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Abstract
The ability to quickly solve a wide range of real-
world tasks requires a commonsense understand-
ing of the world. Yet, how to best extract such
knowledge from natural language corpora and in-
tegrate it with reinforcement learning (RL) agents
remains an open challenge. This is partly due to
the lack of lightweight simulation environments
that sufficiently reflect the semantics of the real
world and provide knowledge sources grounded
with respect to observations in an RL environment.
To better enable research on agents making use of
commonsense knowledge, we propose WordCraft,
an RL environment based on Little Alchemy 2.
This lightweight environment is fast to run and
built upon entities and relations inspired by real-
world semantics. We evaluate several representa-
tion learning methods on this new benchmark and
propose a new method for integrating knowledge
graphs with an RL agent.

1. Introduction
Recent progress in Reinforcement Learning (RL), while
impressive (Silver et al., 2016; Vinyals et al., 2019; Berner
et al., 2019), has mostly focused on tabula-rasa learning,
rather than exploitation of prior world knowledge. For ex-
ample, while Go is an extremely difficult game to master,
its rules and thus environment dynamics are simple and
not heavily reliant on knowledge about concepts that can
be encountered in the real world. Focusing on tabula-rasa
learning confines state-of-the-art approaches to simulation
environments that can be solved without the transfer of
commonsense, world, or domain knowledge.

Many real-world applications (e.g. personal assistants and
household robots) require agents that can learn fast and gen-
eralise well to novel situations, which is likely not possible
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agent> 3 (life)
selected: [metal]

 table:    [0:human, 1:metal, 2:fire, 3:life] env>
t=1
r=0.0

agent> 0 (human)
selected: []

 table:    [0:human, 1:metal, 2:fire, 3:life, 4:robot] env>
t=2
r=1.0

agent> 4 (robot)
selected: [human]

 table:    [0:human, 1:metal, 2:fire, 3:life, 4:robot] env>
t=3
r=0.0

Done.
selected: []

6:cyborg]
 table:    [0:human, 1:metal, 2:fire, 3:life, 4:robot,  env>

t=4
r=1.0

agent> 1 (metal)
selected: []

Goal:     create cyborg
 table:    [0:human, 1:metal, 2:fire, 3:life] 

env>
t=0
r=0.0

Figure 1. Sample episode of WordCraft: The agent needs to create
the goal entity (cyborg) from a set of starting entities.

without the ability to reason with commonsense and general
knowledge about the world. Consider, for example, an agent
tasked with performing common household chores that has
never seen a dirty ashtray. When presented with this new
object, the agent needs to know that a reasonable set of
actions involving this object include cleaning the ashtray,
but not feeding it to the cat.

Humans encode a large amount of commonsense knowl-
edge in written language. For example, Wikipedia encodes
such knowledge implicitly through corpus statistics, and
at times explicitly in writing. Outside of RL, learning to
represent and utilise prior knowledge has improved consid-
erably over recent years. For example, a common approach
is to pre-train neural language models and fine-tune them on
downstream tasks (Devlin et al., 2019; Raffel et al., 2019).
Recent works highlight that such pre-trained models cap-
ture many aspects of commonsense (Da & Kasai, 2019) and
relational knowledge (Petroni et al., 2019), in addition to lin-
guistic knowledge (Jawahar et al., 2019; Hewitt & Manning,
2019; Reif et al., 2019). Another popular approach is to
represent commonsense knowledge explicitly as Knowledge
Graphs (KGs), as done by ATOMIC (Sap et al., 2019) and
ConceptNet (Speer et al., 2017). Such KGs have been used
in commonsense reasoning tasks (Lin et al., 2019).

However, the question of how to best utilise commonsense
knowledge (provided in language corpora or KGs) for down-
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stream RL tasks has not received the same level of attention,
partly due to scarce simulation environments that directly
benefit from transferring such prior knowledge. Robotics en-
vironments such as MuJoCo require knowledge not readily
expressed in natural language, such as an intuitive under-
standing of physics (Todorov et al., 2012; Yu et al., 2019).
Rule-based game environments such as Go or Chess (Silver
et al., 2017; 2018), while very hard to master, are based on
simple transition dynamics and largely disconnected from
entities and concepts encountered in the real world. On the
other hand, commonsense knowledge could be helpful in en-
vironments such as StarCraft II (Vinyals et al., 2019; Berner
et al., 2019), which contain many complex interactions with
a large number of entities (many of which have real-world
analogues). However, such environments are costly to run,
and learning to ground knowledge from external sources re-
mains challenging, as natural language annotations of states
and actions in such games are not readily available.

