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Abstract

With the rapid development of large language001
models (LLMs), handling long context has be-002
come one of the vital abilities in LLMs. Such003
long-context ability is accompanied by diffi-004
culties in deployment, especially due to the005
increased consumption of KV cache. There006
is certain work aiming to optimize the mem-007
ory footprint of KV cache, inspired by the008
observation that attention heads can be cate-009
gorized into retrieval heads that are of great010
significance and streaming heads that are of011
less significance. Typically, identifying the012
streaming heads and and waiving the KV cache013
in the streaming heads would largely reduce014
the overhead without hurting the performance015
that much. However, since employing both016
retrieval and streaming heads in one layer de-017
composes one large round of attention compu-018
tation into two small ones, it may unexpectedly019
bring extra latency on accessing and indexing020
tensors. Based on this intuition, we impose021
an important improvement to the identification022
process of retrieval and streaming heads, in023
which we design a criterion that enforces exclu-024
sively retrieval or streaming heads gathered in025
one unique layer. In this way, we further elimi-026
nate the extra latency and only incur negligible027
performance degradation. Our method named028
ZIGZAGATTENTION is competitive among con-029
sidered baselines owing to reduced latency and030
comparable performance.031

1 Introduction032

In recent years, large language models033

(LLMs) (Dubey et al., 2024; Liu et al., 2024)034

have demonstrated significant potential across035

diverse domains (Chiang et al., 2023). However,036

the generation process of LLMs is inherently037

sequential. The sequential nature inevitably leads038

to substantial serving latency, particularly in039

scenarios involving long contexts.040

The primary challenge of serving LLMs for long-041

context applications lies in the O(n2)—where n042

denotes the sequence length—complexity of atten- 043

tion (Vaswani, 2017). The inference can be divided 044

into two phases, i.e., prefilling phase and decod- 045

ing phase. Essentially, in the decoding phase, a 046

linear increase in memory would be natural due 047

to the use of the key-value (KV) cache technique, 048

which stores intermediate representations of previ- 049

ously seen tokens to reduce latency. In long-context 050

scenarios, the memory of the KV cache can even 051

exceed that of the model itself (Liu et al., 2023). 052

To address the memory burden imposed by KV 053

cache, numerous approaches have been proposed 054

to optimize the KV cache from various perspec- 055

tives. Among these, DuoAttention (Xiao et al., 056

2024) is a typical representative. DuoAttention in- 057

tends to identify retrieval heads (Wu et al., 2024) 058

that are of great importance for long-context mod- 059

eling and streaming heads (Xiao et al., 2023) that 060

are of less importance, and predominantly waive 061

the KV cache in the streaming heads. In doing so, 062

DuoAttention has preserved the long-context capa- 063

bilities of LLMs while improving computational 064

efficiency. 065

However, DuoAttention requires processing at- 066

tention computations twice separately for retrieval 067

heads and streaming heads within one layer. Un- 068

fortunately, such separation necessitates additional 069

memory accessing and introduces unwanted tensor 070

indexing, leading to increased latency. This over- 071

head becomes pronounced particularly along the 072

expansion of context. Based on the intuition, we 073

propose a valuable rearrangement of the retrieval 074

and streaming heads. By enforcing either retrieval 075

or streaming heads mutually exclusive across lay- 076

ers, we can perform one attention computation at 077

each layer, thereby avoiding extra latency associ- 078

ated with redundant memory accessing and tensor 079

indexing. 080

On an extensive set of experiments ranging from 081

LongBench to Needle-in-a-Haystack, our proposed 082

method ZIGZAGATTENTION achieves competitive 083
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performance while significantly reduced latency.084

2 ZIGZAGATTENTION085

2.1 Preliminary086

To identify retrieval and streaming heads in a LLM,087

DuoAttention firstly plugs an importance score088

α ∈ [0, 1] onto each attention head, secondly089

employs a distillation-driven training on a syn-090

thetic dataset curated in the form of long-context091

passkey retrieval, and finally determines retrieval092

and streaming heads based on the descending or-093

der of the converged α values and a predefined094

quantile.095

Specifically, α for each head is initialized to 1,096

and constrained to the range [0, 1]. During the train-097

ing, it performs attention computation twice in each098

forward pass: one using full attention (correspond-099

ing to retrieval head), and another using streaming100

attention (corresponding to streaming head). This101

is formalized as follows:102

attentioni,j = αi,j · full_attention +

(1− αi,j) · streaming_attention
(1)103

where i and j denote the layer index and the at-104

tention head index within a layer, respectively. A105

synthetic dataset is used, with passkeys inserted at106

varying depths in the sequence, as the training task.107

The distillation-like training objective is formulated108

as follows:109

Ldist =
1

K

K∑
k=1

T∑
t=T−R+1

(h(k)
full[t]− h(k)

