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ABSTRACT

Koopman representations aim to learn features of nonlinear dynamical systems
(NLDS) which lead to linear dynamics in the latent space. Theoretically, such
features can be used to simplify many problems in modeling and control of NLDS.
In this work we study autoencoder formulations of this problem, and different
ways they can be used to model dynamics, specifically for future state prediction
over long horizons. We discover several limitations of predicting future states
in the latent space and propose an inference-time mechanism, which we refer to
as Periodic Reencoding, for faithfully capturing long term dynamics. We justify
this method both analytically and empirically via experiments in low and high
dimensional NLDS.

1 INTRODUCTION

Recent research has shown a growing interest in learning representations of nonlinear dynamical sys-
tems (NLDS) in which the dynamics become linear in the latent space. Linear dynamics in the latent
space offer distinct advantages, including the capability to derive closed-form solutions to optimal
control problems using LQR solvers (Kalman, 1960). System identification and interpretability are
also greatly simplified for linear dynamical systems. From a computational standpoint, advancing a
linear system forward can be executed more efficiently by leveraging parallelism (Gu et al., 2022;
Smith et al., 2023). An example of this approach is presented in S4 by Gu et al. (2022), a carefully
designed deep state-space model (SSM) that takes advantage of the parallelism offered by discrete
linear dynamics.

Given the advantages of linear systems, a challenge in the study of dynamics and data-driven
modelling resides in extracting global linear representations of nonlinear systems. In this regard,
Koopman Theory (Koopman, 1931; Koopman & v. Neumann, 1932) provides a framework in which
nonlinear dynamics can be cast into linear ones in a space of measurements, spanned by a basis of
characteristic functions, which are the eigenfunctions of Koopman’s composition operator. However,
identifying such characteristic functions as well as the structure of the linear transition operator can
prove very difficult, in general, as they depend heavily on the qualitative dynamical properties of the
system under study, necessitating the need to resort to approximate methods.

Recently, several studies have explored the integration of deep learning architectures with Koopman
operator theory, primarily in the context of small scale well-behaved problems. Azencot et al. (2020)
train a backward-compatible Koopman matrix in conjunction with its original forward counterpart,
by assuming reversible dynamics, ensuring stability during training by driving the eigenvalues of the
operators to be close to one. Frion et al. (2023) adopt a similar strategy by promoting orthogonality
of the Koopman matrix through an auxiliary loss. Lusch et al. (2018a) learn generalized Koopman
representations for systems including those exhibiting continuous spectra. Mondal et al. (2023)
employ a Koopman-based model in the context of Model-based Reinforcement Learning as a short-
horizon (20-step) planner.

In this work, we further explore the use of principles outlined by Koopman theory (Brunton et al.,
2022), as a guiding framework to obtain linear representations of NLDS within an autoencoder
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framework. We observe that unrolling the linear dynamics in latent space leads to long term drift in
trajectories when mapped back to the space of observables (state space). Prior works achieved stable
unrolls at inference time by restricting the eigenvalues of the Koopman/linear operator, and training
on long sequences. We posit that such requirements, i.e. long training sequences, are unnecessary,
especially when modelling a fully observable dynamical system. In this work we uncover two
limitations of generating trajectories in the latent space: (i) long horizon trajectories cross, violating
uniqueness of solutions of dynamical systems, and (ii) latent space trajectory generation is unable to
capture switching dynamics between fixed points (Lan & Mezić, 2013). To overcome these issues,
we introduce a simple inference method called Periodic Reencoding that produces high accuracy
predictions over long horizons. We derive analytic expressions and present a special case example
(Appendix D) that provides intuition about why this method better captures long-term dynamics.
Finally, we empirically validate our approach on a set of established NLDSs, and also demonstrate
these findings on offline reinforcement learning datasets in more complex environments within D4RL
(Fu et al., 2020).

2 DEEP KOOPMAN AUTOENCODERS

Given a nonlinear dynamical system, Koopman theory attempts to approximate or “explain” nonlinear
transitions with a linear dynamical system – refer to Appendix B for a detailed overview of the
Koopman theory. For example, Dynamic Mode Decomposition (DMD) (Brunton et al., 2022)
tries to approximate the infinite dimensional Koopman operator by fitting discrete transition data
collected from a nonlinear dynamical system. More specifically, using an integration scheme in
time a discrete nonlinear dynamical system can be obtained from its continuous time counterpart,
xt+1 = F(xt). DMD then solves the following optimization problem over the dataset of all transition
pairs, D = {(xt, xt+1) | xt, xt+1 ∈ Rd}:

KDMD = argmin
K̂

∑
D

∥xt+1 − K̂xt∥2, (1)

where the KDMD ∈ Rd×d matrix is the finite-dimensional approximation to the linear Koopman
operator. Thus DMD treats the state itself as the features, by simply fitting the Koopman matrix
directly. Extensions to this approach include “extended” DMD, eDMD (Williams et al., 2015; 2014;
Schütte et al., 2016), which augments the state with fixed nonlinear transformations of the state. In
the spirit of end-to-end learning, we are interested in data driven approaches that learn nonlinear
transformations of the state (Brunton et al., 2022; Lusch et al., 2018b). Koopman features can be
learned in an autoencoder setting by minimizing:

min
K̂,ϕ,ψ

∑
D

∥xt − ψ(ϕ(xt))∥2 + λ · ∥ϕ(xt+1)− K̂ϕ(xt)∥2 (2)

where the encoder ϕ : Rd → Rn, decoder ψ : Rn → Rd are parameterized function approximators,
and λ > 0 is a scalar. The feature vector zt ∈ Rn, representing the Koopman embedding for which
the dynamics are linear, obeys the following relations:

zt ≈ ϕ(xt), zt+1 ≈ Kzt, xt ≈ ψ(zt) (3)

These relations are approximate because, for example, reconstructed states are approximations of the
corresponding true states. Once trained, the encoder, decoder, and K ∈ Rn×n comprise a complete
model of the dynamical system, potentially capable of performing long-range state prediction over
arbitrarily long time horizons.

