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ABSTRACT

This paper investigates the theoretical optimality of community detection in net-
works using graph neural networks (GNNs). We show that appropriately designed
GNNs for supervised community detection can match the performance of classical
spectral and likelihood-based methods, achieving information-theoretic optimality
under the stochastic block model (SBM). These results provide the first rigorous
connection between deep learning algorithms and their statistical guarantees for
community detection. We extend existing GNN-based methods into a two-stage
framework, where the second stage is critical for ensuring theoretical optimal-
ity. Our algorithm is trained on synthetic and/or real-world graphs with known
community labels and can be subsequently applied as generic algorithms to any
network in an off-the-shelf manner, offering strong practicality. Extensive exper-
iments on both synthetic and real-world datasets support our theoretical findings,
demonstrating that the proposed two-stage GNN framework delivers high accu-
racy and remains robust under model mis-specification. These results establish
GNNs as both a theoretically sound and practically effective approach to commu-
nity detection.

1 INTRODUCTION

Community detection is a central task in network analysis, with broad implications across disci-
plines such as sociology, biology, computer science, and physics. Advances in community detection
contribute not only to theoretical developments in graph theory and machine learning but also to
practical applications across scientific, industrial, and societal contexts. Over the past decade, re-
search on community detection has seen rapid and substantial progress. Under canonical models
such as the stochastic blockmodel (SBM) and degree-corrected blockmodel (DCBM), existing work
have investigated thoroughly e.g., recoverability conditions, information-theoretic thresholds and
minimax misclassification rates (Abbe et al., 2016; Zhang & Zhou, 2016; Yan, 2016; Gao & Ma,
2021; Gao et al., 2018; Mossel et al., 2023).

When considered in the context of community detection, algorithmic advances outpace theoretical
developments in deep learning. On the algorithmic front, there is a growing use of deep learning
algorithms in community detection beyond traditional statistical methods. These algorithms include
e.g., graph convolutional network (GCN) (Kipf & Welling, 2017; Wang et al., 2021; Liu et al.,
2023), graph neural network (GNN) (Chen et al., 2019; Sun et al., 2021; Jiang & Ke, 2023), graph
autoencoders (Kipf & Welling, 2016; He et al., 2022). To further improve the effectiveness of rep-
resentation learning, attention mechanisms have also been incorporated into the neural networks
(Veličković et al., 2018; Wang et al., 2023; Zhao et al., 2022). We refer interested readers to the
survey paper Su et al. (2024). While these deep learning algorithms have significantly advanced the
effectiveness of community detection, not enough attention has been devoted to developing theo-
retical understandings of their performance. Chen et al. (2019) state the analogy of GNN with the
power iteration method, but rigorous analysis on approximation error is absent. Their work also does
not answer the question of whether GNN can attain good theoretical bounds in terms of misclassi-
fication rate. To the best of the authors’ knowledge, there has not been any solid or comprehensive
theoretical analysis on the statistical properties of deep learning methods for community detection.

In the broader field of learning, a body of work has established results concerning the statistical
properties that deep neural networks can achieve. Yarotsky (2017) is one of the pioneering works
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to study the approximation bounds of deep ReLU networks. Schmidt-Hieber (2020) illustrate how
ReLU networks’ depth and sparsity govern approximation power and convergence rates in non-
parametric regression setting. Under such setting, Hu et al. (2021) and Suh et al. (2022) study the
generalization properties in overparametrized ReLU neural networks. There are also several re-
sults on convergence rates of deep neural networks in classification setting (Kim et al., 2021; Bos &
Schmidt-Hieber, 2022; Meyer, 2023), and density estimation setting (Bos & Schmidt-Hieber, 2024).
Readers are referred to the survey paper Suh & Cheng (2025) for more details. All these studies fo-
cus on deep neural networks with conventional problems such as regression and classification, rather
than graph-structured data considered in this paper. Nonetheless, they constitute one of the major
motivations for the present work.

This paper aims to close the gap between deep learning-based community detection algorithms and
their theoretical properties. We try to answer the following theoretical questions in the community
detection context: (i) Can a well-designed GNN perform approximately the computations that are
needed in traditional statistical methods, and if so, what is the network depth requirement to reach
certain level of approximation accuracy? (ii) Can GNN achieve the minimax rate of community
detection in classical models such as SBM? (iii) How good is the trained GNN on the unseen sam-
ples? In other words, can the trained GNN achieve strong performance for out-of-sample networks?
By addressing these questions, we establish, possibly for the first time in the statistical community,
the theoretical properties of deep learning–based methods for community detection. Furthermore,
this paper improves upon the existing GNN community detection algorithm by leveraging insights
from established statistical theory. In particular, we incorporate a second stage GNN devised to
carry out local refinement of normalized edge counting that improves the accuracy of community
assignments. This stage is essential for the GNN to achieve the minimax rate.

There are several technical challenges in our theoretical analysis. First, while existing frameworks
for conventional deep neural networks offer a comprehensive set of theoretical tools, GNN exhibits
substantial differences from those conventional neural networks designed for regression-type data.
In particular, GNN computations involve more intricate operations, such as spectral decomposition
(or more specifically, orthogonal iteration) on matrices, whose approximation errors and conver-
gence properties that has not been established in prior literature. Second, by establishing a general-
ization bound, we go beyond the typical existing analysis focused on the error rate only on training
(in-sample) data, and prove rigorously that the trained GNN performs well also on out-of-sample
networks.

Contributions. We summarize the main contributions of this paper as follows:

• We establish, for the first time in the literature, a statistical theoretic foundation for deep
learning–based community detection algorithms. We derive error bounds for GNN approx-
imations. We demonstrate that GNN, with ReLU-based activations, can achieve the mini-
max rate. In SBM with a typical parameter setting, the number of layers needed to achieve
minimax rate is at most O((log n)c), where n is the network size and c is an positive con-
stant. This result bridges the gap between deep learning algorithms and their underlying
theoretical guarantees for community detection.

• We propose a two-stage GNN training scheme, where the second stage augments the exist-
ing GNN-based supervised community detection with a local refinement stage. This two-
stage approach not only enhances empirical performance but, more importantly, guarantees
that the resulting estimator attains the statistically minimax rate.

• We provide a reusable framework to establish generalization bounds of the GNN-based
community detection algorithms by investigating the complexity of the underlying GNN-
based function class.

Notations. We write In as the identity matrix of size n (or I as the identity matrix in general)
and Jn as the n × n matrix of ones, i.e., Jn = 1n×n. We use 1n to represent the n-dimensional
vector of all ones. For a vector x ∈ Rk, we use ∥x∥ to denote the Euclidean norm of x, and
∥x∥max = max1≤j≤k |xj | to denote its infinity norm. For a matrix Y ∈ Rn×k, let Yi· and Y·j
represent its ith row and jth column respectively. Also, let ∥Y ∥max = maxi,j |Yij |, ∥Y ∥F and
∥Y ∥2 denote its infinity norm, Frobenius norm and spectral norm respectively. Let σmin(Y ) be the
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smallest singular value of Y , and col(Y ) be the column space of Y . For a positive integer n, we use
[n] to denote the set {1, . . . , n}. For a set S, we use |S| to denote its cardinality.

2 MODEL AND ALGORITHM

2.1 THE SBM SETUP

We consider the classical SBM setup. Assume the undirected network has n nodes and a known
number of communities K, with K = O(1). The cases of unknown K, and/or K with a larger
order, are left to future research. Suppose the true community labels are σ = (σ1, . . . , σn) ∈ [K]n.
The size of the kth community is denoted by nk =

∑n
i=1 1{σi=k}. Let n = [n1, . . . , nK ]⊤,

nmin = mink∈[K] nk, and nmax = maxk∈[K] nk. The adjacency matrix A ∈ Rn×n has (i, j)
entry associated with the edge between every pair of nodes such that Aii = 0 and

Aij = Aji
ind.∼ Bernoulli(pij) for 1 ≤ i < j ≤ n, (1)

where the underlying probability matrix P ∈ Rn×n is defined by

Pij = 1{σi=σj}p+ 1{σi ̸=σj}q (2)

with 0 < q < p < 1. The relationship p > q assures that the network is assortative. It is possible
to relax (2) to the form Pij = pσiσj , meaning that the connection probabilities within and between
communities may depend on the specific pair of communities involved. However, for the theoretical
derivation presented in this paper, we retain the simpler form given in (2). We write the model
determined by (1) and (2) as SBM(n, p, q).

For estimated labels σ̂ = (σ̂1, . . . , σ̂n), we focus on the misclassification rate ℓ0(σ, σ̂) =
minπ∈SK

1
n

∑
i∈[n] 1{π(σi)̸=σ̂i}, where SK represents the set of all possible permutations of [n].

Some notations are in order. Assume A has eigenvalues λ1, . . . , λn satisfying |λ1| ≥ · · · ≥ |λn|,
and associated eigenvectors v1, . . . , vn ∈ Rn. Let η = |λK |/|λK+1|. Define V = [v1, . . . , vn],
V1 = [v1, . . . , vK ], V2 = [vK+1, . . . , vn], Λ = diag(λ1, . . . , λn), Λ1 = diag(λ1, . . . , λK), Λ2 =
diag(λK+1, . . . , λn).

2.2 THE GNN FRAMEWORK

To conduct supervised community detection, we adopt the line GNN framework in Chen et al.
(2019). Suppose the mth layer of the GNN has node features of dimension dm, and these node
features are presented by a vector x(m) ∈ Rn×dm . That is, the ith row of x(m) is the features of node
i. The GNN is characterized by a group of linear operators on x(m), where these linear operators
are precisely the multiplication on the left by n × n matrices. Following the usual notation, we
write a graph G = (V,E). For a graph G with size |V | = n and adjacency matrix A, we choose
the family of n × n matrices F(A) = {In, Jn, D,A,A1 . . . , Ah} with some positive integer h, in
which D is the degree matrix that is diagonal and whose (i, i) entry Dii is the degree of node i, and
Ah = min(1, A2h). We only allow |F(A)| = O(1). Unlike Chen et al. (2019), we have included an
additional matrix Jn in F(A) in our model. This facilitates our theoretical analysis, while leaving
the practical results nearly unaffected.

The GNN maps features of one layer to those of the next via linear operators induced by the matrices
in F(A), followed by the ReLU activation function. In particular, it first computes

z̄(m+1) =
∑

Oi∈F(A)

Oix
(m)θ

(m)
i , z(m+1) = ρ

 ∑
Oi∈F(A)

Oix
(m)θ

(m)
i

 , (3)

where θ(m)
i ∈ Rdm× dm+1

2 are GNN parameters, and ρ(·) is the celebrated ReLU function ρ(z) =

max(0, z) with entry-wise action on matrices. Then it concatenates z(m+1) and z̄(m+1) to get the
features of the next layer

x(m+1) =
[
z(m+1), z̄(m+1)

]
∈ Rn×dm+1 . (4)
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We concatenate {θ(m)
i : Oi ∈ F(A)} into a vector θ(m) with length dm(dm+1/2)|F(A)|, and

denote θ = {θ(0), . . . , θ(M)} as the collection of parameters in each layer. Essentially, a GNN
is fully determined by the parameters θ, and does not depend on the particular graph G. Define
∥d∥max = max1≤m≤M dm the width of the GNN. With chosen initial features x(0) ∈ Rn×d0 , we
write the effect of GNN with parameters θ on graph G as a mapping fθ,x(0)(·)

fθ,x(0)(G) = σθ(M) ◦ σθ(M−1) ◦ · · · ◦ σθ(0)(x(0)), (5)

where σθ(m) means the GNN operators defined by (3) and (4) with parameter θ(m). Note that x(0)
does not depend on θ in any way, but is allowed to be random.

We attach a softmax layer at the end of the GNN to formulate the community assignment. The result
of softmax function on each row of x(M), is a probability matrix Ψ(A, x(0); θ) ∈ Rn×K , whose
rows all sum up to 1. With this probability matrix, one can determine the estimated community
labels σ(A, x(0); θ) by σi(A, x(0); θ) = maxk∈[K] Ψi,k(A, x

(0); θ).

Define the loss function with respect to G as the cross-entropy

ℓ1(σ,Ψ(A, x(0); θ)) = − min
π∈SK

1

n

∑
i∈[n]

log
(
Ψi,π(σi)(A, x

(0); θ)
)
. (6)

The sum in (6) can also be regarded as the log-likelihood function of a multinomial logistic regres-
sion with x(M) as the design matrix and π(σ) as the response. When the training set consists of
graphs G1, . . . , Gm with adjacency matrices A(1), . . . , A(m), and initial features x(01), . . . , x(0m),
the objective of training is to minimize the empirical risk R̂m

(
{A(i)}mi=1, {x(0i)}mi=1; θ

)
=∑m

i=1 ℓ1(σ,Ψ(A(m), x(0); θ))/m.

2.3 A TWO-STAGE GNN SCHEME

The classical two-stage algorithm (Gao et al., 2017; 2018; Gao & Ma, 2021; Gao et al., 2022),
introduced in the unsupervised community detection context, consists of a spectral clustering stage
and a local refinement stage. We summarize its supervised counterpart as Algorithm 2 in Appendix
A. The local refinement procedure, as described by lines 4–6 in Algorithm 2, updates community
labels according to the community with which each node has the highest proportion of connections.
It is repeated t times to ensure sufficient improvement.

In this paper, we introduce a two-stage GNN training scheme based on the GNN framework de-
scribed in Section 2.2. This training scheme, devised to mimic Algorithm 2, is described as Algo-
rithm 1. The first stage trains a regular GNN. For each graph in the training set, the second stage
GNN takes Z(σ̃) ∈ Rn×K , the one-hot matrix of the estimated labels σ̃ from the first stage, as initial
features and train another GNN.

1: Train the first GNN with initial features x(0) ∈ Rn×d0 . For each graph G with adjacency
matrix A in the training set, let σ̃ = σ(A, x(0); θ̃) be its estimated community labels from the
first GNN.

2: For each graph G, compute Z(σ̃) ∈ Rn×K , where Zi,k(σ̃) = 1{σ̃i=k} for i ∈ [n] and k ∈ [K].
3: Train the second GNN initial features Z(σ̃) for graph G.

Algorithm 1: A two-stage GNN training scheme for supervised community detection.

The testing is also divided into two stages. For a testing graph Atest, we use the first trained GNN to
obtain its initial label prediction σ̃test. Based on σ̃test, we compute matrix Z(σ̃test). We then apply
the second trained GNN, with Z(σ̃test) as initial features, to obtain a renewed label prediction σ̂test.
When necessary, the second GNN can be applied iteratively, using Z(σ̂test) from the last iteration
as the input, to obtain the next label prediction σ̂test(2). This process can be repeated several times
until a pre-specified number of repetitions is reached or the label prediction is stable.

4
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3 THEORETICAL RESULTS

Rohe et al. (2011), Sussman et al. (2012), Lei & Rinaldo (2015) and numerous other studies analyze
the consistency of spectral clustering algorithm for community detection. Gao et al. (2017) and Gao
& Ma (2021) show that the classical two-stage algorithm achieves the minimax misclassification rate
in SBM. Our objective is to show that the two-stage GNN can attain nearly the same misclassification
rate in-sample. More importantly, we also establish generalization guarantees to ensure optimal
misclassification rate for out-of-sample data, assuming the out-of-sample data follows the same
generating mechanism of the training network data.

The following two assumptions are assumed to hold throughout the entire theoretical derivation, so
we do not restate the conditions in the theoretical results.
Assumption 1. nmin ≥ n/(βK) and nmax ≤ βn/K, where β is an absolute constant.
Assumption 2. n(p− q)≫

√
log n and n(p− q)≫ √np.

Assumption 1 assures that allK communities are of the same order. Assumption 2 is a condition that
assures certain level of assortativity. In the typical setting of p = a logn/n, q = b logn/n where
a, b are absolute constants, it is satisfied. We denote Ωn as the parameter space for SBM(n, p, q)
that satisfy Assumptions 1 and 2.

3.1 ERROR BOUND OF GNN APPROXIMATION TO ORTHOGONAL ITERATION

Observe that the multinomial regression in line 2 of Algorithm 2 can take any matrix spanning
col(V1) as the design matrix, rather than requiring the precise matrix V1. The orthogonal iteration
method (Golub & Van Loan, 2013), detailed as Algorithm 3 in Appendix A, can be used to construct
a matrix with column space close enough to col(V1).

