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Abstract

Nonsmooth nonconvex optimization problems broadly emerge in machine learning
and business decision making, whereas two core challenges impede the develop-
ment of efficient solution methods with finite-time convergence guarantee: the lack
of computationally tractable optimality criterion and the lack of computationally
powerful oracles. The contributions of this paper are two-fold. First, we establish
the relationship between the celebrated Goldstein subdifferential [46] and uniform
smoothing, thereby providing the basis and intuition for the design of gradient-free
methods that guarantee the finite-time convergence to a set of Goldstein stationary
points. Second, we propose the gradient-free method (GFM) and stochastic GFM
for solving a class of nonsmooth nonconvex optimization problems and prove that
both of them can return a (J, €)-Goldstein stationary point of a Lipschitz function
f at an expected convergence rate at O(d®/25~'e~*) where d is the problem di-
mension. Two-phase versions of GFM and SGFM are also proposed and proven to
achieve improved large-deviation results. Finally, we demonstrate the effectiveness
of 2-SGFM on training ReL.U neural networks with the MINST dataset.

1 Introduction

Many of the recent real-world success stories of machine learning have involved nonconvex opti-
mization formulations, with the design of models and algorithms often being heuristic and intuitive.
Thus a gap has arisen between theory and practice. Attempts have been made to fill this gap for
different learning methodologies, including the training of multi-layer neural networks [25], orthogo-
nal tensor decomposition [41], M-estimators [63, 64], synchronization and MaxCut [6, 66], smooth
semidefinite programming [15], matrix sensing and completion [10, 42], robust principal component
analysis (RPCA) [43] and phase retrieval [82, 79, 64]. For an overview of nonconvex optimization
formulations and the relevant ML applications, we refer to a recent survey [51].

It is generally intractable to compute an approximate global minimum [69] or to verify whether a point
is a local minimum or a high-order saddle point [67]. Fortunately, the notion of approximate stationary
point gives a reasonable optimality criterion when the objective function fis smooth; the goal here is
to find a point x € R? such that ||V f(x)|| < . Recent years have seen rapid algorithmic development
through the lens of nonasymptotic convergence rates to e-stationary points [70, 44, 45, 20, 21, 53].
Another line of work establishes algorithm-independent lower bounds [22, 23, 3, 4].

Relative to its smooth counterpart, the investigation of nonsmooth optimization is relatively scarce,
particularly in the nonconvex setting, both in terms of efficient algorithms and finite-time convergence
guarantees. Yet, over several decades, nonsmooth nonconvex optimization formulations have found
applications in many fields. A typical example is the training multi-layer neural networks with ReLU
neurons, for which the piecewise linear activation functions induce nonsmoothness. Another example
arises in controlling financial risk for asset portfolios or optimizing customer satisfaction in service
systems or supply chain systems. Here, the nonsmoothness arises from the payoffs of financial
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derivatives and supply chain costs, e.g., options payoffs [38] and supply chain overage/underage
costs [78]. These applications make significant demands with respect to computational feasibility,
and the design of efficient algorithms for solving nonsmooth nonconvex optimization problems has
moved to the fore [65, 30, 28, 85, 12, 31, 80].

The key challenges lie in two aspects: (i) the lack of a computationally tractable optimality criterion,
and (ii) the lack of computationally powerful oracles. More specifically, in the classical setting where
the function f is Lipschitz, we can define e-stationary points based on the celebrated notion of Clarke
stationarity [26]. However, the value of such a criterion has been called into question by Zhang
et al. [85], who show that no finite-time algorithm guarantees e-stationarity when e is less than a
constant. Further, the computation of the gradient is impossible for many application problems and
we only have access to a noisy function value at each point. This is a common issue in the context of
simulation optimization [68, 48]; indeed, the objective function value is often achieved as the output
of a black-box or complex simulator, for which the simulator does not have the infrastructure needed
to effectively evaluate gradients; see also Ghadimi and Lan [44] and Nesterov and Spokoiny [72] for
comments on the lack of gradient evaluation in practice.

Contribution. In this paper, we propose and analyze a class of deterministic and stochastic gradient-
free methods for nonsmooth nonconvex optimization problems in which we only assume that the
function f is Lipschitz. Our contributions can be summarized as follows.

1. We establish a relationship between the Goldstein subdifferential and uniform smoothing via
appeal to the hyperplane separation theorem. This result provides the basis for algorithmic
design and finite-time convergence analysis of gradient-free methods to (9, €)-Goldstein
stationary points.

2. We propose and analyze a gradient-free method (GFM) and stochastic GFM for solving a
class of nonsmooth nonconvex optimization problems. Both of these methods are guaranteed
to return a (6, €)-Goldstein stationary point of a Lipschitz function f : R? + R with an
expected convergence rate of O(d3/ 25=1e=*) where d > 1 is the problem dimension.
Further, we propose the two-phase versions of GFM and SGFM. As our goal is to return a
(0, €)-Goldstein stationary point with user-specified high probability 1 — A, we prove that
the two-phase version of GFM and SGFM can improve the dependence from (1/A)? to
log(1/A) in the large-deviation regime.

Related works. Our work is related to a line of literature on gradient-based methods for nonsmooth
and nonconvex optimization and gradient-free methods for smooth and nonconvex optimization.
Due to space limitations, we defer our comments on the former topic to Appendix A. In the context
of gradient-free methods, the basic idea is to approximate a full gradient using either a one-point
estimator [39] or a two-point estimator [1, 44, 37, 75, 72], where the latter approach achieves a
better finite-time convergence guarantee. Despite the meteoric rise of two-point-based gradient-free
methods, most of the work is restricted to convex optimization [37, 75, 83] and smooth and nonconvex
optimization [72, 44, 61, 62, 24, 52, 49]. For nonsmooth and convex optimization, the best upper
bound on the global rate of convergence is O(de*Q) [75] and this matches the lower bound [37].
For smooth and nonconvex optimization, the best global rate of convergence is O(de~?) [72] and
O(de=*) if we only have access to noisy function value oracles [44]. Additional regularity conditions,
e.g., a finite-sum structure, allow us to leverage variance-reduction techniques [62, 24, 52] and the
best known result is O(d%/%¢=3) [49]. However, none of these gradient-free methods have been
developed for nonsmooth nonconvex optimization and the only gradient-free method we are aware of
for the nonsmooth is summarized in Nesterov and Spokoiny [72, Section 7].

