

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KBE-DME: DYNAMIC MULTIMODAL EVALUATION VIA KNOWLEDGE ENHANCED BENCHMARK EVOLU- TION

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT

013 The rapid progress of multimodal large language models (MLLMs) calls for more
014 reliable evaluation protocols. Existing static benchmarks suffer from the potential
015 risk of data contamination and saturation, leading to inflated or misleading per-
016 formance evaluations. To address these issues, we first apply Graph formulation
017 to represent a static or dynamic VQA sample. With the formulation, we propose
018 Knowledge-enhanced Benchmark Evolution(KBE), a dynamic multimodal eval-
019 uation framework. KBE first analyzes the original static benchmark, then expands
020 it by integrating multimodal knowledge, transforming the static benchmark into
021 a controllable, dynamic evolving version. Crucially, KBE can both reconstruct
022 questions by Re-selecting visual information in the original image and expand ex-
023 isting questions with external textual knowledge. It enables difficulty-controllable
024 evaluation by adjusting the degree of question exploration. Extensive experiments
025 demonstrate that KBE alleviates the risk of data contamination, data saturation,
026 and provides a more comprehensive assessment of MLLM capabilities.

027 028 1 INTRODUCTION

029
030 Multimodal large language models(MLLMs) have been developing rapidly in recent years, demon-
031 strating remarkable performance across a wide range of tasks(Li et al., 2024; Bai et al., 2025).
032 This rapid progress has motivated the creation of an increasing number of multimodal benchmarks
033 designed to evaluate their capabilities. Several traditional static benchmarks(Marino et al., 2019;
034 Schwenk et al., 2022) have been carefully curated with comprehensive testing coverage and rigor-
035 ous construction processes. These benchmarks provide evidence of how current multimodal models
036 perform across diverse multimodal tasks, and are crucial in understanding the strengths and weak-
037 nesses of MLLMs.

038 However, current evaluation practices also suffer from several implicit limitations. A primary con-
039 cern lies in the risk of data contamination(Song et al., 2025). Most of the aforementioned open-
040 source benchmarks release their test samples and labels to facilitate reproducibility of comparison
041 across different multimodal large models. While this openness ensures transparency, it also in-
042 creases the risk that open-sourced test data may be inadvertently leaked into training corpora of
043 existing MLLMs. The wide availability of benchmark test sets means that portions of these datasets
044 can be unintentionally included during large-scale pretraining. As a result, the reliability of static
045 open-source benchmarks gradually diminishes over time, since their effectiveness as unbiased eval-
046 uators is compromised by potential overlap with training data. Another issue lies in data saturation.
047 As multimodal large language models continue to develop rapidly, their performance on many es-
048 tablished benchmarks keeps improving. However, the difficulty static benchmarks remains fixed and
049 cannot evolve along with the increasing capabilities of newer MLLMs. As a result, certain models
050 have already achieved high scores on some widely used datasets OK-VQA(Marino et al., 2019),
051 raising concerns about the diminishing discriminative power of such benchmarks. In this scenario,
052 benchmarks that were once sufficiently challenging can no longer provide a reliable separation be-
053 tween state-of-the-art systems, thereby limiting their utility in driving future progress.

To address these concerns, a conventional approach is to constantly design new benchmarks whose difficulty is suitable for evaluating the current capabilities of MLLMs. Such new constructed bench-

054	VQA S_0	Perturbed VQA \tilde{S}_0	KBE-DME VQA S_1
055	I_0	I_0	I_0
056	Q_0 What were they doing?	\tilde{Q}_0 What behavior did they exhibit at that time?	Q_1 What is the primary composition of the surface on which the sledding shown in the image is occurring?
057	A_0 sledding	A_0 sledding	A_1 ice crystals
058			
059			
060			
061			
062			
063			
064			
065			
066			
067			
068			

Figure 1: Figure of the original VQA test sample S_0 , the perturbed test sample \tilde{S}_0 generated by perturbation methods, and the dynamically generated test sample S_1 produced by KBE-DME. Here, G_K denotes the key information subgraph extracted from a VQA test sample. As shown, the perturbed VQA test sample does not alter the underlying G_K of the question.

marks can temporarily control task difficulty and mitigate the risks of data contamination. However, the validity of these benchmarks inevitably diminishes over time, and the repeated construction of specialized static datasets requires substantial human effort and is time-consuming. We argue that a more sustainable solution is to develop frameworks that enables benchmarks to evolve with MLLMs, enabling dynamic evaluation. Only through such adaptive benchmarks can we overcome the dual limitations of data contamination and data saturation inherent in the traditional evaluation with static benchmark.

There are some dynamic evaluation methods(Yang et al., 2025) based on perturbation. However, the perturbed VQA test sample sometimes does not alter the core of the question as shown in Figure 1. To overcome the challenges of data contamination and data saturation, we introduce KBE-DME: Dynamic Multimodal Evaluation via Knowledge-Enhanced Benchmark Evolution. Our approach starts with the multimodal tasks represented in the standard VQA format, and further modeling each VQA problem using a Graph formulation with multimodal knowledge triplets. For every question, we extract a set of candidate multimodal knowledge triplets and then identify the subset composed of key triplets that are necessary for answering the question. Based on this representation, KBE-DME introduces a framework dynamically evolves benchmarks in two different ways: 1.Re-selection of key triplets from the pool of candidate multimodal knowledge triplets, which indicates the reasoning rationale required to answer the question; 2.Exploration with external knowledge triplets, where new triplets are incorporated into the key triplets set to enrich the knowledge required. By integrating the modified key triplets with the information of original VQA sample, KBE-DME synthesizes novel, knowledge-enhanced VQA questions with controllable difficulty. These dynamic questions can continuously evolve with the progress of multimodal large models through our framework. This dynamic construction not only mitigates the risks of test set leakage but also ensures that the difficulty of evaluation adapts to the improving capabilities of MLLMs.