To study agents with commonsense knowledge, we present
WordCraft, a fast RL environment based on the popular
game Little Alchemy 2. In this game, the player is tasked
with crafting over 700 different entities by combining previ-
ously discovered entities. For example, combining “water”
and “earth” creates “mud”. Learning policies that generalize
to unseen entities and combinations requires commonsense
knowledge about the world. The environment runs quickly
(around 8,000 steps per second on a single machine), en-
abling fast experimentation cycles. As the entities in the
game correspond to words, they can be easily grounded
with external knowledge sources. In addition, we introduce
a method for conditioning agents trained in WordCraft on
KGs encoding prior knowledge, such as ConceptNet and
other commonsense KGs.

2. Background
We formulate the RL problem as a Markov Decision Pro-
cess (MDP) (Sutton & Barto, 2018) defined by the tuple
(S,A, T,R, γ), where s ∈ S is a state, a ∈ A is an action,
T (s, a)→ s′ is the transition function, R(s, a)→ R is the
reward function, and γ, the discount factor. The goal is to
find a policy π that maximises the expected sum of future
discounted rewards:

∑∞
k=0 γ

krk+1.

We represent knowledge about entities and the relations
among them as a knowledge graph (KG): a collection of
〈s, p, o〉 triples, each encoding a relationship of type p (pred-
icate) between the subject s and the object o of the triple. In
order to work with incomplete knowledge graphs and infer
missing relationships, we use the ComplEx link prediction
model (Trouillon et al., 2016) (see Appendix A for details).

3. WordCraft
In order to benchmark the ability of RL agents to make use
of commonsense knowledge, we present WordCraft, based
on Little Alchemy 21, a simple association game: Starting
from a set of four basic items, the player must create as
many different items as possible. Each non-starter item can
be created by combining two other items. For example,
combining “moon” and “butterfly” yields “moth”, and com-
bining “human” and “medusa” yields “statue”. There are
700 total items (including rare and compound words) and
3,417 permissible item combinations (referred to as valid
recipes throughout this paper) (IGN, 2020). Efficiently solv-
ing this game without trying every possible combination
of items requires using knowledge about relations between
common concepts.

WordCraft is a simplified version of Little Alchemy 2, shar-
ing the same entities and valid recipes: First, the interface is
text-based rather than graphical. Second, instead of a single
open-ended task, WordCraft consists of a large number of
simpler tasks. Each task is created by randomly sampling a
goal entity, valid constituent entities, and distractor entities.
The agent must choose which entities to combine in order
to create the goal entity. The task difficulty can be adjusted
by increasing the number of distractors or increasing the
number of intermediate entities that must be created in order
to reach the goal entity (we refer to this variant as depth-n,
with n− 1 intermediate entities). The training and testing
split is created by selecting a set of either goal entities or
valid recipes that are not used during training. The relatively
large number of entities and valid recipes enables the study
of generalization to unseen goals.

The environment is deterministic and fully-observable. At
each time step, the state s consists of the goal entity xg , a set
of k currently selectable entities xtable = {xi}ki=0, and the
currently selected entity xs,1. The action a corresponds to
choosing one of the available entities as the second selected
entity xs,2 ∈ xtable. When no entity is currently selected,
xs,1 is set to a placeholder empty entity. If (xs,1,xs,2)
corresponds to a valid recipe, the corresponding resulting
entity is added to the table xtable and xs,1 is set to the empty
entity. The episode terminates when the newly created entity
is xg or after a maximum number of steps is reached. We
keep the maximum number of steps low to discourage brute-
force solutions (O(k2) for depth-1 tasks). The reward can
be sparse (with r = 1 or 0 received only at the end of the
episode) or shaped (with a penalty for choosing a wrong
pair of items or creating irrelevant entities and a reward for
creating intermediate ingredients).