2 Preliminaries and Technical Background

We provide the formal definitions for the class of Lipschitz functions considered in this paper, and
the definitions for generalized gradients and the Goldstein subdifferential that lead to optimality
conditions in nonsmooth nonconvex optimization.



2.1 Function classes

Imposing regularity on functions to be optimized is necessary for obtaining optimization algorithms
with finite-time convergence guarantees [71]. In the context of nonsmooth optimization there are two
types of regularity conditions: Lipschitz properties of function values and bounds on function values.

We first list several equivalent definitions of Lipschitz continuity. A function f : R? — R is said to
be L-Lipschitz if for every x € R? and the direction v € R with ||v| < 1, the directional projection
fxv(t) := f(x+tv) defined for t € R satisfies

|fxnv(t) = fxv(@) < LIt —t'|, forallt,t’ €R.
Equivalently, f is L-Lipschitz if for every x, x’ € R%, we have
[f(x) = F()] < Lljx — x|
Further, the function value bound f(x°) —inf,cga f(x) appears in complexity guarantees for smooth
and nonconvex optimization problems [71] and is often assumed to be bounded by a positive constant

A > 0. Note that x" is a prespecified point (i.e., an initial point for an algorithm) and we simply fix it
for the remainder of this paper. We define the function class which will be considered in this paper.

Definition 2.1 Suppose that A > 0 and L > 0 are both independent of the problem dimension d > 1.
Then, we denote F4(A, L) as the set of L-Lipschitz functions f : R — R with the bounded function
value f(x°) — infycpa f(x) < A.

The function class F,(A, L) includes Lipschitz functions on R? and is thus different from the
nonconvex function class considered in the literature [44, 72]. First, we do not impose a smoothness
condition on the function f € F;(A, L), in contrast to the nonconvex functions studied in Ghadimi
and Lan [44] which are assumed to have Lipschitz gradients. Second, Nesterov and Spokoiny [72,
Section 7] presented a complexity bound for a randomized optimization method for minimizing a
nonsmooth nonconvex function. However, they did not clarify why the norm of the gradient of the
approximate function f;; of the order § (we use their notation) serves as a reasonable optimality
criterion in nonsmooth nonconvex optimization. They also assume an exact function value oracle,
ruling out many interesting application problems in simulation optimization and machine learning.

In contrast, our goal is to propose fast gradient-free methods for nonsmooth nonconvex optimization
in the absence of an exact function value oracle. In general, the complexity bound of gradient-free
methods will depend on the problem dimension d > 1 even when we assume that the function to
be optimized is convex and smooth [37, 75]. As such, we should consider a function class with a
given dimension d > 1. In particular, we consider a optimality criterion based on the celebrated
Goldstein subdifferential [46] and prove that the number of function value oracles required by our
deterministic and stochastic gradient-free methods to find a (J, €)-Goldstein stationary point of
f e Fa(A,L)is O(poly(d, L, A,1/e,1/6)) when 6, € € (0,1) are constants (see the definition of
Goldstein stationarity in the next subsection).

It is worth mentioning that F;(A, L) contains a rather broad class of functions used in real-world
application problems. Typical examples with additional regularity properties include Hadamard semi-
differentiable functions [76, 32, 85], Whitney-stratifiable functions [13, 30], o-minimally definable
functions [27] and a class of semi-algebraic functions [5, 30]. Thus, our gradient-free methods can
be applied for solving these problems with finite-time convergence guarantees.

2.2 Generalized gradients and Goldstein subdifferential

We start with the definition of generalized gradients [26] for nondifferentiable functions. This is
perhaps the most standard extension of gradients to nonsmooth and nonconvex functions.

Definition 2.2 Given a point x € R? and a direction v € R, the generalized directional derivative
of a nondifferentiable function f is given by D f(x;v) := lim SUPy _yx.£10 M Then, the
generalized gradient of f is defined as a set 0f(x) := {g € R : gTv < Df(x;v),¥v € R4}

Rademacher’s theorem guarantees that any Lipschitz function is almost everywhere differentiable.
This implies that the generalized gradients of Lipschitz functions have additional properties and we
can define them in a relatively simple way. The following proposition summarizes these results; we
refer to Clarke [26] for the proof details.



Proposition 2.1 Suppose that f is L-Lipschitz for some L > 0, we have that Of (x) is a nonempty,
convex and compact set and ||g|| < L for all g € Of(x). Further, Of(-) is an upper-semicontinuous
set-valued map. Moreover; a generalization of mean-value theorem holds: for any x1,xy € R?, there
exist \ € (0,1) and g € Of(Ax1 + (1 — \)X2) such that f(x;) — f(x2) = g' (X1 — Xo). Finally,
there is a simple way to represent the generalized gradient 0 f(x):

Of (x) := conv {g cR?: g —xlkiglef(xk)},

which is the convex hull of all limit points of V f (x,) over all sequences x1,Xa, . .. of differentiable
points of f(-) which converge to x.

Given this definition of generalized gradients, a Clarke stationary point of f is a point x satisfying
0 € 9f(x). Then, it is natural to ask if an optimization algorithm can reach an e-stationary point with
a finite-time convergence guarantee. Here a point x € R is an e-Clarke stationary point if

min {||g]| : g € 9f(x)} <e.

This question has been addressed by [85, Theorem 1], who showed that finding an e-Clarke stationary
points in nonsmooth nonconvex optimization can not be achieved by any finite-time algorithm given
a fixed tolerance € € [0, 1). One possible response is to consider a relaxation called a near e-Clarke
stationary point. Consider a point which is §-close to an e-stationary point for some § > 0. A point
x € R? is near e-stationary if the following statement holds true:

min {[|g|| : g € Uyer,x)0.f(y)} <.

Unfortunately, however, [58, Theorem 1] demonstrated that it is impossible to obtain worst-case
guarantees for finding a near e-Clarke stationary point of f € F4(A, L) when ¢,6 > 0 are smaller
than some certain constants unless the number of oracle calls has an exponential dependence on the
problem dimension d > 1. These negative results suggest a need for rethinking the definition of
targeted stationary points. We propose to consider the refined notion of Goldstein subdifferential.

