]
∧ L
}
≤ LR2 +R2.

Suppose graph Gi in the training set has true community labels σ(i), and when the GNN designed
in Theorem 3 is applied to Gi, probability matrix Ψ̂(i) is produced. Take t = R2 in Lemma 19. We
get

m∑
i=1

ℓ
(L)
1 (σ(i), Ψ̂(i)) ≤ Eℓ(L)

1 (σ, Ψ̂) +R2 ≤ LR2 + 2R2.

with probability at least 1− 2 exp
(
−2mt2/L2

)
.

Choose L = exp {(ϵ/2)ñI(p, q)} which goes to ∞ slowly. Then LR2 + 2R2 ≤
exp {−(1− 11ϵ/4)ñI(p, q)}. By the continuity of ℓ(L)

1 with respect to L, we have
m∑
i=1

ℓ1(σ
(i), Ψ̂(i)) ≤ exp {−(1− 11ϵ/4)ñI(p, q)} .

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Withm ≥ exp(2ñI(p, q))(logn)(1+ϵ)), one can prove that the probability 1−2 exp
(
−2mt2/L2

)
is bigger than 1− n−c0 for any c0 > 0.

For graph Gi, denote the probability matrix generated by the trained GNN as Ψ̂′(i). Assuming the
empirical risk is decreased, we have

1

m

m∑
i=1

Eℓ1(σ(i), Ψ̂′(i)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̂(i)) ≤ exp {(1− 11ϵ/4)ñI(p, q)} .

We finally get

1

m

m∑
i=1

ℓ0(σ
(i), σ(A(i), Z(σ̃(i)); θ̂)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̂′(i))/ log 2 ≤ exp {(1− 3ϵ)ñI(p, q)} .

H PROOF OF THEOREM 6

Assume that the graph are generated i.i.d. according to some prior πG. Suppose we are interested
in a class of community detection algorithms G = softmax ◦ F. For a community detection
algorithm fθ,x(0) ∈ F outputting a matrix fθ,x(0)(G) ∈ Rn×K , which is then used to generate a
probability matrix after the softmax operation, and we write gθ,x(0) = softmax ◦ fθ,x(0) ∈ G, and
gθ,x(0)(G) = softmax(fθ,x(0)(G)).

To establish the generalization bound, we revise the cross entropy to a “truncated” version

ℓg,L(G) := CEg,L(G) := min
µ∈SK

1

n

n∑
i=1

(
log((g(G))i,µ(σ(G)i))

−1 ∧ L
)
,

where L is some large but fixed constant and σ(G)i extracts the community assignment of node i in
graph G. We also suppress the dependence on x(0) in the above notation.

Define the empirical risk for any community detection algorithm g = softmax ◦ f by
R̂

(L)
m (g) = R̂m(f) := 1

m

∑m
i=1 ℓg,L(Gi). The empirical risk minimizer is defined to be g̃(L) =

argming∈G
1
m

∑m
i=1 ℓg,L(Gi). Define the population risk for any community detection algorithm

R(L)(g) = EG′∼πG
ℓg,L(G

′).

For a metric spaceF equipped with metric d, the covering numberN(ε,F , d) is the smallest number
of balls of radius ε with respect to d that can cover F , i.e., for every ε > 0, there exists an Fε with
|Fε| = N(ε,F , d) such that for every f ∈ F , there exists a f̃ ∈ Fε such that d(f, f̃) ≤ ε.
Lemma 20. For δ ≤ 1 and d∞(f1, f2) = maxG sup∥x(0)∥max≤1 ∥f1(G, x(0))− f2(G, x(0))∥max,

logN
(
δ,G(M,d, s), d∞

)
≤ (s+ 1) log

(
2δ−1nM+1|F|M (M + 1)V 2

)
.

Proof of Lemma 20. Write AL
k (f) as the mapping u ∈ Rdk 7→ σθ(M) ◦ · · · ◦ σθ(k)(u) ∈ RdM , and

AR
k (f) as the mapping u ∈ Rd0 7→ σθ(k) ◦ · · ·σθ(0)(u).