Compared to other environments that combine language
and RL (Janner et al., 2018; Chevalier-Boisvert et al., 2019;

1https://littlealchemy2.com/
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Côté et al., 2018; Das et al., 2018), WordCraft contains a
much larger number of objects, with object relationships
that reflect the structure of the real world. For example, the
underlying KG of TextWorld (which is perhaps the closest
comparison), contains 99 different objects and 10 types of
relations (Zelinka et al., 2019). Furthermore, the environ-
ment does not contain movement-related actions. The state
space is limited to combinations of entity words, and the
action space, to table positions, yet generalization remains
challenging. This allows allowing us to study commonsense
reasoning in isolation, without requiring that the agent learn
to ground states to text or deal with a combinatorially large
action space (as seen in text games).

4. Guiding Agents with a Knowledge Graph
We propose an agent architecture that makes use of infor-
mation from an external KG to guide the agent’s policy. At
a high level, the model consists of a self-attention-based
actor-critic network and an external KG link prediction
model. Given that the recipes in WordCraft are based on
real-world semantics among common entities, conditioning
on commonsense knowledge present in a KG should enable
agents to learn more efficiently by constraining their search
space to policies biased toward interactions with underlying
commonsense semantics.

4.1. Self-attention Actor-Critic Network

In order to handle a variable number of selectable entities at
each time step and ensure selection decisions are invariant to
the table position of entities, our policy network makes use
of the scaled dot-product attention mechanism introduced
in (Vaswani et al., 2017). The self-attention policy network
encodes the features xg and current selection features xs,1:2
into attention weights over the set of selectable entities.
These attention weights αi act as the logits to the action
distribution over the set of selectable entities ei at each time
step:

αi =
1√
dk
Q([xg;xs,1;xs,2])K(xtable)

>

π(at = ei|st = x) =
eαi∑
j e
αj

, where xtable are learned representations of selectable enti-
ties.

In order to predict value estimates, we first apply a linear
transform W to xtable and encode the state as an attention-
weighted sum of these linearly transformed entity features.
This encoding is passed through a fully-connected layer to
yield value estimates V (x) = MLP(α>W (xtable)).

4.2. Link Prediction Model

We assume access to a link prediction model L trained on an
external knowledge graph that contains information relevant
to the RL task. While our model makes use of ComplEx
for link prediction (Trouillon et al., 2016), in general this
choice can be substituted by any other link prediction model.
We chose ComplEx for its reliable performance in practice.

The link prediction model is trained on a set of subject-
object-predicate relation triplets of the form (s, p, o) to pre-
dict higher likelihood scores for true relation triplets. In the
context of WordCraft, each recipe {e1, e2} −→ e3 reduces
to four relevant relation triplets: (e1,combinesWith, e2),
(e2,combinesWith, e1), (e1,componentOf, e3), and
(e2,componentOf, e2). These triplets, when aggregated
across all recipes, forms the recipe graph. In our experi-
ments, we train ComplEx on a subgraph of the recipe graph
containing all nodes to ensure full entity coverage.

At each time step, we compute relation score vec-
tors u and v between the goal and selected enti-
ties and each ei on the table and es,j in the se-
lection: ui = L(ei,combinesWith, es,j), vi =
L(ei,componentOf, eg). These scores are then mixed
component-wise with the attention weights, before passing
the mixed weights into the softmax policy head, thereby
guiding the agent toward relevant predictions from the KG
model. Details on learning the mixing coefficients are pro-
vided in Appendix B.1.

5. Experiments
Our experiments focus on zero-shot generalization perfor-
mance. We split the set of all valid recipes into train (80%)
and test (20%) sets. Train tasks are generated such that
task goals do not involve any recipes in the test set. The
model is trained using the TorchBeast implementation of
IMPALA (Espeholt et al., 2018; Küttler et al., 2019).