Definition 2.3 Given a point x € R? and § > 0, the §-Goldstein subdifferential of a Lipschitz
function f at x is given by 05 f (x) := conv(Uycp, x)0f (¥))-

The Goldstein subdifferential of f at x is the convex hull of the union of all generalized gradients at
points in a §-ball around x. Accordingly, we can define the (J, €)-Goldstein stationary points; that is,
a point x € R? is a (6, €)-Goldstein stationary point if the following statement holds:

min{|lg|| : g € 05 f (%)} < €.

It is worth mentioning that (, €)-Goldstein stationarity is a weaker notion than (near) e-Clarke
stationarity since any (near) e-stationary point is a (4, €)-Goldstein stationary point but not vice
versa. However, the converse holds true under a smoothness condition [85, Proposition 6] and
lims o Os f(x) = O f(x) holds as shown in Zhang et al. [85, Lemma 7]. The latter result also enables
an intuitive framework for transforming nonasymptotic analysis of convergence to (9, €)-Goldstein
stationary points to classical asymptotic results for finding e-Clarke stationary points. Thus, we
conclude that finding a (4, €)-Goldstein stationary point is a reasonable optimality condition for
general nonsmooth nonconvex optimization.

Remark 2.2 Finding a (0, €)-Goldstein stationary point in nonsmooth nonconvex optimization has
been formally shown to be computationally tractable in an oracle model [85, 31, 80]. Goldstein
[46] discovered that one can decrease the function value of a Lipschitz f by using the minimal-norm
element of 05 f (x) and this leads to a deterministic normalized subgradient method which finds a
(6, €)-Goldstein stationary point within O (%) iterations. However, Goldstein’s algorithm is only
conceptual since it is computationally intractable to return an exact minimal-norm element of Os f (X).
Recently, the randomized variants of Goldstein’s algorithm have been proposed with a convergence
guarantee of O(A&L;) [85, 31, 80]. However; it remains unknown if gradient-free methods find a
(9, €)-Goldstein stationary point of a Lipschitz function f within O(poly(d, L, A, 1/e,1/9)) iterations
in the absence of an exact function value oracle. Note that the dependence on the problem dimension
d > 1 is necessary for gradient-free methods as mentioned before.




2.3 Randomized smoothing

The randomized smoothing approaches are simple and work equally well for convex and nonconvex
functions. Formally, given the L-Lipschitz function f (possibly nonsmooth nonconvex) and a
distribution P, we define f5(x) = Eyp[f(x + du)]. In particular, letting P’ be a standard Gaussian

distribution, the function f;s is a § L\/d-approximation of f(-) and the gradient V f5 is LT‘/E-Lipschitz
where d > 1 is the problem dimension; see Nesterov and Spokoiny [72, Theorem 1 and Lemma 2].
Letting P be an uniform distribution on an unit ball in /5-norm, the resulting function f5 is a § -

approximation of f(-) and V fs is also %-Lipschitz where d > 1 is the problem dimension;
see Yousefian et al. [84, Lemma 8] and Duchi et al. [36, Lemma E.2], rephrased as follows.

Proposition 2.3 Ler f5(x) = Eyp[f(x + du)] where P is an uniform distribution on an unit ball in
ly-norm. Assuming that f is L-Lipschitz, we have (i) | f5(x) — f(x)| < 0L, and (ii) 5 is differentiable

and L-Lipschitz with the %-Lipschitz gradient where ¢ > (0 is a constant. In addition, there exists
a function f for which each of the above bounds are tight simultaneously.

The randomized smoothing approaches form the basis for developing gradient-free methods [39, 1,
2,44, 72]. Given an access to function values of f, we can compute an unbiased estimate of the
gradient of fs5 and plug them into stochastic gradient-based methods. Note that the Lipschitz constant
of f5 depends on the problem dimension d > 1 with at least a factor of v/d for many randomized
smoothing approaches [58, Theorem 2]. This is consistent with the lower bounds for all gradient-free
methods in convex and strongly convex optimization [37, 75].

3 Main Results

We establish a relationship between the Goldstein subdifferential and the uniform smoothing approach.
We propose a gradient-free method (GFM), its stochastic variant (SGFM), and a two-phase version
of GFM and SGFM. We analyze these algorithms using the Goldstein subdifferential; we provide the
global rate and large-deviation estimates in terms of (4, €)-Goldstein stationarity.

3.1 Linking Goldstein subdifferential to uniform smoothing

Recall that 05 f and f; are defined by 05 f(x) := conv(Uyep, (x)0f(y)) and f5(x) = Eu~p[f(x +
du)]. It is clear that f is almost everywhere differentiable since f is L-Lipschitz. This implies that
Vf5(x) = Eu~p[V f(x + 0u)] and demonstrates that V f5(x) can be viewed intuitively as a convex
combination of V f(z) over an infinite number of points z € Bs(x). As such, it is reasonable to
conjecture that V f5(x) € 95 f(x) for any x € R%. However, the above argument is not a rigorous
proof; indeed, we need to justify why V f5(x) = Eup[Vf(x + du)] if f is almost everywhere
differentiable and generalize the idea of a convex combination to include infinite sums. To resolve
these issues, we exploit a toolbox due to Rockafellar and Wets [74].

In the following theorem, we summarize our result and refer to Appendix C for the proof details.

Theorem 3.1 Suppose that f is L-Lipschitz and let fs(x) = Eyp[f(x + du)], where P is an
uniform distribution on a unit ball in 5-norm and let Os f be a 0-Goldstein subdifferential of f (cf.
Definition 2.3). Then, we have V f5(x) € 05 f(x) for any x € R%.

Theorem 3.1 resolves an important question and forms the basis for analyzing our gradient-free
methods. Notably, our analysis can be extended to justify other randomized smoothing approaches
in nonsmooth nonconvex optimization. For example, Nesterov and Spokoiny [72] used Gaussian
smoothing and estimated the number of iterations required by their methods to output x € R?
satisfying ||V f5(X)|| < e. By modifying the proof of Theorem 3.1 and Zhang et al. [85, Lemma 7], we
can prove that V f;5 belongs to Goldstein subdifferential with Gaussian weights and this subdifferential
converges to the Clarke subdifferential as § — 0. Compared to uniform smoothing and the original
Goldstein subdifferential, the proof for Gaussian smoothing is quite long and technical [72, Page
554], and adding Gaussian weights seems unnatural in general.