We note ∥AB∥max ≤ ∥A∥max∥B∥max × (# of columns of A). Given two community detection
algorithms f an f̃ with corresponding parameters (θ(t))Mt=0 and (θ̃(t))Mt=0 with ∥θ − θ̃∥max ≤ ε, we
bound the difference

sup
∥x(0)∥max≤1

f(G, x(0))− f̃(G, x(0))∥max

≤
M∑
ℓ=0

∣∣AL
ℓ+1(f) ◦ σθ(ℓ) ◦AR

ℓ−1(f̃)(X)−AL
ℓ+1(f) ◦ σθ̃(ℓ) ◦AR

ℓ−1(f̃)(X)
∣∣

≤ ε(n|F|)M+1(M + 1)

M∏
ℓ=0

(dℓ + 1).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

where in the above we have used ∥X∥max ≤ 1, which is a simple consequence if we assume
every column of X has unit length. Furthermore, we have used the fact ∥θ∥max ≤ 1 for all θ ∈
G(M,d, s,X), as well as that ∥O∥max ≤ 1 for any O ∈ F .

The total number of parameters in G(M, b) is

U =
|F|
2

M∑
ℓ=0

dℓdℓ+l ≤
|F|
2

2−(M−1)(M + 1)

M∏
ℓ=0

(dℓ + 1) ≤ |F|
M∏
ℓ=0

(dℓ + 1) =: V.

We take the grid size δ/(nM+1(M + 1)|F|MV to discretize the active parameters on [0, 1], and
there are

(
U
s

)
≤ V s ways to choose the active parameters, and therefore

N(δ,G(M,d, s), d∞) ≤
s∑

u=1

(2δ−1nM+1|F|M (M +1)V 2)u ≤ (2δ−1nM+1|F|M (M +1)V 2)s+1.

where we used the sum of the geometric sequence in the last inequality.

For the generalization bounds, we note the following facts.
Remark 6. For two vectors a ∈ R1×k and b ∈ R1×k such that ∥a− b∥max ≤ ε ≤ 1, we write pa =

softmax(a) and pb = softmax(b). Recall pa =
(

exp(aℓ)∑
u∈[k] exp(au)

)
ℓ∈[k]

. By elementary algebra, we

have ∥pa − pb∥max ≤ e2ε − 1 ≤ 2e2ε.

Remark 7. Note that with ∥P1 − P2∥max ≤ δ for two probability matrices Pi = (p
(i)
k∈[n],ℓ∈[K] ∈

[0, 1]n×K , we bound for any permutation µ ∈ SK∣∣∣∣∣∣ 1n
∑
i∈[n]

(
log(p

(1)
i,µ(σi)

∨ e−L)− 1

n

∑
i∈[n]

log(p
(2)
i,µ(σi))

∨ e−L)

∣∣∣∣∣∣ ≤ log(1 + eLδ) ≤ eLδ.

By Lipschitz continuity of the min functional, we have |CE(P1)− CE(P2)| ≤ eLδ.

With slight abuse of notation, we write d∞(g1, g2) = maxG sup∥x(0)∥max≤1 |CEg1(G)−CEg2(G)|.
Combining the above two remarks, we have

logN
(
δ,SG(M,d, s), d∞

)
≤ (s+ 1) log

(
4e2+Lδ−1nM+1|F|M (M + 1)V 2

)
We choose an δ-covering Gδ of G = SG(M,d, s). By taking the standard empirical process argu-
ment, we have

sup
g∈G
|R(g)− R̂m(g)| ≤ max

g∈Gδ

|R(g)− R̂m(g)|+ 2δ,

Take union bound for all f ’s in Fδ and apply (50), we have with probability 1 - u,

max
g∈Gδ

|R(g)− R̂m(g)| ≤
√
L2

2m

(
log(|Gδ|) + log(2/u)

)
Combining the above display with Lemma 20, we have established the desired results by taking
u = 2/m2 and

δ = log(L)

√
2s(4 + L) + 2 log(m) + (M + 2) log(n|F|d2⋆)

2m
,

where d⋆ = ∥d∥max and note V ≤ |F|dM+1
⋆ .

Combining the above, we have the following proposition.
Proposition 21. For G = SG(M,d, s) and any sufficiently large but fixed L, with probability
1− 2/m2,

sup
g∈GS(M,b,s,X)

|R(L)(g)− R̂(L)
m (g)| ≤ 3L

√
2s(4 + L) + 2 logm+ (M + 2) log(n|F|d2⋆)

2m
.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Take M = O(log2(n)), d⋆ = O(n), s = O(n log(n)), and L = O(log(n)), the right hand side is of
O(n log4(n)/m.