mix[t])
2 (2)110

where K represents the dimension of hidden states,111

T denotes the total sequence length, and R means112

to the response length of the sequence. hfull and113

hmix refer to the final hidden states from the stan-114

dard full attention and the mixed attention com-115

puted in Equation 1, respectively. To ensure spar-116

sity in α, an additional L1 regularization term (Tib-117

shirani, 1996) is added:118

Lreg =
L∑
i=1

H∑
j=1

|αi,j | (3)119

where L is the number of layers in the model, and120

H is the number of attention heads per layer. The121

final loss function is formulated as:122

Lduo = Ldist + λLreg (4)123

where λ is a coefficient controlling the impact of 124

the regularization term. After training, the attention 125

heads are sorted based on their final α values. By 126

specifying a custom sparsity quantile, the heads 127

can be categorized as either full attention (retrieval 128

heads) or streaming attention (streaming heads). 129

As we can observe in DuoAttention, if a quantile 130

is defined to categorize attention heads, different at- 131

tention heads are likely to coexist within one layer. 132

This kind of allocation may introduce extra latency 133

due to the need for separate computations for each 134

type of attention head. 135

2.2 Transport Optimization 136

To alleviate the need of two rounds of attention 137

computations, we consider the most straightfor- 138

ward way to achieve so. That is, leveraging the 139

converged α values from DuoAttention, and defin- 140

ing the transition from DuoAttention to ZIGZA- 141

GATTENTION a transport optimization problem. 142

Provided that the original sparsity (or say the pro- 143

portion of streaming heads) in DuoAttention is 144

s, accordingly in ZIGZAGATTENTION, the num- 145

ber of layers corresponding to all streaming heads 146

should be p where p/L = s, and the number of 147

layers corresponding to all retrieval heads should 148

be q = L− p. 149

In the transport optimization problem, there is a 150

operation set O = oi,j comprising of totally L ·H 151

operations need to be carried out, and three op- 152

erations are defined: 1) maintaining the type of 153

attention head o(0), 2) turning a retrieval head to 154

streaming one o(1), and reversely turning a stream- 155

ing head to retrieval one o(2). Ideally, shifting from 156

a retrieval head to streaming head would lead to per- 157

formance decline, while shifting from a streaming 158

head would lead to performance boost. Thereby, 159

the optimization objective is shown below: 160

min
oi,j

Lzigzag s.t. p+ q = L

Lzigzag =

L∑
i=1

H∑
j=1

α̂i,j

α̂i,j =


0, oi,j = o(0)

αi,j , oi,j = o(1)

−ω · α, oi,j = o(2)

(5) 161

Enumeratively, the number of possible combina- 162

tions under the subjection p+ q = L is
(
f
L

)
. Once 163

one of these combinations is used, then the opera- 164

tion set O should also be determined. Since
(
f
L

)
is 165
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computationally trackable, we empirically examine166

each of them one by one and uncover the one yield-167

ing the minimum. ω ∈ [0, 1] represents a scaling168

factor, which is determined through grid search to169

identify its optimal value.170

2.3 Fine-tuning for Enhanced Ability171

After optimization, we observe that while the per-172

formance is comparable to the baseline, optionally,173

fine-tuning with minimal training cost can further174

enhance performance on certain benchmarks, par-175

ticularly retrieval tasks.176

For fine-tuning, we adopt the previously used177

training scheme in DuoAttention and plug the layer-178

wise αls onto layers rather than heads using the op-179

timal combination from the aforementioned trans-180

port optimization. By leveraging these trained re-181

sults, we can sparsify the model to achieve im-182

proved performance.183

3 Experiments184

Figure 1: Per token decoding latency. The prefilling
length here is set to 16k, and the decoding length varies
from 1k to 32k.

Figure 2: Per token prefilling latency. The decoding
length here is set to 1k, and the prefilling length varies
from 1k to 32k.