Using a heuristic argument, Chen et al. (2019) point out the analogy of GNN with the power iteration
method to obtain v1, . . . , vK (i.e. the columns of V1) sequentially. We, on the other hand, rigorously
establish that a properly designed GNN can approximate the output of orthogonal iteration with
high accuracy. Notably, orthogonal iteration requires less conditions on A and a shallower GNN
compared to power iteration.

For a matrix Q ∈ Rn×K with orthonormal columns, the distance between col(Q) and col(Vj)
is measured by dist(col(Q), col(Vj)) := ∥HQ − HVj

∥2 for j = 1, 2, where HQ and HVj
are

projection matrices of Q and Vj respectively. We also have dist(col(Q), col(Vj)) = ∥V ⊤
3−jQ∥2,

since V = [V1, V2] is orthonormal.

Assume one chooses Q0 as initial features of the GNN. We impose the following condition on Q0:

σmin

(
Λ1V

⊤
1 Q0

)
≥ n−(r−1) (7)

for some r > 1. Condition (7) means that col(Q0) cannot be too close to col(V2), thus must retain
certain directions in col(V1). This is a sensible assumption, because otherwise it becomes difficult
for the orthogonal iteration to generate directions in col(V1). In Appendix D, we show that a matrix
sampled from the Haar distribution satisfies (7) with high probability.

The following results characterize the error bound of a properly structured GNN in approximating
the orthogonal iteration.
Theorem 1. For any s > 0 and any c0 > 0, there exists a GNN with parameters θ, such that for
any graphG ∼ SBM(n, p, q), if initial featuresQ0 satisfies (7) for its adjacency matrixA, the GNN
produces features of its last layer Q̂ ∈ Rn×K that satisfies

dist(col(Q̂), col(V1)) ≤ n−s (8)

with probability at least 1− n−c0 . The depth M for such GNN satisfies

M ≤ 8K2(s+ r)2r
(log n)3

ξ2
+ 8K2((K + 1)r + s)(s+ r)

(logn)2

ξ
, (9)

where ξ = log
(
c2n(p− q)/max{√np,

√
log n}

)
with an absolute constant c2 > 0 depending on

c0.
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Theorem 1 provides a general error bound for spectral decomposition using GNNs. It also has
independent theoretical significance beyond the context of community detection.
Remark 1. The order of M depends on how much larger n(p − q) is than max{√np,

√
log n}.

In the typical setting of p = a log n/n, q = b log n/n where a, b are absolute constants, we have
ξ ≍ log log n, so that M is upper bounded by (logn)c with c < 3.
Remark 2. The convergence of orthogonal iteration relies on the condition that η is bounded away
from 0. This is guaranteed by the fact the fact that ∥A − P∥2 ≤ c1

√
np+ log n, which holds

with probability at least 1− n−c0 (Lei & Rinaldo, 2015). In contrast, as power iteration generates
v1, . . . , vK in a sequential manner, it requires |λk|/|λk+1| to be bounded away from zero for all
k ∈ [K]. Hence orthogonal iteration imposes weaker conditions on A. Furthermore, the sequential
nature of power iteration leads to more severe accumulation of GNN approximation errors. As a
result, orthogonal iteration can achieve sufficient accuracy with a shallower GNN.

3.2 THE IN-SAMPLE MISCLASSIFICATION RATES

The GNN introduced in Theorem 1 can be extended by adding one more layer and a softmax output
layer to approximate the multinomial regression. This is precisely what the first stage of Algorithm
1 is designed to address. Define R = [(np + logn)(p + (K − 1)q)2]/[n2(p − q)4]. We provide
theoretical upper bounds on the misclassification rate this extended GNN in Theorem 2.
Theorem 2. For any c0 > 0, there exists a GNN with parameters θ′ and depth M ′ satisfying (9),
such that for any graphG ∼ SBM(n, p, q) with true labels σ, by feeding to this GNN initial features
Q0 satisfying (7) for G’s adjacency matrix A, it outputs estimated labels σ(A,Q0; θ

′) that satisfy

ℓ0(σ, σ(A,Q0; θ
′)) ≤ c′1R.

with probability at least 1− n−c0 , for some absolute constant c′1 that depends on c0.
Remark 3. If p+ q ≍ p− q, then the bound in Theorem 2 becomes O((np+ logn)/(n2(p− q)2)).
Because of Assumption 2, the bound is o(1), which implies consistency of the GNN classification.

The purpose of the second stage of Algorithm 1 is to devise an emulation to local refinement proce-
dure. Define I(p, q) = −2 log

(√
pq +

√
(1− p)(1− q)

)
, and make the following assumption:

Assumption 3. nI(p, q)→∞.
Theorem 3. Suppose Assumption 3 holds. For any ϵ > 0, there exists a GNN with depth M ′′ and
parameters θ′′, such that for any graph G ∼ SBM(n, p, q) with true labels σ, as long as its initial
label estimate σ(0) satisfies ℓ0(σ, σ(0)) = o(1), it holds that

sup
(n,p,q)∈Ωn

Pn,p,q

(
ℓ0(σ, σ(A,Z(σ

(0)); θ′′)) ≥ exp [−(1− ϵ)ñI(p, q)]
)
→ 0,

where ñ = n/2 when K = 2 and ñ = n/(βK) when K ≥ 3. The GNN depth M ′′ satisfy

M ′′ ≤ 3K

log 2

(
− log ϵ− log I(p, q) +

√
p(1− q)/

√
q(1− p) + log 88

)
+ 20K.

The error rate in Theorem 3 matches the minimax rate derived in Zhang & Zhou (2016), Gao et al.
(2017) and Gao & Ma (2021).
Remark 4. In the typical setting of p = a logn/n, q = b log n/n where a, b are absolute constants,
one can show that I(p, q) ≍ (p− q)2/p. If one takes ϵ ≥ n−δ for δ > 0, then M ′′ is upper bounded
by O(logn).

The two GNNs constructed in Theorems 2 and 3 can serve as a device for GNNs in approximately
executing the classical two-stage algorithm. However, as the training procedure optimizes GNN
parameters by minimizing the cross-entropy loss, the parameters of the trained GNNs may differ
from those of the constructed GNNs. In general, there is no guarantee that a small misclassification
rate leads to a small cross-entropy, as the probabilities may lack enough margin between correct
and incorrect label assignments. But in our model, it is possible to obtain a sufficient margin with
high probability. We analyze a “truncated version” of cross-entropy, that can be related to misclas-
sification rate. By bounding this truncated cross-entropy, we can derive an upper bound for the full
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cross-entropy. When combined with the inequality misclassification rate ≤ cross-entropy/ log 2,
this bound allows us to establish theoretical guarantees on the in-sample misclassification perfor-
mance.

Assume graphs G1, . . . , Gm in the training set are generated i.i.d. following some prior πG. Let
their adjacency matrices be A(1), . . . , A(m), and initial features be Q(1)

0 , . . . , Q
(m)
0 , which satisfy

(7) for each graph.

Theorem 4. Assume the first trained GNN in Algorithm 1 has parameters θ̃, and satisfies
R̂m

(
{A(i)}mi=1, {Q

(i)
0 }mi=1; θ̃

)
≤ R̂m

(
{A(i)}mi=1, {Q

(i)
0 }mi=1; θ

′
)

, where θ′ are parameters of the
GNN constructed in Theorem 2. For any c0 > 0 and any ϵ > 0, if the training sample size
m ≥ R−(1+ϵ)(log n)1+ϵ, the the first trained GNN outputs in-sample estimated community labels
σ(A(i), Q

(i)
0 ; θ̃) that satisfy

1

m

m∑
i=1

ℓ0(σ, σ(A
(i), Q

(i)
0 ; θ̃)) ≤ c̃1R1−ϵ

with probability at least 1− n−c0 , for some constant c̃1 that depends on c0.

Let σ̃(i) = σ(A(i), Q
(i)
0 ; θ̃) be the estimated labels from the first trained GNN for graph Gi in the

training set.
Theorem 5. Suppose Assumption 3 holds. Assume the second trained GNN in Algorithm 1 has pa-
rameters θ̂, and satisfies R̂m

(
{A(i)}mi=1, {Z(σ̃(i))}mi=1; θ̂

)
≤ R̂m

(
{A(i)}mi=1, {Z(σ̃(i))}mi=1; θ

′′),
where θ′′ are parameters of the GNN constructed in Theorem 3. For any ϵ > 0 and any c0 > 0,
if the training sample size m ≥ exp {2ñI(p, q)} (log n)1+ϵ, then the second trained GNN outputs
in-sample estimated community labels σ(A(i), Z(σ̃(i)); θ̂) that satisfy

1

m

m∑
i=1

ℓ0(σ, σ(A
(i), Z(σ̃(i)); θ̂)) ≤ exp [−(1− 3ϵ)ñI(p, q)]

with probability at least 1− n−c0 .
Remark 5. Theorems 4 and 5 hinge on the assumption that the GNN training can effectively de-
crease the empirical risk. In practice, the convergence of the training is influenced by the optimiza-
tion landscape (Chen et al., 2019), a topic beyond the scope of the present study.

3.3 GENERALIZATION BOUNDS

We focus on the class of GNN functions.

G(M,d, s) :=
{
fθ,x(0) of the form (5) : max

0≤m≤M
∥θ(m)∥max ≤ 1,

M∑
m=0

|F|∑
i=1

∥θ(m)
k ∥0 ≤ s

}
, (10)

where we abuse the notation slightly by defining ∥F∥0 =
∑

i,j 1{Fij ̸=0} for matrix F . We call the
class of GNN clustering algorithms SG(M,d, s) := {softmax ◦ f : f ∈ G(M,d, s)}.
The specification of (M,d, s) follows what the GNN that approximate the orthogonal iterations,
which is used to restrict our parameter search in training GNN’s.
Theorem 6. Fix M = O(log2(n)), d with ∥d∥max = O(n) and s = O(n log(n)). Under the
condition of Theorem 4, by taking m = O

(
R−(1+ε) max((log1+ε n), n log4(n))

)
, we have with

probability 1−n−c for some c < 1, the expected misclassification rate on A ∼ SBM(n, p, q) of the
trained GNN characterized by θ̃ on SG(M,d, s) can be bounded

E[ℓ0(σ, σ(A,Q; θ̃) | θ̃] ≤ c′R1−ε,

where the constant c′ depends on ε and c.

The theorem establishes that the obtained GNN community detection algorithm trained on SBM
synthetic data attains the same mischassification rate as in Theorem 4, if the algorithm is applied on
SBM networks generated following the same SBM laws. The GNN community detection algorithm,
thus, is effective not just on in-sample networks, but also on out-of-sample networks.

7
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4 NUMERICAL STUDIES

We conduct comprehensive experiments to assess our two-stage GNN scheme. The objectives are
twofold: (i) to benchmark its performance against the baseline GNN model, and (ii) to validate its
improved generalization capability when trained on diverse graph models.

4.1 SYNTHETIC EXPERIMENTS ON SBM

We adopt the typical setting p = a logn/n, q = b log n/n. Note that a, b are uniquely determined
by C = a+ (K − 1)b and SNR = (a− b)2/[K(a+ (K − 1)b)], where C controls the node degree
and SNR represents signal-to-noise ratio. We examine three community counts, K = 2, 4, 8, and
for each we employ a two-stage training scheme. For a fixed K, we construct a training set with
4,500 graphs, by varying the parameters C, SNR, and community sizes n. The test set, consisting
of 1,800 graphs, is also constructed using combinations of C, SNR, and community sizes n. The
detailed data generating mechanism and training configuration is described in Appendix I.1.

The performance of the base (one-stage) GNN and two-stage GNN, grouped by SNR and n, are
shown in Table 1. The experimental results clearly show that our two-stage GNN method achieves
higher accuracy across almost all test scenarios. The two-stage GNN demonstrates particularly
pronounced advantages when K is large, the communities are imbalanced, and the SNR is low.

Table 1: Test accuracy of base and two-stage GNN’s on the SBM. All values are percentages,
reported in the mean (standard deviation) format. n(1),n(2),n(3),n(4), correspond to balanced,
slightly imbalanced, moderately imbalanced, extremely imbalanced community sizes, respectively.

n SNR K = 2 K = 4 K = 8
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 52.8 (3.26) 52.9 (3.34) 47.2 (13.2) 50.3 (16.1) 44.1 (1.13) 50.4 (2.16)
0.75 98.8 (0.06) 99.0 (0.05) 98.9 (0.18) 99.0 (0.08) 77.1 (0.76) 82.7 (0.73)
1.50 100 (0.00) 100 (0.02) 99.9 (0.17) 100 (0.01) 81.5 (1.35) 83.1 (1.33)

n(2)

0.25 73.1 (8.43) 75.0 (7.03) 57.7 (10.7) 62.8 (11.6) 47.9 (0.57) 54.4 (1.55)
0.75 98.9 (0.02) 99.0 (0.05) 99.0 (0.12) 99.0 (0.03) 79.0 (1.31) 85.5 (0.55)
1.50 100 (0.01) 100 (0.01) 100 (0.06) 100 (0.01) 81.9 (1.59) 86.5 (0.66)

n(3)

0.25 81.4 (4.15) 83.0 (3.01) 77.4 (2.77) 80.4 (1.54) 68.3 (1.83) 72.9 (1.71)
0.75 98.9 (0.03) 99.1 (0.05) 98.9 (0.10) 99.0 (0.07) 87.8 (1.05) 94.7 (0.66)
1.50 100 (0.02) 100 (0.02) 100 (0.01) 100 (0.01) 90.4 (1.26) 97.2 (0.36)

n(4)

0.25 86.3 (2.20) 87.2 (1.64) 80.2 (0.40) 79.7 (0.65) 51.8 (4.61) 59.4 (7.98)
0.75 99.1 (0.03) 99.2 (0.04) 89.1 (0.82) 91.2 (0.53) 63.8 (9.09) 70.6 (5.81)
1.50 100 (0.01) 100(0.01) 97.5 (0.38) 97.3 (0.45) 80.0 (4.06) 85.7 (6.31)

4.2 SYNTHETIC EXPERIMENTS ON MIXED MODELS

To assess robustness to model mis-specification, we implement an evaluation protocol using a
mixed-data training approach. Specifically, we construct a training set with 4,500 graphs, and a test
set with 1,800 graphs, both comprising equally numbered instances from both SBM and DCBM. For
both models, we keep the choices of K, C, SNR and n the same as the first experiment in Section
4.1. See Appendix I.2 for details.

Table 2 summarizes the performance of this mixed-data training approach, compared with the train-
ing only with SBM graphs. Mixed training significantly improves model performance. Compared
to training on SBM alone, this mixed approach yields higher accuracy and lower variance across all
conditions, indicating a more robust and stable model.

To further evaluate our model’s generalization capabilities, we conducted additional experiments
by training on the latent space model (LSM). The results demonstrated that the model trained on
LSM achieved a performance similar to that of the SBM + DCBM mixed-trained model. For a
comprehensive overview of these findings, see Appendix I.2.
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Table 2: Test accuracy under different training sets tested on mixed SBM and DCBM graphs. All
values are percentages, reported in the mean (standard deviation) format.

Training SNR K = 2 K = 4 K = 8
set Base Two-stage Base Two-stage Base Two-stage

SBM
0.25 68.4 (13.0) 69.4 (13.5) 51.3 (19.7) 53.5 (20.5) 42.6 (18.0) 46.7 (20.0)
0.75 82.3 (18.7) 82.1 (19.1) 74.6 (24.2) 75.8 (23.8) 65.6 (15.8) 72.6 (13.8)
1.50 89.0 (16.0) 86.6 (17.3) 90.2 (11.1) 92.8 (9.1) 76.1 (9.2) 81.7 (8.8)

SBM +
DCBM

0.25 74.6 (11.1) 75.7 (10.8) 64.8 (8.2) 67.9 (7.9) 44.3 (11.7) 49.8 (9.3)
0.75 97.0 (2.1) 97.2 (2.0) 94.0 (4.6) 94.7 (3.9) 72.0 (5.5) 83.8 (4.5)
1.50 99.2 (0.9) 99.2 (0.8) 98.3 (1.6) 98.5 (1.4) 79.3 (3.7) 89.3 (4.7)

4.3 REAL DATA EXPERIMENTS

We evaluate the proposed method on five real-world networks: the political blog network (Adamic &
Glance, 2005) with n = 1, 222, K = 2; the Simmons College network with n = 1, 137, K = 4 and
the Caltech network with n = 590, K = 8 (Traud et al., 2011; 2012)), both preprocessed following
(Chen et al., 2018); a manufacturing company network (Weng & Feng, 2022) with n = 74, K = 4;
and the French high school friendship network (Mastrandrea et al., 2015) with n = 329, K = 9.

