Accelerating Molecular Graph Neural Networks via
Knowledge Distillation

Filip Ekstrom Kelvinius* Dimitar Georgiev*
Linkoping University Imperial College London
filip.ekstrom@liu.se d.georgiev2l@imperial.ac.uk
Artur Petrov Toshev* Johannes Gasteiger
Technical University of Munich Google Research
artur.toshev@tum.de johannesg@google.com
Abstract

Recent advances in graph neural networks (GNNs) have enabled more compre-
hensive modeling of molecules and molecular systems, thereby enhancing the
precision of molecular property prediction and molecular simulations. Nonetheless,
as the field has been progressing to bigger and more complex architectures, state-
of-the-art GNNs have become largely prohibitive for many large-scale applications.
In this paper, we explore the utility of knowledge distillation (KD) for accelerating
molecular GNNs. To this end, we devise KD strategies that facilitate the distillation
of hidden representations in directional and equivariant GNNs, and evaluate their
performance on the regression task of energy and force prediction. We validate
our protocols across different teacher-student configurations and datasets, and
demonstrate that they can consistently boost the predictive accuracy of student
models without any modifications to their architecture. Moreover, we conduct com-
prehensive optimization of various components of our framework, and investigate
the potential of data augmentation to further enhance performance. All in all, we
manage to close the gap in predictive accuracy between teacher and student models
by as much as 96.7% and 62.5% for energy and force prediction respectively, while
fully preserving the inference throughput of the more lightweight models.

1 Introduction

In the last couple of years, the field of molecular simulations has undergone a rapid paradigm shift
with the advent of new, powerful computational tools based on machine learning (ML) [1]. At the
forefront of this transformation have been recent advances in graph neural networks (GNNs), which
have brought about architectures that more effectively capture geometric and structural information
critical for the accurate representation of molecules and molecular systems [2} 3]. Consequently,
a multitude of GNNs have been developed, which now offer predictive performance approaching
that of conventional gold-standard methods such as density functional theory (DFT) at a fraction of
the computational cost [4} 15,16, [7, 18, 9]]. This has, in turn, significantly accelerated the modeling of
molecular properties and the simulation of molecular systems, bolstering new research developments
in many scientific disciplines, including material sciences, drug discovery and catalysis [10} 11} 12}
13 114].

Nonetheless, this progress - largely coinciding with the development of bigger and more complex
models, has naturally come at the expense of increased complexity [[15,19,[7,[16]. This has gradually

*These authors contributed equally to this work. Order was determined by rolling a dice.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

0C20-2M COLL

GemNet-0C GemNet-0C

PaiNN PaiNN PaiNN PaiNN
PaiNN-small PaiNN-small
samples/sec samples/sec samples/sec mples/s P

Energy
student _MAE

meV/A

Student

(with KD)

Figure 1: Using knowledge distillation, we manage to significantly boost the predictive accuracy of
different student models on the OC20-2M and COLL [6] datasets while fully preserving their
inference throughput.

limited the utility of state-of-the-art GNNs in large-scale molecular simulation applications (e.g.,
molecular dynamics and high-throughput searches), where inference throughput (i.e., how many
samples can be processed for a given time) is critical for making fast predictions about molecular
systems at scale. Hence, addressing the trade-off between accuracy and computational demand
remains essential for creating more affordable tools for molecular simulations and expanding the
transformational impact of GNN models in the area.

Motivated by that, in this work, we investigate the potential of knowledge distillation (KD) in
advancing the speed-accuracy Pareto frontier and enhancing the performance and scalability of
molecular GNNs. In summary, the contributions of this paper are as follows:

* We, for the first time, explore the utility of knowledge distillation for accelerating GNNs for
molecular simulations - a large-scale, multi-output regression task, challenging to address with
common KD methods.

* We design custom KD strategies, which we call node-to-node (n2n), edge-to-edge (e2e), edge-to-
node (e2n) and vector-to-vector (v2v) knowledge distillation, which facilitate the distillation of
hidden representations in directional and equivariant molecular GNNs.

* We demonstrate the effectiveness of our protocols across different teacher-student configurations
and datasets, allowing us to substantially improve the performance of student models while fully
preserving their throughput (see Figure[I] for an overview).

* We conduct a comprehensive empirical analysis of different components of our KD strategies, as
well as explore data augmentation techniques for further improving performance.

Associated code is available onlineEl

2 Background

Molecular simulations. In this work, we consider molecular systems at an atomic level, i.e., NV atoms
represented by their atomic numbers z = {21, ..., 2y} € Z" and positions X = {zy,...,zN} €
RV >3, Given a system, we want a model that can predict the energy E € R of the system, and the
forces F' € RV >3 acting on each atom. Both of these properties are of high interest when simulating
molecular systems. The energy of a system is essential for the prediction of its stability, whereas the
forces are important for molecular dynamics simulations, where computed forces are combined with
the equations of motion to simulate the evolution of the system over time.

GNN s for molecular systems. GNNs are a suitable framework for modeling molecular systems.
Each molecular system (X, z) can be represented as a mathematical graph G = (V,), where
the nodes V correspond to the set of atoms, and edges £ are created between nodes by connecting
the closest neighboring atoms (typically defined by a cutoff radius and/or a maximum number of
neighbors). Hence, in the context of molecular simulations, we can create GNNs that operate on

*https://github.com/gasteigerjo/ocp/blob/main/DISTILL.md

https://github.com/gasteigerjo/ocp/blob/main/DISTILL.md

atomic graphs G by propagating information between the atoms and the edges, and make predictions
about the energy and forces of each system in a multi-output manner - i.e., £, F' = GNN(X, z).

The main problem when modeling molecules and molecular properties is the number of underlying
symmetries to account for, most importantly rigid transformations of the atoms. For instance, the
total energy E of a system is not affected by (i.e., is invariant to) rotations and translations of the
system. However, the forces F' do change as we rotate a system - i.e., they are equivariant to rotations.
Therefore, to make accurate predictions about molecular systems, it is crucial to devise models that
respect these symmetries and other physical constraints. There is now a plethora of diverse molecular
GNNgs that reflect that, e.g., SchNet [[18]], DimeNet [5. 6], PaiNN [19], GemNet [7 18], NequlIP [4],
and SCN [9], which have incrementally established a more holistic description of molecular systems
by capturing advanced geometric features and physical symmetries. This has, however, come at the
expense of computational efficiency.

Knowledge distillation. Knowledge distillation is a technique for compressing and accelerating
ML models [20]], which has recently demonstrated significant potential in domains such as computer
vision [21]] and natural language modeling [22]. The main objective of KD is to create more efficient
models by means of transferring knowledge (e.g., model parameters and activations) from large,
computationally expensive, more accurate models, often referred to as teacher models, to simpler,
more efficient models called student models [23]]. Since the seminal work of Hinton et al. [24], the
field has drastically expanded methodologically with the development of protocols that accommodate
the distillation of “deeper” knowledge, more comprehensive transformation functions, as well as
more robust distillation losses [23, [25]]. Yet, these advances have mostly focused on classification,
resulting in methods of limited utility in regression tasks [26]. Moreover, most research in the
area has been confined to non-graph data (e.g., images, text, tabular data). Despite recent efforts
to extend KD to graph data and GNNs, these have likewise only concentrated on classification
tasks involving standard GNN architectures [27, 28]. And, in particular, the application of KD to
large-scale regression problems in molecular simulations, which involve state-of-the-art molecular
GNN architectures containing complex, geometric node- and edge-level features, is still unexplored.

3 Knowledge distillation for molecular GNNs

Preliminaries. In the context of the aforementioned prediction task, we train molecular GNNs by
enforcing a loss Ly that combines both the energy and force prediction error as follows:

LO = aELE(EaE) +aF£F(F7F)? (1)

where E and F are the ground-truth energy and forces, E and F are the predictions of the model of
interest, and Lg and L are some loss functions weighted by ag, ar € R.

To perform knowledge distillation, we augment this training process by defining an auxiliary KD loss
term Lgp, which is added to Ly (with a factor A € R) to derive the final training loss function £:

L =Ly+ \Ckp.- 2)

This was originally proposed in the context of classification by leveraging the fact that the soft label
predictions (i.e., the logits after softmax normalization) of a given (teacher) model carry valuable
information that can complement the ground-truth labels in the training process of another (student)
model [24]. Since then, this has become the standard KD approach - commonly referred to as
vanilla KD in the literature, which is often the foundation of new KD protocols. The main idea
of this technique is to employ a KD loss Lkp that forces the student to mimic the predictions of
the teacher model. This is usually achieved by constructing a loss Lxp = KL(zs, 2¢) based on the
Kullback-Leibler (KL) divergence between the soft logits of the student z, and the teacher z;.

However, such strategies - based on the distillation of the output of the teacher model only - pose
two significant limitations. First, they are by design exclusively applicable to classification tasks,
since there are no outputs analogous to logits in regression setups [20} 29]]. This has consequently
limited the utility of most KD methods in regression tasks. Second, this approach forces the student
to emulate the final output of the teacher directly, which can be unattainable in regimes where the
complexity gap between the two models is substantial, and thus detrimental to KD performance [30].