5.1. WordCraft Benchmarks

To demonstrate how well the task captures real-world rela-
tionships between entities, we represent entities as GloVe
embeddings (Pennington et al., 2014) when evaluating the
model in Section 4.1. We expect GloVe to help generaliza-
tion if semantically similar entities have similar uses in this
environment. We assess the zero-shot performance of our
agent model without a link prediction module on depth-1
tasks with 1 and 8 distractors.

We also collect a human baseline at the same difficulty
settings of WordCraft. This human baseline serves as an es-
timate of the zero-shot performance that can be achieved us-
ing commonsense and general knowledge (see the Appendix
C.5 for the description of human evaluation protocol).
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Figure 2. Zero-shot success rates over training steps of agents
trained using different embeddings on depth-1 tasks with 1 and 8
distractors.
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Figure 3. Zero-shot success rates over training steps of agents with
full and partial KG models on depth-1 tasks with 8 distractors.

As seen in Figure 2, agents trained with GloVe embeddings
generalize much better to tasks with recipes that were not
part of any training task. This margin of improvement per-
sists in harder task settings, even as the test success rate
falls.

5.2. Knowledge Graph Benchmarks

We benchmark variants of our full agent with the link pre-
diction module and compare zero-shot performance under
different combinations of link prediction scores used to mod-
ulate the self-attention weights: both combinesWith and
componentOf scores, or each score in isolation. In these
experiments, L is trained on the same train set of recipes
used to generate the training tasks.

Our results show that access to a full KG model drastically
improves the agent’s zero-shot performance (see Figure 3).
However, while a partial-KG-model agent reaches an equiv-
alent zero-shot success rate as an agent without any KG
model in fewer training steps, they ultimately reach compa-
rable levels of test performance as training progresses (see
Appendix for a more detailed discussion).

6. Related Work
Recent work proposes several new environments incorporat-
ing a degree of commonsense dynamics and text-base cor-
pora. For example, TextWorld (Côté et al., 2018) is a frame-
work that enables creation of novel textual RL environments
as well as interfacing with existing text-based games, such as
Zork. Chevalier-Boisvert et al. (2019); Küttler et al. (2020)
respectively propose BabyAI and NLE, grid-world envi-
ronments that evaluate agents on procedurally-generated,
goal-conditioned tasks with varying degrees of common-
sense structure and available textual corpora. While these
environments are challenging in their complex dynamics,
large action spaces, sparse rewards, and long planning hori-
zons, these same aspects confound the ability to isolate the
problem of conditioning on external knowledge sources.

Luketina et al. (2019) presents a comprehensive survey of a
related line of research conditioning policies on knowledge
in textual corpora or knowledge bases. Fulda et al. (2017);
Zahavy et al. (2018) demonstrate that word embeddings
can be an effective modeling tool for policies, while Brana-
van et al. (2012); Narasimhan et al. (2018); Zhong et al.
(2020) present work that directly conditions policies on do-
main knowledge encoded in textual corpora. Marzoev et al.
(2020); Hill et al. (2020) show that language models can en-
able generalization to unseen instructions, which indicates
that linguistic knowledge can be successfully transferred to
aid downstream RL tasks.

Models integrating KGs with agents have been studied in
the literature on text-based games (Ammanabrolu & Riedl,
2019; Adhikari et al., 2020). Closest to our work, Mu-
rugesan et al. (2020) concurrently propose solving a set of
TextWorld tasks using a model that incorporates a combina-
tion of commonsense knowledge, encoded in ConceptNet,
and a learned KG representing the current environment state.
They find that while at times beneficial, KGs can also pro-
vide too strong a prior.