As in Section 4.2, we introduce the model structures and compare training only based on SBM
graphs and training based on SBM+DCBM graphs. Table 3 summarizes the resulting accuracies
on these datasets. Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. We notice that these real-world networks exhibit certain levels of heterogeneity, a structure
not adequately captured by SBM. By incorporating DCBM into the training data, the model learns
to take into account degree heterogeneity, which improves its generalization ability to real data.
Furthermore, applying the two-stage GNN consistently improves performance on these datasets.

Table 3: Test accuracy under different training schemes tested on real datasets.

Dataset SBM SBM+DCBM
Base Two-stage Base Two-stage

Political Blog 89.2% 93.3% 94.8% 95.3%
Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%
High school 73.6% 85.4% 89.4% 98.5%

5 CONCLUSION

In this paper we establish a rigorous theoretical foundation for GNNs in supervised community de-
tection, showing that they can achieve information-theoretic optimality while remaining effective
and robust in practice. The proposed two-stage GNN framework not only bridges the gap between
deep learning and classical statistical methods but also offers a practical and versatile tool for ana-
lyzing real-world networks.

A natural way of extending our model setup is to study DCBM and latent space model (LSM). Prior
work has shown that the two-stage algorithm achieves the minimax rates under both DCBM (Gao
et al., 2018) and LSM (Gao et al., 2022). This provides a basis for future theoretical development of
GNNs on these models. Another interesting direction is to establish theoretical guarantees for unsu-
pervised community detection with deep neural networks. Unsupervised learning requires the net-
work to emulate clustering rather than classification. Developing principled methods and analyses
in this context would be a new venue to study GNN-based methods and strengthen their theoretical
foundations. We omitted a detailed examination of the training landscape for GNNs. Characteriz-
ing the basin of attraction leading to estimators of statistical precision would further enhance our
findings.
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A DESCRIPTIONS RELEVANT ALGORITHMS

The supervised version of the classical two-stage algorithm for community detection is described as
follows:

1: Perform spectral decomposition on A to get V1.
2: Fit a multinomial regression with V1 as the design matrix and σ as the response. Let σ(0) be the

fitted community labels.
3: for τ = 1, 2, . . . t do
4: for i = 1, 2, . . . , n do
5: Let σ(τ)

i = argmaxk∈[K]
1

|{j:σ(τ−1)
j =k}|

∑
{j:σ(τ−1)

j =k}Aij .

6: end for
7: end for
8: Output σ(t) = (σ

(t)
1 , . . . , σ

(t)
n ).

Algorithm 2: The classical two-stage algorithm for supervised community detection.

The orthogonal iteration method (Golub & Van Loan, 2013) is described as follows:

1: Initialize with Q0 ∈ Rn×K , which has orthonormal columns.
2: for t = 1, 2, . . . do
3: Compute Yt = AQt−1.
4: Implement QR decomposition Yt = QtRt, where Qt ∈ Rn×K has orthonormal columns,

and Rt ∈ RK×K is upper-triangular.
5: end for
6: Output Qt.

Algorithm 3: Orthogonal iteration

B ERROR BOUNDS OF GNN APPROXIMATIONS TO BASIC ARITHMETIC
OPERATORS

Lemma 7 provides the basic building blocks to analyze the approximation errors of GNNs. Our
analysis leverages techniques from Schmidt-Hieber (2020); Bos & Schmidt-Hieber (2024).
Lemma 7 (Basic arithmetic operations with GNN). Suppose we have v, y ∈ Rn×1.

1. (Inner product) For ∥v∥max, ∥y∥max ≤ κ for some integer κ and some width config-
uration d such that ∥d∥max = max(22, 2κ2 + 6), there exists a GNN architecture
G(m+10,d, 41m+9κ2+179, (v, y,1)) that maps (v, y,1n×1) to (⟨̃v, y⟩1n×1, v, y,1n×1)

such that |⟨̃v, y⟩ − ⟨v, y⟩| ≤ 4nκ22−m.

2. (Column norm) Suppose ∥v∥max ≤ κ for some integer κ and ∥v∥2 ≥ 2ε for some fixed
ε. Assume 4nκ22−m < ε < 1. There exists a GNN architecture G(M,d, s, (v, v,1)) that
maps (v, v,1n×1) to (∥̃v∥1n×1, v,1n×1), whereM = 3m+23, ∥d∥max ≤ max(22, 2k2+

6, 24 · 2m + 6), s ≤ 47m + 9κ2 + 11421(2m + 6)2m + 218 and |∥̃v∥2 − ∥v∥2| ≤
(2nκ2 + 38)ε−12−m.

3. (Inversion) Suppose for u ∈ Rn×1, mini ui ≥ ε with 2−m ≤ ε ≤ 1. Suppose u−1 =
(u−1

i )ni=1. There exists a GNN architecture G(M,d, s, (u, v,1)) that maps (u, v,1n×1) to
(ũ−1, v,1n×1), where M = 2m + 13, ∥d∥max ≤ 24 · 2m + 6, s ≤ 11421(2m + 6)2m +

6m+ 39 and ∥ũ−1 − u−1∥max ≤ 57ε−22−m.

Proof of Lemma 7. With loss of generality, we assume κ is an integer, since otherwise we can always
take a new upper bound ⌈κ⌉.
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For the family of matrices F = {In,1n×n, D, . . . }, we always denote O1 = I , O2 = 1n×n and
O3 = D.

We prove the first claim on the inner product. Set the starting state x(0) = (v, y,1). We set θ(0)i = 0
for all i ∈ {2, 3, . . . } and

θ
(0)
1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1/2κ 0 0 1 0
0 1/2κ 0 0 1
1/2 1/2 1 0 0

 ,

and correspondingly z̄(1) is (ṽ, ỹ,1, v, y) := (v/2κ + 1/2, y/2κ + 1/2,1, v, y).

For the next layer of the GNN, we set θ(1)i = 0 for all i ̸= 1 and

θ
(1)
1 =


05×5 05×4

K1


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 with K1 =


1/4 1/2 1/2 1/4 1/2
−1/4 −1/2 1/2 1/2 1/2
−1/4 0 0 0 −1/2
0 0 0 0 0
0 0 0 0 0

 .

The first row of z̄(2) is(
ṽ1/4− ỹ1/4− 1/4, ṽ1/2− ỹ1/2, ṽ1/2+ ỹ1/2, ṽ1/4+ ỹ1/4, ṽ1/2+ ỹ1/2− 1/2, 1, ṽ1, ỹ1, 1, v, y

)
The first row of z(2) is(
T+

(
ṽ1−ỹ1+1

2

)
, T 1

−

(
ṽ1−ỹ1+1

2

)
, ρ
(

ṽ1+ỹ1

2

)
, T+

(
ṽ1+ỹ1

2

)
, T 1

−

(
ṽ1+ỹ1

2

)
, 1, ρ(ṽ1), ρ(ỹ1), 1, ρ(v1), ρ(y1)

)
where T k : [0, 22−2k]→ [0, 2−2k] and T k

− defined by

T k
−(x) := ρ(x− 21−2k),

T+(x) := ρ(x/2),

T k(x) := (x/2) ∧ (21−2k − x/2) = T+(x)− T k
−(x).

Combine both z(2) and z̄(2) for x(2).

Furthermore, for t = 2, . . . ,m+ 4,

θ
(t)
1 =

 Kt 06×5

05×6 05×5

06×6 06×5

05×6 I5

 , and θ(t)i = 0,∀i ̸= 1,

where Kt ∈ R6×6 is the corresponding weight matrix arising from the NN setup in Schmidt-Hieber
(2020, Lemma A.2), with the only change of the role of the constant 1/4 term being replaced by our
constant term 1. For t = m+ 5,

θ
(m+5)
1 =

Km+5 06×5

05×1 05×5

06×1 06×5

05×1 I5

 , and θ(m+5)
i = 0,∀i ̸= 1,

where Km+5 ∈ R6×1. Applying Schmidt-Hieber (2020, Lemma A.2), the first row of (z(m+6))
arrives at

(˜̃v1ỹ1, ρ(ṽ1), ρ(ỹ1), 1, ρ(v1), ρ(y1)),
where |˜̃v1ỹ1− ṽ1ỹ1| ≤ 2−m. In other words, the first column of z(m+6) is the approximate element-
wise product of ṽ and ỹ. For the first row of z̄(m+7), the last five elements are (ṽ1, ỹ1, 1, v1, y1),
and the first element is the value of ˜̃v1ỹ1 before being applied the ReLU activation function (and the
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value will be discarded immediately in the next GNN layer). We now go back to v1y1. Keeping in
mind v1y1 = κ2(4ṽ1ỹ1 − 2ṽ1 − 2ỹ1 + 1), we devise the following two layers:

θ
(m+6)
1 =



11×4 01×7

05×4 05×7

06×4


0 0 0 0 0 0 0
−1 −1 0 0 0 0 0
0 0 −1 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, and θ(m+6)

i = 0,∀i ̸= 1.

θ
(m+7)
1 =

(
011×κ2 011×3

18×κ2 08×3

03×κ2 I3

)
, and θ(m+7)

i = 0,∀i ̸= 1.

The first row of the resulting state z̄(m+8) is (4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 + 1, . . . , 4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 +

1, 1, v1, y1), where 4˜̃v1ỹ1 − 2ṽ1 − 2ỹ1 + 1 is repeated κ2 times. We proceed to arrange another
rescaling layers of GNN as follows:

θ
(m+8)
1 =


0(κ2+3)×1 0(κ2+3)×3

1κ2×1 0κ2×3

03×1

(
0 0 1
1 0 0
0 1 0

)
 , and θ(m+8)

i = 0,∀i ̸= 1.

The resulting z̄(m+9) has its first row as (ṽ1y1, v1, y1, 1), where |ṽ1y1 − v1y1| ≤ 4κ22−m.

In the next GNN layer, we get the approximate inner product ⟨v, y⟩ by setting θ(m+9)
i = 0 for all

i /∈ 1, 2 and

θ
(m+9)
2 =

(
0 04×4

1 01×4

03×1 03×4

)
, θ

(m+9)
1 =

05×1 05×1 05×3

03×1

(
1
0
0

)
I3

 .

) We now have z̄(m+10) =
(
⟨̃v, y⟩1n×1, v, v, y,1n×1

)
, where |⟨̃v, y⟩ − ⟨v, y⟩| < 4nκ22−m.

For the second claim, we first apply the first claim, that there exists a GNN architecture G(m +

10,d, 41m+ 9κ2 + 179, (v, v,1)) mapping (v, v,1) to (∥̃v∥221, v, v,1) such that |∥̃v∥22 − ∥v∥22| ≤
4nκ22−m, where ∥d∥max = max(22, 2κ2 + 6). Now we need to take the square root. Note f : x ∈
[ε2,∞) 7→

√
x ∈ [ε,∞) has at Hölder smoothness 1 with radius ε−1/2. Applying Schmidt-Hieber

(2020, Theorem 5) and using ε > 4nκ22−m, we can build a GNN of 2m+ 13 layers with maximal
width 12 ·2m+6 and sparsity s ≤ 11421(2m+6)2m+6m+39 such that the output is (∥̃v∥21, v,1)

and
∣∣∥̃v∥2 −√∥̃v∥22∣∣ ≤ 38ε−12−m. Combining the two GNNs gives the statement.

We show the third claim. Assumption 2−m/2 ≤ ε ≤ 1 and mini ui ≥ ε. Note f : x ∈ [ε,∞) 7→
x−1 ∈ [ε−1, 0) has Hölder smoothness 1 with radius ε−2. For (u, v,1n×1) Apply Schmidt-Hieber
(2020, Theorem 5) again, and using we can explicitly construct a GNN of 2m + 13 layers with
maximal width 12 · 2−m + 6 and sparsity s ≤ 11421(2m+ 6)2m + 6m+ 39 such that the first row

of the output is (ũ−1
1 , v1, 1) with maxi |ũ−1

i − u
−1
i | ≤ 57ε−22−m.

C PROOF OF THEOREM 1

Properties of orthogonal iteration. We first provide a convergence rate result for orthogonal it-
eration. Assume the orthogonal iteration, described as Algorithm 3, takes Q0 as the initial value.
Let dt = ∥V ⊤

2 Qt∥2 = dist(col(Qt), col(V1)) for t = 0, 1, . . . , which we expect to get small for
sufficiently large t.
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Lemma 8. Assume Q0 satisfies (7). For any s > 0, with T defined by

T =

⌈
(s+ r) logn+ log 2

log η

⌉
, (11)

Algorithm 3 outputs QT that satisfies dT ≤ n−s/2.

Proof. The QR decomposition of Yt is equivalent to the Gram-Schmidt process applied to the
columns of Yt. Denote the kth column of Yt by yk,t. The Gram-Schmidt process has the following
steps:

• The first step:

q1,t =
y1,t
∥y1,t∥

. (12)

• The kth step (k = 2, . . . ,K):

uk,t = yk,t −
k−1∑
j=1

⟨yk,t, qj,t⟩qj,t, (13)

qk,t =
uk,t
∥uk,t∥

. (14)

Then, Qt = [q1,t, · · · , qK,t] is the Q-component of the QR decomposition of Yt.

By the description of Algorithm 3, we have Qt(RtRt−1 · · ·R1) = AtQ0. Denote St =
RtRt−1 · · ·R1. Since At = V ΛtV ⊤, then

V ⊤QtSt = ΛtV ⊤Q0.

By the block structure of V and Λ, we get

Λt
1V

⊤
1 Q0 = V ⊤

1 QtSt, Λt
2V

⊤
2 Q0 = V ⊤

2 QtSt.

Letting V ⊤
j Qt =Wj,t for j = 1, 2 and t = 0, 1, . . . , it then follows that

W2,t = Λt
2W2,0W

−1
1,0Λ

−t
1 W1,t. (15)

Since σmin(Λ1W1,0) ≤ |λ1|σmin(W1,0) ≤ nσmin(W1,0), condition (7) has the implication that

σmin(W1,0) ≥ n−r. (16)

Using (16), and ∥W1,0∥2 ≤ 1, ∥W1,t∥2 ≤ 1, we therefore get

dt = ∥W2,t∥2
≤ ∥Λt

2∥2 · ∥W2,0∥2 · ∥W−1
1,0 ∥2 · ∥Λ

−t
1 ∥2 · ∥W1,t∥2

≤
(
|λK |
|λK+1|

)−t

nr

≤ η−tnr.

For any s > 0, if t ≥ ((s+ r) logn+ log 2)/ log η, we have dt ≤ n−s/2.

To proceed with the analysis, we introduce two elementary but useful lemmas.
Lemma 9. Suppose Y ∈ Rn×K has the smallest singular value σmin(Y ) > 0, where K ≤ n. Let
yk represent the kth column of Y . Then,

∥yk∥ ≥ σmin(Y ),

for all 1 ≤ k ≤ K.

Proof. Let ek ∈ RK be the elementary vector where the kth entry is 1 and all other entries are 0.
Then yk = Y ek. The conclusion is clear by noting σmin(Y ) = min∥x∥=1 ∥Y x∥.
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Lemma 10. Suppose Y ∈ Rn×K has the smallest singular value σmin(Y ) > 0, where K ≤ n. Let
yk represent the kth column of Y . Assume the Gram-Schmidt process on Y produces

q1 =
y1
∥y1∥

,

uk = yk −
k−1∑
j=1

⟨yk, qj⟩qj , 2 ≤ k ≤ K,

qk =
uk
∥uk∥

, 2 ≤ k ≤ K.

Then
∥uk∥ ≥ σmin(Y )

for all 1 ≤ k ≤ K.

Proof. From the Gram-Schmidt process, we know that uk can be expressed as uk = Y φ, where φ
has 1 in its kth entry. This implies ∥φ∥ ≥ 1. Then,

∥uk∥ = ∥φ∥ · ∥Y
φ

∥φ∥
∥ ≥ ∥φ∥ · σmin(Y ) ≥ σmin(Y ).

If |λK | is not too small, then throughout the iterations, Yt satisfies certain bounds uniformly, as
demonstrated by Lemma 11. The condition on |λK |will be discussed towards the end of this section.