Feature-based KD. To circumvent these shortcomings, we focus on feature-based KD - an extension
of vanilla KD concerned with the distillation of knowledge across the intermediate layers of models

[314 132, 23]. In particular, we perform knowledge distillation of intermediate representations by
devising a loss on selected hidden features Hy € Us and H; € U, in the student and teacher models
respectively, which takes the form:

[/KD = [/feat(Ms(Hs)th(Ht))y (3)

where Mg : Uy — U and M, : U, — U are transformations that map the hidden features to a
common feature space U, and Ly : U x U — RT is some loss of choice. The transformations
M, M; can be the identity transformation, linear projections and multilayer perceptron (MLP)
projection heads; whereas for the distillation loss L, typical options include mean squared error
(MSE) and mean absolute error (MAE).

The fundamental design decision when devising a KD strategy based on the distillation of internal
representations is the choice of features to distill between (i.e., features H, and H;). One needs to
ensure that paired features are similar both in expressivity and relevance to the output. Most research
on feature-based distillation on graphs has so far focused on models that only have one type of scalar
(node) features in classification tasks [27, 28], reducing the problem to the selection of layers to pair
across the student and the teacher. This is often further simplified by utilizing models that share the
same architecture up to reducing the number of blocks/layers and their dimensionality.

Features in molecular GNNSs. In contrast, molecular GNNs contain diverse features (e.g., scalars,
vectors and/or equivariant higher-order tensors based on spherical harmonics) organized across
nodes and edges within a complex molecular graph. These are continually evolved by model-specific
operators to infer molecular properties, such as energy and forces, in a multi-output prediction fashion.
Therefore, features often represent different physical, geometric and/or topological information
relevant to specific parts of the output. This significantly complicates the design of an effective KD
strategy, especially when the teacher and the student differ architecturally, as one needs to extract and
align representations corresponding to comparable features in both models.

In this work, we set out to devise KD strategies that are representative and effective across various
molecular GNNs. This is why we investigate the effectiveness of KD with respect to GNNs that have
distinct architectures and performance profiles, and can be organized in teacher-student configurations
at different levels of architectural disparity. In particular, we employ the following three GNN models,
ordered by computational complexity (ascending):

» SchiNet [33]: A simple GNN model based on continuous-filter convolutional layers, which only

contains scalar node features s € R?. These are used to predict the energy F. The force is
then calculated as the negative gradient of the energy with respect to the atomic positions, i.e.,
F=_VE.

* PaiNN [19]]: A GNN based on equivariant message passing, which contains scalar node features
x € R% - used for energy prediction; as well as geometric vectorial node features v € R3* 42
that are equivariant to rotations and can thus be combined with the scalar features to make direct
predictions of the forces (i.e., without computing gradients of the energy).

* GemNet-OC [8]l: A GNN model that utilizes directional message passing between scalar node
features h € R% and scalar edges features m € R After each block of layers, these are
processed through an output block, resulting in scalar node features :B}(;) and edge features wl(f),
where ¢ is the block number. The output features from each block are aggregated into output
features & and x -, which are used to compute the energy and forces respectively.

An overview of the features of the three models can be found in Table[T]

Table 1: An overview of the types of features available in the three models we use in this study.

SchNet PaiNN GemNet-OC

Scalar node features v v v
Scalar edge features v
Vectorial node features v

Output blocks v

Defining feature-based KD distillation strategies for molecular GNNs. In the context of the three
models considered in this work, we devise the following KD strategies:

- node-to-node (n2n): As all three models contain scalar node features H,oqe, we can distill knowledge
in between these directly by defining a loss L p given by

ACKD - Cfeat(Ms(Hnode,s)aMt(Hnode,t))a (4)

where H g s and Hpoge, represent the node features of the student and teacher, respectively. Note
this is a general approach that utilizes scalar node features only, making it applicable to standard
GNNs. Here, we want to force the student to mimic the representations of the teacher for each
node (i.e., atom) independently, so we use a loss that directly penalizes the distance between the
features in the two models, such as MSE (similar to the original formulation of feature-based KD
in Romero et al. [31]). Other recently proposed losses Ly, for the distillation of node features in
standard GNNs specifically include approaches based on contrastive learning [34} 35136, 37]] and
adversarial training [38]]. We do not focus on such methods as much since they are better suited for
(node) classification tasks (e.g., contrasting different classes of nodes), and not for molecule-level
predictions.

To take advantage of other types of features relevant to molecular GNNs, we further devise three
additional protocols, which we outline below.

- edge-to-edge (e2e): The GemNet-OC model heavily relies on its edge features, which are a key
component of the directional message passing employed in the architecture. As such, they can be a
useful resource for KD. Hence, we also consider KD between edge features, which we accomplish by
applying Equation (4) to the edge features Hegge s and Hegge, Of the student and teacher, respectively.

- edge-to-node (e2n): However, not all models considered in this study contain edge features to
distill to. To accommodate that, we propose a KD strategy where we transfer information from
GemNet-OC’s edge features Hegge,(;,5) by first aggregating them as follows:

3)

Hedge2n0de,i: Z Hedge,(i,j)a)
JEN ()

where ¢ is some node index. The resulting features Heggeonode,; are scalar, node-level features, and we
can, therefore, use them to transfer knowledge to the student node features Hyoqc,s as in Equation @)

- vector-to-vector (v2v): Similarly, the PaiNN model defines custom vectorial node features, which
differ from the scalar (node and edge) features available in the other models. These are not scalar
and invariant to rigid transformations of the atoms, but geometrical vectors that are equivariant with
respect to rotations. As these carry important information about a given system, we also want to
define a procedure to distill these. When we perform KD between two PaiNN models, we can
directly distill information between these vectorial features just as in Equation @). In contrast, when
distilling knowledge into PaiNN from our GemNet-OC teacher that has no such vectorial features, we
transfer knowledge between (invariant) scalar edge features and (equivariant) vectorial node features
by noting that scalar edge features sit on an equivariant 3D grid since they are associated with an
edge between two atoms in 3D space. Hence, we can aggregate the edge features { Hegge, (s,5) } jeN
corresponding to a given node ¢ into node-level equivariant vectorial features H,.. ; by considering
the unit vector u,;; = ‘m]%m‘ (; — x;) that defines the direction of the edge (i, j), such that

(k (k
Hvec)7i = Z uinedg)e,(iJ)’
JEN ()

(6)

with the superscript k indicating the channel. Notice that the features H, () fulfill the condition of

vec,i

equivariance with respect to rotations as each vector u;; is equivariant to rotations, and H éfge (i) " @
scalar not influencing its direction. Consequently, it is important to use a loss L, that encourages
vectors to align in both magnitude and direction - e.g., MSE.

Additional KD strategies. We further evaluate two additional KD approaches inspired by the vanilla
logit-based KD used in classification, which we augment to make suitable for regression tasks:

- Vanilla (1): One way of adapting vanilla KD for regression is by steering the student to mimic the
final output of the teacher directly:

Lxp = apLe(Es, E) + aple(Fy, F)), @)

where the subscripts s and , refer to the predictions of the student and teacher, respectively. Note that,
unlike in classification, this approach does not provide much additional information in regression
tasks, except for some limited signal about the error distribution of the teacher model [20, 29].

- Vanilla (2): One way to enhance the teacher signal during training is to consider the fact that
many GNNs for molecular simulations make separate atom- and edge-level predictions, which are
consequently aggregated into a final output. For instance, the total energy E of a system is usually
defined as the sum of the predicted contributions from each atom £ = 3 i E;. Hence, we can extend
the aforementioned vanilla KD approach by imposing a loss on these granular predictions instead:

N
1 N N
Lxp = 2 Le(Bis, Eiy).)

These individual energy contributions are not part of the labeled data, but, when injected during
training, can provide more fine-grained information than the aggregated prediction.

4 Experimental results

To evaluate our proposed methods, we perform comprehensive benchmarking experiments on the
0OC20-2M [[17]] dataset (structure to energy and forces (S2EF) task) - a large and diverse catalyst
dataset; and COLL [6] - a challenging molecular dynamics dataset. We use the model implementations
provided in the Open Catalyst Project (OCP) codebaseﬂ (see Appendix |A|for detailed information
about training procedure and model hyperparameters).

Benchmarking baseline models. We start by first evaluating the baseline performance of the models
we employ in this study. As previously mentioned, we select SchNet, PaiNN and GemNet-OC for our
experiments as they cover most of the accuracy-complexity spectrum, with the last representing the
state-of-the-art on OC20 S2EF and COLL at the time of experimentation. To demonstrate this, we
benchmark the predictive accuracy and inference throughput of the models on the two aforementioned
datasets. In conjunction with the default PaiNN and GemNet-OC models, we also experiment with
more lightweight versions of the two architectures - referred to as PaiNN-small and GemNet-OC-
small respectively, where we reduce the number of hidden layers and their dimensionality. We train
all models to convergence ourselves, except for the GemNet-OC model on OC20-2M, where we
utilize the pre-trained model available within the OCP repository (July 2022).

We present our benchmarking results on OC20 S2EF in Table 2] which summarizes the performance
of the five models with respect to the following four metrics: energy and force MAE (i.e., the mean
absolute error between ground truth and predicted energies and forces); force cos (i.e., the cosine
similarity between ground truth and predicted forces); and energy and forces within threshold (EFwT)
- i.e., the percentage of systems whose predicted energies and forces are within a specified threshold
from the ground truth [[17]. Since force cos and EFwT are correlated with energy and force MAE, we
focus on the latter throughout the paper but present all four for completeness.