Though other feature learning methods, such as contrastive learning, are possible (Lyu et al., 2023),
we study the autoencoder formulation because it is more pervasive in the literature. Furthermore, the
learned decoders from this formulation allow for solving the control problems in latent space and
mapping control signals back to phase space. This is non-trivial using contrastive learning which
only trains an encoder.
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3 METHOD

3.1 TRAINING SEQUENCE

In this section we formally outline the training objective for sequential data. We start by using the
continuous parameterization of the Koopman dynamics, for controlled systems. An autonomous
controlled system is described by ẋ = f(x, u), where u is an exogenous control input. Assuming that
a bounded Koopman matrix, K ∈ Rn×n, can be approximated for measurements z = ϕ(x) ∈ Rn,
the linear dynamics are then prescribed by:

d

dt
ϕ(x) = Kϕ(x) + Lω(u), (4)

where L ∈ Rn×m represents the controlled latent dynamics for external coded input υ = ω(u) ∈ Rm.
We optimize the objective by taking gradient steps directly over the continuous parameterization of
the Koopman dynamics, i.e. K and L, which we discretize via the bilinear method (Tustin, 1947),
over a timestep of δ:

zt+1 = Kzt + Lυt, (5)

where K =
(
I − δ

2
K
)−1(

I +
δ

2
K
)

and L =
(
I − δ

2
K
)−1

δL. (6)

We treat δ as a trainable variable as well, and assume that samples are uniformly distributed in time.
The Koopman Autoencoder architecture consists of the following trainable components, (i) the latent
dynamics K , L and δ (ii) the state encoder ϕ (iii) the action encoder ω (iv) and the state decoder
ψ. The training data consists of an initial state, xt, and a sequence of following actions and states,
i.e. (ut, xt+1, · · · , ut+T−1, xt+T ) of length T . The model takes in the initial state and the sequence
of actions as input and is tasked to predict the sequence of future states. To respect the Koopman
dynamics, i.e. ensuring that K and L are the only means for advancing the dynamics, we minimize
the “Aligment”, “Reconstruction”, and “Prediction” losses that prevent trivial solutions.
LAlign =

∑T
i=1 ∥ẑt+i − ϕ(xt+i)∥2 LReconst =

∑T
i=0 ∥xt+i − ψ(zt+i)∥2 LPred =

∑T
i=1 ∥xt+i − ψ(ẑt+i)∥2 (7)

In the above equations, ẑt denotes the resultant latent code after one or more applications of Koopman
dynamics, while zt represents the resultant latent state immediately after encoding (see Figure 1).

3.2 TRAJECTORY GENERATION

Figure 1: Course Correcting Koopman Autoen-
coder Unrolls via Periodic Reencoding. Unrolls
are generated by first encoding the initial condi-
tion, then linearly advancing the dynamics in latent
space, and finally decoding the trajectory back to
the original space. Values enclosed within squares
represent ground truth, while those enclosed within
circles are inferred by the model. The objective
consists of an alignment loss (shown in green), a
reconstruction loss (in yellow), a prediction loss
(in blue). We propose Periodic Reencoding; at ev-
ery k steps in the figure. The latent state, ẑt+k, is
decoded and subsequently reencoded. Because the
encoder/decoder are not exact inverses, the reen-
coded feature vector is different from the original.
Control inputs are omitted for simplicity.

The quality of a model of a dynamical system can be assessed by generating trajectories in the state
space of the original dynamical system, starting from some initial condition. There are two methods
for generating trajectories.

Without Reencoding. This method generates the entire trajectory in the latent space and only uses
the encoder to obtain the initial condition. The decoder ψ is applied to every point on generated
trajectory to obtain the corresponding curve in state space. More specifically, given:

ż = K z|z0=ϕ(x0) and x = ψ(z),
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we can write the explicit solution in state space as :
x(t) = ψ(eK tϕ(x0)). (8)

It is the solution to a linear dynamical system, given by the matrix exponential, in latent space which
is then mapped to the original state space using ψ. Under this setting, the relationship between
z−space and x−space is established by mapping trajectories generated in the z−space via linear
dynamics, to curves in the x−space.

In the standard autoencoder setup, the mappings between the original and latent spaces are not
strictly one-to-one. This characteristic becomes especially significant when the dimensionality of
the latent space is substantially larger than that of the original space, i.e. n ≫ d, as is typical in
Koopman autoencoders – the inverse function theorem requires that n = d. Because of this, the
curves generated without reencoding could potentially intersect with themselves, and therefore won’t
faithfuly capture the characteristics of a trajectory, generated by a dynamical system. This directly
arises from the existence of multiple points in z−space that lie on the same trajectory generated by
the linear system, that are mapped to the same point in x−space, due to lack of injectivity in the
decoder, ψ. This is clearly illustrated in Figure 4 (a) where phase lines intersect. Intersecting phase
lines are impossible to generate with continuous dynamical systems because they imply that multiple
solutions exist corresponding to the unique initial condition given by the cross-over point.

With Reencoding. This method uses the encoder/decoder to iteratively generate a trajectory in
state-space. The encoder, Koopman operator, and decoder effectively define a dynamical system in
the state space, x. More specifically, given:

ż = K z|z0=ϕ(x0), z = ϕ(x), and x = ψ(z),

we can express the dynamical system that implicitly defines the solution in state space as:
ẋ = Jψ

(
ϕ(x)

)
Kϕ(x) (9)

Where Jψ is the Jacobian of ψ. When generating trajectories without reencoding, linearity in the
latent space is assumed to hold for all times, i.e. globally. In contrast, when generating trajectories
with reencoding, the linearity property is assumed to hold only locally. Equation 9 gives rise to a
dynamical system with feedback, thus the relationship between z−space and x−space is governed by
point-wise mapping of dynamics. Appendix A shows extensions to any latent state dynamics.