Lemma 11. Assume Q0 satisfies (7). If |λK | ≥
√
2n−(r−1) holds, then for any t ≥ 0, one has

σmin(Yt+1) ≥
3

4
n−(r−1). (17)

∥yk,t+1∥ ≤ n. (18)

Proof. Observe that

Yt+1 = AQt = (V1Λ1V
⊤
1 + V2Λ2V

⊤
2 )Qt = V1Λ1W1,t + V2Λ2W2,t,

and that the columns of V1 and V2 are orthonormal, we have for any x ∈ RK ,
∥Yt+1x∥2 = ∥V1Λ1W1,tx+ V2Λ2W2,tx∥2

= ∥V1Λ1W1,tx∥2 + ∥V2Λ2W2,tx∥2

≥ ∥V1Λ1W1,tx∥2

= ∥Λ1W1,tx∥2.
Therefore, σmin(Yt+1) ≥ σmin(Λ1W1,t). We next derive a lower-bound of σmin(Λ1W1,t). From

the relation (15), we know that W2,t (Λ1W1,t)
−1

= Λt
2

(
W2,0 (Λ1W1,0)

−1
)
Λ−t
1 . Hence,

∥W2,t (Λ1W1,t)
−1 ∥2 ≤ ∥Λt

2∥2 · ∥W2,0∥2 · ∥ (Λ1W1,0)
−1 ∥2 · ∥Λ−t

1 ∥2
≤ ∥ (Λ1W1,0)

−1 ∥2
= σ−1

min (Λ1W1,0)

≤ nr−1.

The last inequality follows from (7). By the definitions of W1,t and W2,t, we also have

W⊤
1,tW1,t +W⊤

2,tW2,t = Q⊤
t (V1V

⊤
1 + V2V

⊤
2 )Qt = Q⊤

t Qt = IK .

Note that[
W2,t (Λ1W1,t)

−1
]⊤ [

W2,t (Λ1W1,t)
−1
]
= Λ−1

1 W−⊤
1,t W

⊤
2,tW2,tW

−1
1,t Λ

−1
1

= Λ−1
1 W−⊤

1,t (IK −W⊤
1,tW1,t)W

−1
1,t Λ

−1
1

= Λ−1
1 (W−⊤

1,t W
−1
1,t − IK)Λ−1

1

= (Λ1W1,t)
−⊤

(Λ1W1,t)
−1 − Λ−2

1 ,

17
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it then follows that

∥W2,t (Λ1W1,t)
−1 ∥22 =

∥∥∥∥ [W2,t (Λ1W1,t)
−1
]⊤ [

W2,t (Λ1W1,t)
−1
] ∥∥∥∥

2

≥ ∥ (Λ1W1,t)
−1 ∥22 − ∥Λ−2

1 ∥2.

We have shown the left-hand-side is upper-bounded by n2(r−1) earlier, and we know that ∥Λ−2
1 ∥2 =

λ−2
K ≤ n2(r−1)/2 holds. Therefore we get

∥ (Λ1W1,t)
−1 ∥22 ≤ ∥W2,t (Λ1W1,t)

−1 ∥22 + λ−2
K ≤ 16

9
n2(r−1).

This leads to

σmin (Λ1W1,t) ≥
3

4
n−(r−1).

We therefore establish the following lower-bound of σmin(Yt+1) uniformly for all t ≥ 0:

σmin(Yt+1) ≥ σmin(Λ1W1,t) ≥
3

4
n−(r−1).

Further, since ∥A∥2 ≤ n, we have an uniform upper-bound of ∥yk,t+1∥ for all t ≥ 0, 1 ≤ k ≤ K:

∥yk,t+1∥ = ∥Aqk,t∥ ≤ ∥A∥2∥qk,t∥ ≤ n.

The GNN Approximation. The GNN can be designed to emulate each step of orthogonal iteration
method. It starts with x(0) = (Q̂0,1n) ∈ Rn×(K+1), where Q̂0 = Q0 serves as the initial value
of the GNN iterations. For the t-th iteration, the first procedure is to compute Ŷt = AQ̂t−1, which
can be realized by one layer of GNN. The next procedure is the QR decomposition of Ŷt. Let ŷk,t
represent the kth column of Ŷt. We devise the architecture shown in Figure 1 to approximate the
first step (12) of the QR decomposition. In this chart, we have suppressed the superscript of z̄ in
each layer for convenience. Also note that the full node feature is x = (ρ(z̄), z̄) in each layer, of
which we omitted the first component ρ(z̄) in the chart. We assume m satisfy

m =

⌈
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

⌉
. (19)

As illustrated in Figure 1, in the last layer of the first step, z̄ =
(
Ŷt, q̂1,t,1n

)
is produced. The next

batch of GNN layers resumes from this layer, and tries to approximate the subsequent steps of QR
decomposition. In general, assuming the GNN has generated z̄ =

(
Ŷt, q̂1,t, . . . , q̂k−1,t,1n

)
in the

last layer of the (k−1)th step of QR decomposition (2 ≤ k ≤ K−1), we design the GNN structure
in Figure 2 to implement the kth step. Again the superscript of z̄, that denotes which layer this
node belongs to, is suppressed. After all K steps of QR decomposition are carried out, we obtain
Q̂t = [q̂1,t, · · · , q̂K,t], which is then used for the (t+ 1)-th iteration.

We analyze how errors accumulate across layers and iterations in the designed GNN. Let b0 =
nr2−m, b1 = 4nr, b2 = 49nr, N0 denote the set of all nonnegative integers, and

Sk,t =

s = (s0, . . . , sk) :

k∑
j=0

sj = t− 1, and sj ∈ N0 for all 0 ≤ j ≤ k.


Then define

Rk,0 = 0, (20)

Rk,t = b0b
k−1
2

∑
s∈Sk,t

k∏
j=1

(b1j)
sj , 1 ≤ t ≤ T. (21)

18
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z̄ =
(
Ŷt,1n

)

z̄ =
(
Ŷt, ŷ1,t,1n

)
(ŷ1,t is the first column of Ŷt)

z̄ =
(
Ŷt, α

(1)
1,t1n, ŷ

(1,t),1n

)
(with |α(1)

1,t − ∥ŷ1,t∥| ≤ 2−m)

z̄ =
(
Ŷt, α

(2)
1,t1n, ŷ1,t,1n

)
(with

∣∣∣∣α(2)
1,t − 1

α
(1)
1,t

∣∣∣∣ ≤ 21 · 2−m)

z̄ =
(
Ŷt, q̂1,t,1n

)
(with ∥q̂1,t − α(2)

1,t ŷ1,t∥max ≤ 2−m)

1 layer

(m+ 6) layers

(2m+ 13) layers

(m+ 6) layers

Figure 1: The GNN architecture to approximate the first step of QR decomposition.
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(
Ŷt, q̂1,t, . . . , q̂k−1,t,1n

)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, ŷk,t,1n

)
(ŷk,t is the kth column of Ŷt)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(0,1)
k,t 1n, . . . , α

(0,k−1)
k,t 1n, ŷk,t,1n

)
(with |α(0,j)

k,t − ⟨ŷk,t, q̂j,t⟩| ≤ n2−m for 1 ≤ j ≤ k − 1)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, ûk,t,1n

)
(with ∥ûk,t − (ŷk,t −

∑k−1
j=1 α

(0,j)
k,t q̂j,t)∥max ≤ (k − 1)2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(1)
k,t1n, ûk,t,1n

)
(with |α(1)

k,t − ∥ûk,t∥| ≤ 2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, α

(2)
k,t1n, ûk,t,1n

)
(with |α(2)

k,t − 1/α
(1)
k,t | ≤ 21 · 2−m)

z̄ =
(
Ŷt, q̂1,t, . . . , q̂k−1,t, q̂k,t,1n

)
(with ∥q̂k,t − α(2)

k,t ûk,t∥max ≤ 2−m)

1 layer

(k − 1)(m+ 6) layers

(k − 1)(m+ 6) layers

(m+ 6) layers

(2m+ 13) layers

(m+ 6) layers

Figure 2: The GNN architecture to approximate the kth step of QR decomposition.
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We adopt an induction to prove the following bound holds for t = 0, 1, . . . and all 1 ≤ k ≤ K:

∥q̂k,t − qk,t∥ ≤ Rk,t. (22)

A few properties of Rk,t that will be used in the induction are summarized in Lemma 12 and 13.
Lemma 12. Suppose Rk,t is defined by (20) and (20). Then,

Rk,t = b1kRk,t−1 + b2Rk−1,t (23)

for 2 ≤ k ≤ K and 1 ≤ t ≤ T . Moreover, Rk,t is strictly increasing in both t and k.

Proof. Sk,t can be split into two subsets: S(1)k,t and S(2)k,t , where elements of S(1)k,t satisfy sk ≥ 1 and

elements of S(2)k,t satisfy sk = 0. Elements of S(1)k,t have a one-to-one mapping s→ s′ to elements of

Sk,t−1 in the sense that, for any s = (s0, . . . , sk) ∈ S(1)k,t , one has s′ = (s0, . . . , sk − 1) ∈ Sk,t−1.
Therefore ∑

s∈S(1)k,t

k∏
j=1

(b1j)
sj = b1k

∑
s∈Sk,t−1

k∏
j=1

(b1j)
sj .

On the other hand, elements of S(2)k,t have a one-to-one mapping to elements of Sk−1,t since sk = 0.
Then ∑

s∈S(2)k,t

k∏
j=1

(b1j)
sj =

∑
s∈Sk−1,t

k∏
j=1

(b1j)
sj .

Combining the last two equalities, we get the desired result (23).

Lemma 13. Rk,t, defined by (20) and (21), satisfies

Rk,t ≤ b0bk−1
2 tk(kb1)

t−1, (24)
√
KRK,T ≤

1

2
n−s, (25)

(12 +K)RK,T ≤
1

8
n−r, (26)

Rk,t ≥
k−1∑
j=1

Rk−1,t. (27)

Proof. For any s ∈ Sk,t, we have
k∏

j=1

(b1j)
sj ≤

k∏
j=1

(b1k)
sj = (b1k)

∑k
j=1 sj = (b1k)

t−1−s0 .

Plugging this into (21), we get

Rk,t ≤ b0bk−1
2

∑
s∈Sk,t

(b1k)
t−1−s0

= b0b
k−1
2

t−1∑
s0=0

(
t+ k − 2− s0

k − 1

)
(b1k)

t−1−s0

= b0b
k−1
2

t−1∑
i=0

(
k + i− 1

k − 1

)
(b1k)

i

≤ b0bk−1
2

t−1∑
i=0

(
k + i− 1

k − 1

)
(b1k)

t−1

= b0b
k−1
2

(
t+ k − 1

k

)
(b1k)

t−1.
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From the inequality
(
t+k−1

k

)
≤ tk, (24) is established.

From (24), we know that

log
(√

KRK,T

)
− log

(
1

2
n−s

)
≤ 1

2
logK + log b0 + (K − 1) log b2 +K log T + (T − 1)(logK + log b1) + log 2 + s logn

≤ 1

2
logK + r logn−m log 2 + (K − 1)(log 49 + r logn) +K log

[
(s+ r) logn+ log 2

log η
+ 1

]
+

[
(s+ r) logn+ log 2

log η

]
(logK + log 4 + r logn) + log 2 + s log n

≤ −m log 2 +
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(Kr + s) logn.

The choice of m in (19) guarantees that

m log 2 ≥
[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

]
log 2

≥ (2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(Kr + s) logn.

So (25) is proved.

Similarly, we have

log ((12 +K)RK,T )− log

(
1

8
n−r

)
≤ log(12 +K) + log b0 + (K − 1) log b2 +K log T + (T − 1)(logK + log b1) + log 8 + r logn

≤ log(12 +K) + r log n−m log 2 + (K − 1)(log 49 + r log n) +K log

[
(s+ r) logn+ log 2

log η
+ 1

]
+

[
(s+ r) logn+ log 2

log η

]
(logK + log 4 + r logn) + log 8 + r log n

≤ −m log 2 +
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(K + 1)r logn

≤ −
[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

]
log 2

+
(2 log 2)(s+ r)r(log n)2

log η
+ (2 log 2)(K + 1)r logn

≤ 0.

Thus (26) also holds.

Finally, by (23) we know that Rk,t ≥ b2Rk−1,t. For a fixed t, the value changes of Rk,t along the
direction of k is faster than a geometric sequence with common ratio b2. Then (27) is valid.

To start with the induction, for t = 0, we have Q̂0 = Q0, so (22) holds. Now assume (22) holds for
0, . . . , t − 1 with t ≥ 1. For t, we first have Ŷt = AQ̂t−1. Based on ∥q̂k,t−1 − qk,t−1∥ ≤ Rk,t−1,
we can immediately obtain the following bounds:

∥ŷk,t − yk,t∥ ≤ nRk,t−1, (28)
∥q̂k,t−1∥ ≤ 2, (29)
∥ŷk,t∥ ≤ 2n, (30)

σmin(Ŷt) ≥
5

8
n−(r−1), (31)
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In particular, (28) holds because ∥ŷk,t − yk,t∥ = ∥A(q̂k,t−1 − qk,t−1∥ ≤ ∥A∥2∥q̂k,t−1 − qk,t−1∥ ≤
n∥q̂k,t−1−qk,t−1∥. AsRk,t−1 ≤ 1, we get ∥q̂k,t−1∥ ≤ ∥q̂k,t−1−qk,t−1∥+∥qk,t−1∥ ≤ 2. Moreover,
using (18), we know that ∥ŷk,t∥ ≤ ∥ŷk,t − yk,t∥+ ∥yk,t∥ ≤ nRk,t−1 + n ≤ 2n. Finally, by Weyl’s
inequality for singular values, we get

|σmin(Ŷt)− σmin(Yt)| ≤ ∥Ŷt − Yt∥2 ≤
√
K max

1≤k≤K
∥ŷk,t − yk,t∥ ≤

√
KnRK,t−1 ≤

1

8
n−(r−1).

The last inequality is a consequence of (26) in Lemma 13 and the fact that
√
K ≤ 12 +K. In view

of (17), we have

|σmin(Ŷt)| ≥ |σmin(Yt)| − |σmin(Ŷt)− σmin(Yt)| ≥
3

4
n−(r−1) − 1

8
n−(r−1) =

5

8
n−(r−1).

By the GNN structure in Figure 1, we get∥∥∥∥q̂1,t − ŷ1,t
∥ŷ1,t∥

∥∥∥∥ ≤ ∥∥q̂1,t − α(2)
1,t ŷ1,t

∥∥+ ∣∣∣∣α(2)
1,t −

1

α
(1)
1,t

∣∣∣∣∥ŷ1,t∥+ ∣∣∣∣ 1

α
(1)
1,t

− 1

∥ŷ1,t∥

∣∣∣∣∥ŷ1,t∥
=
∥∥q̂1,t − α(2)

1,t ŷ1,t
∥∥+ ∣∣∣∣α(2)

1,t −
1

α
(1)
1,t

∣∣∣∣∥ŷ1,t∥+ ∣∣∣∣α(1)
1,t − ∥ŷ1,t∥

α
(1)
1,t

∣∣∣∣
The bound (30) directly suggests that ∥ŷ1,t∥ ≤ 2n. From (31) and Lemma 9, we also know that
∥ŷ1,t∥ ≥ σmin(Ŷt) ≥ 5n−(r−1)/8. Then |α(1)

1,t | ≥ ∥ŷ1,t∥−
∣∣α(1)

1,t −∥ŷ1,t∥
∣∣ ≥ 5n−(r−1)/8− 2−m ≥

n−(r−1)/2, since 2−m ≤ n−(r−1)/8 by (19). Therefore,∥∥∥∥q̂1,t − ŷ1,t
∥ŷ1,t∥

∥∥∥∥ ≤ 2−m + 21 · 2−m · 2n+
2−m

n−(r−1)/2
≤ nr2−m = b0.

Next we derive an upper bound for ∥q̂1,t − q1,t∥. The triangle inequality implies

∥q̂1,t − q1,t∥ ≤
∥∥∥∥q̂1,t − ŷ1,t

∥ŷ1,t∥

∥∥∥∥+ ∥∥∥∥ ŷ1,t
∥ŷ1,t∥

− y1,t
∥ŷ1,t∥

∥∥∥∥+ ∥∥∥∥ y1,t
∥ŷ1,t∥

− y1,t
∥y1,t∥

∥∥∥∥
≤ b0 +

1

∥ŷ1,t∥
∥ŷ1,t − y1,t∥+

∣∣∥y1,t∥ − ∥ŷ1,t∥∣∣
∥ŷ1,t∥

.

According to (28) and (31), the second and third terms in the display are controlled by∣∣∥y1,t∥ − ∥ŷ1,t∥∣∣
∥ŷ1,t∥

≤ 1

∥ŷ1,t∥
∥ŷ1,t − y1,t∥ ≤

nR1,t−1

n−(r−1)/2
= 2nrR1,t−1.