Table 2: Evaluation of the performance of our five baseline models on the OC20 S2EF task. All
models are trained on the OC20-2M dataset. Values represent the average across the four available
validation sets. Results for individual validation datasets are provided in Appendix [B]

Inference ‘g
Throughput OC20 S2EF Validation

Samples/ Energy MAE Force MAE Force cos EFwT
Model GPU sec. 1 meV | meV /A | T %
SchNet 1100 1308 65.1 0.204 0
PaiNN-small 680 489 47.1 0.345 0.085
PaiNN 264 440 45.3 0.376 0.14
GemNet-OC-small 158 344 31.3 0.524 0.51
GemNet-OC 107 286 25.7 0.598 1.06

*https://github.com/Open-Catalyst-Project/ocp

https://github.com/Open-Catalyst-Project/ocp

Our results highlight the substantial trade-off between predictive accuracy and computational cost
across the GNN architectures, and, therefore, the need for methods that can alleviate this limitation.
We observe the same trend on the COLL dataset (see Appendix [C).

Similarity analysis of baseline models. To

make our analysis exhaustive, we set out to de- " 51 1.0
. . . . [Ty

sign experiments involving teacher and student Z g

architectures of a variable degree of architec- %3 o 08

tural disparity. As a proxy of that, we derive

similarity scores based on central kernel align- 10

ment (CKA) [39,/40, 35]]. In particular, we cal- : 5 i :
culate the pairwise CKA similarity between the I

node features of our trained SchNet, PaiNN and 0 0.

o
o

PaiNN
Similarity

Layers

EN

GemNet-OC models. The results of this analysis 10 g

are summarized in Figure[2] Focusing on intra- § 0 ! E 02
model similarities first (plots on the diagonal), éE’ 55 -.‘.. '
we observe that, while representations from dif- g -

ferent layers within PaiNN and SchNet have a 0 I n6 VL
generally high degree of similarity, GemNet-OC SchNet PaiNN GemNet-OC
exhibits the opposite behavior, with features ex- Layers Layers Layers

tracted at each layer being significantly different
from those captured across the rest of the archi-
tecture. This is consistent with the architectures
of these three models, with features in PaiNN
and SchNet being iteratively updated by adding
displacement features computed at each layer, while those in GemNet-OC representing separate
output features. When examining inter-model similarity instead, we notice that, generally speaking,
node features in SchNet and PaiNN are similar, whereas those between SchNet and GemNet-OC, and
PaiNN and GemNet-OC, diverge significantly as we move deeper into GemNet-OC.

Figure 2: Similarity analysis between the node
features of SchNet, PaiNN and GemNet-OC using
CKA (averaged over n = 987 nodes).

Knowledge distillation results. Based on the aforementioned analyses, we define the following
teacher-student pairs, covering the whole spectrum of architectural disparity: PaiNN to PaiNN-small
(same architecture); PaiNN to SchNet (similar architectures); GemNet-OC to PaiNN (different archi-
tectures). We additionally explore KD from GemNet-OC to GemNet-OC-small (same architecture)
on OC20. We train student models by utilizing an offline KD strategy [23]], where we distill knowl-
edge from the more competent, pre-trained teacher model to the simpler, more lightweight student
model during the training of the latter. We augment the training of each student model with our KD
protocols and evaluate the effect on predictive accuracy against the models trained without KD. If
not mentioned otherwise, we utilize the following setup: we use MSE as a distillation 10ss Lgeq; @
learned linear layer as a transformation function M applied to the features of the student; and the
identity transformation as M;. When distilling knowledge from/into GemNet-OC models, we use
the aggregated node- and edge-level output features, which is reminiscent of the review-based setup
proposed in [41]]. For PaiNN and SchNet, we use the final node features.

The results of our experiments are summarized in Tables [3|and[d] presenting a comparative analysis
of the predictive performance of different student models trained with and without the implemen-
tation of knowledge distillation on the OC20-2M and COLL datasets, respectively. Focusing on
energy predictions first, we observe that, by utilizing KD, we achieve significant improvements in
performance in virtually all teacher-student configurations. In particular, we manage to close the
gap in performance between student and teacher models by ~ 60% or more in six out of the seven
configurations, reaching results as high as 96.7% (distilling PaiNN to PaiNN-small on the COLL
dataset). Putting our results into context, we remark that our PaiNN model trained with n2n KD
from GemNet-OC, for instance, provides more accurate energy predictions than more advanced
models such as GemNet-dT [7, (8] which is substantially slower. The only setup where results are
not as definite is when training SchNet on OC20-2M with KD from PaiNN, where we close 10.8%.
However, it is noteworthy to highlight that this still corresponds to a significant absolute improvement
(i.e., notice the big initial difference in performance between the two baseline models on this dataset).

We similarly observe an improvement in the accuracy of student models in force predictions in
all teacher-student configurations. Although we observe force improvements (typically ~5-25%)
that are generally not as pronounced as those achieved in energy prediction, we note that we reach

Table 3: Evaluation of the performance of our KD strategies across teacher-student architectures on
the OC20 S2EF task. All models are trained on the OC20-2M dataset. Numbers in brackets represent
the proportion of the gap between the student (S) and the teacher (7)) that has been closed by the
respective KD strategy (in %). Best results are given in bold. Values represent the average across the
four available validation sets. Results for individual validation datasets are provided in Appendix [B]
Error bars for selected configurations can be found in Appendix [

0OC20 S2EF Validation
Energy MAE Force MAE Force cos EFwT
Model meV | meV/A | 0 % 1t
S: PaiNN-small 489 47.1 0.345 0.085
T: PaiNN 440 45.3 0.376 0.139
Vanilla (1) 515(-52.4%) 48.5(-81.0%) 0.269(-237%) 0.07(-28%)
Vanilla (2) 476(27.2%) 50.8(-215%) 0.307(-117%) 0.068(-32.6%)
o n2n 457 (64.8%) 46.7 (20.5%) 0.348 (9.3%) 0.085 (0.5%)
S v 459(60.8%) 47.2(-9.1%) 0.347(6.8%) 0.079(-11.9%)
B S: GemNet-OC-small 344 31.3 0.524 0.51
T: GemNet-OC 286 25.7 0.598 1.063
Vanilla (1) 339(9.1%) 31.2(-1.0%) 0.525(1.3%) 0.51(0.4%)
Vanilla (2) 328(27.8%) 31.2(0.3%) 0.525(1.5%) 0.61 (18.3%)
n2n 310 (58.8%) 31.1(2.2%) 0.526(3.6%) 0.61(18.2%)
e2e 334(16.5%) 29.7(27.6%) 0.543 (25.7%) 0.58(12.6%)
S: SchNet 1308 65.1 0.204 0
5§ T:PaiNN 440 45.3 0.376 0.139
§ Vanilla (1) 1214 (10.8%) 64.6(2.3%) 0.230 (15.2%) 0.003 (1.8%)
> Vanilla (2) 1216(10.5%) 64.6 (2.5%) 0.229(14.5%) 0(0%)
n2n 1251(6.6%) 65.2(-0.5%) 0.223(11.1%) 0(0%)
S: PaiNN 440 45.3 0.376 0.139
T: GemNet-OC 286 25.7 0.598 1.063
S Vanilla (1) 440(0.0%) 43.9(7.1%) 0.378(0.8%) 0.14(0.4%)
& Vanilla (2) 419(13.6%) 114.8(-353%) 0.324(-23.8%) 0.127(-1.3%)
S n2n 346 (60.8%) 42.8(12.8%) 0.393(7.4%) 0.262 (13.4%)
e2n 418(14.2%) 41.3 (20.5%) 0.405 (12.8%) 0.207(7.4%)
v2v 437(1.8%) 42.9(17.1%) 0.397(9.4%) 0.124(-1.6%)

results as high as 62.5% for some configurations (distilling PaiNN to PaiNN-small on COLL). A
possible reason for this difference in improvement between energy and forces could be attributed to
the nature of the supervised task - there are substantially more force labels (i.e., one 3D vector per
atom, which could be hundreds per sample) than energy labels (i.e., one per sample). Consequently,
we hypothesize it is easier for models to learn to make accurate force predictions, and, therefore,
there is more room for improvement in the energy predictions, which we can target with KD.

All in all, our experiments demonstrate that, by applying knowledge distillation, we successfully
enhance the performance of student models across all teacher-student configurations and datasets,
confirming the effectiveness and robustness of the approach in the context of molecular GNNs. We
reiterate the fact that no modifications to the student architectures are made, meaning we achieve an
out-of-the-box boost in accuracy without impacting inference throughput.

Effect of KD on model similarity. We continue our investigation by exploring how KD affects
student models and their features. To this end, we analyze how the CKA similarity between teacher
and student models changes with the introduction of KD during training. We present the outcome of
one of our analyses in Figure|3] where we summarize how the similarity between the node features of
GemNet-OC and PaiNN changes with the implementation of n2n KD. We observe that KD introduces
strong and specific similarity gains in the layers we use for KD, which also propagates along the

Table 4: Evaluation results on the COLL test set. Numbers in brackets represent the proportion of the
gap between the student (S) and the teacher (7') that has been closed by the respective KD strategy (in
%). Best results are given in bold.