Algorithm 1 Gradient-Free Method (GFM)

1: Input: initial point x° € R, stepsize 7 > 0, problem dimension d > 1, smoothing parameter § and
iteration number 7" > 1.
fort =0,1,2,...,7T — 1do
Sample w* € R? uniformly from a unit sphere in R?.
Compute g' = £ (f(x" 4+ ow') — f(x' — ow"))w".
Compute xt = x' —ngt.
: Output: x* where R € {0,1,2,...,7 — 1} is uniformly sampled.

AN

Algorithm 2 Two-Phase Gradient-Free Method (2-GFM)

1: Input: initial point x° € R<, stepsize 1 > 0, problem dimension d > 1, smoothing parameter §, iteration
number 7" > 1, number of rounds S > 1 and sample size B.

2: fors=0,1,2,...,5—1do

3:  Call Algorithm 1 with x°, 7, d, § and T and let X be an output.

4: fors =0,1,2,...,S—1do

50 fork=0,1,2,...,B—1do

6: Sample w* € R? uniformly from a unit sphere in R<.

7: Compute gf = %(f(x9 + Swh ) — f(&xs — dwk))wk.

8: Computeg, = & S r_, 9

9: Choose an index s* € {0,1,2,...,S5 — 1} such that s* = argmin,_, ;5 ¢ [I8s]|-
10: Output: X¢*.

3.2 Gradient-free methods

We analyze a gradient-free method (GFM) and its two-phase version (2-GFM) for optimizing a
Lipschitz function f. Due to space limitations, we defer the proof details to Appendix D.

Global rate estimation. Let f : R? — R be a L-Lipschitz function and the smooth version of f
is then the function f5 = Ey~p[f(x 4+ du)] where P is an uniform distribution on an unit ball in
£2-norm. Equipped with Lemma 10 from Shamir [75], we can compute an unbiased estimator for the
gradient V f5(x") using function values.

This leads to the gradient- free method (GFM) in Algorithm 1 that simply performs a one-step
gradient descent to obtain x?. It is worth mentioning that we use a random iteration count R to
terminate the execution of Algorithm 1 and this will guarantee that GFM is valid. Indeed, we only
derive that min;—; o 7 ||V fs(x")|| < € in the theoretical analysis (see also Nesterov and Spokoiny
[72, Section 7]) and finding the best solution from {x1 X2, 7xT} is difficult since the quantity
|V fs(x")|| is unknown. To estimate them using Monte Carlo simulation would incur additional
approximation errors and raise some reliability issues. The idea of random output is not new but has
been used by Ghadimi and Lan [44] for smooth and nonconvex stochastic optimization. Such scheme
also gives us a computational gain with a factor of two in expectation.

Theorem 3.2 Suppose that f is L-Lipschitz and let 6 > 0 and 0 < € < 1. Then, there exists some

T > 0 such that the output of Algorithm 1 withn = % satisfies that E[min{||g|| : g €

05 f(x)}] < e and the total number of calls of the ﬁmctlon value oracle is bounded by

* AL®
oo (5 +5%))

where d > 1 is the problem dimension, L > ( is the Lipschtiz parameter of f and A > 0 is an upper
bound for the initial objective function gap, f(x") — infycra f(x) > 0.

Remark 3.3 Theorem 3.2 illustrates the difference between gradient-based and gradient-free meth-
ods in nonsmooth nonconvex optimization. Indeed, Davis et al. [31] has recently proved the rate of
O(6~€3) for a randomized gradient-based method in terms of (8, €)-Goldstein stationarity. Further,
Theorem 3.2 demonstrates that nonsmooth nonconvex optimization is likely to be intrinsically harder
than all other standard settings. More specifically, the state-of-the-art rate for gradient-free methods
is O(de=2) for nonsmooth convex optimization in terms of objective function value gap [37] and
smooth nonconvex optimization in terms of gradient norm [72]. Thus, the dependence on d > 1 is



linear in their bounds yet d in our bound. We believe it is promising to either improve the rate of
gradient-free methods or show the impossibility by establishing a lower bound.

Large-deviation estimation. While Theorem 3.2 establishes the expected convergence rate over
many runs of Algorithm 1, we are also interested in the large-deviation properties for a single run.
Indeed, we hope to establish a complexity bound for computing a (J, €, A)-solution; that is, a point
x € R? satisfying Prob(min{||g|| : g € dsf(x)} <€) >1— Aforsomed >0and0 < ¢, A < 1.
By Theorem 3.2 and Markov’s inequality,

Prob (min{||g|| : g € 95 f(x™)} > AE[min{||g|| : g € 95 f(x")}]) < £, forall A > 0,

we conclude that the total number of calls of the function value oracle is bounded by

L AL?
ofde |- + =2 . 3.1
( ’ <A4e4 * 6A4e4>> G-
This complexity bound is rather pessimistic in terms of its dependence on A which is often set to

be small in practice. To improve the bound, we combine Algorithm 1 with a post-optimization
procedure [44], leading to a two-phase gradient-free method (2-GFM), shown in Algorithm 2.

Theorem 3.4 Suppose that f is L-Lipschitz and let § > 0 and 0 < €, A < 1. Then, there exists some
T, S, B > 0 such that the output of Algorithm 2 withn = 1—10 £/ % satisfies that Prob(min{||g|| :
g € 05f(Xs+)}] = €) < A and the rotal number of calls of the function value oracle is bounded by

s (LY AL® 1 dL? 1
O <d (64 + 7564 ) 10g2 (A) + ElogQ (A)) s

where d > 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and A > 0 is an upper
bound for the initial objective function gap, f(x") — infycra f(x) > 0.

Clearly, the bound in Theorem 3.4 is significantly smaller than the corresponding one in Eq. (3.1) in
terms of the dependence on 1/A, demonstrating the power of the post-optimization phase.

3.3 Stochastic gradient-free methods

We turn to the analysis of a stochastic gradient-free method (SGFM) and its two-phase version
(2-SGFM) for optimizing a Lipschitz function f(-) = Eeep, [F(+, §)].