7. Future Work
There are multiple avenues that we plan to further explore.
Extending WordCraft to the longer horizon setting of the
original Little Alchemy 2, in which the user must discover
as many entities as possible, could be an interesting setting
to study commonsense-driven exploration. We also plan to
introduce additional modalities such as images and control
into WordCraft. Furthermore, we believe the ideas in this
work could benefit more complex RL tasks associated with
large corpora of task-specific knowledge, such as NLE. This
path of research entails further investigation of methods for
automatically constructing knowledge graphs from available
corpora as well as agents that retrieve and directly condition
on natural language texts in such corpora.
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A. Background
Knowledge Graphs Knowledge graphs naturally repre-
sent the ontology of concepts underlying commonsense
knowledge about the world. In a knowledge graph, nodes
represent concepts, and edges between two nodes represent
a relationship between the corresponding concepts. Let E
and R denote a set of entities and a set of relation types,
respectively. Formally, a KG G ⊆ E × R × E is a set of
subject-predicate-object triples 〈s, p, o〉, with s, o ∈ E and
p ∈ R, where each triple encodes a relationship of type p
between the subject s and the object o. There are several
examples of large-scale KGs encoding commonsense knowl-
edge, both from academia (such as YAGO (Suchanek et al.,
2007), DBpedia (Auer et al., 2007)) and industry (such as
Microsoft’s Bing Knowledge Graph and the Google Knowl-
edge Graph (Noy et al., 2019)). Such large-scale knowledge
graphs hold an enormous amount of useful prior knowledge
about the world, that should be useful for guiding an RL
agent in any environment with real-world semantics. Espe-
cially relevant to this work are ATOMIC (Sap et al., 2019)
and ConceptNet (Speer et al., 2017), two KGs encoding
common-sense knowledge.

Representation Learning of KGs An effective way of
enabling statistical learning on KGs consists of learning
continuous, distributed representations, also referred to as
embeddings, for all entities in a KG. We refer to Nickel et al.
(2016) for a recent survey on this topic. In this work, we
use the ComplEx (Trouillon et al., 2016) link prediction
model, with the loss functions and regularizers proposed by
Lacroix et al. (2018). Given a subject-predicate-object triple
〈s, p, o〉 ∈ E ×R×E , ComplEx defines the score φ(s, p, o)
of such a triple as:

φ(s, p, o) = Re (〈es, ep, eo〉) , (1)

where 〈·, ·, ·〉 denotes the tri-linear dot product, es, ep, eo ∈
Ck denote the complex-valued k-dimensional representa-
tions of s, p, and o, x denote the complex conjugate of
x ∈ Ck, Re (x) is the real part of x. In order to learn the em-
bedding representations Θ for all entities and relation types
in a KG G, we follow Lacroix et al. (2018) and minimise
the following objective via gradient-based optimisation:

L(G) =
∑

〈s,p,o〉∈G

[
log

∑
ô∈E

expφ(s, p, ô)

]

+

[
log

∑
ŝ∈E

expφ(ŝ, p, o)

]
− 2φ(s, p, o),

(2)

regularized via the weighted nuclear p-norm regularizer
proposed by Lacroix et al. (2018).

B. Model Details
B.1. Learning Mixing Coefficients

The link-prediction scores between goal and table enti-
ties for the componentOf relation and between each se-
lected entity and table entities for the combinesWith re-
lation are combined component-wise with the self-attention
weights αi using mixing coefficients to yield final policy
logits β:

βi = λααi + λuui + λvvi (3)

π(at = ei|st = x) =
eβi∑
j e
βj
. (4)

The mixing coefficients λ are computed by passing the self-
attention-weighted table encoding through a fully-connected
layer:

λ = MLP(αTWλ(xtable)) (5)

C. Experiments
C.1. Self-Attention Actor-Critic Architecture

Figure 4. Overview of the self-attention actor-critic model used in
our experiments.
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C.2. Training Parameters

Table 1. Parameters used for training IMPALA in all experiments.

Parameter Value

Training set ratio 0.8
Discounting (γ) 0.99
Learning rate 0.001
Batch size 128
Unroll length 2
RMSProp ε 0.01
Entropy regularization 0.01
Reward clipping none
Total steps 3,000,000

C.3. Model Parameters

Table 2. Model parameters used in our experiments.

Parameter Value

Self-attention key size 300
Self-attention value size 300
ComplEx embedding size 128
Simple-MLP hidden size 300

C.4. Extended Discussion

In addition to initial benchmarks conducted in 5.1, we also
compare the performance of the self-attention actor-critic
agent described in 4.1 to a simple, single-layer MLP that
predicts the policy logits and value estimates from the con-
catenation of all GloVe word embeddings of goal, selection,
and table entities at each time step. These results are pre-
sented in Fig. 5.