In theory, the trajectories generated using this method can faithfully capture the dynamics and will
not produce invalid trajectories that cross, however, reencoding at every step poses two significant
drawbacks: (i) repeated applications of the encoder can potentially accumulate errors much faster
than repeated applications of K, as seen in Figure 4 (b), and (ii) it is not computationally efficient
because unrolling must be performed sequentially due to presence of nonlinear operations at every
step, unlike the parallelizability of linear operations.

We introduce Periodic Reencoding , a technique spanning the middle ground between trajectory
generations with and without reencoding. When generating trajectories with periodic reencoding, we
decode and reencode periodically, in continuous time at ∆t intervals (Figure 2), and in discrete time
every k steps (Figure 1), treating ∆t or k as hyper-parameters. Given that the encoder and decoder
are not perfect inverses of one another, the output of the reencoding step is going to be different from
the original point. In other terms, the mapping between the original and latent space lacks bijectivity.

By Periodic Reencoding, we expand and harness the applicability of local linear Koopman dynamics
around the initial state all the while mitigating the accumulation of encoding errors. We observe that
periodically applying reencoding is an effective way to mitigate the drift accumulated by generating
trajectories in the latent space. We term this property “course correction.” Using our method, we
are able to generate stable, plausible, and accurate unrolls over extended horizons, while remaining
computationally efficient. In Section 4, we empirically establish the effectiveness of periodic
reencoding for stable and accurate long-range predictions, in contrast to unrolls without reencoding or
reencoding at every step. Furthermore, we demonstrate that periodic reencoding can be beneficially
integrated into the training process to achieve further improvements. Lan & Mezić (2013) showed
that NLDS with multiple fixed points can only be linearized within the basin of attraction of each
fixed point. This reveals another limitation of unrolls without reencoding – they cannot capture the
switching dynamics between multiple fixed points (see the example in Appendix D). It is important to
make the distinction between reencoding and “teacher forcing” (Bengio et al., 2015). Teacher forcing
periodically uses ground truth during training to avoid error accumulation. Reencoding never uses
ground truth data.
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z0 = ϕ(x0) ẑ1 = eK∆tz0

ẑ1 = ϕ ◦ ψ(ẑ1)
ẑ2 = eK∆tẑ1

ẑ2 = ϕ ◦ ψ(ẑ2)
ẑ3 = eK∆tẑ2

REENCODE
REENCODE

t

t0 t1 = t0 +∆t t2 = t0 + 2∆t t3 = t0 + 3∆t

Figure 2: Periodic Reencoding in continuous time for trajectories in latent space. In this figure, the unrolled
latent before and after reencoding are denoted as ẑi and ẑi, respectively.

4 RESULTS

We empirically evaluated our proposed approach on a number of highly nonlinear environments with
varying dimensionality. We begin by modelling the forward dynamics of well known, nonlinear, low
dimensional dynamical systems. We further extend the results to more practical, higher dimensional,
robotic environments implemented in MuJoCo. We use the D4RL dataset by Fu et al. (2020) to train
our Koopman autoencoder. Lastly we employ our proposed approach as an open-loop controller for
locomotion tasks in D4RL.

4.1 DYNAMICAL SYSTEMS

We use well-established dynamical systems as benchmarks for forward dynamics modeling. Despite
their low dimensionality, these systems display interesting nonlinear dynamics, including multiple
fixed points. Nonetheless, their low dimensionality enables the generation of informative visual
representations in 2D/3D phase plots. We briefly review the environments used in this section.

Parabolic Attractor, adopted from Tu et al. (2014); Brunton et al. (2016), is a dynamical system with
a single fixed point at the origin, known for its closed-form Koopman embedding solution. Governed
by the following equations:

ẋ1 = µx1, ẋ2 = λ(x2 − x21), (10)
the system admits a solution that is asymptotically attracted to the parabolic manifold, given by
x2 = x21, for λ < µ < 0. The Koopman embedding, z, that adheres to globally linear dynamics, can
be coded by augmenting the state with the additional nonlinear measurement of z3 = x21:

ż =

[
ż1
ż2
ż3

]
=

[
µ 0 0
0 λ −λ
0 0 2µ

][
z1
z2
z3

]
for

[
z1
z2
z3

]
=

x1x2
x21

 (11)

We set λ = −1.0 and µ = −0.1 and we sample initial conditions uniformly from x1, x2 ∈ [−1, 1].

Duffing Oscillator follows a nonlinear second order differential equation ẍ = x − x3, which
represents a model for the motion of a damped and force-driven particle. This particular instance
admits two center points at (x, ẋ) = (±1, 0), and an unstable fixed point at the origin, (x, ẋ) = (0, 0).
Initial conditions are sampled uniformly from x1 ∈ [−2, 2] and x2 ∈ [−1, 1].

Lotka-Volterra represents the population evolution of biological systems, based on a predator-prey
interactions, by the following equations:

ẋ1 = αx1 − βx1x2, ẋ2 = δx1x2 − γx2. (12)

The system is known for its abrupt switch in population growth and admits two fixed points, one at
the origin (extinction), and a center point at (x1, x2) = (γ/δ, α/β). We set α = β = γ = δ = 0.2
and uniformly sample initial conditions from x1, x2 ∈ [0.02, 3.0].