Combining the above proposition and Theorem 5, we have shown Theorem 6

Assume the graphs A’s are generated i.i.d. following πA = SBM(n, p, q). Under the condition of
Theorem 4, by taking m = O

(
R−(1+ε) max((log(n)1+ε), n log4(n))

)
, we have with probability

1 − n−c for some c < 1, the expected mis-classification ratio on A ∼ SBM(n, p, q) of the trained
GNN on

E[ℓ0(σ, σ(A,Q; θ̃) | θ̃)] ≤ c′R1−ε,

where the constant c′ depends on ε and c.

I DETAILED CONFIGURATIONS OF NUMERICAL EXPERIMENTS AND
ADDITIONAL NUMERICAL RESULTS

I.1 SYNTHETIC EXPERIMENTS ON SBM

For SBM training set, we choose 15 logarithmically spaced values of SNR in [0.5, 3], and 15
logarithmically spaced values of C in [3K, 9K]. The community size vector n is determined by
n ∼ Uniform[500, 1500], multiplied by a Dirichlet-distributed random variable with parameter
α1K , where α ∈ {0.3, 1.2, 3, 4, 5}. For each distinct combination of (SNR, C, α), we generate
4 independent graph instances. All parameter combinations considered, the resulting training set
comprises 4,500 graph instances.

The test set is constructed using combinations of SNR values from {0.25, 0.5, 0.75, 1, 1.5} and
C values from {5, 10, 15} for K = 2, {15, 20, 25} for K = 4, and {25, 30, 35} for K = 8. For
each value ofK, we define four prototypical class-size vectors, {n(1),n(2),n(3),n(4)}, representing
a range from balanced to extremely imbalanced community sizes. The specific community size
vectors for each K are as follows:

K = 2 :{n(1),n(2),n(3),n(4)} = {[500, 500]⊤, [600, 400]⊤, [700, 300]⊤, [800, 200]⊤},
K = 4 :{n(1),n(2),n(3),n(4)} = {[250, 250, 250, 250]⊤, [300, 250, 250, 200]⊤,

[400, 300, 200, 100]⊤, [700, 100, 100, 100]⊤}
K = 8 :{n(1),n(2),n(3),n(4)} = {[125, 125, 125, 125, 125, 125, 125, 125]⊤,

[150, 125, 125, 125, 125, 125, 125, 100]⊤, [200, 180, 160, 140, 120, 100, 80, 20]⊤,

[650, 50, 50, 50, 50, 50, 50, 50]⊤}.

For each distinct combination of (SNR, C,n), we generate 30 independent graph instances from
SBM(n, p, q), yielding 1,800 graphs in the test set.

Our two-stage GNN is configured as follows: The first-period GNN has 30 layers, 16 features, and
h = 1. The second-period GNNs are built with 3 layers, 8 features, and h = 0.

Table 4 presents the complete performance of the base and two-stage GNNs, with results grouped
by SNR and community size vector n.

Takeaways. Overall, we observe that accuracy increases monotonically with SNR, and quickly
saturates for smaller K. The two-stage GNN consistently delivers substantial gains in more chal-
lenging regimes, specifically with larger community counts (K=8) and low-to-moderate SNR. For
instance, at K = 8 and SNR = 0.75, the two-stage model improves accuracy from 77.1% to 82.7%
for balanced communities (n(1)), and from 87.8% to 94.7% for moderately imbalanced communi-
ties (n(3)). This improvement is also accompanied by a reduction in variance, as seen in the n(3)

case where the standard deviation decreases from 1.05 to 0.66.