COLL test set
Energy MAE Force MAE Force cos EFwT
Model meV | meV/A | 0 % 1
S: PaiNN-small 104.0 80.9 0.984 5.4
T: PaiNN 85.8 64.1 0.988 10.1
§ Vanilla (1) 106.1(-11.5%) 82.0(-6.5%) 0.984(2.3%) 4.46(-20.2%)
< Vanilla (2) 86.4 (96.7 %) 80.9(0%) 0.983(-2.3%) 4.3(-23.7%)
n2n 92.5(63.2%) 77.8(18.5%) 0.984(18.2%) 6.63 (26.5%)
v2v 90.4(74.7%) 70.4 (62.5%) 0.986 (45.5%) 5.8(8.4%)
S: SchNet 146.5 121.2 0.970 2.75
5 T:PaiNN 85.8 64.1 0.988 10.1
§ Vanilla (1) 146.1(0.7%) 120.8(0.7%) 0.970(1.1%) 2.54(-2.9%)
“ Vanilla (2) 104.1 (69.9%) 120.9(0.5%) 0.970(1.1%) 6.45 (50.7%)
n2n 141.6(8.1%) 117.2(7.0%) 0971 (5.4%) 2.63(-1.6%)
S: PaiNN 85.8 64.1 0.988 10.1
T: GemNet-OC 44.8 38.2 0.994 20.2
§ Vanilla (1) 86.2(-1.1%) 63.9(0.6%) 0.988(1.5%) 10.1(0.1%)
% Vanilla (2) 61.4(59.5%) 62.9(4.6%) 0.988(5.2%) 13.0(29.2%)
S n2n 60.4 (62.0%) 61.2(11.3%) 0.989 (14.9%) 13.6(34.6%)
e2n 77.3(20.8%) 63.3(3.0%) 0.988(7.9%) 11.0(9.2%)
v2v 81.2(11.2%) 63.3(3.1%) 0.988(3.4%) 10.5(4.6%)

student architecture. We notice similar behavior across other teacher-student configurations and KD
strategies (see Figures [6|and [7)in Appendix [G)), allowing us to monitor and quantify the effect of KD
on student models as we explore different KD settings and design choices.

Hyperparameter studies. We additionally conduct a thorough hyperparameter study to evaluate the
effect of different design choices within our KD framework. We summarize our results below.

- Effect of distillation loss: Apart from our default MSE-based distillation loss L, we also exper-
imented with more advanced losses such as Local Structure Preservation (LSP) [34] and Global
Structure Preservation (GSP) [33]], as well as directly optimizing CKA. We observed the best results
with our default MSE loss, with other options substantially hurting accuracy (see Appendix [E.T).

- Effect of transformation function: We also investigated a number of different transformation func-
tions and the effect they have on performance. The transformations we utilized include: the identity
transformation (when appropriate); learned linear transformations, and MLP projection heads. Our
results showed that our default linear mapping is a sufficiently flexible choice as it gives the best
results(see Appendix [E.2).

- Effect of feature selection: We additionally explored the effect of feature selection on KD perfor-
mance. In particular, we analyzed the change in the predictive accuracy of PaiNN as a student model
as we distill features from earlier layers in the teacher (GemNet-OC), or distill knowledge into earlier
layers in the student. Our results suggest that using features closer to the output is the best-performing
strategy (see Appendix [E.3). We also performed CKA-based similarity analyses to monitor how
model similarity changes as we vary the features we used for KD (see Figure[§]in Appendix [G).

Data augmentation. As for most other applications, data labeling for molecular data is costly as it
requires running computationally expensive quantum mechanical calculations to obtain ground truth
energies and forces. Motivated by this, we explore two data augmentation techniques, which we use
to generate new data points that we label with the teacher and use for KD. We briefly describe these
below (see Appendix [D]for more details).

no KD with KD

Similarity Similarity Similarity gain
10 .00 10 1.00 10
8 0.75 0.75 05
Ze n2n < «
22 050 X — 050 ¥ 00 §
£ 25 © 3
8 0 0.25 Zos
o 0.00 o 0.00 0
. 11 0 . 11 0 .
PaiNN PaiNN PaiNN
Layers Layers Layers

Figure 3: Similarity analysis between Gemnet-OC and PaiNN without KD (left) and with KD (right).
The feature pair used during KD is indicated with . Similarity analyses for other KD strategies and
teacher-student configurations are presented in Appendix [G]

- Random rattling: Adding noise to existing structures (also known as “rattling”) is a form of data
augmentation that has been used in the context of pretraining of molecular GNNs [42]43]], and as a
regularization strategy [44]]. Inspired by this, we utilized “rattling” in the context of KD, where we
added random noise to the atomic positions of systems and used the teacher to derive energy and
force labels for these rattled samples. We then combined these rattled structures with the original
dataset during the training of student models. However, this approach did not provide significant
improvements. Additionally, we tried using gradient ascent to find perturbations that maximize
the discrepancy between the teacher and student predictions, similar to [45]], but this did not show
improvements over random noise, and also increased training time.

- Synthetic Data: Samples in OC20 S2EF originate from the same relaxation trajectory and are
therefore correlated. To tackle this, we generated our own distilled dataset coined d/M, which
consists of one million samples generated by sampling new systems (generated with the OC Datasets
codebase EI), running relaxations with our pre-trained GemNet-OC model, and then subsampling
approximately 10% of the frames. We explored different ways of incorporating this new d/M dataset,
all of which were based on joint training with the OC20 S2EF 2M data (similar to what we did with
the rattled systems). To study different combinations of the ground truth DFT samples and the d/M
samples during training, we defined two hyperparameters determining: (a) how many of the samples
per batch originate from each of the datasets; and (b) how to weight the loss contributions based on
the origin of data. Unfortunately, and contrary to similar approaches, e.g., in speech recognition [46],
the results we observed did not significantly improve on the baseline models.

5 Conclusion

In this paper, we investigated the utility of knowledge distillation in the context of GNNs for
molecules. To this end, we proposed four distinct feature-based KD strategies, which we validated
across different teacher-student configurations and datasets. We showed that our KD protocols can
significantly enhance the performance of different molecular GNNs without any modifications to
their architecture, allowing us to run faster molecular simulations without substantially impairing
predictive accuracy. With this work, we aim to elucidate the potential of KD in the domain of
molecular GNNs and stimulate future research in the area. Interesting future directions include: the
combination of KD strategies (e.g., n2n and v2v); extending the framework to other types of features
(e.g., tensorial features [47]), molecular tasks and datasets; better understanding the connection
between KD performance and model expressivity (e.g., can model similarity inform KD design);
and performing a more comprehensive stability analysis [48]. One caveat of our approach is that
even though inference times are not affected, training times are, albeit not necessarily if a pre-
trained teacher model is available (see Appendix [H). Finally, it is important to recognize that such
technologies, while innovative, could be used for potentially harmful purposes, such as the simulation
or discovery of toxic systems, or the development of harmful technologies.

*https://github. com/Open-Catalyst-Project/Open-Catalyst-Dataset

10

https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset

Acknowledgments and Disclosure of Funding

FE.K. is financially supported by the Excellence Center at Linkoping—Lund in Information Technol-
ogy (ELLIIT). D.G. is supported by UK Research and Innovation [UKRI Centre for Doctoral Training
in Al for Healthcare grant number EP/S023283/1]. Computing resources provided by: the Berzelius
resource at the National Supercomputer Centre, provided by Knut and Alice Wallenberg Foundation;
the Alvis resource provided by the National Academic Infrastructure for Supercomputing in Sweden
(NAISS) at Chalmers e-Commons at Chalmers (C3SE) partially funded by the Swedish Research
Council through grant agreement no. 2022-06725; the Chair of Aerodynamics and Fluid Mechanics
at Technical University of Munich. This research project was initially conceived at the 2022 LOGML
summer school, and we would like to thank Guocheng Qian and I-Ju Chen for their contribution
during the early conceptualizing stages of this project during and in the first weeks following the
summer school. We also thank the Open Catalyst team for their open-source codebase, support and
discussions. In particular, Muhammed Shuaibi for providing the COLL dataset in LMDB format.
Figures assembled in BioRender.

References

[1] Frank Noé, Alexandre Tkatchenko, Klaus-Robert Miiller, and Cecilia Clementi. Machine
learning for molecular simulation. Annual review of physical chemistry, 71:361-390, 2020.

[2] Yuyang Wang, Zijie Li, and Amir Barati Farimani. Graph neural networks for molecules, 2023.

[3] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu,
Yuchao Lin, Zhao Xu, Keqgiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu,
Yucheng Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu,
Yuanqgi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stérk, Shurui Gui, Carl
Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani,
Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung,
Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alan
Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano
Ermon, Pietro Lid, Rose Yu, Stephan Giinnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina
Barzilay, Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and
Shuiwang Ji. Artificial intelligence for science in quantum, atomistic, and continuum systems,
2023.

[4] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature Communications,
13(1):2453, May 2022.

[5] Johannes Gasteiger, Janek Grof3, and Stephan Giinnemann. Directional Message Passing for
Molecular Graphs. In International Conference on Learning Representations, 2020.

[6] Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Giinnemann. Fast and
uncertainty-aware directional message passing for non-equilibrium molecules. In Machine
Learning for Molecules Workshop, NeurIPS, 2020.

[7] Johannes Gasteiger, Florian Becker, and Stephan Giinnemann. GemNet: Universal Directional
Graph Neural Networks for Molecules. In Advances in Neural Information Processing Systems,
volume 34, pages 6790-6802. Curran Associates, Inc., 2021.

[8] Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Giinnemann, Zachary Ward
Ulissi, C. Lawrence Zitnick, and Abhishek Das. GemNet-OC: Developing Graph Neural
Networks for Large and Diverse Molecular Simulation Datasets. Transactions on Machine
Learning Research, October 2022.