3.1 Settings185

We conduct experiments using the long-context ex-186

tension version of the LLaMA-3-8B (Dubey et al.,187

2024; Pekelis et al., 2024) model and evaluate188

its performance on both long-context and short- 189

context benchmarks to ensure a comprehensive as- 190

sessment. For long-context benchmarks, we se- 191

lect LongBench (Bai et al., 2023) and Needle-in-a- 192

Haystack (Kamradt, 2024), while for short-context 193

benchmarks, we choose MMLU (Hendrycks et al., 194

2020), BBH (Suzgun et al., 2022), and DROP (Dua 195

et al., 2019). To evaluate efficiency, we test the 196

model’s performance across various combinations 197

of prefilling and decoding lengths to minimize the 198

impact of measurement errors. The primary train- 199

ing settings are aligned with those used in DuoAt- 200

tention. 201

3.2 Efficiency Results 202

The results are illustrated in Figure 1, while 203

DuoAttention demonstrates lower latency and bet- 204

ter performance compared to the original model, 205

ZIGZAGATTENTION achieves even lower latency 206

across all decoding lengths. ZIGZAGATTENTION 207

achieves up to 37% acceleration in 1k context 208

length. Figure 2 compares the per-token prefilling 209

latency between ZIGZAGATTENTION and DuoAt- 210

tention, since ZIGZAGATTENTION do not modify 211

the prefilling stage, our method maintains normal 212

prefilling speed. This confirms that ZIGZAGAT- 213

TENTION does not introduce additional latency dur- 214

ing the prefilling stage. As for the time cost of 215

the transport problem, the total time cost with our 216

optimized method is around 7 minute. 217

3.3 Long Context Benchmark 218

For this evaluation, we applied a 50% sparsity level 219

for the LLaMA-3-8B model and set the sink size 220

to 128 and window length to 256 for streaming 221

attention. 222

LongBench The results for selected datasets are 223

presented in Table 1, while average scores across 224

all tasks are shown in Table 2. From Table 1, im- 225

portantly, there is no significant decline in metrics 226

compared to the original model, demonstrating that 227

ZIGZAGATTENTION can effectively manage long- 228

context situations. As shown in Table 2, ZIGZA- 229

GATTENTION scores are only marginally lower, 230

compared to DuoAttention and the original model. 231

Needle-in-a-Haystack (NIAH) Figure 3 illus- 232

trates that ZIGZAGATTENTION performs excep- 233

tionally well across various context lengths ranging 234

from 40k to 280k tokens. The results indicate that 235

ZIGZAGATTENTION successfully discards unim- 236

portant KV caches during inference, without any 237
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Table 1: Evaluation results on LongBench. Here "LM-3" refers to the results of LLaMA-3-8B long context extension
version, "DA" refers to DuoAttention, "ZA" refers to ZigZag Attention.

Method
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
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LM-3 26.84 29.32 52.86 40.87 28.86 24.68 34.25 24.58 27.8 71.0 87.7 41.95 1.0 79.0 37.91 37.71

DA 25.72 28.35 49.75 43.28 29.9 23.41 32.34 24.69 28.06 72.0 86.85 41.97 1.5 83.12 38.33 39.5
ZA 22.53 23.7 49.89 38.53 23.61 21.21 30.62 24.16 27.12 71.0 82.22 40.85 1.0 85.0 45.38 44.7

Table 2: The average scores on overall LongBench.

Method Budget LongBench

LM-3 100% 39.78

DA 50% 39.45
ZA 50% 38.44

Figure 3: Results on NIAH varies from 40k to 280k.

performance degradation in complex long-context238

retrieval tasks.239

3.4 Short Context Benchmark240

Table 3: Evaluation results on MMLU, BBH and DROP
benchmarks.

Method Budget
MMLU BBH DROP
5-shot 3-shot 3-shot

LM-3 100% 62.31 41.95 44.18

DA 50% 62.56 42.14 42.07
ZA 50% 62.31 42.03 43.50

As shown in Table 3, ZIGZAGATTENTION241

demonstrates performance comparable to that of242

the base model LLaMA-3 across these important243

benchmarks. This indicates that the ZIGZAGAT-244

TENTION mechanism does not impair the model’s245

basic capabilities.246

3.5 Ablation Study247

Impact of ω Changes in ω can alter the combi-248

nation of layers, potentially affecting the model’s249

performance in long-context situations and bench-250

marks. Specifically, when ω is set to 0.2, 0.3, or251

Table 4: The average scores on overall LongBench.

ω Budget LongBench

0.1 50% 38.44
0.5 50% 37.59
0.6 50% 37.08
0.7 50% 37.05
0.8 50% 35.27
0.9 50% 36.02

0.4, the final combinations are identical to those 252

obtained with w = 0.1. In Table 4, it is evident 253

that w = 0.1 yields the optimal combination with 254

the best performance across multiple tasks in long- 255

context benchmarks. 256

Figure 4: Results for after training in ZA. We success-
fully extent the context length to 600k.

Context Length Extension with Fine-tuning 257

As shown in Figure 4, the fine-tuning allowed us 258

to extend the context length from 280k tokens to 259

600k tokens with minimal additional training. 260

4 Conclusion 261

In this paper, we introduced ZIGZAGATTENTION, 262

a method built upon DuoAttention and designed 263

to address the challenges of handling long-context 264

situations. Our results demonstrate that ZIGZA- 265

GATTENTION achieves performance comparable 266

to the original model, indicating that it can sig- 267

nificantly lower latency without degrading model 268

capabilities. 269
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Limitations270

In this paper, we propose ZIGZAGATTENTION to271

accelerate model inference. However, the current272

method has certain limitations. In terms of effi-273

ciency, the speedup ratio decreases for longer de-274

coding lengths compared to shorter ones, resulting275

in less significant performance improvements. For276

retrieval tasks, ZIGZAGATTENTION achieves an277

overall high score but still exhibits performance278

degradation relative to other methods. Neverthe-279

less, these limitations highlight key areas for fur-280

ther analysis and provide a clear direction for future281

research.282
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