Pendulum represents a freely swinging pole. The initial conditions indicate the states from which
the pole is released, deviating slightly from the inverted position by ±10◦. The state consists of the
angle and the angular velocity and we report errors in radians.
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Lorenz System is a chaotic dynamical system (Lorenz, 1963). It features equilibrium points, some
stable and some unstable, and is renowned for the “butterfly effect” arising from its sensitivity to
initial conditions. The governing equations are as follows:

ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ− x3)− x2, ẋ3 = x1x2 − βx3 (13)

We use the original parameters from Lorenz’63 system. Initial conditions are generated by perturbing
the point (0, 1, 1.05) with Gaussian-distributed noise having a standard deviation of 1.

To demonstrate data-efficiency, we applied our proposed Koopman Autoencoder to modest datasets of
trajectories gathered from each of the aforementioned dynamical systems, comprising 100 trajectories
for Lorenz systems and 50 trajectories for non-chaotic ones. For all dynamical systems except
Lorenz’63, the model is trained using the first 500 steps of the trajectories. Nevertheless, during
inference, we unroll the models for up to 1000 steps, demonstrating the capability of our approach to
accurately capture the underlying dynamics and generalize to unseen regions of the state space. We
employed timesteps of 0.01 for forward integration in all environments, with the exception of Lorenz,
for which we used a timestep of 0.02. We utilize embedding size of 128 for the dynamical systems.

(a) Without reencoding.

(b) With reencoding.

Figure 3:
Parabolic Attractor.

Results are presented in Table 1. We conducted experiments involving
both linear and nonlinear decoders, linear and nonlinear latent dynamics,
as well as experiments with and without periodic reencoding. In the
nonlinear latent dynamics setting we use an MLP, instead of K , to drive
the latent state forward. We maintain consistent encoder and decoder
capacities across different models applied to the same environment. We
train a standard MLP for single step dynamics prediction as baseline, with
capacity roughly equivalent to that of the encoders.

Periodic reencoding consistently improves the accuracy of the predictions.
These improvements also extend to the setting where we permit nonlinear
dynamics in the latent space, even though our method was motivated
by learning linear latent dynamics. The only exception is the Parabolic
Attractor environment (see Figure 3a). This is expected because this
system admits a simple feature transformation that achieves globally
linear dynamics. The representation can be decoded, with a linear decoder
(Equation 11) by simply selecting the first two elements, without the need
for course correction. Furthermore, it should be noted that the best
prediction results use a linear decoder, rather than a nonlinear one. This
observation holds true, regardless of the type of dynamics assumed in
the latent space or the specific environment. The results also demonstrate
that Koopman autoencoders with linear dynamics and decoders, unrolled
using periodic reencoding, consistently outperform widely used nonlinear
dynamics models.

4.2 D4RL: STATE PREDICTION

In this section, we train our proposed Koopman Autoencoder on continuous control tasks from
D4RL benchmark by Fu et al. (2020). Again, the goal is to predict the future states over long time
horizons. We choose a number of locomotion tasks as our main testbed, namely the Hopper-v2,
HalfCheetah-v2, and Walker2d-v2 environments. The curated datasets are generated by
driving the simulated robots forward from a stationary position, using policies with varying degrees
of optimality, i.e. expert, medium-expert, medium, and medium-replay. Each individual
dataset comprises 1 million transitions, organized as trajectories with a maximum length of 1,000
steps. We use 80% of the trajectories for training and evaluate on the remainder 20%, consisting of
trajectories of length 300. Table 2 provides a breakdown of the MSE over a 300-step horizon.

The D4RL benchmark differs from the dynamical systems discussed in the previous section in three
fundamental ways: the dynamics are notably more challenging due to the presence of collisions, the
dimensionality is higher, and the systems are subject to control inputs. Here we use the extended
version of the Koopman autoencoder model designed for controlled systems (see Section 3.1). We
use embeddings sizes of 512 and 256 for the state and action encodings, respectively. For training, we
solely rely on the observations and avoid incorporating additional training signals, such as rewards.
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MODEL KOOPMAN
(

LINEAR LATENT DYNAMICS
)

NONLINEAR LATENT DYNAMICS MLP

DECODER TYPE LINEAR NONLINEAR LINEAR NONLINEAR -
PERIODIC REENC. (✗, ✓) ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ -

ENVIRONMENT MSE over 100 steps

Parabolic Attractor 0.0205 0.0292 0.1465 0.0758 0.0739 0.0496 0.0727 0.0547 0.2674
Pendulum 0.0512 0.0042 0.0648 0.0181 0.0288 0.0025 0.0242 0.0034 0.7442
Duffing Oscillator 0.1152 0.0112 0.1512 0.0512 0.0450 0.0022 0.0450 0.0112 0.4050
Lotka-Volterra 0.0113 0.0072 0.0145 0.0098 0.0128 0.0040 0.0112 0.0060 1.4450
Lorenz’63 ✗ 11.162 ✗ 12.569 18.985 7.265 19.051 7.110 88.565

ENVIRONMENT MSE over 1000 steps

Pendulum 9.2021 0.1818 14.5800 0.6612 10.7184 0.0841 10.5832 0.2964 55.281
Duffing Oscillator 20.5440 1.0658 15.0701 2.5312 5.7851 0.5725 9.2451 0.93845 22.445
Lotka-Volterra 1.6292 0.3961 1.6203 0.2812 0.7261 0.2888 0.7281 0.4324 83.205
Lorenz’63 ✗ 78.980 ✗ 64.838 ✗ 59.262 ✗ 54.793 133.509

Table 1: Mean Squared Error of state prediction for a number of dynamical systems. The entries in the table
are scaled up by a factor of 100×, except for Lorenz system. Evaluation is done via sampling unseen initial
points from the dynamical system. The cross marks and check marks in the PERIODIC REENC. rows indicate,
respectively, absence and presence of periodic reencoding mechanism during inference time. When enabled, the
errors are reported by searching over reencoding periods of (10, 25, 50, 100). The cross marks in place of table
entries indicate exploded values. Underlined values denote best performance for Koopman-based models, where
bold numbers represent best performance across all models. We exclude the Parabolic Attractor environment
when reporting errors over the 1000-step horizon since trajectories would almost perfectly merge onto the
parabolic manifold and reach the origin in less time.