[9] Larry Zitnick, Abhishek Das, Adeesh Kolluru, Janice Lan, Muhammed Shuaibi, Anuroop
Sriram, Zachary Ulissi, and Brandon Wood. Spherical channels for modeling atomic interactions.
Advances in Neural Information Processing Systems, 35:8054—-8067, 2022.

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Julia Westermayr, Michael Gastegger, Kristof T Schiitt, and Reinhard J Maurer. Perspective on
integrating machine learning into computational chemistry and materials science. The Journal
of Chemical Physics, 154(23):230903, 2021.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Hous-
sam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks
for materials science and chemistry. Communications Materials, 3(1):93, 2022.

Zehong Zhang, Lifan Chen, Feisheng Zhong, Dingyan Wang, Jiaxin Jiang, Sulin Zhang,
Hualiang Jiang, Mingyue Zheng, and Xutong Li. Graph neural network approaches for drug-
target interactions. Current Opinion in Structural Biology, 73:102327, 2022.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph
neural networks for automated de novo drug design. Drug Discovery Today, 26(6):1382—-1393,
2021.

Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento, Jiayu Zhou, and Fei Wang.
Graph convolutional networks for computational drug development and discovery. Briefings in
bioinformatics, 21(3):919-935, 2020.

Anuroop Sriram, Abhishek Das, Brandon M Wood, Siddharth Goyal, and C Lawrence Zitnick.
Towards training billion parameter graph neural networks for atomic simulations. arXiv preprint
arXiv:2203.09697, 2022.

Saro Passaro and C. Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient
equivariant GNNs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
27420-27438. PMLR, 23-29 Jul 2023.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and
Zachary Ulissi. The Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS
Catalysis, 11(10):6059-6072, May 2021.

Kristof T. Schiitt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions, 2017.

Kristof Schiitt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In Proceedings of the 38th International
Conference on Machine Learning, pages 9377-9388. PMLR, July 2021.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,
35(1):126-136, 2018.

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual
intelligence: A review and new outlooks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789-1819, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network,
March 2015.

Chengming Hu, Xuan Li, Dan Liu, Xi Chen, Ju Wang, and Xue Liu. Teacher-student architecture
for knowledge learning: A survey. arXiv preprint arXiv:2210.17332, 2022.

12

[26] Qing Xu, Zhenghua Chen, Mohamed Ragab, Chao Wang, Min Wu, and Xiaoli Li. Contrastive
adversarial knowledge distillation for deep model compression in time-series regression tasks.
Neurocomputing, 485:242-251, 2022.

[27] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V. Chawla. Knowledge
distillation on graphs: A survey, 2023.

[28] Jing Liu, Tongya Zheng, Guanzheng Zhang, and Qinfen Hao. Graph-based knowledge distilla-
tion: A survey and experimental evaluation. arXiv preprint arXiv:2302.14643,2023.

[29] Muhamad Risqi U Saputra, Pedro PB De Gusmao, Yasin Almalioglu, Andrew Markham, and
Niki Trigoni. Distilling knowledge from a deep pose regressor network. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 263-272, 2019.

[30] Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4794-4802, 2019.

[31] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets, 2015.

[32] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge
distillation from internal representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7350-7357, 2020.

[33] Kristof Schiitt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Miiller. SchNet: A continuous-filter convolutional neural
network for modeling quantum interactions. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[34] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks, 2021.

[35] Chaitanya K. Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation
knowledge distillation for graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, pages 1-12, 2022.

[36] Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang, and Xiangliang Zhang.
Sail: Self-augmented graph contrastive learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8927-8935, 2022.

[37] Cuiying Huo, Di Jin, Yawen Li, Dongxiao He, Yu-Bin Yang, and Lingfei Wu. T2-gnn: Graph
neural networks for graphs with incomplete features and structure via teacher-student distillation.
arXiv preprint arXiv:2212.12738, 2022.

[38] Huarui He, Jie Wang, Zhanqiu Zhang, and Feng Wu. Compressing deep graph neural networks
via adversarial knowledge distillation. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 534-544, 2022.

[39] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited, 2019.

[40] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[41] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Distilling knowledge via knowl-
edge review. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5008-5017, 2021.

[42] Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via
denoising for molecular property prediction. arXiv preprint arXiv:2206.00133, 2022.

13

[43] Rishikesh Magar, Yuyang Wang, and Amir Barati Farimani. Crystal twins: Self-supervised
learning for crystalline material property prediction. npj Computational Materials, 8(1):1-8,
November 2022.

[44] Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Velickovié, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation
for 3d molecular property prediction & beyond. arXiv preprint arXiv:2106.07971, 2021.

[45] Daniel Schwalbe-Koda, Aik Rui Tan, and Rafael Gémez-Bombarelli. Differentiable sampling
of molecular geometries with uncertainty-based adversarial attacks. Nature Communications,
12(1):5104, August 2021.

[46] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V
Le, and Yonghui Wu. Pushing the limits of semi-supervised learning for automatic speech
recognition. arXiv preprint arXiv:2010.10504, 2020.

[47] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks, 2022.

[48] Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli,
and Tommi Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine
learning force fields with molecular simulations, 2022.

14

A Training and hyperparameters

Models were trained on NVIDIA A100 40 GB and NVIDIA RTX A6000 48 GB GPUs, except
GemNet-OC-small which were trained on NVIDIA A100 80 GB and NVIDIA RTX A6000 48 GB.
All models were trained on single GPUs, except for SchNet when trained on OC20-2M, which
required 3 GPUs. Inference throughput was profiled on A100 40 GB GPUs, with reported values
representing approximate numbers averaged across three evaluations. We provide detailed information
about the hyperparameters we used for each model in Tables[5} [6] and[7]

Moreover, we summarize the KD weighting factors A we used for each model configuration in
Table[8]

Table 5: SchNet hyperparameters.

Hyperparameter 0C20 COLL
Hidden channels 1024 128
Filters 256 128
Interaction blocks 5 6
Gaussians 200 50
Cutoff 6.0 12.0
Batch size 192 32
Initial learning rate 10~ 1073
Optimizer AdamW AdamW
Scheduler LambdalLR LinearWarmupExponentialDecay
Learning rate decay factor 0.1 0.01
Learning rate milestones 52083, 83333, -
104166

Warmup steps 31250 3750
Warmup factor 0.1 -
Force Coefficient 100 100
Energy Coefficient 1 1
Number of epochs 30 500

15

Table 6: PaiNN hyperparameters.

Slash-separated values indicate PaiNN versus PaiNN-small

hyperparameters.
Hyperparameter 0C20 COLL
Hidden channels 5127256 256/128
Number of layers 6/4 6/4
Number of RBFs 128 128
Cutoff 12.0 12.0
Max. num. neighbors 50 50
Direct Forces True True
Batch size 32 32
Optimizer AdamW AdamW
AMSGrad True True
Initial learning rate 1074 1073
Scheduler Lambdal.R LinearWarmupExponentialDecay
Warmup steps None 3750
Learning rate decay factor 0.45 0.01

. . 160000, 320000,

Learning rate milestones (steps) 480000, 640000 -
Force coefficient 100 100
Energy coefficient 1 1
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10
Epochs 16 375

16

Table 7: GemNet-OC hyperparameters. Slash-separated values indicate GemNet-OC versus GemNet-
OC-small hyperparameters.

Hyperparameter 0C20 COLL
No. spherical basis 7 7
No. radial basis 128 128
No. blocks 4/3 4
Atom embedding size 256/128 128
Edge embedding size 512/256 256
Triplet edge embedding input size 64 64
Triplet edge embedding output size 64 64
Quadruplet edge embedding input size 32 32
Quadruplet edge embedding output size 32 32
Atom interaction embedding input size 64 64
Atom interaction embedding output size 64 64
Radial basis embedding size 16 16
Circular basis embedding size 16 16
Spherical basis embedding size 32 32
No. residual blocks before skip connection 2 2
No. residual blocks after skip connection 2 2
No. residual blocks after concatenation 1 1
No. residual blocks in atom embedding blocks 3 3
No. atom embedding output layers 3 3
Cutoff 12.0 12.0
Quadruplet cutoff 12.0 12.0
Atom edge interaction cutoff 12.0 12.0
Atom interaction cutoff 12.0 12.0
Max interaction neighbors 30 30
Max quadruplet interaction neighbors 8 8
Max atom edge interaction neighbors 20 20
Max atom interaction neighbors 1000 1000
Radial basis function Gaussian Gaussian
Circular basis function Spherical harmonics ~ Spherical Harmonics
Spherical basis function Legendre Outer Legendre Outer
Quadruplet interaction True True
Atom edge interaction True True
Edge atom interaction True True
Atom interaction True True
Direct forces True True
Activation Silu Silu
Optimizer AdamW AdamW
Scheduler ReduceLROnPlateau ELlnearWarmup
xponentialDecay
Force coefficient 100 100
Energy coefficient 1 1
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10
Initial learning rate 5x 107 1073
Epochs 80/9 165

17

Table 8: Choice of the weighting factor A of the KD loss for the different teacher-student configura-
tions and KD strategies.