Hence, we obtain

∥q̂1,t − q1,t∥ ≤ b0 + 4nrR1,t−1 = b0 + b1R1,t−1.

Note that R1,t = b0
∑t−1

s1=0 b
s1
2 = b0(b

t
1 − 1)/(b1 − 1) by its definition (21), the previous display

leads to

∥q̂1,t − q1,t∥ ≤ b0 + b1b0
bt−1
1 − 1

b1 − 1
= b0

bt1 − 1

b1 − 1
= R1,t.

Thus we have proved (22) for t and k = 1.

Next we apply an inner induction on k with the current t. Assume (22) holds for the current t and
1, . . . , k − 1. We first have for 1 ≤ j ≤ k − 1

|⟨ŷk,t, q̂j,t⟩ − ⟨yk,t, qj,t⟩| ≤ |⟨ŷk,t, q̂j,t − qj,t⟩|+ |⟨ŷk,t − yk,t, qj,t⟩|
≤ ∥ŷk,t∥ · ∥q̂j,t − qj,t∥+ ∥ŷk,t − yk,t∥ · ∥qj,t∥
≤ 2nRj,t + nRk,t−1, (32)

where in the last inequality we have used (22), (28) and (30).
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Let ũk,t = ŷk,t −
∑k−1

j=1 ⟨ŷk,t, q̂j,t⟩q̂j,t. From (32) and the inequalities (28) and (29), we have

∥ũk,t − uk,t∥ = ∥ŷk,t −
k−1∑
j=1

⟨ŷk,t, q̂j,t⟩q̂j,t − yk,t +
k−1∑
j=1

⟨yk,t, qj,t⟩qj,t∥

≤ ∥ŷk,t − yk,t∥+
k−1∑
j=1

|⟨ŷk,t, q̂j,t⟩|∥q̂j,t − qj,t∥+
k−1∑
j=1

|⟨ŷk,t, q̂j,t⟩ − ⟨yk,t, qj,t⟩|∥qj,t∥

≤ nRk,t−1 +

k−1∑
j=1

∥ŷk,t∥ · ∥q̂j,t∥ · ∥q̂j,t − qj,t∥+
k−1∑
j=1

(2nRj,t + nRk,t−1)

≤ nRk,t−1 +

k−1∑
j=1

4nRj,t +

k−1∑
j=1

(2nRj,t + nRk,t−1)

= 6n

k−1∑
j=1

Rj,t + knRk,t−1

≤ 12nRk−1,t + knRk,t−1, (33)

where the last inequality holds because
∑k−1

j=1 Rj,t ≤ 2Rk−1,t according to (27).

In view of (26) in Lemma 13, 12nRk−1,t+knRk,t−1 ≤ (12+K)nRK,T ≤ n−(r−1)/8. We thereby
have that

∥ũk,t − uk,t∥ ≤ n−(r−1)/8. (34)

By Lemma 10 and (17), we know that ∥uk,t∥ ≥ σmin(Yt) ≥ 5n−(r−1)/8. By (34), we get

∥ũk,t∥ ≥ ∥uk,t∥ − ∥ũk,t − uk,t∥ ≥
5

8
n−(r−1) − 1

8
n−(r−1) =

1

2
n−(r−1). (35)

Meantime, since 12nRk−1,t + knRk,t−1 ≤ n, from (18) and (34), we also get

∥ũk,t∥ ≤ ∥uk,t∥+ ∥ũk,t − uk,t∥ ≤ ∥yk,t∥+ ∥ũk,t − uk,t∥ ≤ n+ n = 2n. (36)

By the GNN structure in Figure 2, we have

∥ûk,t − ũk,t∥ ≤ ∥ûk,t − (ŷk,t −
k−1∑
j=1

α
(0,j)
k,t q̂j,t)∥+

k−1∑
j=1

|α(0,j)
k,t − ⟨ŷk,t, q̂j,t⟩| · ∥q̂j,t∥

≤
√
n∥ûk,t − (ŷk,t −

k−1∑
j=1

α
(0,j)
k,t q̂j,t)∥max +

k−1∑
j=1

|α(0,j)
k,t − ⟨ŷk,t, q̂j,t⟩| · ∥q̂j,t∥

≤ (k − 1)2−m
√
n+ 2(k − 1)n2−m

≤ 2kn2−m. (37)

Observe that m > r logn/ log 2 by condition (19), thus 2kn2−m ≤ 2kn−r ≤ n−(r−1)/4. It then
follows that

∥ûk,t∥ ≥ ∥ũk,t∥ − ∥ûk,t − ũk,t∥ ≥
1

2
n−(r−1) − 1

4
n−(r−1) =

1

4
n−(r−1). (38)

Also notice that 2kn2−m ≤ n, it follows that

∥ûk,t∥ ≤ ∥ũk,t∥+ ∥ũk,t − ûk,t∥ ≤ 2n+ n = 3n. (39)

We also have

|α(1)
k,t | ≥ ∥û

((k,t)∥ − |α(1)
k,t − ∥û

((k,t)∥| ≥ 1

4
n−(r−1) − 2−m ≥ 1

8
n−(r−1). (40)

where the last inequality is implied by 2−m ≤ n−(r−1)/8, which can be derived from (19).
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Using (35), (36), (37) and (38), we can further get∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥ ≤ 1

∥ûk,t∥
∥ûk,t − ũk,t∥+

|∥ũk,t∥ − ∥ûk,t∥|
∥ûk,t∥ · ∥ũk,t∥

· ∥ũk,t∥

=
1

∥ûk,t∥
∥ûk,t − ũk,t∥+

|∥ũk,t∥ − ∥ûk,t∥|
∥ûk,t∥

≤ 2kn2−m

n−(r−1)/4
+

2kn2−m

n−(r−1)/4

≤ 16knr2−m. (41)

Combining (39), (40), (41), we have∥∥∥∥q̂(k,t) − ũk,t
∥ũk,t∥

∥∥∥∥ ≤ ∥∥q̂(k,t) − α(2)
k,t ûk,t

∥∥+ ∥∥(α(2)
k,t − 1/α

(1)
k,t)ûk,t

∥∥
+

∥∥∥∥
(

1

α
(1)
k,t

− 1

∥û((k,t)∥

)
ûk,t

∥∥∥∥+ ∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥
≤
√
n
∥∥q̂(k,t) − α(2)

k,t ûk,t
∥∥
max

+ |α(2)
k,t − 1/α

(1)
k,t | · ∥ûk,t∥

+

∣∣∣∣α(1)
k,t − ∥ûk,t∥

α
(1)
k,t

∣∣∣∣+ ∥∥∥∥ ûk,t
∥ûk,t∥

− ũk,t
∥ũk,t∥

∥∥∥∥
≤
√
n · 2−m + (21 · 2−m)3n+ 8nr−1 · 2−m + 16knr2−m

≤ 17knr2−m.

Now we are ready to bound ∥q̂(k,t) − q(k,t)∥. Note that q(k,t) = u(k,t)/∥u(k,t)∥, so

∥q̂(k,t) − q(k,t)∥ ≤
∥∥∥∥q̂(k,t) − ũk,t

∥ũk,t∥

∥∥∥∥+ 1

∥ũk,t∥
∥ũk,t − uk,t∥+

|∥uk,t∥ − ∥ũk,t∥|
∥uk,t∥ · ∥ũk,t∥

· ∥uk,t∥

=

∥∥∥∥q̂(k,t) − ũk,t
∥ũk,t∥

∥∥∥∥+ 1

∥ũk,t∥
∥ũk,t − uk,t∥+

|∥uk,t∥ − ∥ũk,t∥|
∥ũk,t∥

≤ 17knr2−m +
12nRk−1,t + knRk,t−1

n−(r−1)/2
+

12nRk−1,t + knRk,t−1

n−(r−1)/2

= 17knr2−m + 4knrRk,t−1 + 48nrRk−1,t

≤ 4knrRk,t−1 + 49nrRk−1,t = Rk,t,

where the last inequality holds because 17knr2−m ≤ n2r2−m = nrR1,1 ≤ nrRk−1,t, and the last
equality is due to Lemma 12. Therefore, (22) is established for t and k. Both the inductions on k
and the induction on t are now complete.

We now derive a bound for d̂T := dist(col(Q̂T ), col(V1)) = ∥V ⊤
2 Q̂T ∥2. Using (22) and (25), we

can get

∥q̂k,T − qk,T ∥ ≤
n−s

2
√
K
. k = 1, . . . ,K. (42)

Therefore,

∥Q̂T −QT ∥2 ≤
√
K max

1≤k≤K
∥qk,T − qk,T ∥ ≤

√
KRK,T ≤

1

2
n−s.

Then by Lemma 8, we have

d̂T ≤ dT + |d̂T − dT | ≤
1

2
n−s + ∥V ⊤

2 (Q̂T −QT )∥2 ≤
1

2
n−s + ∥Q̂T −QT ∥2 ≤ n−s. (43)

The first result in Theorem 1 is established by letting Q̂ = Q̂T .
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According to Figures 1 and 2, the number of layers needed in GNN for the kth step in the t-th
orthogonal iteration is (2k + 2)m + 12k + 14. Also count in the layer to produce Ŷt = AQ̂t−1 in
each iteration. So the total number of layers is at most

K∑
k=1

((2k + 2)m+ 12k + 14)Tk + Tk

= [K(K + 1)(m+ 6) + 2K(m+ 7) + 1]T

≤ 2K2mTk

≤ 2K2

[
2(s+ r)r(logn)2

log η
+ 2((K + 1)r + s) logn

] [
(s+ r) logn+ log 2

log η

]
≤ 8K2(s+ r)2r

(log n)3

(log η)2
+ 8K2((K + 1)r + s)(s+ r)

(log n)2

log η
.

High probability bounds concerning eigenvalues ofA. The eigenvalues λK and λK+1 ofA affects
the approximation results of GNN. Specifically, condition |λK | ≥

√
2n−(r−1) required in Lemma

11, and the total number of layers depends on η = |λK |/|λK+1|. We provide high-probability
bounds on |λK | and η.

Let γ1, . . . , γK be the first K eigenvectors of P with |γ1| ≥ · · · ≥ |γK |, and u1, . . . , uK
be associated eigenvectors. Denote U = [u1, . . . , uK ] and Γ = diag(γ1, . . . , γK). Define
P0 = (p− q)IK + q1K1⊤

K ∈ RK×K to be a “collapsed” version of P , and N = diag(n1, . . . , nK).
Further, let Z ∈ Rn×K be the one-hot matrix of the true community labels. That is, Zi,k = 1{σi=k}
for i ∈ [n], k ∈ [K]. We first state several preliminary lemmas.
Lemma 14. The first K eigenvalues γ1, . . . , γK of P are equal to the eigenvalues of G =
N1/2P0N

1/2.

Proof. First we have the equalities P = ZP0Z
⊤ and Z⊤Z = N . Assume nonzero vector x ∈ RK

satisfies Gx = γx. Define y = ZN−1/2x ∈ Rn. Then

Py = ZP0Z
⊤ZN−1/2x = ZP0N

1/2x = ZN−1/2Gx = γZN−1/2x = γy.

On the other hand, suppose nonzero vector y ∈ Rn satisfies Py = γy. Let x = N−1/2Z⊤y ∈ RK .
Then

Gx = N1/2P0Z
⊤y = N−1/2Z⊤ZP0Z

⊤y = N−1/2Z⊤Py = γN−1/2Z⊤y = γx.

This completes the proof.

Lemma 15. Let G = N1/2P0N
1/2. Then we have

σmin(G) ≥ (p− q)nmin.

The equality holds when n1 = · · · = nK .

Proof. We first write G = (p − q)N + qψψ⊤, where φ = (
√
n1, . . . ,

√
nK)⊤. For any vector

x ∈ RK , we have

Gx = (p− q)x⊤Nx+ q(x⊤φ)2 ≥ (p− q)x⊤Nx ≥ (p− q)nmin.

Hence the conclusion holds. The last statement follows by direct calculation.

The following result on spectral bound is essentially Theorem 5.2 in Lei & Rinaldo (2015) with a
slightly different statement:
Lemma 16 ((Lei & Rinaldo, 2015)). For any c0 > 0, there exists a constant c1 that depends on c0
such that

∥A− P∥2 ≤ c1
√
np+ log n

with probability at least 1− n−c0 .
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In view of Lemma 16, we constrain the analysis in the event that ∥A − P∥2 ≤ c1
√
np+ log n. By

Weyl’s inequality,

|λK − γK | ≤ ∥A− P∥2.

Combining Lemmas 14 and 15, we have that

|λK | ≥ |γK | − ∥A− P∥2 ≥ (p− q)nmin − c1
√
np+ log n ≥ c2n(p− q) ≥

√
log n.

The last two inequalities holds because nmin ≍ n, n(p− q)≫ √np, and n(p− q)≫
√
log n, from

Assumptions 1 and 2. We get |λK | ≥
√
2n−(r−1) as required.

To derive a bound of log η, observe that the (K + 1)th eigenvalue of P is 0. By Weyl’s inequality,
we have

|λK+1| ≤ ∥A− P∥2 ≤ c1
√
np+ log n.

Then it holds that

log η ≥ log

(
(p− q)nmin

c1
√
np+ log n

− 1

)
≥ log

(
c2n(p− q)

max{√np,
√
log n}

)
= ξ.

This concludes the proof of Theorem 1.

D AN INITIALIZATION PROCEDURE

A natural way of getting the initial features Q0 is to draw from the Haar distribution. Suppose
S0 ∈ Rn×K is a random matrix where its entries are i.i.d. N(0, 1). Let its QR decomposition
obtained from the Gram-Schmidt process be S0 = Q0R0. Then Q0 is Haar-distributed on the
orthogonal group.

We first have the following result.

Lemma 17. For a given A, Q0 satisfies

P
(
σmin(Λ1V

⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

)
≥ 1− 2n−c0

for any δ > 0 and any c0 > 0.

Proof. By definition, we have S⊤
0 S0 = R⊤

0 R0. Then ∥R0∥2 = ∥S0∥2. Following the result in
Rudelson & Vershynin (2011) with respect to the largest singular value, we have

P
(
∥S0∥2 >

√
n+
√
K + t

)
≤ 2e−t2/2, t > 0.

For an absolute constant c0, take t =
√
2 log 2 + 2c0 log n. The probability bound of the last display

becomes n−c0 . Since
√
n+
√
K + t ≤ (1 + δ)

√
n for any δ > 0, we get

P
(
∥S0∥2 > (1 + δ)

√
n
)
≤ P

(
∥S0∥2 >

√
n+
√
K + t

)
≤ n−c0

for any δ > 0, with n large enough. Therefore, we obtain

P
(
σmin(R

−1
0 ) <

1

(1 + δ)
√
n

)
≤ n−c0 .

Since columns of V1 are all orthonormal, V ⊤
1 S0 ∈ RK×K has i.i.d. N(0, 1) entries. Following the

result in Rudelson & Vershynin (2011) on the smallest singular value, we have

P
(
σmin(V

⊤
1 S0) <

ϵ√
K

)
≤ ϵ.

We take ϵ = n−c0 .
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Note V ⊤
1 Q0 = V ⊤

1 S0R
−1
0 . When σmin(V

⊤
1 S0) and σmin(R

−1
0 ) are both bounded away from 0, we

have σmin(V
⊤
1 Q0) ≥ σmin(V

⊤
1 S0) · σmin(R

−1
0 ). It then follows that

P
(
σmin(Λ1V

⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

)
≥ P

(
σmin(V

⊤
1 Q0) ≥

n−c0

√
K

and σmin(R
−1
0 ) ≥ 1

(1 + δ)
√
n

)
≥ 1− P

(
σmin(V

⊤
1 Q0) <

n−c0

√
K

)
− P

(
σmin(R

−1
0 ) <

1

(1 + δ)
√
n

)
≥ 1− 2n−c0 .

The lower bound given in Lemma 17 still depends on |λK |. Lemma 18 further assures that Q0

satisfies (7) with high probability.
Lemma 18. If Q0 ∈ Rn×K is Haar distributed on the orthogonal group, then

P
(
σmin(Λ1V

⊤
1 Q0) ≥ n−(c0+1/2)

)
≥ 1− 3n−c0

for any c0 > 0.

Proof. The magnitude of λK is analyzed at the end of Appendix C. Using Assumptions 1 and 2, we
have that, with probability at least 1− n−c0 ,

|λK | ≥ |γK | − ∥A− P∥2 ≥ (p− q)nmin − c1
√
np+ log n ≥ c2n(p− q) ≥ c2

√
log n

for some c2 > 0.