Similar to the previous section, a multi-step MLP is trained as a baseline. To ensure a fair comparison,
we set the size of the MLP to be equal to the combined size of the Koopman encoder and decoder. In
our implementation, this equivalent MLP is implemented by setting the reencoding period to 1 during
training and deactivating the loss terms associated with the Koopman autoencoder, specifically the
“alignment” and “reconstruction” losses, optimizing only the “prediction” loss as the objective (see
Figure 1). Refer to Appendix C for details and specifics.

We utilize training sequences with a length of 100. The results presented in Table 2 demonstrate that
through periodic reencoding, we can consistently unroll our model over extended horizons, surpassing
the training length (in this case, over a 300-step horizon). Furthermore, the use of a nonlinear decoder
proves to be crucial for accurate prediction. In our experience, training the MLP becomes unstable
for horizons longer than 10 steps, and its performance is significantly inferior. However, it fulfills its
role as a baseline.

MODEL KOOPMAN AUTOENCODER MLP

DECODER TYPE LINEAR NONLINEAR -

PERIODIC REENCODING (✗, ✓) ✗ ✓ ✗ ✓ -

Environment Dataset MSE over 300 steps

Hopperv2 expert 0.250± 0.05 0.079± 0.03 0.353± 0.05 0.012± 0.00 0.561
medium-expert 0.486± 0.07 0.102± 0.04 0.719± 0.10 0.015± 0.00 0.592
medium 0.624± 0.05 0.102± 0.03 0.889± 0.08 0.008± 0.00 0.533
full-replay 1.052± 0.12 0.570± 0.11 2.254± 0.14 0.158± 0.01 0.815
medium-replay 1.190± 0.22 0.776± 0.18 ✗ 0.296± 0.07 0.936

HalfCheetahv2 expert 0.645± 0.05 0.602± 0.09 0.622± 0.07 0.227± 0.03 1.359
medium-expert 1.141± 0.05 1.076± 0.08 0.813± 0.12 0.391± 0.07 1.481
medium 1.362± 0.04 1.456± 0.08 1.816± 0.16 0.809± 0.09 1.861
full-replay 1.262± 0.10 1.252± 0.17 1.668± 0.17 0.816± 0.14 1.994

Walker2dv2 expert 0.364± 0.07 0.302± 0.08 0.544± 0.05 0.072± 0.03 0.285
medium-expert 0.755± 0.02 0.602± 0.08 0.796± 0.10 0.198± 0.08 1.295
medium 0.825± 0.08 0.718± 0.11 1.822± 0.18 0.404± 0.13 0.821
full-replay 1.676± 0.19 1.413± 0.13 ✗ 0.867± 0.15 1.291
medium-replay ✗ 2.379± 0.20 ✗ 2.077± 0.26 1.917

Table 2: Mean Squared Error of state prediction for D4RL robotic locomotion tasks. Evaluation is done under
a held-out set of trajectories. The cross marks in place of table entries indicate exploded or almost exploded
values (large errors).
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(a) NO REENCODING (b) REENCODE EVERY STEP (c) PERIODIC REENCODING

Figure 4: Phase portraits of the trained Koopman autoencoders (w/linear decoder) for unrolls of 1000 steps.
We use different different reencoding schemes for unrolling the same model, namely (a) w/o reencoding, (b)
reencoding at every step, and (c) periodic reencoding (our proposed approach). The grey lines in the background
represent ground truth phase portraits.

Figure 5: Mean Squared Error (MSE) over the unrolling horizon, under varying reencoding schemes. We
use 100 freshly sampled (unseen) initial points for evaluation. `reencode @ 0` legend indicates unrolling
without ever reencoding. We observe that Periodic Reencoding robustly improves the quality of long-range
modeling of dynamics.

4.3 D4RL: SEMI-OPEN-LOOP CONTROL

In this section, we utilize our proposed model as an open-loop controller for locomotion tasks
within the D4RL framework to showcase long-term stability, generalization capability, and prediction
quality. This approach allows us to present another informative metric, the total reward achieved
by a semi-open-loop controller (with sparse feedback). In this context, the model is trained using
transitions generated by an optimally trained policy, specifically the expert datasets.
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Figure 6: Mean Squared Error (MSE) for Hopperv2 environment over the unrolling horizon of 300 steps,
under varying reencoding schemes. Periodic Reencoding generates more accurate trajectories compared to no
reencoding and every-step reencoding schemes. Error plots for other environments can be found in Appendix F.

The objective is to produce the sequence of states and actions that follow the initial state which
is provided as input to the model. We train a Koopman autoencoder, jointly with an independent
decoder head trained using a behaviour cloning loss to output actions, which receives the encoded
states as input. We assess the quality of the predictions by evaluating the optimality of the replicated
“expert” behavior. This is done by executing the generated sequence of actions in the environments
and recording the total reward achieved. To underscore the stability of our approach, we ensure that
the model plans the motion of the robot for the next 100 steps, by generating a sequence of actions
before receiving any sort of feedback form the environment. By removing feedback at test time, i.e.
by providing the ground truth state as input to the model only every 100 steps, we demonstrate the
model’s capability to generate stable motion plans, particularly when periodic reencoding is utilized.

MODEL KOOPMAN AUTOENCODER MLP BC

STATE FEEDBACK (✗, ✓) ✗ ✗ ✗ ✓

PERIODIC REENCODING (✗, ✓) ✗ ✓ - -

Environment Dataset total reward until termination

Hopperv2 expert 18.40± 6.2 53.5± 14.5 18.9± 5.9 96.05± 4.3
HalfCheetahv2 expert 15.06± 5.3 64.2± 12.9 19.5± 7.9 82.91± 5.9
Walker2dv2 expert 18.46± 8.1 61.9± 14.2 11.4± 2.5 98.73± 1.5

Table 3: Semi-open-loop reward achieved. The total rewards are normalized according to D4RL random and
expert scores. The Koopman Autoencoder uses a nonlinear decoder.