Teacher Student KD 0OC20 COLL
GemNet-OC PaiNN Vanilla (1) 1.0 0.2
GemNet-OC PaiNN Vanilla (2) 500 100
GemNet-OC PaiNN n2n 10000 1000
GemNet-OC PaiNN e2n 1000 10
GemNet-OC PaiNN v2v 50000 100

GemNet-OC GemNet-OC-small Vanilla (1) 0.2 -
GemNet-OC GemNet-OC-small Vanilla (2) 10.0 -
GemNet-OC GemNet-OC-small n2n 1000.0 -
GemNet-OC GemNet-OC-small e2e 100000 -

PaiNN PaiNN-small Vanilla (1) 1 1
PaiNN PaiNN-small Vanilla (2) 200 100
PaiNN PaiNN-small n2n 100 100
PaiNN PaiNN-small v2v 1000 10000
PaiNN SchNet Vanilla (1) 0.1 1
PaiNN SchNet Vanilla (2) 0.1 100
PaiNN SchNet n2n 1000 100

18

B Full validation results on OC20

Tables [O{T2] present the extended results on OC20 across the 4 separate S2EF validation sets.

Table 9: Evaluation results on the OC20 S2EF in-distribution validation set.

OC20 S2EF Validation (in-distribution)

Energy MAE Force MAE Force cos EFwT
Model meV | meV /A | 1 % 4
S: PaiNN-small 409 41.6 0.357 0.16
T: PaiNN 358 38.5 0.390 0.25
Vanilla (1) 426(-33.7%) 42.6(-32.3%) 0.35(-21.9%) 0.12(-44.4%)
Vanilla (2) 396(25.7%) 45.7(-132.3%) 0.316(-126.9%) 0.11(-55.6%)
o 2n 393 (31.2%) 41.7(-2.5%) 0.359 (4.7 %) 0.15(-7.8%)
§ v2v 406(5.6%) 42.1(-16.9%) 0.357(-2.6%) 0.13(-32.6%)
- S: GemNet-OC-small 292 27.7 0.534 0.90
T: GemNet-OC 226 22.5 0.610 1.09
Vanilla (1) 292(0.1%) 27.7(0.0%) 0.535(1.1%) 0.92(1.8%)
Vanilla (2) 283(13.5%) 27.7(-0.4%) 0.535(0.1%) 1.01(18.8%)
n2n 252 (61.1%) 27.5(3.8%) 0.536(1.6%) 1.09 (19.2%)
ele 285(10.1%) 26.4 (25.3%) 0.551 (22.5%) 1.01(10.9%)
S: SchNet 1237 62.2 0.214 0
5 T:PaiNN 358 38.5 0.390 0.25
§ Vanilla (1) 1139 (10.6%) 52.9 (13.1%) 0.2422 (16 %) 0(0%)
“ Vanilla (2) 1140(10.5%) 59.2(12.7%) 0.241(15.1%) 0(0%)
n2n 1170(7%) 60(9.3%) 0.235(11.9%) 0(0%)
S: PaiNN 358 38.5 0.390 0.25
T: GemNet-OC 226 22.5 0.61 1.89
§ Vanilla (1) 356(1.7%) 38.3(1.1%) 0.392(1.2%) 0.258(0.5%)
& Vanilla (2) 357(0.7%) 43.5(-31.4%) 0.334(-25.4%) 0.210(-2.4%)
T n2n 271 (66.0%) 37.3(7.5%) 0.408(8.2%) 0.477 (13.9%)
e2n 330(21.8%) 36.3(14.0%) 0.419 (13.4%) 0.371(7.4%)
v2v 369(-8.2%) 37.2(8.0%) 0.409(8.9%) 0.217(-2.0%)

19

Table 10: Evaluation results on the OC20 S2EF out-of-distribution (adsorbates) validation set.

0OC20 S2EF Validation (out-of-distribution (adsorbates))

Energy MAE Force MAE Force cos EFwT
Model meV | meV/A | 0 % 1
S: PaiNN-small 469 47.9 0.334 0.03
T: PaiNN 437 44.5 0.369 0.043
Vanilla (1) 519(-156.2%) 47.4(14.7%) 0.334(-1.2%) 0.003(0%)
Vanilla (2) 477(-23.6%) 54.5(-106.2%) 0.297(-109.9%) 0.002(-76.9%)
s N2n 443(80.9%) 47.2 (19.8%) 0.337 (9.3%) 0.003(-10%)
§ v2v 441 (87.5%) 47.9(-1%) 0.337(8.68%) 0.04 (81.6%)
- S: GemNet-OC-small 325 31.0 0.521 0.190
T: GemNet-OC 258 25.2 0.600 0.45
Vanilla (1) 312(19.5%) 31.0(-0.7%) 0.522(2.1%) 0.19(-0.9%)
Vanilla (2) 309(24.2%) 30.9(1.4%) 0.523(2.6%) 0.20(2.7%)
n2n 282 (63.7 %) 30.9(1.7%) 0.523(5.8%) 0.22(11.5%)
ele 315(14.8%) 29.3 (28.8%) 0.542 (26.3%) 0.23 (16.5%)
S: SchNet 1344 58 0.196 0
5 T:PaiNN 437 44.5 0.369 0.043
§ Vanilla (1) 1247(10.7%) 64.5(-49.7%) 0.221 (14.7%) 0(0%)
2 Vanilla (2) 1245 (10.9%) 64.5(-48.2) 0.22(14%) 0(0%)
n2n 1286(6.3%) 65(-51.9%) 0.213(9.9%) 0(0%)
S: PaiNN 437 44.5 0.369 0.043
T: GemNet-OC 258 25.2 0.6 0.45
§ Vanilla (1) 424(7.2%) 44.5(-0.2%) 0.370(0.5%) 0.052(2.3%)
% Vanilla (2) 408(15.9%) 49.2(-24.3%) 0.315(-23.1%) 0.036(-1.7%)
] n2n 321 (64.9%) 43.2(6.9%) 0.387(7.8%) 0.084 (10.0%)
e2n 407(16.9%) 41.6 (15.3%) 0.498 (12.9%) 0.081(9.3%)
v2v 418(10.5%) 42.0(13%) 0.391(9.9%) 0.058(3.7%)

20

Table 11: Evaluation results on the OC20 S2EF out-of-distribution (catalysts) validation set.

OC20 S2EF Validation (out-of-distribution (catalysts))

Energy MAE Force MAE Force cos EFwT
Model meV | meV /A | 1 % 1
S: PaiNN-small 467 42 0.341 0.13
T: PaiNN 412 39.2 0.369 0.23
Vanilla (1) 466(4.9%) 42.8(-28.4%) 0.336(-16.9%) 0.11(-20%)
Vanilla (2) 439(52.4%) 45.4(-120.6%) 0.306(-120.8%) 0.12(-10%)
s N2n 437 (56.3%) 42.0 (1%) 0.343 (8.2%) 0.14 (11.2%)
§ v2v 444(43.4%) 42.4(-12.8%) 0.342(3.6%) 0.12(-12%)
- S: GemNet-OC-small 335 28.9 0.506 0.85
T: GemNet-OC 288 24.0 0.576 1.68
Vanilla (1) 339(-9.3%) 29.0(-1.1%) 0.507(0.9%) 0.85(-0.4%)
Vanilla (2) 318(35.4%) 28.9(-0.1%) 0.507(1.0%) 1.05 24.1%)
n2n 309 (54.4%) 28.8(2.0%) 0.508(2.6%) 1.02(20.5%)
eZe 324(21.6%) 27.6 (26.5%) 0.524 (25.1%) 0.95(12.5%)
S: SchNet 1205 61.6 0.205 0
5§ T:PaiNN 412 39.2 0.369 0.23
§ Vanilla (1) 1122 (10.6%) 58.7 (12.9%) 0.234 (15.9%) 0.01 (4.3%)
“ Vanilla (2) 1122(10.5%) 58.8(12.5%) 0.23(15.2%) 0(0%)
n2n 1150(6.9%) 59.4(9.8%) 0.225(12.3%) 0(0%)
S: PaiNN 412 39.2 0.369 0.23
T: GemNet-OC 288 24 0.576 1.68
§ Vanilla (1) 423(-8.8%) 39.1(0.8%) 0.371(1.1%) 0.230(0.0%)
% Vanilla (2) 400(9.5%) 43.6(-29%) 0.320(-23.5%) 0.23(0.2%)
T n2n 345 (54.0%) 38.5(4.7%) 0.383(6.8%) 0.433 (14 %)
e2n 401(8.9%) 37.4 (11.9%) 0.395 (12.3%) 0.317(6.0%)
v2v 424(-10.7%) 38.2(6.5%) 0.386(8.2%) 0.187(-3%)

21

Table 12: Evaluation results on the OC20 S2EF out-of-distribution (both) validation set.