In view of with Lemma 17, we get that with probability at least 1− 3n−c0 ,

σmin(Λ1V
⊤
1 Q0) ≥

|λK |n−(c0+1/2)

(1 + δ)
√
K

≥ c2
√
log n · n−(c0+1/2)

(1 + δ)
√
K

≥ n−(c0+1/2).

E PROOF OF THEOREM 2

We have the equality PZ = ZP0N , or equivalently, PZN−1P−1
0 = Z. As P = UΓU⊤, by

letting B = ΓU⊤ZN−1P−1
0 , we get Z = UB. For a scalar α > 0, denoting B(α) = αB and

Z(α) = αZ, we further get Z(α) = UB(α). Applying softmax function on the rows of Z(α), we
get the probability that node i belongs to community k

Ψi,k =

{
eα/(eα +K − 1), if σi = k,

1/(eα +K − 1), otherwise.

When α → ∞, we have Ψi,k → 1{σi=k}. In other words, given the K eigenvectors U of P as
design matrix, and with regression coefficients B(α), one can recover the true community labels
exactly by multinomial regression, as α→∞.

In reality, we are given Q̂ from GNN instead of U . Q̂ and U have the following relationship:

• dist(col(Q̂T ), col(V1)) ≤ n−s (by Theorem 1).
• ∥V1 − U∥2 is controlled by the Davis-Kahan theorem.

Let Q = QT be the output of orthogonal iteration after T iterations, as defined in Lemma 8. We
have Q = V1W1 + V2W2, where ∥W2∥2 ≤ n−s/2. So

Z = UB = (U − V1)B + (Q− Q̂)W−1
1 B + Q̂W−1

1 B − V2W2W
−1
1 B,
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or equivalently,

Q̂W−1
1 B = Z − E,

where E =
[
(U − V1) + (Q− Q̂)W−1

1 − V2W2W
−1
1

]
B. Multiplying by α, we get

Q̂W−1
1 B(α) = α(Z − E). Regarding Q̂ as design matrix, and W−1

1 B(α) as regression coeffi-
cients, the multinomial regression generates the probability that node i belongs to community k

Ψ̃i,k =
exp {α(Zi,k − Ei,k)}∑K
j=1 exp {α(Zi,j − Ei,j)}

. (44)

The estimated label assignment is

σ̃i = argmax
1≤k≤K

Ψ̃i,k = argmax
1≤k≤K

(Zi,k − Ei,k). (45)

Note that Zi· (the ith row of Z) is e⊤σi
, where eσi

∈ RK is the elementary vector with 1 in its σi-th
entry, and 0 elsewhere. Then argmax1≤k≤K(Zi,k − Ei,k) is still σi if ∥Ei·∥max < 1/2. Define
S = {1 ≤ i ≤ n : ∥Ei·∥max ≥ 1/2}. Then we have ℓ0(σ, σ̃) ≤ |S|/n. On the other hand,
|S| ≤

∑
i∈S 4∥Ei·∥2 ≤ 4∥E∥2F . Therefore,

ℓ0(σ, σ̃) ≤
4

n
∥E∥2F .

To derive an upper bound of ∥E∥F , first we know that the Davis-Kahan Theorem (Davis & Kahan,
1970; Yu et al., 2015) and Lemma 16 guarantees that

∥U − V1∥F ≤
∥A− P∥2
|γK |

≤ O(
√
np+ logn)

|γK |
.

with probability at least 1− n−c0 .

The term (Q − Q̂)W−1
1 depends on Q − Q̂, which is controlled well by GNN. In particular, using

(42), we can get

∥Q̂−Q∥F =

√√√√ K∑
k=1

∥qk,T − qk,T ∥2 ≤
1

2
n−s.

Then, from ∥W1∥2 = 1, we have

∥(Q− Q̂)W−1
1 ∥F ≤ ∥Q− Q̂∥F · ∥W

−1
1 ∥2 ≤

1

2
n−s ≤ O(

√
np+ log n)

|γK |

when s is large enough. The term V2W2W
−1
1 is controlled well by orthogonal iteration. Lemma 8

leads to

∥V2W2W
−1
1 ∥F ≤ ∥V2∥F · ∥W2∥2 · ∥W−1

1 ∥2 ≤
√
n−K · 1

2
n−s ≤ 1

2
n−(s−1) ≤ O(

√
np+ log n)

|γK |
when s is large enough.

To control for B, we have ∥Γ∥2 = |γ1|, ∥U⊤∥2 = 1, and ∥ZN−1∥2 = 1/
√
nmin by noting

(ZN−1)⊤ZN−1 = N−1. Also, since P0 is a full-rank matrix with two eigenvalues p + (K − 1)q
and (p− q), we know that ∥P−1

0 ∥2 = 1/(p− q). Therefore,

∥B∥2 ≤ ∥Γ∥2 · ∥U⊤∥2 · ∥ZN−1∥2 · ∥P−1
0 ∥2 ≤

|γ1|√
nmin(p− q)

.

Finally, we reach the bound

∥E∥F ≤
(
∥U − V1∥F + ∥(Q− Q̂)W−1

1 ∥F + ∥V2W2W
−1
1 ∥F

)
∥B∥2

≤ O(
√
np+ log n)

|γK |
· |γ1|√

nmin(p− q)
.
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The misclassification rate is bounded by

ℓ0(σ, σ̃) ≤
O(np+ log n)

nγ2K
· γ21
nmin(p− q)2

.

From Lemma 14, we get
|γ1|
|γK |

=
∥G∥2
σmin(G)

≤ nmax(p+ (K − 1)q)

nmin(p− q)
≤ β(p+ (K − 1)q)

p− q
.

So we have

ℓ0(σ, σ̃) ≤
O(np+ log n)(p+ (K − 1)q)2

n2(p− q)4
.

F PROOF OF THEOREM 3

It is clear that yi,k = (AZ(σ(0)))i,k is the number of edges that node i has with all nodes that are
labeled as k by σ(0), and JnZ(σ(0)) has identical rows where each row represents community sizes
determined by σ(0). Let n(0)k = (JnZ(σ

(0)))i,k. Then, qi,k = (AZ(σ(0)))i,k/n
(0) is the proportion

of connections of node i to community k, and the local refinement procedure updates according to

σ
(1)
i = arg max

k∈[K]
qi,k.

Let yk = [y1,k, . . . , yn,k]
⊤, qk = [q1,k, . . . , qn,k]

⊤ for k ∈ [K]. We design the GNN illustrated in
Figure 3 to approximate qk.

z̄ =
[
Z(σ(0)),1n

]

z̄ =
[
y1, . . . , yK , n

(0)
1 1n, . . . , n

(0)
K 1n,1n

]
(with [y1, . . . , yK ] = AZ(σ(0)) and [n

(0)
1 1n, . . . , n

(0)
K 1n] = JZ(σ(0)) )

z̄ = [y1, . . . , yK , α11n, · · · , αK1n,1n]

(with |αk − 1/n
(0)
k | ≤ 21 · 2−m for all k ∈ [K])

z̄ = [q̂1, . . . , q̂K ,1n]

(with ∥q̂k − αkyk∥max ≤ 2−m for all k ∈ [K])

1 layer

K(2m+ 13) layers

K(m+ 6) layers

Figure 3: The GNN architecture to approximate the local refinement procedure.

The probability matrix Ψ̂ is given by

Ψ̂i,k =
exp (αq̂i,k)∑K
j=1 exp (αq̂i,k)

. (46)
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for a scalar α > 0. The estimated label is
σ̂i = argmax

1≤k≤K
Ψ̂i,k = argmax

1≤k≤K
q̂i,k. (47)

Since yi,k ≤ n, we have

∥q̂i,k − qi,k∥ ≤ |q̂i,k − αkyi,k|+ |αkyi,k −
1

n
(0)
k

yi,k|

≤ 2−m + 21 · 2−mn

≤ 22 · 2−mn.

Gao & Ma (2021) provide an argument to show that minimax bound is closely related to a fun-
damental hypothesis testing problem. The problem is stated as follows. Suppose we observe
X = (X1, . . . , Xm1+m2

) ∈ {0, 1}m1+m2 , we want to test

H1 : X ∼
m1⊗
i=1

Bernoulli(p)⊗
m1+m2⊗
i=m1+1

Bernoulli(q)

v.s. H2 : X ∼
m1⊗
i=1

Bernoulli(q)⊗
m1+m2⊗
i=m1+1

Bernoulli(p). (48)

The local refinement procedure is designed to solve this testing problem, hence the misclassification
rate after the local refinement procedure is determined by the error bound of the local refinement.
Lemma 17 in Gao et al. (2017) gives detailed calculation of this error bound.

To fix ideas, we focus on the local refinement of node 1 and assume without loss of generality
σ1 = 1. One can show, by following the steps of Lemma 17 in Gao et al. (2017), that

P(q1,1 ≤ max
k ̸=1

q1,k) ≤ exp

{
−(1 + o(1))min

k ̸=1

(
n1 + nk

2

)
I(p, q)

}
. (49)

When k = 2, mink ̸=1

(
n1+nk

2

)
= n/2, and when k ≥ 3, mink ̸=1

(
n1+nk

2

)
≥ n/(βK). When

using GNN to approximate the local refinement process, one needs some buffer for the difference
q1,1 − q1,k. Note that (49) is proved by a Chernoff bound derivation, the first step of which is

P(q1,1 ≤ q1,k) = P(et
∗(q1,k−q1,1) ≥ 1) ≤ E(et

∗(q1,k−q1,1))

with et
∗
=
√
p(1− q)/

√
q(1− p). Similarly, for any δ > 0, we have

P(q1,1 ≤ q1,k + δ) = P(et
∗(q1,k−q1,1)+t∗δ ≥ 1) ≤ et

∗δE(et
∗(q1,k−q1,1)).

We can use the same derivation to obtain
P(q1,1 ≤ max

k ̸=1
q1,k + δ) ≤ exp {−(1 + o(1))ñI(p, q) + t∗δ} .

For a given constant ϵ > 0, we choose δ such that t∗δ = ϵ
2 ñI(p, q). Then we have

P(q1,1 ≤ max
k ̸=1

q1,k + δ) ≤ exp {−(1 + o(1)− ϵ/2)ñI(p, q)}

≤ exp {−(1− ϵ)ñI(p, q)} .
For the GNN, we choose m such that

m =

⌈
− log ϵ− log I(p, q) +

√
p(1− q)/

√
q(1− p) + log 88

log 2

⌉
Then we can guarantee 22 ·2−mn ≤ δ/2. In other words, |q̂i,k−qi,k| ≤ δ/2 for all i ∈ [n], k ∈ [K].
Therefore,

P(q̂1,1 ≤ max
k ̸=1

q̂1,k) ≤ P(q1,1 ≤ max
k ̸=1

q1,k + δ)

≤ exp {−(1− ϵ)ñI(p, q)} .
We get the desired rate. The derivation from the local refinement error bound to the overall misclas-
sification rate bound is provided in Gao et al. (2017) and is omitted here for brevity.

The depth M ′′ of the constructed GNN is 3Km+ 19K + 1, and is bounded by 3Km+ 20K.
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G PROOFS OF THEOREMS 4 AND 5

We first define a “truncated version” of cross-entropy loss. For L > 0, define

ℓ
(L)
1 (σ,Ψ) = min

π∈SK

1

n

∑
i∈[n]

{[
− log

(
Ψi,π(σi)

)]
∧ L
}
.

for a probability matrix Ψ ∈ Rn×K . When L→∞, ℓ(L)
1 (σ,Ψ)→ ℓ1(σ,Ψ).

Proof of Theorem 4. In the proof of Theorem 2, we have constructed a GNN that, for any graph G
in the training set with adjacency matrix A, produces the probability matrix Ψ̃ and estimated label
assignment σ̃, defined by (44) and (45) respectively.

Note that σ̃ does not depend on α but Ψ̃ does. Define S′ = {1 ≤ i ≤ n : ∥Ei·∥max ≥ 1/3}. Then
for any i /∈ S′, Zi,σi − Ei,σi ≥ 2/3 and Zi,k − Ei,k ≤ 1/3 for all k ̸= σi. We choose α large
enough such that

log(1 + (K − 1)e−α/3) ≤ R.

Then for any i /∈ S′, we get

− log(Ψ̃i,σi) = log

1 +
∑
j ̸=σi

exp {α(Zi,j − Ei,j)− α(Zi,σi − Ei,σi)}


≤ log(1 + (K − 1)e−α/3)

≤ R.

For any i ∈ S′, we have − log(Ψ̃i,σi
) ≤ L. Then,

ℓ
(L)
1 (σ, Ψ̃) ≤ R+ L

|S′|
n
.

On the other hand, |S′| ≤
∑

i∈S 9∥Ei·∥2 ≤ 9∥E∥2F . Using the upper bound of ∥E∥F derived in the
proof of Theorem 2, we get for any c′0 > 0,

ℓ
(L)
1 (σ, Ψ̃) ≤ R+ L ·O(R)

with probability at least 1− n−c′0 . Then

Eℓ(L)
1 (σ, Ψ̃) ≤ R+ L ·O(R) + Ln−c′0 .

We need to following lemma to proceed.
Lemma 19. For any community detection algorithm f , suppose graphs Gi are generated i.i.d.
following some prior πG, we have

P
(
|R(g)− R̂m(g)| ≥ t

)
≤ 2 exp

(
−2mt2

L2

)
. (50)

Proof. Note by definitionsR(g)−R̂m(g) = 1
n

∑m
j=1 ℓg,L(Gj)−EG∼πℓg,L(G). Apply Hoeffding’s

inequality and use the fact that each ℓg,L(G) is naturally bounded by L.

Suppose graph Gi in the training set has true community labels σ(i), and when the GNN designed
in Theorem 2 is applied to Gi, probability matrix Ψ̃(i) is produced. Take t = R in Lemma 19. We
get

m∑
i=1

ℓ
(L)
1 (σ(i), Ψ̃(i)) ≤ Eℓ(L)

1 (σ, Ψ̃) +R ≤ 2R+ L ·O(R) + Ln−c′0 .

with probability at least 1− 2 exp
(
−2mt2/L2

)
.
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We choose L = R−ϵ/2, which tends to∞. Then 2R + L · O(R) + Ln−c′0 = O(R1−ϵ/2) when c′0
is large enough. By the continuity of ℓ(L)

1 with respect to L, we get
m∑
i=1

ℓ1(σ
(i), Ψ̃(i)) = O(R1−ϵ/2).

With m ≥ R−(1+ϵ)(log n)1+ϵ, one can show that the probability 1 − 2 exp
(
−2mt2/L2

)
is bigger

than 1− n−c0 for any c0 > 0.

For graph Gi, denote the probability matrix generated by the trained GNN as Ψ̃′(i). Assuming the
empirical risk is decreased, we have

1

m

m∑
i=1

Eℓ1(σ(i), Ψ̃′(i)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̃(i)) ≤ O(R1−ϵ/2).

We finally get

1

m

m∑
i=1

ℓ0(σ
(i), σ(A(i), Q0; θ̃)) ≤

1

m

m∑
i=1

ℓ1(σ
(i), Ψ̃′(i))/ log 2 ≤ R1−ϵ.

Proof of Theorem 5. Fix any graph G in the training set with adjacency matrix A. In the proof of
Theorem 3, we have constructed a GNN that produces probability matrix Ψ̂ and estimated labels σ̂
based on q̂i,k by (46) and (47). To derive a bound for the cross-entropy loss, we need a better control
on the difference q̂i,σi

− q̂i,k for k ̸= σi. We still focus on node 1. Using the same argument as the
proof of Theorem 3, one can get

P(q̂1,1 ≤ max
k ̸=1

q̂1,k + δ) ≤ P(q1,1 ≤ max
k ̸=1

q1,k + 2δ)

≤ exp {−(1− 2ϵ)ñI(p, q)} .

Denote the right-hand-side of the last display by R2. We choose α such that

log(1 + (K − 1)e−αδ) ≤ R2.

So when q̂1,1 > maxk ̸=1 q̂1,k + δ, the cross-entropy is upper bounded by R2.

Then

E
([
− log

(
Ψ̂1,1

)]
∧ L
)
≤ LP(q̂1,1 ≤ max

k ̸=1
q̂1,k + δ) +R2

(
1− P(q̂1,1 ≤ max

k ̸=1
q̂1,k + δ)

)
≤ LR2 +R2.

Therefore, we have

Eℓ(L)
1 (σ, Ψ̂) ≤ 1

n

∑
i∈[n]

E
{[
− log

(
Ψ̂i,σi

)]
∧ L
}
≤ LR2 +R2.