Table 3 provides the results for the designed open-loop control problem. As baseline, we train an
MLP that takes the state as input and outputs the next state along with the optimal action. The MLP
can then be unrolled autoregressively at test time similarly in an open-loop fashion. Furthermore, for
comparison, we train a standard behavior cloning (BC) model that we run without state obfuscation,
and allow to observe state at every step. This is the upper bound of performance of the policy run
with state obfuscation.

We demonstrate that our approach is capable of making sufficiently accurate predictions well into the
future when the state is withheld from the model over 100-step horizons. This is evident from the
agent’s ability to sustain its motion without falling, relying solely on preplanned motion.

5 CONCLUSION

Our study of Koopman autoencoders for modeling nonlinear dynamical systems lead us to explore
various inference schemes for generating predictions over long horizons. We showed that generating
trajectories exclusively in the latent space presents two potential difficulties: (i) the inability to
capture switching behaviour between multiple fixed points, and (ii) violation of the existence and
uniqueness theorem of initial value problems. We showed, through theory and experiment, that
trajectories generated with reencoding do not suffer from these limitations. Finally we introduced
periodic reencoding as a method that bridges the gap between no reencoding and reencoding at every
step, and achieves the best results in practice.
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A IMPLICATIONS FOR ALL LATENT MODELS OF DYNAMICAL SYSTEMS

Equations 8 and 9 can be generalized beyond linear latent dynamics to any deterministic latent space
dynamics. Simply let K be a function of z instead of a constant matrix giving rise to latent space
dynamics of ż = K (z), with solution z(t) = h(t, ϕ(x0)). Without reencoding the solution in state
space becomes:

x(t) = ψ (h(t, ϕ(x0))) . (14)
Note that because h is the solution to a dynamical system in z, its phase lines would never cross in
latent space. However, there is no such guarantee in x−space for arbitrary ψ. Reecnoding gives rise
to the following dynamical system:

ẋ = Jψ
(
ϕ(x)

)
K
(
ϕ(x)

)
, (15)

where K is now simply a function, taking z = ϕ(x) as input. Naturally, the solution would satisfy
the uniqueness theorem of initial value problems, i.e. phase lines would not cross. These findings
are empirically validated to generalize to the nonlinear case by learning a nonlinear latent dynamics
(parameterized by an MLP), see the ‘NonLinear Latent Dynamics’ column in Table 1.

B KOOPMAN THEORY OVERVIEW

Let us consider an autonomous dynamical system defined over an open set D of Rn by a system of
first order differential equations:

ẋ = f(x) (16)
This system induces a flow Φ : D× R× R → D which, for a given time t, an observed value of the
state of the system xt and a duration ∆t, maps to the state of the system evolved by said duration

Φt→t+∆t(xt) = xt +

∫ t+∆t

t

f(xτ ) dτ = xt+∆t (17)

One of the challenges in modern dynamical system theory revolves around establishing transfor-
mations which maps such nonlinear dynamics into linear ones, as there exist myriad of tools and
frameworks facilitating the study of linear systems, in contrast to their nonlinear counterparts.

In his seminal work Koopman (1931) proposed an alternative perspective of general nonlinear
dynamics in which he considered measurement functions φ : D → R s.t. φ ∈ L2, the set of square
integrable functions w.r.t. Lebesgue’s measure—which constitutes a Hilbert space whose metric is
determined by the inner product (φ,ψ) 7→

∫
D
φ(x)ψ∗(x)dµ(x). A measurement function maps the

actual state of the system to the measurement or observable data to which one would have access.
He introduced an operator K acting upon the set of measurement functions and which advances the
measurement such that

∀ φ ∈ L2(D), ∀x ∈ D, ∀t, s ∈ R s.t. t > s, Ks→t(φ)(x) = φ (Φs→t(x)) (18)

It is linear by definition and the family of operator {K0→t}t∈R constitute a one-parameter group in
Hilbert space, which admits as infinitesimal generator the Lie derivative operator T such that

L(φ)(x(t)) = lim
τ→0

Kt→t+τ (φ)(x(t))− φ(x(t))

τ

= lim
τ→0

φ(x(t+ τ))− φ(x(t))

τ
=

d
dt

{
φ(x(t))

}
= (∇φ) (x(t)) · f(x(t))

(19)

The resulting linear differential equation on measurement functions is of little use in practical
settings, however, as it is of infinite dimension. To circumvent this, it is customary to resort to
orthogonal decomposition of the Hilbert space of measurement functions L2 into subspaces invariant
by application of the Lie (and thus Koopman) operator (Brunton et al., 2016; Morton et al., 2018).

L2 =

∞⊕
k=1

Ek (20)
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By truncation, it possible to operate on an invariant subspace H =
⊕q

k=1 Ek, thus providing a finite
dimensional representation of the operator T (resp. K), restricted to said subspace, into a matrix
T (resp. K) acting on the vector space Rq . The restriction of a measurement function φH thus fulfils
the linear dynamics

d
dt

{
φH(x(t))

}
= T φH(x(t)) (21)

or equivalently

φH(x(t)) = exp{T (t− t0)} · φH(x(t0)) = K(t−t0) φH(x(t0)). (22)