Global rate estimation. In contrast to minimizing a deterministic function f, we only have access
to the noisy function value F(x, ) at any point x € R? where a data sample ¢ is drawn from a
distribution IP,,. Intuitively, this is a more challenging setup. It has been studied before in the setting
of optimizing a nonsmooth convex function [37, 72] or a smooth nonconvex function [44]. As in
these papers, we assume that (i) F'(-, £) is L(§)-Lipschitz with E¢cp, [L?(£)] < G? for some G > 0

and (ii) E[F(x, £')] = f(x) for all x € R? where ¢! is simulated from PP, at the ¢ iteration.

Despite the noisy function value, we can compute an unbiased estimator of the gradient V f5(x?),
where f5 = Eyp[f(x + 6u)] = Euop ccp, [F(x + 0u,§)]. In particular, we have g' = & (F(x' +
dwt €t) — F(xt — dwt, £%))wt. Clearly, under our assumption, we have

Eu~p,cep, 8] = Eup[Eecp, (8 | u]] = Eu~plg'] = V/5(x"),

where gt is defined in Algorithm 1. However, the variance of the estimator ¢ can be undesirably
large since F'(-, &) is L(&)-Lipschitz for a (possibly unbounded) random variable L(¢) > 0. To
resolve this issue, we revisit Shamir [75, Lemma 10] and show that in deriving an upper bound for
Eu~p.cep, [|&]]?] it suffices to assume that Eeep, [L?(€)] < G? for some constant G > 0. The
resulting bound achieves a linear dependence in the problem dimension d > 0 which is the same
as in Shamir [75, Lemma 10]. Note that the setup with convex and L(§)-Lipschitz functions F'(+, )
has been considered in Duchi et al. [37]. However, our estimator is different from their estimator of
gt = (F(x* + 6wt &) — F(x!, &))w! which essentially suffers from the quadratic dependence in
d > 0. It is also necessary to employ a random iteration count R to terminate Algorithm 3.




Algorithm 3 Stochastic Gradient-Free Method (SGFM)

1: Input: initial point x° € R, stepsize 7 > 0, problem dimension d > 1, smoothing parameter § and
iteration number 7" > 1.

2: fort =0,1,2,...,7 do

3 Simulate £* from the distribution P,.

4:  Sample w* € R? uniformly from a unit sphere in R,

5:  Compute g' = L (F(x' + 6w’ &") — F(x' — sw', ¢"))w

6:  Compute x'1 = x* — ng’.

7: Output: x® where R € {0,1,2,...,T — 1} is uniformly sampled.

Algorithm 4 Two-Phase Stochastic Gradient-Free Method (2-SGFM)

1: Input: initial point x° € R?, stepsize > 0, problem dimension d > 1, smoothing parameter 8, iteration
number 7" > 1, number of rounds S > 1 and sample size B.

2: fors=0,1,2,...,5 —1do

3: Call Algorithm 3 with x°, 7, d,  and T and let X5 be an output.

4: fors=0,1,2,..., 5 —1do

5: fork=0,1,2,...,B—1do

6: Simulate £ ¥ from the distribution P,,.

T Sample w” G ]Rd uniformly from a unit sphere in R?,

8: Compute g = £ (F(xs +0w", 6%) — F(x, — ow", 6%))wh.

9:  Compute g, = = >0, &k

10: Choose an index s* € {0, 1,2, . — 1} such that s* = argmin,_q ;5 ¢ 1 [|8s]l-
11: Output: X¢*.

Theorem 3.5 Suppose that F(-,€) is L(€)-Lipschitz with Becp, [L?(£)] < G? for some G > 0 and
let 6 > 0 and 0 < € < 1. Then, there exists some T > 0 such that the output of Algorithm 3 with

n= 151/ % satisfies that Elmin{||g|| : g € 0sf(x®)}] < € and the total number of calls of
the noisy function value oracle is bounded by

GfAGP
o (&%)

where d > 1 is the problem dimension, L > ( is the Lipschtiz parameter of f and A > 0 is an upper
bound for the initial objective function gap, f(x") — infycra f(x) > 0.

In the stochastic setting, the gradient-based method achieves the rate of O(§~1e~*) for a randomized
gradient-based method in terms of (4, €)-Goldstein stationarity [31]. As such, our bound in Theo-
rem 3.5 is tight up to the problem dimension d > 1. Further, the state-of-the-art rate for stochastic
gradient-free methods is O(de~2) for nonsmooth convex optimization in terms of objective function
value gap [37] and O(de~*) for smooth nonconvex optimization in terms of gradient norm [44].
Thus, Theorem 3.5 demonstrates that nonsmooth nonconvex stochastic optimization is essentially the
most difficult one among than all these standard settings.

Large-deviation estimation. As in the case of GFM, we hope to establish a complexity bound of
SGFM for computing a (4, €, A)-solution. By Theorem 3.5 and Markov’s inequality, we obtain that
the total number of calls of the noisy function value oracle is bounded by

s ((GYAGH
o) (d2 <A4e4 + 5A464>> . (3.2)

We also propose a two-phase stochastic gradient-free method (2-SGFM) in Algorithm 4 by combining
Algorithm 3 with a post-optimization procedure.

Theorem 3.6 Suppose that F(-,€) is L(€)-Lipschitz with Beep, [L*(§)] < G? for some G > 0 and
letd > 0and 0 < €, A < 1. Then, there exists some T, S, B > 0 such that the output of Algorithm 4

with n = —\/% satisfies that Prob(min{||g|| : g € 05f(Xs+)}] > €) < A and the total
number of calls of the noisy function value oracle is bounded by

s (G4 AG? 1 dG? 1
o (at (& + o () + 5 o (1))
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Figure 1: Performance of different methods on training CNNs with the MNIST dataset.
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Figure 2: (a-b) Performance of 2-SGFM with different choices of B. (¢-d) Performance of 2-SGFM and SGD
with different choices of learning rates.

where d > 1 is the problem dimension, L > 0 is the Lipschtiz parameter of f and A > 0 is an upper
bound for the initial objective function gap f(x°) — infycpa f(x) > 0.