In easier regimes, such as with small K and high SNR (≥ 0.75), improvements are negligible due
to ceiling effects. We also observe a slight performance decrease in a few cases under extreme class

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 4: Test accuracy of base and two-stage GNNs on the SBM. Note: All values are percentages,
reported in the mean (standard deviation) format.

n SNR K = 2 K = 4 K = 8
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 52.8 (3.26) 52.9 (3.34) 47.2 (13.2) 50.3 (16.1) 44.1 (1.13) 50.4 (2.16)
0.50 94.8 (1.91) 95.4 (1.35) 93.6 (1.20) 95.5 (0.45) 70.5 (1.10) 77.7 (1.05)
0.75 98.8 (0.06) 99.0 (0.05) 98.9 (0.18) 99.0 (0.08) 77.1 (0.76) 82.7 (0.73)
1.00 99.6 (0.05) 99.7 (0.05) 99.7 (0.11) 99.8 (0.04) 78.5 (1.42) 83.5 (0.20)
1.50 100 (0.00) 100 (0.02) 99.9 (0.17) 100 (0.01) 81.5 (1.35) 83.1 (1.33)

n(2)

0.25 73.1 (8.43) 75.0 (7.03) 57.7 (10.7) 62.8 (11.6) 47.9 (0.57) 54.4 (1.55)
0.50 96.1 (0.15) 96.4 (0.17) 94.7 (0.05) 96.0 (0.38) 71.6 (0.47) 81.3 (0.77)
0.75 98.9 (0.02) 99.0 (0.05) 99.0 (0.12) 99.0 (0.03) 79.0 (1.31) 85.5 (0.55)
1.00 99.7 (0.03) 99.7 (0.03) 99.6 (0.25) 99.8 (0.05) 81.2 (0.81) 87.6 (1.10)
1.50 100 (0.01) 100 (0.01) 100 (0.06) 100 (0.01) 81.9 (1.59) 86.5 (0.66)

n(3)

0.25 81.4 (4.15) 83.0 (3.01) 77.4 (2.77) 80.4 (1.54) 68.3 (1.83) 72.9 (1.71)
0.50 96.3 (0.16) 96.6 (0.05) 96.2 (0.14) 96.6 (0.13) 83.5 (0.50) 89.7 (0.99)
0.75 98.9 (0.03) 99.1 (0.05) 98.9 (0.10) 99.0 (0.07) 87.8 (1.05) 94.7 (0.66)
1.00 99.7 (0.01) 99.7 (0.04) 99.6 (0.09) 99.7 (0.08) 88.8 (0.33) 95.5 (0.35)
1.50 100 (0.02) 100 (0.02) 100 (0.01) 100 (0.01) 90.4 (1.26) 97.2 (0.36)

n(4)

0.25 86.3 (2.20) 87.2 (1.64) 80.2 (0.40) 79.7 (0.65) 51.8 (4.61) 59.4 (7.98)
0.50 96.9 (0.11) 97.2 (0.05) 84.6 (0.20) 85.7 (0.34) 56.5 (5.05) 63.5 (5.14)
0.75 99.1 (0.03) 99.2 (0.04) 89.1 (0.82) 91.2 (0.53) 63.8 (9.09) 70.6 (5.81)
1.00 99.7 (0.02) 99.7 (0.03) 93.0 (0.84) 94.4 (0.40) 69.6 (5.95) 76.4 (1.81)
1.50 100 (0.01) 100(0.01) 97.5 (0.38) 97.3 (0.45) 80.0 (4.06) 85.7 (6.31)

imbalance (e.g., atK = 4, n(4) and SNR = 0.25), where the base model marginally outperforms the
two-stage model. This behavior is likely due to majority-class drift during the self-training phase.

I.2 SYNTHETIC EXPERIMENTS ON MIXED

To assess our model’s robustness to model mis-specification and its generalization capabilities, we
conducted experiments with three distinct training datasets: SBM, a combination of SBM and
DCBM, and a combination of SBM, DCBM, and LSM. The trained models were then evaluated
on SBM, DCBM, and LSM test sets. The GNN architecture for this study is configured identically
to the one used in our synthetic SBM experiments, as described in Appendix I.1.