C IMPLEMENTATION DETAILS

C.1 STATE PREDICTION TASKS

To minimize the alignment loss, the encoder may generate latent codes with arbitrarily small values.
We regard these solutions as degenerate, and to discourage this behavior, we normalize the weight
columns of the decoder. Moreover, we employ AdamW optimizer by Loshchilov & Hutter (2017)
with a slight weight decay of value 1e−4 and learning rate of 1e−4. We utilize a custom learning
rate of 1e−5 for the dynamics components, which are either the Koopman matrices or 2-layer
MLPs. This encourages the encoder to follow the dynamics prescribed by Koopman and stabilizes
training. We use the continuous Koopman parameterization and apply bilinear descretization (Tustin,
1947) whenever control inputs are present. In the absence of control inputs, we allow the model to
unroll by solving an initial value problem (IVP), using more sophisticated integrators implemented
by JAX (Bradbury et al., 2018). During both training and inference, we make heavy use of the
jax.experimental.ode.odeint() which relies on an adaptive stepsize (Dormand-Prince)
Runge-Kutta integrator (Runge, 1895; Kutta, 1901). We find incorporating the prediction loss
to be detrimental to the overall performance when training on the dynamical systems listed in
Section 4.1. Inspired by the model described in Appendix D, we use a small sparsity inducing L1 loss,
1e−3, applied to the Koopman embeddings to encourage region-dedicated dynamics, and use ReLU
activations for all experiments to ensure sparse activations. The encoders used for dynamical systems
and D4RL are 4-layer and 6-layer standard MLPs, respectively. We use training sequence lengths
of 10 and 100, for the dynamical systems and D4RL state prediction tasks, respectively. Moreover,
we observe that using reencoding training schemes of 20 and 50 steps are beneficial for most of
D4RL state prediction tasks, compared to training without reencoding. Interestingly, presence of
control inputs in D4RL dataset makes the training more stable over longer horizons, compared to
the dynamical systems we use as benchmark. This is because in the absence of control inputs, the
latent state can be arbitrarily scaled up by the eigenvalues of the K matrix. We find that normalizing
the observations and actions as a preprocessing step negatively impacts performance, especially for
D4RL tasks. We choose an embedding size of 128 for all dynamical systems, 512 for D4RL states,
and 128 for D4RL action embeddings. The δ stepsize is trained in log space, initialized from that of
the environment.

C.2 D4RL: SEMI-OPEN-LOOP CONTROL

In this subsection we review the implementation details that pertain specifically to the open-loop
control task. Given that the actions in the expert datasets are generated via a fixed expert policy,
which is a function of the states, denoted as ut = π(xt), we can transform the dynamics from their
original form, xt+1 = F(xt, ut), more compactly into, xt+1 = F(xt, π(xt)) = Fπ(xt). Therefore,
we employ the standard Koopman formulation, i.e. zt+1 = Kzt, which does not involve exogenous
controls (see Section 3.1). Due to the absence of controls as direct inputs to the model, dictated by the
nature of this problem, the training process becomes unstable for long sequences, in comparison to the
D4RL state prediction tasks. We train a separate decoder head for action prediction, which takes the
encoded states as input. We utilize training sequences with a length of 20 steps, and likewise, employ
a periodic reencoding scheme of 20 steps during test time. After the first 100 steps taken by the agent
in the environment, we restrict ourselves to observing the ground truth state values only at intervals of
100 steps, hence the designation “Semi-Open-Loop.” Additionally, for improved prediction accuracy,
we utilize precise adaptive-stepsize integrators implemented in JAX, i.e. odeint(), both during
the training and inference stages.
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D SWITCHING DYNAMICS

To explore another limitation of trajectories generated without reencoding, it is instructive to study
the special case where dim(z) > dim(x) and ψ(z) = Wz, i.e. the decoder is an over-complete
dictionary, e.g. a linear operator. Therefore the trajectories generated without reencoding correspond
to a linear projection of the solution of a linear dynamical system, e.g. x(t) = WeKtϕ(x0). Such
trajectories exhibit limited expressiveness; for instance, they cannot capture transitions between
multiple distinct fixed points. For example, consider a scenario where x ∈ R2 is governed by a
NLDS with multiple fixed points, such as the Duffing Oscillator. Let z ∈ R4. It is possible for z to
represent multiple, distinct, attractors of x but not the switching behaviour between them that occurs
in the Duffing oscillator for some initial conditions. Let these attractors be located in two regions of
state space, R1 and R2. Now, let z = [z1, z2, z3, z4] and:

ϕ(x) = {[z1, z2, 0, 0] if x ∈ R1, [0, 0, z3, z4] if x ∈ R2} . (23)

These can be interpreted as sparse codes with distinct supports corresponding to R1 and R2, inferred
using ϕ. Furthermore, if we let K be block diagonal then:

ż =

[
K1 0
0 K2

]
z. (24)

Phase space trajectories are synthesized by linearly combining the trajectories in the latent space.

x =

{
z1

[ |
w1

|

]
+ z2

[ |
w2

|

]
if x ∈ R1, z3

[ |
w3

|

]
+ z4

[ |
w4

|

]
if x ∈ R2

}
(25)

The dynamics of x can be approximated by two distinct linear systems. Furthermore, the columns
of W can shift the origin to represent two distinct fixed points. Note that, without reencoding
(Equation 8), the dynamics of x are restricted to follow the same linear system, determine by the
initial condition z0 = ϕ(x0), for all time. In other words, this scheme does not allow for switching
between linear systems, represented by K1 and K2, after t = 0. Indeed this is what is observed
in Figure 4 (a), the dynamics captured without reencoding resemble the phase diagram of the
superposition of several LDS. In contrast, trajectories generated with reencoding, have the capacity to
switch between supports (non-zero elements of z) and therefore switch between the dynamics defined
by K1 and K2. Indeed it was shown that non-linear systems can only be linearized within a basin of
attraction of a fixed point (Lan & Mezić, 2013), implying that the best we can hope to achieve is to
partition the phase space into regions each of which can be well approximated by LDS, as illustrated
in the example above.