0OC20 S2EF Validation (out-of-distribution (both))

Energy MAE Force MAE Force cos EFwT
Model meV | meV /A | 1 % 1
S: PaiNN-small 610 56.8 0.346 0.02
T: PaiNN 554 59.2 0.379 0.03
Vanilla (1) 648(-67.6%) 61.1(-179.2%) 0.056(-900.3%) 0.02(0%)
Vanilla (2) 592(32.2%) 60.6(-158.3%) 0.310(-112.4%) 0.02(0%)
o n2n 557(94.2%) 56.0 (33%) 0.351(14.8%) 0.018(-15.8%)
§ v2v 547 (112.6%) 56.5(12.3%) 0.352 (17.3%) 0.025 (43.3)
- S: GemNet-OC-small 424 37.4 0.533 0.11
T: GemNet-OC 370 31.0 0.606 0.23
Vanilla (1) 412(23.1%) 37.5(-1.8%) 0.534(1.2%) 0.11(-2.3%)
Vanilla (2) 401(43.2%) 37.4(0.2%) 0.535(2.0%) 0.12(8.5%)
n2n 395 (53.7%) 37.3(1.6%) 0.537(4.4%) 0.12(8.5%)
ele 412(22.2%) 35.5(29.5%) 0.554 (29.0%) 0.13 (19.9%)
S: SchNet 1450 78.4 0.202 0
5 T:PaiNN 554 59.2 0.379 0.03
§ Vanilla (1) 1350 (11.2%) 75.9(13%) 0.227 (14.3%) 0.0025 (1.8%)
“ Vanilla (2) 1358(10.2%) 75.7 (14.1%) 0.226(13.8%) 0(0%)
n2n 1396(6.1%) 76.2(11.5%) 0.220(10.4%) 0(0%)
S: PaiNN 554 59.2 0.379 0.03
T: GemNet-OC 370 31 0.606 0.23
§ Vanilla (1) 558(-2.3%) 53.8(19.0%) 0.380(0.6%) 0.031(-0.5%)
.% Vanilla (2) 511(23.3%) 323.1(-935.7%) 0.326(-23.2%) 0.027(-2.6%)
< n2n 448 (57.4%) 52.4(24.1%) 0.394(2.4%) 0.056(12.1%)
e2n 536(9.6%) 50.1 (32.4%) 0.407 (12.5%) 0.057 (12 6%)
v2v 538(8.5%) 50.5(31.0%) 0.402(10.4%) 0.035(1.7%)

22

C Baseline results on COLL

In Table[I3] we present the performance and inference throughput of the baseline models on COLL.
As the systems are much smaller than those in OC20, the throughput is a lot larger than the one
observed in Table E} Qualitatively, however, we observe the same, clear trade-off between accuracy
and throughput.

Table 13: Evaluation of the performance of the four baseline models on the COLL dataset.

Inference
Throughput COLL test set

Samples/ Energy MAE Force MAE Force cos EFwT
Model GPU sec. 1 meV | meV/A | T % T
SchNet 44000 146.5 121.2 0.970 2.75
PaiNN-small 29000 104.0 80.9 0.984 5.4
PaiNN 13000 85.8 64.1 0.988 10.1
GemNet-OC 3520 44.8 38.2 0.994 20.2

23

D Data augmentation

We investigated data augmentation as a way of distilling knowledge from GemNet-OC into PaiNN
on the OC20 dataset.

D.1 Data jittering

To create additional data, we added noise to the atomic positions of the training samples and then used
the teacher to label the newly derived samples. We tried two different approaches: Random noise,
and optimizing the positions using gradient ascent such that the difference between the predictions
of the student and teacher was maximized as done in [45]. Denoting the noise as §, we obtain the
noise atomic positions as X 5 = X + §. Let the student and teacher models be denoted as fs and f;
respectively, we then obtained the noise ¢’ by initializing this as 0 and

£KD = £O(fs(X5az)a ft(X67Z))
§=9 + aVsLkp.-

However, this becomes computationally expensive, as it requires additional gradients for V5 Lkp.
Hence, we settled on using a single step, where we fixed the norm of § to avoid going too far away
from the real structure. We experimented with different norms, with the smallest being 0.1 A. We
compared this to using random directions with a fixed norm, and we did not see any improvements
when using the more computationally expensive gradient ascent approach. In both cases, the noise
was added to all the samples in the batch.

D.2 Synthetic data

Combined dataset 2M+d1M. We generated 1M synthetic samples by first drawing 100k random
adsorbate and catalyst combinations (systems) and then running relaxations with a pre-trained
GemNet-OC model. Out of these relaxations with 100 steps on average (200 max), we randomly
draw approx. 10% to obtain 1M samples.

In the next step, we combine the 1M samples with the 2M OCP dataset, which is based on DFT
relaxations. Directly working with this combined dataset means iterating over a 1-to-2 ratio of
samples from each subset in an epoch of 3M samples. To control this ratio, we define the target ratio
of samples from the synthetic dataset during training o¢qrget € [0, 1]. Setting Otarger = 0.5 means
that per epoch we iterate over the 1M dataset 1.5 times and over the 2M dataset 0.75 times.

Different weighting in loss depending on origin. Next to specifying a sampling ratio of samples
from the synthetic dataset, we can also specify how to weight the contribution of samples to the loss
based on their origin (DFT or synthetic). To achieve this, we specify the weighting ratio of synthetic
to DFT samples ryqr = ws/wqg € RT. In each batch, we compute a weighting factor in front of the
synthetic ws and DFT wgg samples satisfying the conditions

W * Qbatch + Wart - (1 — Qparen) = 1, ©)

where ageen 1S the ratio of synthetic to DFT samples in a batch. Hence, when we combine DFT and
synthetic data - apaen € (0, 1), we derive the following weights:

-1
wait = (1 — Qpaich + Obaich = T'siatt) (10)
Ws = Ty/dfe * Wt (1D

Likewise, when apyen = {0,1} - i.e., we either train on DFT or synthetic data exclusively, the
corresponding weighting coefficient (ws or wqg) is naturally equal to 1.

24

E Hyperparameter studies

We additionally investigated different aspects of our KD protocols, which we present below. We have
performed these experiments when distilling GemNet-OC into PaiNN on the OC20-2M dataset.

E.1 Effect of losses

In our experiments, we have used MSE as the loss Lg,. However, in the general framework in
Equation @), there are other choices that are possible, e.g., more advanced losses like Local Structure
Preservation [34] and Global Structure Preservation (GSP) [35]. We therefore initially experimented
with using these alternative losses when distilling GemNet-OC into PaiNN on OC20. However,
the initial experiments showed that MSE worked well, and in particular, a lot better than the more
advanced GSP and LSP losses. We therefore settled on using MSE as our L. In Table we
present the average performance over all four validation splits when using these different losses in
the n2n and e2n settings.

We also experimented with trying to optimize the CKA directly (as we saw that the CKA similarity
improved when using distillation), but it did not work and we did not pursue it any further.

Table 14: Comparing different loss functions L, with GemNet-OC as teacher and PaiNN as student
on OC20, using the n2n and e2n KD protocols. In the case of LSP + e2n, the model completely failed
when predicting forces on the ood (both) validation set, leading to a force MAE of 464 meV/ A,
which is almost a factor 10 larger than the other models on the same split. We have therefore written
this value as "-". When evaluating a checkpoint for a model which was trained half as long, the error

on this split was 53.7 meV/ A, and the average over all four validation splits was 44.8 meV/ A.

OC20 validation set
Energy MAE Force MAE Force cos EFwT

Loss meV | meV/A i T % 1
MSE 346 42.8 0.393 0.262
c§ GSP 427 46.1 0.356 0.124
LSP 398 44.8 0.367 0.159
MSE 430 41.3 0.405 0.195
<§ GSP 463 45.2 0.363 0.119
LSP 441 - 0.380 0.134

E.2 Effect of transformations

We have evaluated using different transformations Mg, i.e., transformations of the student features
before applying the loss L, We tried either using the identity function, (i.e., not using a transforma-
tion at all), a linear transformation (i.e., multiplication with matrix and adding a bias vector), or using
a multilayer perceptron (MLP) with one hidden layer. We conducted our experiments when distilling
G We found that using an MLP worsened the results, and for e2n, there was not a big difference
between using a linear layer and no transformation at all. For n2n, the node features in PaiNN and
GemNet-OC are of different dimensions, and we can therefore not use the identity transformation
when using the MSE loss.

The results from the experiments are presented in Table T3]

E.3 Effect of feature selection

GemNet-OC consists of an initial embedding layer, followed by a series of interaction layers. The
result of each embedding/interaction layer is used as input into the next layer, while a copy is also
processed by an “output layer”. To make the final prediction, the results of the different output layers
are concatenated and processed by a final MLP. This means that, for each embedding/interaction
layer, we have two features that could potentially be distilled: the feature used as input for the next
layer, or the result of the output layer. Additionally, we could use features from inside the final MLP
which make the prediction by processing the concatenated output features.

25

Table 15: Comparing different transformation functions Ms (Identity, a linear layer and an MLP
with one hidden layer) with GemNet-OC as teacher and PaiNN as student, using the n2n and e2n KD
protocols. As the node features in GemNet-OC and PaiNN are of different dimensions, we cannot
use the identity transformation when using n2n.

OC20 validation set
Energy MAE Force MAE Force cos EFwT

Loss meV | meV/A | T % T
< Identity - - - -
& Linear 346 42.8 0.393 0.262

MLP 363 45.1 0.367 0.147

Identity 430 41.3 0.405 0.195
<'§ Linear 418 41.3 0.405 0.207

MLP 427 43.2 0.387 0.161

Initially, we used the feature after the final interaction layer when distilling knowledge from GemNet-
OC. However, we found that using the feature just before the final linear layer in the final MLP gave
a drastic improvement in performance. We, therefore, set out to investigate how the choice of features
impacted the results in more detail.

We performed these experiments when distilling GemNet-OC into PaiNN on OC20 using our n2n
strategy, and the results presented here are on a set of 30 thousand samples sampled from the in-
distribution validation set. We did not perform any extensive hyperparameter tuning, but chose A
such that ACkp (the distillation loss term) was initially roughly the same for all choices.

Choice of GemNet-OC layer. In Figure[d we present the training curves when fixing the choice of
feature in PaiNN and varying the choice of features in GemNet-OC. The overall trend is that closer to
the output is better: even using the features from the early output layers is better than using features
from later interaction layers. Our results suggest that for forces, it is better to use features from
earlier output layers. However, we think this could be due to the choice of A, as we have empirically
found that the weighting of the loss term in n2n could offer a trade-off between energy and force
performance.