SBM+DCBM training data. For a fixed K and each (C, SNR, α), we draw one graph from
SBM or DCBM with equal probability. We set p = (a logn)/n and q = (b logn)/n, where
(a, b) are uniquely determined by C = a + (K − 1)b and SNR = (a − b)2/[K(a + (K − 1)b)]
under a > b > 0. We form the block matrix B with Brr = p and Brs = q for r ̸= s, and
then inject structured heterogeneity as follows: apply a mild diagonal jitter Brr ← Brr · exp(ξr)
with ξr ∼ Unif[−σp, σp] (we use σp = 0.08); and apply an off–diagonal multiplicative mask
Brs ← Brs ·Mrs for r ̸= s, where Mrr = 1 and the off–diagonal entries are symmetrized and
renormalized so that mean r<sMrs = 1. Unless otherwise noted, we adopt a low–rank mask M =
σ(α0 + UU⊤) with U ∈ RK×d, d = 2, α0 = 0, and logistic σ(·); an optional fixed seed can be
used to control randomness. For ablations, we also consider lognormal masks M = exp(G) with
symmetric Gaussian G of s.d. σm = 0.35, beta masks with entrywise Beta(a, b) using (a, b) =
(2, 6), and a tiered mask where communities are partitioned into three groups (default equal sizes)
andMrs = τg(r),g(s) with τ = 1+sR, symmetricR ∼ N (0, 0.25), and scale s = 0.6; all masks are
symmetrized and renormalized as above. In the DCBM case, node factors {θi} are sampled i.i.d.
from Γ(κ, 1/κ) with κ drawn log–uniformly from [1.5, 3]. For each K, the training set contains
4,500 graphs.

Latent Space Model In the LSM, the edge probability between nodes i and j is

Pij = sigmoid
(
bi + bj + ϕ⊤

i ϕj

)
, bi ∼ N (b̄, 1), ϕi ∼ N (µσi , τ

2I).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

The global bias b̄ satisfies exp(2b̄) = C logn/n. To construct community embeddings
µ(1), . . . ,µ(K), we sample K vectors uniformly on the K-simplex and scale by s > 0 to con-
trol separation. This yields approximate within/between-community probabilities

p ≈ sigmoid(2b̄+ s2), q ≈ sigmoid
(
2b̄− s2

K − 1

)
,

and we tune s to match a target SNR = n (p− q)2
/(
log n ·K(p+ (K − 1)q)

)
.

To induce additional heterogeneity, we apply community-wise multipliers r to the embeddings:
r = [1.0, 1.2] for K = 2, [0.8, 0.9, 1.0, 1.1] for K = 4, and an arithmetic sequence from 0.85 to 1.2
for K = 8.

SBM+DCBM+LSM training data We vary τ ∈ {0, 0.25, 0.5}. When τ > 0 the graphs follow
the LSM; when τ = 0 the model reduces to DCBM. In particular, setting bi ∼ N (b̄, 1) yields
DCBM, while bi ≡ b̄ recovers SBM. For each fixed K, we assemble a training set of 4,800 graphs
by sampling 10 log-spaced SNR ∈ [0.5, 3], 10 values of C ∈ [3K, 9K], α ∈ {0.3, 1.2, 3, 5} for the
Dirichlet size prior, and four independent realizations per (SNR, C, α, τ).

Test data To comprehensively assess performance, we evaluate the models on three distinct test
sets, each comprising 1,800 graphs per K.

For the SBM and DCBM test sets, we maintain the same configurations of C, SNR, and n as in the
first experiment. For each parameter combination (C,SNR,n), we generate 30 independent graph
instances from the SBM and another 30 from the DCBM. The degree correction parameters for the
DCBM are sampled in the same manner as during the training phase.

The LSM test data is constructed as follows. We generate test graphs with τ = 0.25 and the same r
multipliers as in training. For each K, we take SNR ∈ {0.25, 0.5, 0.75, 1, 1.5} and C ∈ {5, 10, 15}
for K = 2, {15, 20, 25} for K = 4, and {25, 30, 35} for K = 8, and the four n(m) above. For each
(SNR, C,n) we draw 30 i.i.d. graphs, yielding 1,800 test graphs per K.

Next, Tables 5, 6, and 7 present detailed results for our synthetic experiments on mixed models. The
results are stratified by community-size configuration and SNR. The columns labeled ’DCBM’ and
’LSM’ represent models trained on SBM+DCBM and SBM+DCBM+LSM data, respectively. The
accuracy values shown are averaged over three distinct test datasets generated from SBM, DCBM,
and LSM.

Takeaways. As shown in Table 5, 6 and 7, our two-stage GNN consistently outperforms the
base model across all tables. This advantage becomes particularly clear as the problem complexity
increases, as seen with larger community counts (K=8) and smaller SNR. While our models show
a performance drop on these test sets compared to the model trained on SBM dataset, we attribute
this to the training strategy. With a fixed training set size, introducing more diverse graph models
(SBM+DCBM+LSM) reduces the parameter coverage for each individual model. This trade-off
can limit the model’s ability to perfectly capture the nuances of each graph type, resulting in lower
overall test accuracy, yet our two-stage architecture still manages to extract a performance gain.