Suppose graph Gi in the training set has true community labels σ(i), and when the GNN designed
in Theorem 3 is applied to Gi, probability matrix Ψ̂(i) is produced. Take t = R2 in Lemma 19. We
get

m∑
i=1

ℓ
(L)
1 (σ(i), Ψ̂(i)) ≤ Eℓ(L)

1 (σ, Ψ̂) +R2 ≤ LR2 + 2R2.

with probability at least 1− 2 exp
(
−2mt2/L2

)
.

Choose L = exp {(ϵ/2)ñI(p, q)} which goes to ∞ slowly. Then LR2 + 2R2 ≤
exp {−(1− 11ϵ/4)ñI(p, q)}. By the continuity of ℓ(L)

1 with respect to L, we have
m∑
i=1

ℓ1(σ
(i), Ψ̂(i)) ≤ exp {−(1− 11ϵ/4)ñI(p, q)} .
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Withm ≥ exp(2ñI(p, q))(logn)(1+ϵ)), one can prove that the probability 1−2 exp
(
−2mt2/L2

)
is bigger than 1− n−c0 for any c0 > 0.

For graph Gi, denote the probability matrix generated by the trained GNN as Ψ̂′(i). Assuming the
empirical risk is decreased, we have

1

m

m∑
i=1

Eℓ1(σ(i), Ψ̂′(i)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̂(i)) ≤ exp {(1− 11ϵ/4)ñI(p, q)} .

We finally get

1

m

m∑
i=1

ℓ0(σ
(i), σ(A(i), Z(σ̃(i)); θ̂)) ≤ 1

m

m∑
i=1

ℓ1(σ
(i), Ψ̂′(i))/ log 2 ≤ exp {(1− 3ϵ)ñI(p, q)} .

H PROOF OF THEOREM 6

Assume that the graph are generated i.i.d. according to some prior πG. Suppose we are interested
in a class of community detection algorithms G = softmax ◦ F. For a community detection
algorithm fθ,x(0) ∈ F outputting a matrix fθ,x(0)(G) ∈ Rn×K , which is then used to generate a
probability matrix after the softmax operation, and we write gθ,x(0) = softmax ◦ fθ,x(0) ∈ G, and
gθ,x(0)(G) = softmax(fθ,x(0)(G)).

To establish the generalization bound, we revise the cross entropy to a “truncated” version

ℓg,L(G) := CEg,L(G) := min
µ∈SK

1

n

n∑
i=1

(
log((g(G))i,µ(σ(G)i))

−1 ∧ L
)
,

where L is some large but fixed constant and σ(G)i extracts the community assignment of node i in
graph G. We also suppress the dependence on x(0) in the above notation.

Define the empirical risk for any community detection algorithm g = softmax ◦ f by
R̂

(L)
m (g) = R̂m(f) := 1

m

∑m
i=1 ℓg,L(Gi). The empirical risk minimizer is defined to be g̃(L) =

argming∈G
1
m

∑m
i=1 ℓg,L(Gi). Define the population risk for any community detection algorithm

R(L)(g) = EG′∼πG
ℓg,L(G

′).

For a metric spaceF equipped with metric d, the covering numberN(ε,F , d) is the smallest number
of balls of radius ε with respect to d that can cover F , i.e., for every ε > 0, there exists an Fε with
|Fε| = N(ε,F , d) such that for every f ∈ F , there exists a f̃ ∈ Fε such that d(f, f̃) ≤ ε.
Lemma 20. For δ ≤ 1 and d∞(f1, f2) = maxG sup∥x(0)∥max≤1 ∥f1(G, x(0))− f2(G, x(0))∥max,

logN
(
δ,G(M,d, s), d∞

)
≤ (s+ 1) log

(
2δ−1nM+1|F|M (M + 1)V 2

)
.

Proof of Lemma 20. Write AL
k (f) as the mapping u ∈ Rdk 7→ σθ(M) ◦ · · · ◦ σθ(k)(u) ∈ RdM , and

AR
k (f) as the mapping u ∈ Rd0 7→ σθ(k) ◦ · · ·σθ(0)(u).

We note ∥AB∥max ≤ ∥A∥max∥B∥max × (# of columns of A). Given two community detection
algorithms f an f̃ with corresponding parameters (θ(t))Mt=0 and (θ̃(t))Mt=0 with ∥θ − θ̃∥max ≤ ε, we
bound the difference

sup
∥x(0)∥max≤1

f(G, x(0))− f̃(G, x(0))∥max

≤
M∑
ℓ=0

∣∣AL
ℓ+1(f) ◦ σθ(ℓ) ◦AR

ℓ−1(f̃)(X)−AL
ℓ+1(f) ◦ σθ̃(ℓ) ◦AR

ℓ−1(f̃)(X)
∣∣

≤ ε(n|F|)M+1(M + 1)

M∏
ℓ=0

(dℓ + 1).
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where in the above we have used ∥X∥max ≤ 1, which is a simple consequence if we assume
every column of X has unit length. Furthermore, we have used the fact ∥θ∥max ≤ 1 for all θ ∈
G(M,d, s,X), as well as that ∥O∥max ≤ 1 for any O ∈ F .

The total number of parameters in G(M, b) is

U =
|F|
2

M∑
ℓ=0

dℓdℓ+l ≤
|F|
2

2−(M−1)(M + 1)

M∏
ℓ=0

(dℓ + 1) ≤ |F|
M∏
ℓ=0

(dℓ + 1) =: V.

We take the grid size δ/(nM+1(M + 1)|F|MV to discretize the active parameters on [0, 1], and
there are

(
U
s

)
≤ V s ways to choose the active parameters, and therefore

N(δ,G(M,d, s), d∞) ≤
s∑

u=1

(2δ−1nM+1|F|M (M +1)V 2)u ≤ (2δ−1nM+1|F|M (M +1)V 2)s+1.

where we used the sum of the geometric sequence in the last inequality.

For the generalization bounds, we note the following facts.
Remark 6. For two vectors a ∈ R1×k and b ∈ R1×k such that ∥a− b∥max ≤ ε ≤ 1, we write pa =

softmax(a) and pb = softmax(b). Recall pa =
(

exp(aℓ)∑
u∈[k] exp(au)

)
ℓ∈[k]

. By elementary algebra, we

have ∥pa − pb∥max ≤ e2ε − 1 ≤ 2e2ε.

Remark 7. Note that with ∥P1 − P2∥max ≤ δ for two probability matrices Pi = (p
(i)
k∈[n],ℓ∈[K] ∈

[0, 1]n×K , we bound for any permutation µ ∈ SK∣∣∣∣∣∣ 1n
∑
i∈[n]

(
log(p

(1)
i,µ(σi)

∨ e−L)− 1

n

∑
i∈[n]

log(p
(2)
i,µ(σi))

∨ e−L)

∣∣∣∣∣∣ ≤ log(1 + eLδ) ≤ eLδ.

By Lipschitz continuity of the min functional, we have |CE(P1)− CE(P2)| ≤ eLδ.

With slight abuse of notation, we write d∞(g1, g2) = maxG sup∥x(0)∥max≤1 |CEg1(G)−CEg2(G)|.
Combining the above two remarks, we have

logN
(
δ,SG(M,d, s), d∞

)
≤ (s+ 1) log

(
4e2+Lδ−1nM+1|F|M (M + 1)V 2

)
We choose an δ-covering Gδ of G = SG(M,d, s). By taking the standard empirical process argu-
ment, we have

sup
g∈G
|R(g)− R̂m(g)| ≤ max

g∈Gδ

|R(g)− R̂m(g)|+ 2δ,

Take union bound for all f ’s in Fδ and apply (50), we have with probability 1 - u,

max
g∈Gδ

|R(g)− R̂m(g)| ≤
√
L2

2m

(
log(|Gδ|) + log(2/u)

)
Combining the above display with Lemma 20, we have established the desired results by taking
u = 2/m2 and

δ = log(L)

√
2s(4 + L) + 2 log(m) + (M + 2) log(n|F|d2⋆)

2m
,

where d⋆ = ∥d∥max and note V ≤ |F|dM+1
⋆ .

Combining the above, we have the following proposition.
Proposition 21. For G = SG(M,d, s) and any sufficiently large but fixed L, with probability
1− 2/m2,

sup
g∈GS(M,b,s,X)

|R(L)(g)− R̂(L)
m (g)| ≤ 3L

√
2s(4 + L) + 2 logm+ (M + 2) log(n|F|d2⋆)

2m
.
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Take M = O(log2(n)), d⋆ = O(n), s = O(n log(n)), and L = O(log(n)), the right hand side is of
O(n log4(n)/m.

Combining the above proposition and Theorem 5, we have shown Theorem 6

Assume the graphs A’s are generated i.i.d. following πA = SBM(n, p, q). Under the condition of
Theorem 4, by taking m = O

(
R−(1+ε) max((log(n)1+ε), n log4(n))

)
, we have with probability

1 − n−c for some c < 1, the expected mis-classification ratio on A ∼ SBM(n, p, q) of the trained
GNN on

E[ℓ0(σ, σ(A,Q; θ̃) | θ̃)] ≤ c′R1−ε,

where the constant c′ depends on ε and c.

I DETAILED CONFIGURATIONS OF NUMERICAL EXPERIMENTS AND
ADDITIONAL NUMERICAL RESULTS

I.1 SYNTHETIC EXPERIMENTS ON SBM

For SBM training set, we choose 15 logarithmically spaced values of SNR in [0.5, 3], and 15
logarithmically spaced values of C in [3K, 9K]. The community size vector n is determined by
n ∼ Uniform[500, 1500], multiplied by a Dirichlet-distributed random variable with parameter
α1K , where α ∈ {0.3, 1.2, 3, 4, 5}. For each distinct combination of (SNR, C, α), we generate
4 independent graph instances. All parameter combinations considered, the resulting training set
comprises 4,500 graph instances.

The test set is constructed using combinations of SNR values from {0.25, 0.5, 0.75, 1, 1.5} and
C values from {5, 10, 15} for K = 2, {15, 20, 25} for K = 4, and {25, 30, 35} for K = 8. For
each value ofK, we define four prototypical class-size vectors, {n(1),n(2),n(3),n(4)}, representing
a range from balanced to extremely imbalanced community sizes. The specific community size
vectors for each K are as follows:

K = 2 :{n(1),n(2),n(3),n(4)} = {[500, 500]⊤, [600, 400]⊤, [700, 300]⊤, [800, 200]⊤},
K = 4 :{n(1),n(2),n(3),n(4)} = {[250, 250, 250, 250]⊤, [300, 250, 250, 200]⊤,

[400, 300, 200, 100]⊤, [700, 100, 100, 100]⊤}
K = 8 :{n(1),n(2),n(3),n(4)} = {[125, 125, 125, 125, 125, 125, 125, 125]⊤,

[150, 125, 125, 125, 125, 125, 125, 100]⊤, [200, 180, 160, 140, 120, 100, 80, 20]⊤,

[650, 50, 50, 50, 50, 50, 50, 50]⊤}.

For each distinct combination of (SNR, C,n), we generate 30 independent graph instances from
SBM(n, p, q), yielding 1,800 graphs in the test set.

Our two-stage GNN is configured as follows: The first-period GNN has 30 layers, 16 features, and
h = 1. The second-period GNNs are built with 3 layers, 8 features, and h = 0.

Table 4 presents the complete performance of the base and two-stage GNNs, with results grouped
by SNR and community size vector n.

Takeaways. Overall, we observe that accuracy increases monotonically with SNR, and quickly
saturates for smaller K. The two-stage GNN consistently delivers substantial gains in more chal-
lenging regimes, specifically with larger community counts (K=8) and low-to-moderate SNR. For
instance, at K = 8 and SNR = 0.75, the two-stage model improves accuracy from 77.1% to 82.7%
for balanced communities (n(1)), and from 87.8% to 94.7% for moderately imbalanced communi-
ties (n(3)). This improvement is also accompanied by a reduction in variance, as seen in the n(3)

case where the standard deviation decreases from 1.05 to 0.66.

In easier regimes, such as with small K and high SNR (≥ 0.75), improvements are negligible due
to ceiling effects. We also observe a slight performance decrease in a few cases under extreme class
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Table 4: Test accuracy of base and two-stage GNNs on the SBM. Note: All values are percentages,
reported in the mean (standard deviation) format.

n SNR K = 2 K = 4 K = 8
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 52.8 (3.26) 52.9 (3.34) 47.2 (13.2) 50.3 (16.1) 44.1 (1.13) 50.4 (2.16)
0.50 94.8 (1.91) 95.4 (1.35) 93.6 (1.20) 95.5 (0.45) 70.5 (1.10) 77.7 (1.05)
0.75 98.8 (0.06) 99.0 (0.05) 98.9 (0.18) 99.0 (0.08) 77.1 (0.76) 82.7 (0.73)
1.00 99.6 (0.05) 99.7 (0.05) 99.7 (0.11) 99.8 (0.04) 78.5 (1.42) 83.5 (0.20)
1.50 100 (0.00) 100 (0.02) 99.9 (0.17) 100 (0.01) 81.5 (1.35) 83.1 (1.33)

n(2)

0.25 73.1 (8.43) 75.0 (7.03) 57.7 (10.7) 62.8 (11.6) 47.9 (0.57) 54.4 (1.55)
0.50 96.1 (0.15) 96.4 (0.17) 94.7 (0.05) 96.0 (0.38) 71.6 (0.47) 81.3 (0.77)
0.75 98.9 (0.02) 99.0 (0.05) 99.0 (0.12) 99.0 (0.03) 79.0 (1.31) 85.5 (0.55)
1.00 99.7 (0.03) 99.7 (0.03) 99.6 (0.25) 99.8 (0.05) 81.2 (0.81) 87.6 (1.10)
1.50 100 (0.01) 100 (0.01) 100 (0.06) 100 (0.01) 81.9 (1.59) 86.5 (0.66)

n(3)

0.25 81.4 (4.15) 83.0 (3.01) 77.4 (2.77) 80.4 (1.54) 68.3 (1.83) 72.9 (1.71)
0.50 96.3 (0.16) 96.6 (0.05) 96.2 (0.14) 96.6 (0.13) 83.5 (0.50) 89.7 (0.99)
0.75 98.9 (0.03) 99.1 (0.05) 98.9 (0.10) 99.0 (0.07) 87.8 (1.05) 94.7 (0.66)
1.00 99.7 (0.01) 99.7 (0.04) 99.6 (0.09) 99.7 (0.08) 88.8 (0.33) 95.5 (0.35)
1.50 100 (0.02) 100 (0.02) 100 (0.01) 100 (0.01) 90.4 (1.26) 97.2 (0.36)

n(4)

0.25 86.3 (2.20) 87.2 (1.64) 80.2 (0.40) 79.7 (0.65) 51.8 (4.61) 59.4 (7.98)
0.50 96.9 (0.11) 97.2 (0.05) 84.6 (0.20) 85.7 (0.34) 56.5 (5.05) 63.5 (5.14)
0.75 99.1 (0.03) 99.2 (0.04) 89.1 (0.82) 91.2 (0.53) 63.8 (9.09) 70.6 (5.81)
1.00 99.7 (0.02) 99.7 (0.03) 93.0 (0.84) 94.4 (0.40) 69.6 (5.95) 76.4 (1.81)
1.50 100 (0.01) 100(0.01) 97.5 (0.38) 97.3 (0.45) 80.0 (4.06) 85.7 (6.31)

imbalance (e.g., atK = 4, n(4) and SNR = 0.25), where the base model marginally outperforms the
two-stage model. This behavior is likely due to majority-class drift during the self-training phase.

I.2 SYNTHETIC EXPERIMENTS ON MIXED

To assess our model’s robustness to model mis-specification and its generalization capabilities, we
conducted experiments with three distinct training datasets: SBM, a combination of SBM and
DCBM, and a combination of SBM, DCBM, and LSM. The trained models were then evaluated
on SBM, DCBM, and LSM test sets. The GNN architecture for this study is configured identically
to the one used in our synthetic SBM experiments, as described in Appendix I.1.