E EFFICIENCY

Producing full trajectories for T discrete points in a nonlinear dynamical system of the form xt+1 =
F(xt) requires the repeated recurrent application of the nonlinear transformation F. For the Koopman
Autoencoder, trajectories for T discrete points are first generated in the Koopman linear space
zt+1 = Kzt + Lυt and followed by a time-agnostic decoding step x = ψ(z). The linear recurrence
in the latent space allows for a highly parallelizable unrolling of the predicted sequence ẑ using
parallel scans (Martin & Cundy, 2018). Compared to nonlinear recurrences, training time is greatly
improved. Periodic reencoding does add a nonlinear step to the Koopman autoencoder recurrence.
However, since we decode and reencode periodically every k steps, we can parallelize the predicted
trajectories for k discrete points and still obtain much improved training efficiencies. Furthermore,
considering that our method can provide accurate predictions over short horizons (where reencoding
is not needed), it is valuable in situations requiring fast look-ahead capabilities, such as model
predictive control (MPC) or n−step value function bootstrapping in Reeinforcement Learning.
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F ADDITIONAL RESULTS

Figure 7 show the error plots for HalfCheetah-v2 and Walker2d-v2 environements –
Hopper-v2 error plots can be found in the main text. For all D4RL experiments, during training
time, we either do not use reencoding at all, or we use reencoding periods of 20 or 50 steps. The
plots correspond to the best performing trained models reported in Table 2. Periodic Reencoding
consistently achieves the best results and is robust to the reencoding period.

Figure 7: Mean Squared Error (MSE) for HalfCheetahv2 and Walker2dv2 environments over the unrolling
horizon of 300 steps, under varying reencoding schemes. The results are for Koopman Autoencoder models.

Figure 8 shows the error plots of the Koopman Autoencoder models that DO NOT employ reencoding
(periodic reencoding) during training time. We still observe drift in latent space despite the absence
of periodic reencoding at training time. Employing periodic reencoding at test time can still mitigate
the drift and generate stable, long unrolls.

Figure 8: Mean Squared Error (MSE) for D4RL environments over the unrolling horizon of 300 steps, under
varying reencoding schemes. The plots belong to models that DO NOT make use of reencoding during training.
The errors reported in Table 2, under PERIODIC REENCODING: (✗), corresponds to the blue lines.
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Experiments with Structured Koopman Matrix. Additionally, we attempted experiments with
a diagonal Koopman transition matrix but were unsuccessful. We suspect that this lack of success
may be due to additional requirements imposed by the Koopman linear space. Achieving complete
disentanglement of features in this context might necessitate an exponentially larger latent state
dimension. In an effort to attain training stability and mitigate the issue of scaling up and down
the outputs in linear dynamics steps, we conducted experiments using a skew-symmetric matrix,
denoted as K . Skew-symmetric transition matrices perform rotations without scaling the space. The
experiments with the skew-symmetric matrix yielded unsuccessful results, similar to those with the
diagonal matrix. We speculate that this lack of success may be attributed to a lack of expressivity.

Low Dimensional Latents and Deep Latent-to-Latent Mappings. So far, we have assumed a
high-dimensional latent space, where dim(z) ≫ dim(x), as in theory, Koopman operator is an
infinite-dimensional operator. This enables us to learn rich representations of the dynamics, with
the information bottleneck being the linearity requirement by Koopman. We conducted experiments
using lower dimensional state embeddings, dim(x) > dim(z), and deep latent-to-latent transition
networks. In this context, the information bottleneck more closely resembles that found in tranditional,
“static” autoencoders, where the projection into the latent space represents a form of compression. We
observed extreme instability when unrolling over long horizons, resulting in poor prediction quality.
We also discovered that Periodic Reencoding fails to improve the stability of these models.

Single Step Koopman Objective. Rather than training the Koopman objective over multiple
steps, we focused on minimizing the losses as defined in Equation 7 at individual timesteps. We
implemented this approach with the aim of perfectly aligning the training objective with the inference
time scenario, where reencoding occurs at every step. However, this resulted in high inference-time
instability and subpar performance, even worse than the MLP baseline, regardless of the utilized
inference mechanism, e.g. with or without reencoding. This suggests that the Koopman objective is
indeed leveraging its extensibility within basins of attraction, as indicated by Lan & Mezić (2013).

G CONNECTION TO RNNS

There exists an extensive body of literature on training RNNs on nonlinear dynamical systems
(Pearlmutter, 1990; Trischler & D’Eleuterio, 2016; Vlachas et al., 2022). A prominent application of
these models is in Model-Based Reinforcement Learning, where they function as “World Models.”
For instance, Hafner et al. (2018) introduced Recurrent State Space Models (RSSM) trained on image
inputs. These models are often used for short-term future predictions while learning a value function.
In contrast, our work facilitates long-range predictions into the future. Koopman autoencoders can be
regarded as RNN models with a single linear recurrent layer. From an efficiency perspective, linear
recurrent units are more advantageous as they can be executed in parallel rather than sequentially.
Furthermore, from a representation learning perspective, one could argue that linearly evolving
features extracted from a NLDS would result in a more meaningful and interpretable representation
of the system in question. State-space Models (SSMs) (Gu et al., 2022; 2021) can also be regarded
as linear RNNs, achieving impressive performance in modeling long-range dependencies. A recent
finding by Orvieto et al. (2023) highlights that linear RNN layers surpass tuned nonlinear RNN
variants in performance. This result is also partially attributable to the fact that the behavior of linear
layers can be designed and engineered more effectively, thanks to the well-studied nature of this
problem. This enables effective regulation of linear layers, ensuring the stability of the training
process over long sequences. A similar approach was previously adopted by Arjovsky et al. (2015),
wherein the eigenvalues of the RNN transition matrix were constrained to lie on the unit circle. The
drawback of imposing structure and constraints on the transition matrices is that it results in a loss of
expressivity (Monfared et al., 2022).
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