Further discussions. We remark that the choice of stepsize 7 in all of our zeroth-order methods
depend on A, whereas such dependence is not necessary in the first-order setting; see e.g., Zhang et al.
[85]. Setting the stepsize without any prior knowledge of A, our methods can still achieve finite-time
convergence guarantees but the order would become worse. This is possibly because the first-order
information gives more characterization of the objective function than the zeroth-order information,
so that for first-order methods the stepsize can be independent of more problem parameters without
sacrificing the bound. A bit on the positive side is that, it suffices for our zeroth-order methods to
know an estimate of the upper bound of ©(A), which can be done in certain application problems.

Moreover, we highlight that 6 > 0 is the desired tolerance in our setting. In fact, (J, €)-Goldstein sta-
tionarity (see Definition 2.3) relaxes e-Clarke stationarity and our methods pursue an (9, €)-stationary
point since finding an e-Clarke point is intractable. This is different from smooth optimization where
e-Clarke stationarity reduces to V f(x) < e and becomes tractable. In this context, the existing zeroth-
order methods are designed to pursue an e-stationary point. Notably, a (4, €)-Goldstein stationary
point is provably an e-stationary point in smooth optimization if we choose § that relies on d and e.

4 Experiment

We conduct numerical experiments to validate the effectiveness of our proposed methods. In particular,
we evaluate the performance of our two-phase version of SGFM (Algorithm 4) on the task of image
classification using convolutional neural networks (CNNs) with ReLU activations. The dataset we
use is the MNIST dataset' [60] and the CNN framework we use is: (i) we set two convolution layers
and two fully connected layers where the dropout layers [77] are used before each fully connected
layer, and (ii) two convolution layers and the first fully connected layer are associated with ReL.U
activation. It is worth mentioning that our setup follows the default one” and the similar setup was
also consider in Zhang et al. [85] for evaluating the gradient-based methods (see the setups and results
for CIFAR10 dataset in Appendix F).

The baseline approaches include three gradient-based methods: stochastic gradient descent (SGD),
ADAGRAD [34] and ADAM [55]. We compare these methods with 2-SGFM (cf. Algorithm 4) and
set the learning rate 1 as 0.001. All the experiments are implemented using PyTorch [73] on a
workstation with a 2.6 GHz Intel Core i7 and 16GB memory.

"http://yann.lecun.com/exdb/mnist
*https://github.com/pytorch/examples/tree/main/mnist
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Figure 4: Performance of 2-SGFM with different choices of learning rates.

Figure 1 summarizes the numerical results on the performance of SGD, ADAGRAD, Adagrad, ADAM,
INDG [85], and our method 2-SGFM with ¢ = 0.1 and B = 200. Notably, 2-SGFM is comparable
to other gradient-based methods in terms of training/test accuracy/loss even though it only use the
function values. This demonstrates the potential value of our methods since the gradient-based
methods are not applicable in many real-world application problems as mentioned before. Figure 2a
and 2b presents the effect of batch size B > 1 in 2-SGFM; indeed, the larger value of B leads to
better performance and this accords with Theorem 3.6. We also compare the performance of SGD
and 2-SGFM with different choices of 7. From Figure 2c and 2d, we see that SGD and 2-SGFM
achieve similar performance in the early stage and converge to solutions with similar quality.

Figure 3 summarizes the experimental results on the effect of batch size B for 2-SGFM. Note that
the evaluation metrics here are train loss and test loss. It is clear that the larger value of B leads to
better performance and this is consistent with the results presented in the main context. Figure 4
summarizes the experimental results on the effect of learning rates for 2-SGFM. It is interesting to
see that 2-SGFM can indeed benefit from a more aggressive choice of stepsize 7 > 0 in practice and
the choice of 7 = 0.0001 seems to be too conservative.

5 Conclusion

We proposed and analyzed a class of deterministic and stochastic gradient-free methods for optimizing
a Lipschitz function. Based on the relationship between the Goldstein subdifferential and uniform
smoothing that we have established, the proposed GFM and SGFM are proved to return a (J, €)-
Goldstein stationary point at an expected rate of O(d*/26~'e~*). We also obtain a large-deviation
guarantee and improve it by combining GFM and SGFM with a two-phase scheme. Experiments on
training neural networks with the MNIST and CIFAR10 datasets demonstrate the effectiveness of
our methods. Future directions include the theory for non-Lipschitz and nonconvex optimization [11]
and applications of our methods to deep residual neural network (ResNet) [47] and deep dense
convolutional network (DenseNet) [50].

Acknowledgements

We would like to thank the area chair and three anonymous referees for constructive suggestions that
improve the paper. This work is supported in part by the Mathematical Data Science program of the
Office of Naval Research under grant number NO0O014-18-1-2764 and by the Vannevar Bush Faculty
Fellowship program under grant number N00014-21-1-2941.

10



References

[1] A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In COLT, pages 28—40. PMLR, 2010. (Cited on pages 2 and 5.)

[2] A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic convex optimization
with bandit feedback. SIAM Journal on Optimization, 23(1):213-240, 2013. (Cited on page 5.)

[3] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, A. Sekhari, and K. Sridharan. Second-order
information in non-convex stochastic optimization: Power and limitations. In COLT, pages
242-299. PMLR, 2020. (Cited on page 1.)

[4] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower bounds
for non-convex stochastic optimization. Mathematical Programming, pages 1-50, 2022. (Cited
on page 1.)

[5] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel
methods. Mathematical Programming, 137(1):91-129, 2013. (Cited on page 3.)

[6] A.S. Bandeira, N. Boumal, and V. Voroninski. On the low-rank approach for semidefinite
programs arising in synchronization and community detection. In COLT, pages 361-382.
PMLR, 2016. (Cited on page 1.)

[7] A.Beck and N. Hallak. On the convergence to stationary points of deterministic and randomized
feasible descent directions methods. SIAM Journal on Optimization, 30(1):56-79, 2020. (Cited
on page 17.)

[8] M. Benaim, J. Hofbauer, and S. Sorin. Stochastic approximations and differential inclusions.
SIAM Journal on Control and Optimization, 44(1):328-348, 2005. (Cited on page 17.)

[9] D. P. Bertsekas. Stochastic optimization problems with nondifferentiable cost functionals.
Journal of Optimization Theory and Applications, 12(2):218-231, 1973. (Cited on pages 17
and 19.)