SBM+DCBM training data. For a fixed K and each (C, SNR, α), we draw one graph from
SBM or DCBM with equal probability. We set p = (a logn)/n and q = (b logn)/n, where
(a, b) are uniquely determined by C = a + (K − 1)b and SNR = (a − b)2/[K(a + (K − 1)b)]
under a > b > 0. We form the block matrix B with Brr = p and Brs = q for r ̸= s, and
then inject structured heterogeneity as follows: apply a mild diagonal jitter Brr ← Brr · exp(ξr)
with ξr ∼ Unif[−σp, σp] (we use σp = 0.08); and apply an off–diagonal multiplicative mask
Brs ← Brs ·Mrs for r ̸= s, where Mrr = 1 and the off–diagonal entries are symmetrized and
renormalized so that mean r<sMrs = 1. Unless otherwise noted, we adopt a low–rank mask M =
σ(α0 + UU⊤) with U ∈ RK×d, d = 2, α0 = 0, and logistic σ(·); an optional fixed seed can be
used to control randomness. For ablations, we also consider lognormal masks M = exp(G) with
symmetric Gaussian G of s.d. σm = 0.35, beta masks with entrywise Beta(a, b) using (a, b) =
(2, 6), and a tiered mask where communities are partitioned into three groups (default equal sizes)
andMrs = τg(r),g(s) with τ = 1+sR, symmetricR ∼ N (0, 0.25), and scale s = 0.6; all masks are
symmetrized and renormalized as above. In the DCBM case, node factors {θi} are sampled i.i.d.
from Γ(κ, 1/κ) with κ drawn log–uniformly from [1.5, 3]. For each K, the training set contains
4,500 graphs.

Latent Space Model In the LSM, the edge probability between nodes i and j is

Pij = sigmoid
(
bi + bj + ϕ⊤

i ϕj

)
, bi ∼ N (b̄, 1), ϕi ∼ N (µσi , τ

2I).
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The global bias b̄ satisfies exp(2b̄) = C logn/n. To construct community embeddings
µ(1), . . . ,µ(K), we sample K vectors uniformly on the K-simplex and scale by s > 0 to con-
trol separation. This yields approximate within/between-community probabilities

p ≈ sigmoid(2b̄+ s2), q ≈ sigmoid
(
2b̄− s2

K − 1

)
,

and we tune s to match a target SNR = n (p− q)2
/(
log n ·K(p+ (K − 1)q)

)
.

To induce additional heterogeneity, we apply community-wise multipliers r to the embeddings:
r = [1.0, 1.2] for K = 2, [0.8, 0.9, 1.0, 1.1] for K = 4, and an arithmetic sequence from 0.85 to 1.2
for K = 8.

SBM+DCBM+LSM training data We vary τ ∈ {0, 0.25, 0.5}. When τ > 0 the graphs follow
the LSM; when τ = 0 the model reduces to DCBM. In particular, setting bi ∼ N (b̄, 1) yields
DCBM, while bi ≡ b̄ recovers SBM. For each fixed K, we assemble a training set of 4,800 graphs
by sampling 10 log-spaced SNR ∈ [0.5, 3], 10 values of C ∈ [3K, 9K], α ∈ {0.3, 1.2, 3, 5} for the
Dirichlet size prior, and four independent realizations per (SNR, C, α, τ).

Test data To comprehensively assess performance, we evaluate the models on three distinct test
sets, each comprising 1,800 graphs per K.

For the SBM and DCBM test sets, we maintain the same configurations of C, SNR, and n as in the
first experiment. For each parameter combination (C,SNR,n), we generate 30 independent graph
instances from the SBM and another 30 from the DCBM. The degree correction parameters for the
DCBM are sampled in the same manner as during the training phase.

The LSM test data is constructed as follows. We generate test graphs with τ = 0.25 and the same r
multipliers as in training. For each K, we take SNR ∈ {0.25, 0.5, 0.75, 1, 1.5} and C ∈ {5, 10, 15}
for K = 2, {15, 20, 25} for K = 4, and {25, 30, 35} for K = 8, and the four n(m) above. For each
(SNR, C,n) we draw 30 i.i.d. graphs, yielding 1,800 test graphs per K.

Next, Tables 5, 6, and 7 present detailed results for our synthetic experiments on mixed models. The
results are stratified by community-size configuration and SNR. The columns labeled ’DCBM’ and
’LSM’ represent models trained on SBM+DCBM and SBM+DCBM+LSM data, respectively. The
accuracy values shown are averaged over three distinct test datasets generated from SBM, DCBM,
and LSM.

Takeaways. As shown in Table 5, 6 and 7, our two-stage GNN consistently outperforms the
base model across all tables. This advantage becomes particularly clear as the problem complexity
increases, as seen with larger community counts (K=8) and smaller SNR. While our models show
a performance drop on these test sets compared to the model trained on SBM dataset, we attribute
this to the training strategy. With a fixed training set size, introducing more diverse graph models
(SBM+DCBM+LSM) reduces the parameter coverage for each individual model. This trade-off
can limit the model’s ability to perfectly capture the nuances of each graph type, resulting in lower
overall test accuracy, yet our two-stage architecture still manages to extract a performance gain.

I.3 REAL DATA EXPERIMENTS

We adopt two training settings—SBM, a mixture of SBM and DCBM —and train both first- and
second-period GNNs under each.For the first-period GNN, we use 30 layers with 16 features and
h=1 when K ∈ {2, 4}, and 30 layers with 32 features and h=1 when K ∈ {8, 9}. For the second-
period GNN, we adopt a lighter architecture: 3 layers with 8 features and h=0 when K ∈ {2, 4},
and 3 layers with 16 features and h=0 when K ∈ {8, 9}.
We evaluate on five real-world networks: the Political Blog network (1,222 nodes, 16,714 edges,
2 communities; Adamic & Glance (2005)); Simmons College (1,137 nodes, 24,257 edges, 4 com-
munities) and Caltech (590 nodes, 12,822 edges, 8 communities; Traud et al. (2011; 2012)), both
preprocessed following Chen et al. (2018); a manufacturing company network (74 nodes, 235 edges,
4 communities; Weng & Feng (2022)); and the French high school friendship network (329 nodes,
5,818 edges, 9 communities; Mastrandrea et al. (2015)). Table 3 reports accuracy (%) across these
datasets.
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Table 5: Accuracy (%) by class sizes and SNR for K = 2; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 54.6 (6.8) 55.6 (6.6) 53.7 (5.3) 54.1 (6.4) 51.1 (2.0) 50.9 (2.4)
0.5 87.4 (14.2) 90.5 (11.2) 63.2 (18.9) 63.4 (19.8) 53.7 (8.9) 53.8 (10.1)
0.75 89.6 (18.3) 94.3 (9.3) 66.7 (21.4) 66.1 (22.0) 57.0 (12.9) 57.1 (14.3)
1.0 94.2 (14.1) 98.1 (4.6) 72.0 (21.8) 70.6 (22.3) 58.6 (15.7) 58.8 (17.0)
1.5 97.8 (6.4) 99.9 (0.1) 80.4 (22.0) 78.6 (22.1) 60.9 (17.0) 61.1 (18.3)

n(2)

0.25 70.4 (9.9) 72.7 (9.2) 62.9 (5.4) 63.7 (5.9) 59.6 (1.3) 60.3 (0.7)
0.5 89.0 (14.8) 92.0 (10.0) 70.5 (16.1) 70.8 (16.2) 61.9 (6.1) 62.8 (6.4)
0.75 91.3 (16.0) 95.4 (8.1) 73.6 (17.6) 74.2 (17.4) 63.6 (9.6) 64.4 (9.7)
1.0 95.5 (11.2) 99.2 (1.5) 78.4 (18.0) 78.0 (18.2) 65.5 (11.5) 66.6 (11.8)
1.5 98.6 (4.1) 100.0 (0.0) 85.1 (16.8) 83.3 (17.7) 67.4 (13.4) 68.4 (13.7)

n(3)

0.25 76.6 (10.8) 78.0 (10.7) 71.0 (3.3) 71.8 (3.2) 69.0 (1.9) 70.3 (1.0)
0.5 89.6 (13.6) 91.8 (9.2) 77.1 (10.9) 77.4 (10.9) 70.9 (5.8) 72.3 (5.3)
0.75 93.5 (11.7) 96.8 (4.6) 80.1 (12.2) 80.2 (12.4) 72.0 (6.9) 73.2 (6.6)
1.0 96.1 (9.0) 98.9 (2.2) 83.2 (13.2) 82.9 (13.5) 73.1 (8.6) 74.7 (8.3)
1.5 97.3 (7.8) 99.7 (0.8) 88.3 (12.2) 88.1 (12.7) 75.4 (11.0) 76.8 (10.6)

n(4)

0.25 80.4 (12.6) 80.6 (13.9) 78.9 (1.5) 79.7 (0.3) 77.7 (2.7) 79.7 (0.7)
0.5 89.1 (15.0) 89.1 (15.6) 82.9 (5.6) 83.6 (5.4) 78.9 (3.6) 80.9 (2.1)
0.75 92.2 (14.6) 92.8 (13.6) 85.2 (7.3) 85.5 (7.1) 79.4 (3.9) 81.2 (2.7)
1.0 94.3 (13.5) 95.5 (11.8) 87.5 (8.3) 87.5 (8.2) 80.3 (5.6) 82.2 (4.4)
1.5 95.5 (13.0) 96.1 (11.3) 91.0 (8.4) 90.9 (8.0) 81.9 (6.4) 83.5 (5.8)

From the table 8,Models trained on SBM+DCBM consistently outperform those trained solely on
SBM. This is because real-world networks often exhibit heterogeneity, a structure not adequately
captured by SBM-only training. By incorporating DCBM, the model learns to recognize this het-
erogeneity, which enhances its generalization ability to real data. Furthermore, applying the second-
period GNN reliably improves performance on these datasets by performing local refinement to
achieve more accurate community assignments.
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Table 6: Accuracy (%) by class sizes and SNR for K = 4; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 54.7 (9.1) 59.6 (10.2) 36.5 (13.7) 36.8 (15.6) 26.0 (0.7) 26.0 (0.8)
0.5 91.8 (4.0) 94.5 (2.1) 56.5 (24.2) 57.8 (25.5) 26.7 (2.0) 26.9 (1.7)
0.75 97.4 (2.3) 98.3 (1.2) 69.8 (24.0) 72.4 (23.1) 27.6 (4.0) 27.8 (3.4)
1.0 98.0 (2.8) 99.0 (1.5) 80.0 (17.1) 83.0 (16.9) 29.6 (7.4) 30.7 (7.7)
1.5 99.5 (0.9) 99.9 (0.3) 90.6 (6.0) 93.8 (4.1) 35.1 (13.7) 37.2 (13.8)

n(2)

0.25 62.8 (7.4) 68.1 (7.3) 39.3 (13.2) 40.4 (14.8) 29.9 (0.4) 29.8 (0.2)
0.5 94.1 (1.7) 95.8 (0.7) 59.2 (22.8) 61.2 (23.8) 30.2 (0.9) 30.1 (0.3)
0.75 98.5 (0.7) 99.0 (0.2) 74.8 (21.5) 76.6 (21.9) 30.7 (2.3) 30.7 (1.3)
1.0 99.5 (0.7) 99.7 (0.2) 83.7 (15.4) 86.3 (14.6) 32.3 (5.4) 32.9 (5.7)
1.5 99.8 (0.3) 100.0 (0.0) 93.2 (5.2) 95.5 (3.1) 35.0 (9.2) 36.4 (10.2)

n(3)

0.25 77.9 (2.1) 80.2 (1.8) 52.0 (13.4) 53.6 (14.0) 39.2 (1.2) 39.0 (1.1)
0.5 94.9 (1.2) 95.8 (0.6) 71.6 (18.5) 74.3 (17.1) 39.3 (1.1) 39.2 (1.2)
0.75 98.2 (0.6) 98.7 (0.3) 80.6 (15.7) 83.0 (14.4) 39.7 (1.5) 39.7 (1.6)
1.0 99.3 (0.3) 99.5 (0.2) 87.3 (9.9) 89.7 (9.3) 40.6 (3.4) 40.6 (3.6)
1.5 99.8 (0.2) 99.9 (0.0) 93.0 (5.3) 95.5 (3.2) 42.7 (6.6) 43.8 (7.1)

n(4)

0.25 74.0 (9.5) 75.8 (6.1) 63.8 (9.0) 65.5 (8.2) 65.6 (5.7) 63.3 (7.3)
0.5 83.1 (4.3) 84.8 (2.0) 69.9 (11.4) 69.8 (13.5) 66.2 (5.4) 63.3 (8.3)
0.75 88.4 (1.9) 90.3 (1.6) 73.9 (12.1) 74.5 (14.0) 66.5 (5.1) 62.6 (8.9)
1.0 92.7 (2.0) 94.3 (1.7) 76.8 (12.4) 78.6 (13.1) 67.0 (4.7) 63.6 (9.0)
1.5 97.2 (1.2) 97.7 (0.9) 81.8 (12.5) 85.2 (10.7) 67.8 (4.6) 63.8 (8.8)

Table 7: Accuracy (%) by class sizes and SNR for K = 8; columns group three test models with
subcolumns Base/ Two-stage.

n SNR SBM DCBM LSM
Base Two-stage Base Two-stage Base Two-stage

n(1)

0.25 40.6 (7.8) 47.1 (8.0) 26.7 (8.9) 31.9 (12.2) 15.0 (1.2) 14.2 (1.5)
0.5 65.5 (7.5) 77.3 (2.3) 43.9 (13.0) 55.3 (17.1) 15.4 (1.6) 14.7 (2.1)
0.75 73.0 (4.0) 83.6 (3.0) 55.5 (10.3) 68.0 (12.4) 15.9 (2.2) 15.3 (2.9)
1.0 75.0 (3.0) 84.3 (4.8) 62.7 (7.4) 74.8 (9.3) 17.4 (3.8) 17.4 (5.1)
1.5 78.2 (3.0) 85.2 (6.0) 69.9 (5.7) 79.3 (7.9) 19.1 (5.7) 20.0 (7.9)

n(2)

0.25 43.1 (8.8) 49.9 (8.9) 27.5 (8.4) 32.4 (11.5) 16.0 (0.6) 15.7 (0.6)
0.5 66.6 (8.6) 79.1 (3.6) 44.6 (12.9) 56.3 (15.5) 16.4 (1.1) 16.1 (1.0)
0.75 74.0 (5.4) 85.2 (1.4) 56.2 (10.7) 69.2 (12.3) 16.8 (1.4) 16.6 (1.6)
1.0 76.6 (4.0) 87.5 (3.5) 64.2 (7.0) 75.5 (8.3) 17.6 (2.5) 18.2 (3.4)
1.5 78.8 (2.5) 87.1 (4.4) 70.6 (6.1) 80.3 (6.7) 19.1 (4.1) 19.8 (5.1)

n(3)

0.25 60.6 (12.3) 66.8 (10.2) 40.1 (9.5) 46.5 (12.2) 20.1 (0.2) 20.2 (0.1)
0.5 79.7 (5.4) 87.2 (3.6) 60.4 (9.7) 70.2 (9.9) 20.2 (0.1) 20.4 (0.4)
0.75 85.0 (2.8) 92.6 (1.8) 70.7 (6.4) 78.5 (7.1) 20.6 (0.5) 20.9 (0.8)
1.0 86.3 (2.1) 93.6 (1.7) 75.3 (5.7) 83.1 (6.0) 20.9 (1.0) 21.6 (1.6)
1.5 87.7 (2.2) 95.0 (2.1) 80.6 (3.5) 88.3 (3.4) 22.2 (2.2) 23.4 (3.7)

n(4)

0.25 62.8 (10.0) 61.5 (8.3) 62.6 (4.8) 64.7 (2.0) 52.5 (8.2) 58.9 (6.8)
0.5 69.0 (9.9) 71.2 (6.6) 70.5 (3.0) 70.7 (2.9) 53.1 (8.6) 59.7 (5.9)
0.75 73.1 (8.6) 75.7 (5.0) 73.2 (3.4) 73.6 (4.0) 55.4 (6.6) 61.0 (4.8)
1.0 76.4 (6.6) 78.8 (2.3) 75.2 (3.9) 76.2 (5.0) 57.9 (4.7) 63.0 (2.6)
1.5 81.6 (4.0) 83.8 (3.7) 77.5 (4.6) 78.8 (5.1) 59.0 (4.0) 64.2 (2.0)
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Table 8: Real-world evaluation: accuracy (%) across five datasets. Stage-2 applies the second period
GNN.

Dataset SBM SBM+DCBM
Base Two-stage Base Two-stage

Political Blog 89.2% 93.3% 94.8% 95.3%
Simmons 73.0% 73.7% 73.3% 77.5%
Caltech 46.9% 62.7% 70.3% 74.6%
Company 94.5% 94.5% 94.5% 96.0%
High school 73.6% 85.4% 89.4% 98.5%
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