We further benchmark the performance of the self-attention
actor-critic agent with and without access to an instance of
ComplEx trained on a subgraph of the full recipe graph. We
compare agents trained with access to ComplEx trained on a
partial graph and those trained on the full graph. The partial
KG models are trained on only the relations present in the
set of training recipes.

As the method for incorporating ComplEx’s predicted rela-
tion scores into the policy prediction performs a weighted
sum of each score with the self-attention weights, we inves-
tigate the effect of only using different subsets of the scores.
As seen in Fig. 6 and Fig. 7, the subset of relation scores
that are helpful to policy learning varies across task depth
and distractor settings.

We generally find that access to a full KG model drasti-
cally improves the agent’s zero-shot success rate, as might
be expected. In fact, one might expect that having access
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Figure 5. Zero-shot success rates of agents trained using different
embeddings on depth-1 tasks with 1 and 2 distractors.

to the ground-truth recipe graph as encoded by ComplEx
should enable the agent to achieve 100% zero-shot suc-
cess rates across all task settings. In order to test the ex-
tent to which the full-KG ComplEx scores are predictive
of the best actions, we also assessed the performance of
agents whose final policy logit mixture only assigned posi-
tive weights to different subsets of the relation scores. Such
full-KG-only agents that choose items only based on the
combinesWith relation score will still often choose the
same entity twice, believing the entity combines with it-
self. This is likely because the recipe graph includes several
entities that combine with themselves, while the set of all
self-combination triplets are not included in the training set.
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Figure 6. Zero-shot success rates of variations of partial- and full-
KG agents on depth-1 tasks with 1 distractor. Full KG refers to a
ComplEx model trained on the full recipe graph, while partial KG
refers to one trained on only training recipes.
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Figure 7. Zero-shot success rates of agents trained with and with-
out KG models on depth-1 tasks with 8 distractors.

Full-KG-only agents that choose items only based on the
componentOf relation score will tend to choose the same
item twice, as this approach will always assign the highest
action probability to selecting the entity on the table that
ComplEx predicts to be most likely to be a component of
the goal entity.

Interestingly, partial-KG-agents do not always do much
better than a KG-free agent. This implies that as the KG-
free agent sees more training tasks, it becomes comparable
to ComplEx in predicting unseen relations among entities.

Early on in training, the relation scores predicted by Com-
plEx seem to help the agent achieve higher zero-shot success
rates in fewer training steps compared to KG-free agents
(see Figure 7).

C.5. Human Evaluation Protocol

We estimate the generalization ability of humans players
on depth-1 tasks with 1 and 8 distractors. Each difficulty
setting is tested on a different individual, and we test one
individual per setting. The selected individuals were not
familiar with the game and got to train on 40 randomly
sampled training tasks before being evaluated on 40 testing
tasks. The train and test split was the same as in the RL ex-
periments. Surprisingly, we found that changing the number
of distractors from 1 to 8 did not significantly influence hu-
man performance. We plan to conduct a larger-scale human
performance evaluation.

D. Example recipes

Table 3. Example WordCraft recipes.

Resulting entity Entity combination(s)

airplane bird metal; bird, steel
alcohol fruit, time; juice, time
batter flour, milk
cereal wheat, milk
catnip cat, plant
charcoal fire, wood
dew water, grass; fog, grass
farmer human, field; human, plant;
geyser steam, earth
glacier ice, mountain
hay bale hay, hay
iced tea ice, tea
ivy plant, wall
juice water, fruit; pressure, fruit
kite wind, paper; sky, paper
lake water, pond; river, dam
milk farmer, cow; cow, human
milk shake milk, ice cream
narwhal unicorn, ocean; unicorn, water
oasis desert, water
paper wood, pressure
pasta flour, egg
rainbow rain, sun; rain, light
reindeer Santa, wild animal; livestock, Santa
sand castle sand, castle
Santa human, Christmas tree
scythe blade, grass; blade, wheat
telescope glass, sky; glass, star; glass, space
umbrella tool, rain; rain, fabric
volcano lava, earth; lava, mountain
wallet leather, money
watch human, clock
x-ray light, bone; light, skeleton
yogurt milk, bacteria
zombie corpse, life