I.3 REAL DATA EXPERIMENTS

We adopt two training settings—SBM, a mixture of SBM and DCBM —and train both first- and
second-period GNNs under each.For the first-period GNN, we use 30 layers with 16 features and
h=1 when K ∈ {2, 4}, and 30 layers with 32 features and h=1 when K ∈ {8, 9}. For the second-
period GNN, we adopt a lighter architecture: 3 layers with 8 features and h=0 when K ∈ {2, 4},
and 3 layers with 16 features and h=0 when K ∈ {8, 9}.
We evaluate on five real-world networks: the Political Blog network (1,222 nodes, 16,714 edges,
2 communities; Adamic & Glance (2005)); Simmons College (1,137 nodes, 24,257 edges, 4 com-
munities) and Caltech (590 nodes, 12,822 edges, 8 communities; Traud et al. (2011; 2012)), both
preprocessed following Chen et al. (2018); a manufacturing company network (74 nodes, 235 edges,
4 communities; Weng & Feng (2022)); and the French high school friendship network (329 nodes,
5,818 edges, 9 communities; Mastrandrea et al. (2015)). Table 3 reports accuracy (%) across these
datasets.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 5: Accuracy (%) by class sizes and SNR for K = 2; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 54.6 (6.8) 55.6 (6.6) 53.7 (5.3) 54.1 (6.4) 51.1 (2.0) 50.9 (2.4)
0.5 87.4 (14.2) 90.5 (11.2) 63.2 (18.9) 63.4 (19.8) 53.7 (8.9) 53.8 (10.1)
0.75 89.6 (18.3) 94.3 (9.3) 66.7 (21.4) 66.1 (22.0) 57.0 (12.9) 57.1 (14.3)
1.0 94.2 (14.1) 98.1 (4.6) 72.0 (21.8) 70.6 (22.3) 58.6 (15.7) 58.8 (17.0)
1.5 97.8 (6.4) 99.9 (0.1) 80.4 (22.0) 78.6 (22.1) 60.9 (17.0) 61.1 (18.3)

n(2)

0.25 70.4 (9.9) 72.7 (9.2) 62.9 (5.4) 63.7 (5.9) 59.6 (1.3) 60.3 (0.7)
0.5 89.0 (14.8) 92.0 (10.0) 70.5 (16.1) 70.8 (16.2) 61.9 (6.1) 62.8 (6.4)
0.75 91.3 (16.0) 95.4 (8.1) 73.6 (17.6) 74.2 (17.4) 63.6 (9.6) 64.4 (9.7)
1.0 95.5 (11.2) 99.2 (1.5) 78.4 (18.0) 78.0 (18.2) 65.5 (11.5) 66.6 (11.8)
1.5 98.6 (4.1) 100.0 (0.0) 85.1 (16.8) 83.3 (17.7) 67.4 (13.4) 68.4 (13.7)

n(3)

0.25 76.6 (10.8) 78.0 (10.7) 71.0 (3.3) 71.8 (3.2) 69.0 (1.9) 70.3 (1.0)
0.5 89.6 (13.6) 91.8 (9.2) 77.1 (10.9) 77.4 (10.9) 70.9 (5.8) 72.3 (5.3)
0.75 93.5 (11.7) 96.8 (4.6) 80.1 (12.2) 80.2 (12.4) 72.0 (6.9) 73.2 (6.6)
1.0 96.1 (9.0) 98.9 (2.2) 83.2 (13.2) 82.9 (13.5) 73.1 (8.6) 74.7 (8.3)
1.5 97.3 (7.8) 99.7 (0.8) 88.3 (12.2) 88.1 (12.7) 75.4 (11.0) 76.8 (10.6)

n(4)