[10] S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank
matrix recovery. In NeurIPS, pages 3880-3888, 2016. (Cited on page 1.)

[11] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-Lipschitz
and nonconvex minimization. Mathematical Programming, 149(1):301-327, 2015. (Cited on
page 10.)

[12] J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming, 188(1):19-51, 2021. (Cited
on pages 2 and 17.)

[13] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota. Clarke subgradients of stratifiable functions.
SIAM Journal on Optimization, 18(2):556-572, 2007. (Cited on page 3.)

[14] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM Journal on
Optimization, 28(3):2131-2151, 2018. (Cited on page 17.)

[15] N. Boumal, V. Voroninski, and A. S. Bandeira. The non-convex Burer-Monteiro approach
works on smooth semidefinite programs. In NeurIPS, pages 2765-2773, 2016. (Cited on page 1.)

[16] J. V. Burke, A. S. Lewis, and M. L. Overton. Approximating subdifferentials by random
sampling of gradients. Mathematics of Operations Research, 27(3):567-584, 2002. (Cited on
page 17.)

[17] J. V. Burke, A. S. Lewis, and M. L. Overton. Two numerical methods for optimizing matrix
stability. Linear Algebra and its Applications, 351:117-145, 2002. (Cited on page 17.)

11



[18] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751-779, 2005.
(Cited on page 17.)

[19] J. V. Burke, F. E. Curtis, A. S. Lewis, M. L. Overton, and L. E. A. Simdes. Gradient sampling
methods for nonsmooth optimization. Numerical Nonsmooth Optimization: State of the Art
Algorithms, pages 201-225, 2020. (Cited on page 17.)

[20] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “convex until proven guilty": Dimension-
free acceleration of gradient descent on non-convex functions. In ICML, pages 654-663. PMLR,
2017. (Cited on page 1.)

[21] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751-1772, 2018. (Cited on page 1.)

[22] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
I. Mathematical Programming, 184(1):71-120, 2020. (Cited on page 1.)

[23] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
II: First-order methods. Mathematical Programming, 185(1):315-355, 2021. (Cited on page 1.)

[24] X. Chen, S. Liu, K. Xu, X. Li, X. Lin, M. Hong, and D. Cox. ZO-AdaMM: zeroth-order
adaptive momentum method for black-box optimization. In NeurIPS, pages 7204-7215, 2019.
(Cited on page 2.)

[25] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of
multilayer networks. In AISTATS, pages 192-204. PMLR, 2015. (Cited on page 1.)

[26] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990. (Cited on pages 2 and 3.)

[27] M. Coste. An Introduction to o-Minimal Geometry. Istituti Editoriali E Poligrafici Internazionali
Pisa, 2000. (Cited on page 3.)

[28] A. Daniilidis and D. Drusvyatskiy. Pathological subgradient dynamics. SIAM Journal on
Optimization, 30(2):1327-1338, 2020. (Cited on pages 2 and 17.)

[29] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
SIAM Journal on Optimization, 29(1):207-239, 2019. (Cited on page 17.)

[30] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee. Stochastic subgradient method converges
on tame functions. Foundations of Computational Mathematics, 20(1):119-154, 2020. (Cited on
pages 2, 3, and 17.)

[31] D. Davis, D. Drusvyatskiy, Y. T. Lee, S. Padmanabhan, and G. Ye. A gradient sampling method
with complexity guarantees for Lipschitz functions in high and low dimensions. In NeurIPS,
page To appear, 2022. (Cited on pages 2, 4, 6, 8, and 17.)

[32] M. C. Delfour. Introduction to Optimization and Hadamard Semidifferential Calculus. SIAM,
2019. (Cited on page 3.)

[33] D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, 178(1):503-558, 2019. (Cited on page 17.)

[34] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7):2121-2159, 2011. (Cited
on page 9.)

[35] J. C. Duchi and F. Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM Journal on Optimization, 28(4):3229-3259, 2018. (Cited on page 17.)

[36] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674-701, 2012. (Cited on pages 5 and 18.)

12



[37] J. C. Duchi, M. 1. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information
Theory, 61(5):2788-2806, 2015. (Cited on pages 2, 3, 5, 6, 7, and 8.)

[38] D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, 2010. (Cited on page 2.)

[39] A.D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit
setting: Gradient descent without a gradient. In SODA, pages 385-394, 2005. (Cited on pages 2
and 5.)

[40] A. Fuduli, M. Gaudioso, and G. Giallombardo. Minimizing nonconvex nonsmooth functions
via cutting planes and proximity control. SIAM Journal on Optimization, 14(3):743-756, 2004.
(Cited on page 17.)

[41] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. In COLT, pages 797-842. PMLR, 2015. (Cited on page 1.)

[42] R. Ge,J. D. Lee, and T. Ma. Matrix completion has no spurious local minimum. In NeurIPS,
pages 2981-2989, 2016. (Cited on page 1.)

[43] R. Ge, C. Jin, and Y. Zheng. No spurious local minima in nonconvex low rank problems: A
unified geometric analysis. In ICML, pages 1233-1242. PMLR, 2017. (Cited on page 1.)

[44] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013. (Cited on pages 1, 2, 3, 5,
6,7,8,and 21.)

[45] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1):59-99, 2016. (Cited on page 1.)

[46] A. Goldstein. Optimization of Lipschitz continuous functions. Mathematical Programming, 13
(1):14-22, 1977. (Cited on pages 1, 3, 4, and 17.)

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016. (Cited on page 10.)

[48] L. J. Hong, B. L. Nelson, and J. Xu. Discrete optimization via simulation. In Handbook of
Simulation Optimization, pages 9—44. Springer, 2015. (Cited on page 2.)

[49] F. Huang, S. Gao, J. Pei, and H. Huang. Accelerated zeroth-order and first-order momentum
methods from mini to minimax optimization. Journal of Machine Learning Research, 23(36):
1-70, 2022. (Cited on page 2.)

[50] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In CVPR, pages 4700—4708, 2017. (Cited on page 10.)

[51] P.Jain and P. Kar. Non-convex optimization for machine learning. Foundations and Trends® in
Machine Learning, 10(3-4):142-363, 2017. (Cited on page 1.)