800

60

AN === Embedding/Interaction Layer
\‘\ — Output Layer

5541

600

5
<}

500

Energy MAE [meV]
Force MAE [meV/A]
N
&

400 1

S
S

354

T T T T T 30— T T T T
[} 100000 200000 300000 400000 [} 100000 200000 300000 400000
Training step Training step

Figure 4: Evaluation error as we vary the features to distill from in the teacher model - energy MAE
(left), and force MAE (right). n2n KD from GemNet-OC to PaiNN. Performance is evaluated on
a validation subset comprising 30k samples. The numbers O to 4 indicate at what stage the feature
has been extracted, with 0 meaning after the embedding layer, and 1 to 4 after the corresponding
interaction layer. Solid and dashed lines indicate if the feature is the result of an embedding/interaction
layer, or an output layer, respectively. “Final” refers to the feature extracted right before the final
linear prediction layer.

26

Choice of PaiNN layer. PaiNN consists of a sequence of blocks, where each block consists of a
message layer and an update layer. In Figure[5] we present training curves when fixing the choice
of features in GemNet-OC (the feature just before the final linear layer), and varying the choice of
features in PaiNN (choice of block, and either the feature after the corresponding message or update
layer). The results here indicate that using deeper features leads to better results.

60

=== After message block
—— After update block
— Block 1

Block 2
— Block 3

55

500

\ — Block 4
50 4 — Block 5
3 — Block 6

45

Energy MAE [meV]

w
&
=)

Force MAE [meV/A]

40 A

300

354
250

200 — T T T T 30 T T T T
o 100000 200000 300000 400000 o 100000 200000 300000 400000
Training step Training step

Figure 5: Evaluation error as we vary the features to distill into in the student model - energy MAE
(left), and force MAE (right). n2n KD from GemNet-OC to PaiNN. Performance is evaluated on a
validation subset comprising 30k samples. The different colors indicate after which block the features
have been extracted, and dashed and solid lines indicate if features were extracted after the message
or update layers, respectively.

Conclusion. The conclusion we draw from this study is that using features as close to the output as
possible improves KD performance in our setup. However, these results are only empirical, and more
investigation could be done. For example, if it is possible to beforehand determine which pairs of
features should be used (and not having to rely on trial-and-error).

27

F Error bars

To get an idea of the stability of our KD protocols, we perform additional experiments distilling
GemNet-OC into PaiNN using three different seeds and compute standard deviations. We present
these results in Table

Table 16: Performance of KD from GemNet-OC into PaiNN across 3 different seeds, averaged over
all validation splits. The numbers are presented as mean + one standard deviation. The missing force
error for the baseline model is due to one of the seeds completely failing on the out-of-distribution
(both) split, drastically increasing the error. The other two seeds had force MAEs of 43.8 and 45.3
meV /A, respectively.

OC20 validation set

Energy MAE Force MAE Force cos EFwT
Loss meV | meV /A | 0 % 1
None (baseline) 440 £ 8 - 0.376 £0.0018 0.143 £ 0.0051
n2n 346 + 0.7 43.2+£0.6 0.392+0.0017 0.256 + 0.011

28

G Explainability

We utilize CKA similarity scores to monitor the effect of KD throughout our studies. Here, we
present a selection of the analyses we have performed, summarizing how KD influences the similarity
between teacher and student models across teacher-student configurations (Figure [6); across KD
protocols (Figure [7); and feature selections (Figure[8). We found out that such similarity metrics
can be effectively used to examine and profile different KD approaches, as well as as a potential
debugging tool. We also explored the utility of CKA (in conjunction with measures of the predictive
ability of individual features) as a means to inform the design of (optimal) KD strategies and feature
selection protocols a priori, but the results were not conclusive to include here.

no KD with KD
a Similarity Similarity Similarity gain
1.00 1.00 g
8 " 0.75 n2n 0.75 0.5
§ g 0.50 ¥ 050 £ 00 £
€N [} o a
8 0.25 0.25 05
0.00 0.00 L
0 11
PaiNN-big PaiNN-big PaiNN-big
Layers Layers Layers
b Similarity Similarity Similarity gain
1.0 1.0 q
0.2
0.8 0.8
o 0.1
a g 0.6 s n2n 0.6 s N
z9 — 0.0
Z3 04" 04 © g
& -0.1
0.2 0.2
] -0.2
0.0 0.0
0 7 0 7
PalNN small PaiNN-small PaiNN-small
Layers Layers Layers
C Similarity Similarity Similarity gain
1.0 1.0
0.02
0.8 0.8
[=]
s P n2n 06 o <
z9 —_— 0.00
23 04 ° 04 ¥ g
&
0.2 0.2
—-0.02
0.0 0.0
0 5 0 5
SchNet SchNet SchNet
Layers Layers Layers

Figure 6: We explore the effect of n2n KD on the feature similarity between different student-teacher
configurations: (a) GemNet-OC -> PaiNN; (b) PaiNN -> PaiNN-small; (c) PaiNN -> SchNet. The
layer pair that was used in each experiment is indicated with a . Note the scale difference in the
Similarity gain plots.

29

no KD with KD

a Similarity Similarity Similarity gain
10 1.00 1.00 g
w
3] 0.75 n2n 0.75 0.5
&
gg 0.50 g — 0.50 g 0.0 é
€ Q
82 0.25 0.25 o5
0 0.00 0.00 L
0 11 0 11 0 11
PaiNN-big PaiNN-big PaiNN-big
Node Layers Node Layers Node Layers
b Similarity Similarity Similarity gain
10 1.00 1.00 g
w
3] 0.75 e2n 0.75 0.25
83 050 % ——pp 050 ¥ 000 &
ES <
313' 0.25 0.25 _0.25
0 0.00 0.00 L
0 11 0 11 0 11
PaiNN-big PaiNN-big PaiNN-big
Node Layers Node Layers Node Layers

Figure 7: We explore the effect of different KD strategies - n2n and e2n KD on the feature similarity
between the student and the teacher models. This is computed for GemNet-OC -> PaiNN: (a) n2n; (b)
e2n. The layer pair that was used in each experiment is indicated with a . Note the scale difference
in the Similarity gain plots.

30

no KD

Similarity

GemNet-OC
Layers

PaiNN-big
Layers

1.00
0.75
050 £
0.25
0.00

with KD

o

Similarity
- 1.00
3 0.75
&
% 0.50 g
8 0.25
- - 0.00
PaiNN-big
Layers
Similarity
1.00
3 0.75
ot
% 0.50 g
8 0.25
" - 0.00
PaiNN-big
Layers
Similarity
1.00
5 0.75
&
% 050 £
8 0.25
0.00
Layers
Similarity
1.00
3 0.75
&
% 0.50 g
8 0.25
0.00
Layers
Similarity
1.00
3 K 0.75
&
% 050 £
8 - 0.25
0.00
0 11
PaiNN-big
Layers

Similarity gain

8 " 0.2
29 0.0 %
[} B <
8 -0.2
PaiNN-big
Layers
Similarity gain
Y 0.5
w
T 00 =
2> 3
€S
& -0.5
PaiNN-big
Layers
Similarity gain
g 0.5
T,n
g 0o §
[} <
8 | -0.5
PaiNN-big
Layers
Similarity gain
g vemm [0.25
PRy -
29 0.00 §
[}
] = -0.25
PaiNN-big
Layers
Similarity gain
8] i 0.05
g3 000 §
€S <
& -0.05

PaiNN-big
Layers

Figure 8: We explore the effect of feature selection in KD on feature similarity between the student
and the teacher models: (a) H4->U6; (b) CONCAT+MLP->U6; (c) CONCAT+MLP->M6+U6; (d)
H4->US; (e) X2->M2. The layer pair that was used in each experiment is indicated with a . Note
the scale difference in the Similarity gain plots.

31

H Training times

One caveat of knowledge distillation is that it inherently increases the training time of the student
model. In our offline KD setup, we need to perform additional forward passes through the teacher to
extract representations to distill to the student. However, it is important to note that, despite increasing
the computational time per training step, we observed that models trained with KD can outperform
their baseline counterparts even when compared at the same training time point (Figure [9), despite
the latter having been trained for more steps/epoch in total. This means that, all in all, we can use KD
to enhance the predictive accuracy in models without necessarily impacting training times.

However, we make the following remark. In this experiment, we utilized publicly available pre-trained
Gemnet-OC model weights, and therefore did not have to train the teacher model ourselves. However,
when access to a pre-trained teacher model is not available, one should also account for the time
required to train the teacher.

—— PaiNN (no KD)
1.0 PaiNN (with KD)

0.91
0.8 1
0.7
0.6

Energy MAE

0.5 -
0.4 1
0.3 1

0 25 50 75 100 125 150 175
Training time (hours)

Figure 9: Energy validation error of PaiNN without (blue) and with (orange) knowledge distillation
from GemNet-OC, trained for the same number of steps (1 million). Validation on a random sample
of size 30k samples from the in-distribution OC20 validation set.

32

	Introduction
	Background
	Knowledge distillation for molecular GNNs
	Experimental results
	Conclusion
	Training and hyperparameters
	Full validation results on OC20
	Baseline results on COLL
	Data augmentation
	Data jittering
	Synthetic data

	Hyperparameter studies
	Effect of losses
	Effect of transformations
	Effect of feature selection

	Error bars
	Explainability
	Training times