0.25 80.4 (12.6) 80.6 (13.9) 78.9 (1.5) 79.7 (0.3) 77.7 (2.7) 79.7 (0.7)
0.5 89.1 (15.0) 89.1 (15.6) 82.9 (5.6) 83.6 (5.4) 78.9 (3.6) 80.9 (2.1)
0.75 92.2 (14.6) 92.8 (13.6) 85.2 (7.3) 85.5 (7.1) 79.4 (3.9) 81.2 (2.7)
1.0 94.3 (13.5) 95.5 (11.8) 87.5 (8.3) 87.5 (8.2) 80.3 (5.6) 82.2 (4.4)
1.5 95.5 (13.0) 96.1 (11.3) 91.0 (8.4) 90.9 (8.0) 81.9 (6.4) 83.5 (5.8)

From the table 8,Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. This is because real-world networks often exhibit heterogeneity, a structure not adequately
captured by SBM-only training. By incorporating DCBM, the model learns to recognize this het-
erogeneity, which enhances its generalization ability to real data. Furthermore, applying the second-
period GNN reliably improves performance on these datasets by performing local refinement to
achieve more accurate community assignments.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 6: Accuracy (%) by class sizes and SNR for K = 4; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 54.7 (9.1) 59.6 (10.2) 36.5 (13.7) 36.8 (15.6) 26.0 (0.7) 26.0 (0.8)
0.5 91.8 (4.0) 94.5 (2.1) 56.5 (24.2) 57.8 (25.5) 26.7 (2.0) 26.9 (1.7)
0.75 97.4 (2.3) 98.3 (1.2) 69.8 (24.0) 72.4 (23.1) 27.6 (4.0) 27.8 (3.4)
1.0 98.0 (2.8) 99.0 (1.5) 80.0 (17.1) 83.0 (16.9) 29.6 (7.4) 30.7 (7.7)
1.5 99.5 (0.9) 99.9 (0.3) 90.6 (6.0) 93.8 (4.1) 35.1 (13.7) 37.2 (13.8)

n(2)

0.25 62.8 (7.4) 68.1 (7.3) 39.3 (13.2) 40.4 (14.8) 29.9 (0.4) 29.8 (0.2)
0.5 94.1 (1.7) 95.8 (0.7) 59.2 (22.8) 61.2 (23.8) 30.2 (0.9) 30.1 (0.3)
0.75 98.5 (0.7) 99.0 (0.2) 74.8 (21.5) 76.6 (21.9) 30.7 (2.3) 30.7 (1.3)
1.0 99.5 (0.7) 99.7 (0.2) 83.7 (15.4) 86.3 (14.6) 32.3 (5.4) 32.9 (5.7)
1.5 99.8 (0.3) 100.0 (0.0) 93.2 (5.2) 95.5 (3.1) 35.0 (9.2) 36.4 (10.2)

n(3)

0.25 77.9 (2.1) 80.2 (1.8) 52.0 (13.4) 53.6 (14.0) 39.2 (1.2) 39.0 (1.1)
0.5 94.9 (1.2) 95.8 (0.6) 71.6 (18.5) 74.3 (17.1) 39.3 (1.1) 39.2 (1.2)
0.75 98.2 (0.6) 98.7 (0.3) 80.6 (15.7) 83.0 (14.4) 39.7 (1.5) 39.7 (1.6)
1.0 99.3 (0.3) 99.5 (0.2) 87.3 (9.9) 89.7 (9.3) 40.6 (3.4) 40.6 (3.6)
1.5 99.8 (0.2) 99.9 (0.0) 93.0 (5.3) 95.5 (3.2) 42.7 (6.6) 43.8 (7.1)

n(4)

0.25 74.0 (9.5) 75.8 (6.1) 63.8 (9.0) 65.5 (8.2) 65.6 (5.7) 63.3 (7.3)
0.5 83.1 (4.3) 84.8 (2.0) 69.9 (11.4) 69.8 (13.5) 66.2 (5.4) 63.3 (8.3)
0.75 88.4 (1.9) 90.3 (1.6) 73.9 (12.1) 74.5 (14.0) 66.5 (5.1) 62.6 (8.9)
1.0 92.7 (2.0) 94.3 (1.7) 76.8 (12.4) 78.6 (13.1) 67.0 (4.7) 63.6 (9.0)
1.5 97.2 (1.2) 97.7 (0.9) 81.8 (12.5) 85.2 (10.7) 67.8 (4.6) 63.8 (8.8)