[52] K. Ji, Z. Wang, Y. Zhou, and Y. Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In ICML, pages 3100-3109. PMLR, 2019. (Cited on

page 2.)

[53] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan. On nonconvex optimization for
machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM (JACM), 68
(2):1-29, 2021. (Cited on page 1.)

[54] A.Juditsky and A. S. Nemirovski. Large deviations of vector-valued martingales in 2-smooth
normed spaces. ArXiv Preprint: 0809.0813, 2008. (Cited on page 21.)

[55] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In /ICLR, 2015. URL
https://openreview.net/forum?id=8gmWwjFyLj. (Cited on page 9.)

13


https://openreview.net/forum?id=8gmWwjFyLj

[56] K. C. Kiwiel. Restricted step and Levenberg-Marquardt techniques in proximal bundle methods
for nonconvex nondifferentiable optimization. SIAM Journal on Optimization, 6(1):227-249,
1996. (Cited on page 17.)

[57] K. C. Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 18(2):379-388, 2007. (Cited on page 17.)

[58] G. Kornowski and O. Shamir. Oracle complexity in nonsmooth nonconvex optimization. In
NeurlPS, pages 324-334, 2021. (Cited on pages 4 and 5.)

[59] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario, 2009. (Cited on page 26.)

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. (Cited on page 9.)

[61] X. Lian, H. Zhang, C-J. Hsieh, Y. Huang, and J. Liu. A comprehensive linear speedup analysis
for asynchronous stochastic parallel optimization from zeroth-order to first-order. In NeurIPS,
pages 3062-3070, 2016. (Cited on page 2.)

[62] S. Liu, B. Kailkhura, P-Y. Chen, P. Ting, S. Chang, and L. Amini. Zeroth-order stochastic
variance reduction for nonconvex optimization. In NeurlPS, pages 3731-3741, 2018. (Cited on
page 2.)

[63] P-L. Loh and M. J. Wainwright. Regularized M-estimators with nonconvexity: Statistical and
algorithmic theory for local optima. Journal of Machine Learning Research, 16:559-616, 2015.
(Cited on page 1.)

[64] C. Ma, K. Wang, Y. Chi, and Y. Chen. Implicit regularization in nonconvex statistical esti-
mation: Gradient descent converges linearly for phase retrieval, matrix completion, and blind
deconvolution. Foundations of Computational Mathematics, 20(3):451-632, 2020. (Cited on

page 1.)

[65] S.Majewski, B. Miasojedow, and E. Moulines. Analysis of nonsmooth stochastic approximation:
the differential inclusion approach. ArXiv Preprint: 1805.01916, 2018. (Cited on pages 2 and 17.)

[66] S. Mei, T. Misiakiewicz, A. Montanari, and R. I. Oliveira. Solving SDPs for synchronization
and MaxCut problems via the Grothendieck inequality. In COLT, pages 1476-1515. PMLR,
2017. (Cited on page 1.)

[67] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39(2):117-129, 1987. (Cited on page 1.)

[68] B. L. Nelson. Optimization via simulation over discrete decision variables. In Risk and
Optimization in an Uncertain World, pages 193-207. INFORMS, 2010. (Cited on page 2.)

[69] A.S.Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization.
J. Wiley, 1983. (Cited on page 1.)

[70] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125-161, 2013. (Cited on page 1.)

[71] Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018. (Cited on page 3.)

[72] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17(2):527-566, 2017. (Cited on pages 2, 3, 5, 6, and 7.)

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, and L. Antiga. Pytorch: an imperative style, high-performance deep learning
library. In NeurIPS, pages 8026—8037, 2019. (Cited on page 9.)

[74] R. T. Rockafellar and R. J-B. Wets. Variational Analysis, volume 317. Springer Science &
Business Media, 2009. (Cited on pages 5 and 19.)

14



[75] O. Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 18(1):1703-1713, 2017. (Cited on pages 2, 3,
5,6,7,and 19.)

[76] A. Shapiro. On concepts of directional differentiability. Journal of Optimization Theory and
Applications, 66(3):477-487, 1990. (Cited on page 3.)

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):
1929-1958, 2014. (Cited on page 9.)

[78] H. Stadtler. Supply chain management — an overview. Supply Chain Management and
Advanced Planning, pages 9-36, 2008. (Cited on page 2.)

[79] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. Foundations of Computa-
tional Mathematics, 18(5):1131-1198, 2018. (Cited on page 1.)

[80] L. Tian, K. Zhou, and A. M-C. So. On the finite-time complexity and practical computation of
approximate stationarity concepts of Lipschitz functions. In ICML, pages 21360-21379. PMLR,
2022. (Cited on pages 2, 4, and 17.)

[81] M. J. Wainwright. High-Dimensional Statistics: A Non-asymptotic Viewpoint, volume 48.
Cambridge University Press, 2019. (Cited on pages 20 and 23.)

[82] G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving systems of random quadratic equations
via truncated amplitude flow. IEEE Transactions on Information Theory, 64(2):773-794, 2017.
(Cited on page 1.)

[83] Y. Wang, S. Du, S. Balakrishnan, and A. Singh. Stochastic zeroth-order optimization in high
dimensions. In AISTATS, pages 1356—1365. PMLR, 2018. (Cited on page 2.)

[84] F. Yousefian, A. Nedié, and U. V. Shanbhag. On stochastic gradient and subgradient methods
with adaptive steplength sequences. Automatica, 48(1):56—67, 2012. (Cited on page 5.)

[85] J. Zhang, H. Lin, S. Jegelka, S. Sra, and A. Jadbabaie. Complexity of finding stationary points
of nonconvex nonsmooth functions. In ICML, pages 11173-11182. PMLR, 2020. (Cited on
pages 2,3,4,5,9,10,and 17.)

15



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes], , Or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes]
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? Our work
does not have any potential negative societal impacts

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] You can find the
complete proofs in the supplementary material.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? We run the experiment on the
workstation with any advanced computing sources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16



	Introduction
	Preliminaries and Technical Background
	Function classes
	Generalized gradients and Goldstein subdifferential
	Randomized smoothing

	Main Results
	Linking Goldstein subdifferential to uniform smoothing
	Gradient-free methods
	Stochastic gradient-free methods

	Experiment
	Conclusion