Table 7: Accuracy (%) by class sizes and SNR for K = 8; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 40.6 (7.8) 47.1 (8.0) 26.7 (8.9) 31.9 (12.2) 15.0 (1.2) 14.2 (1.5)
0.5 65.5 (7.5) 77.3 (2.3) 43.9 (13.0) 55.3 (17.1) 15.4 (1.6) 14.7 (2.1)
0.75 73.0 (4.0) 83.6 (3.0) 55.5 (10.3) 68.0 (12.4) 15.9 (2.2) 15.3 (2.9)
1.0 75.0 (3.0) 84.3 (4.8) 62.7 (7.4) 74.8 (9.3) 17.4 (3.8) 17.4 (5.1)
1.5 78.2 (3.0) 85.2 (6.0) 69.9 (5.7) 79.3 (7.9) 19.1 (5.7) 20.0 (7.9)

n(2)

0.25 43.1 (8.8) 49.9 (8.9) 27.5 (8.4) 32.4 (11.5) 16.0 (0.6) 15.7 (0.6)
0.5 66.6 (8.6) 79.1 (3.6) 44.6 (12.9) 56.3 (15.5) 16.4 (1.1) 16.1 (1.0)
0.75 74.0 (5.4) 85.2 (1.4) 56.2 (10.7) 69.2 (12.3) 16.8 (1.4) 16.6 (1.6)
1.0 76.6 (4.0) 87.5 (3.5) 64.2 (7.0) 75.5 (8.3) 17.6 (2.5) 18.2 (3.4)
1.5 78.8 (2.5) 87.1 (4.4) 70.6 (6.1) 80.3 (6.7) 19.1 (4.1) 19.8 (5.1)

n(3)

0.25 60.6 (12.3) 66.8 (10.2) 40.1 (9.5) 46.5 (12.2) 20.1 (0.2) 20.2 (0.1)
0.5 79.7 (5.4) 87.2 (3.6) 60.4 (9.7) 70.2 (9.9) 20.2 (0.1) 20.4 (0.4)
0.75 85.0 (2.8) 92.6 (1.8) 70.7 (6.4) 78.5 (7.1) 20.6 (0.5) 20.9 (0.8)
1.0 86.3 (2.1) 93.6 (1.7) 75.3 (5.7) 83.1 (6.0) 20.9 (1.0) 21.6 (1.6)
1.5 87.7 (2.2) 95.0 (2.1) 80.6 (3.5) 88.3 (3.4) 22.2 (2.2) 23.4 (3.7)

n(4)

0.25 62.8 (10.0) 61.5 (8.3) 62.6 (4.8) 64.7 (2.0) 52.5 (8.2) 58.9 (6.8)
0.5 69.0 (9.9) 71.2 (6.6) 70.5 (3.0) 70.7 (2.9) 53.1 (8.6) 59.7 (5.9)
0.75 73.1 (8.6) 75.7 (5.0) 73.2 (3.4) 73.6 (4.0) 55.4 (6.6) 61.0 (4.8)
1.0 76.4 (6.6) 78.8 (2.3) 75.2 (3.9) 76.2 (5.0) 57.9 (4.7) 63.0 (2.6)
1.5 81.6 (4.0) 83.8 (3.7) 77.5 (4.6) 78.8 (5.1) 59.0 (4.0) 64.2 (2.0)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 8: Real-world evaluation: accuracy (%) across five datasets. Stage-2 applies the second period
GNN.

Dataset SBM SBM+DCBM
Base Two-stage Base Two-stage

Political Blog 89.2% 93.3% 94.8% 95.3%
Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%
High school 73.6% 85.4% 89.4% 98.5%

41

	Introduction
	Model and Algorithm
	The SBM setup
	The GNN framework
	A two-stage GNN scheme

	Theoretical Results
	Error Bound of GNN Approximation to Orthogonal Iteration
	The In-sample Misclassification Rates
	Generalization Bounds

	Numerical Studies
	Synthetic Experiments on SBM
	Synthetic experiments on mixed models
	Real data experiments

	Conclusion
	Descriptions relevant algorithms
	Error Bounds of GNN Approximations to Basic Arithmetic Operators
	Proof of Theorem 1
	An initialization procedure
	Proof of Theorem 2
	Proof of Theorem 3
	Proofs of Theorems 4 and 5
	Proof of Theorem 6
	Detailed Configurations of Numerical Experiments and Additional Numerical Results
	Synthetic Experiments on SBM
	Synthetic Experiments on Mixed
	Real data experiments