Our proposed method, KBE-DME, exhibits strong generalization ability and can be applied to transform different multimodal VQA datasets for dynamic evaluation. We apply KBE-DME on two widely used benchmarks, OK-VQA(Marino et al., 2019) and A-OKVQA(Schwenk et al., 2022), and evaluate five representative MLLMs using our dynamic evaluation framework. Through extensive experiments and analyses of the generated dynamic test data, our results demonstrate that KBE-DME is capable of dynamically constructing test sets of various difficulty levels based on static benchmarks. This enables a dynamic and difficulty-controllable evaluation of MLLMs, effectively overcoming the limitations of traditional static benchmarks.

Our contributions are:

- 108 • We introduce a novel graph formulation to represent a VQA sample, where the multimodal
109 knowledge is represented as triplets. Within this formulation, the process of dynamic test
110 data generation for evaluation can be naturally expressed as transformations of triples in
111 the graph structure.
- 112 • We propose KBE-DME, a dynamic evaluation framework which evolves static multimodal
113 benchmarks via re-selection and exploration strategy, generating difficulty-controllable test
114 data that co-evolves with the progress of MLLMs.
- 115 • We conduct extensive experiments with KBE-DME on two static VQA benchmarks, eval-
116 uate five representative MLLMs and perform detailed analyses of the dynamically gen-
117 erated data. The results demonstrate that KBE-DME enables high-quality and difficulty-
118 controllable dynamic evaluation of MLLMs.

120 The full data and code will be released upon acceptance.

122 2 RELATED WORK

124 2.1 STATIC MULTIMODAL EVALUATION

126 Static multimodal evaluation has long served as the standard paradigm for assessing the capabili-
127 ties of multimodal models. Early efforts introduced benchmarks such as MSCOCO Captions(Chen
128 et al., 2015), VQA-v2(Goyal et al., 2017), OK-VQA(Marino et al., 2019), TextVQA (Singh et al.,
129 2019), DocVQA (Mathew et al., 2021b), InfoVQA (Mathew et al., 2021a) and A-OKVQA(Schwenk
130 et al., 2022), which provided fixed datasets and standardized metrics to measure abilities such as vi-
131 sual understanding, reasoning, and image–text alignment. These static benchmarks played a crucial
132 role in model developing progress by offering a common ground for model comparison. With the
133 rapid advancement of multimodal large models (MLLMs) in recent years(Li et al., 2024; Bai et al.,
134 2025), previous proposed benchmarks are no longer sufficient to meet the need for evaluating in-
135 creasingly powerful MLLMs. To keep pace with increasingly powerful models, plenty of new static
136 benchmarks have been proposed, aiming to provide broader coverage and more challenging tasks.
137 For example, some specific benchmarks such as ChartQA(Masry et al., 2022) focuses on chart un-
138 derstanding; and others such as MMBench(Liu et al., 2024), MME(Fu et al., 2024), MMStar (Chen
139 et al., 2024) and SEED-Bench(Li et al., 2023) provide comprehensive multi-dimensional evaluations
140 like reasoning, OCR, and others.

141 Despite their success, static multimodal benchmarks remain inherently constrained by fixed diffi-
142 culty and potential data contamination once released(Yang et al., 2025). Although some studies
143 have attempted to change their evaluation questions(Shah et al., 2019; Gokhale et al., 2020), these
144 methods are typically designed for specific datasets and are difficult to serve as a widely applicable
145 dynamic evaluation strategy for other multimodal static benchmarks. As models continue to evolve,
146 even carefully curated datasets may gradually lose their discriminative power, highlighting the need
147 for dynamic and adaptive evaluation paradigms that can co-evolve with model capabilities.

148 2.2 DYNAMIC EVALUATION

150 To mitigate the data contamination and data saturation issues, recent studies have explored dynamic
151 evaluation(Jiang et al., 2025; Yang et al., 2025), where test data are perturbed(Yang et al., 2025)
152 or regenerated(Jiang et al., 2025) to adapt difficulty and reduce data contamination effects. In the
153 field of text-only dynamic evaluation, DyVal(Zhu et al., 2024a) dynamically generate test samples
154 to mitigate data comtamination. NPHardEval(Fan et al., 2024) generate new samples for NP-hard
155 math problems evaluation. MPA(Zhu et al., 2024b) apply agent to generate new evalution samples.

156 However, in the multimodal domain, research on dynamic evaluation remains relatively limited.
157 VLB(Yang et al., 2025) represents one of the first attempts to bootstrap both images and text sim-
158 ultaneously by editing objects or backgrounds in images, replacing or rephrasing words in questions,
159 and adding related or unrelated textual content to perturb the original VQA problems. Liu & Zhang
160 (2025) proposes a multimodal dynamic evaluation framework to perturb the multimodal task itself
161 instead of perturbing inputs. While perturbation-based methods indeed modify the test inputs, their
impact is relatively limited compared to regenerating entirely new test data. As a result, the scope of

Figure 2: Figure of our Graph Formulation and the KBE-DME framework. The upper part of the figure uses a static VQA sample S_0 to exemplify our graph representation of a VQA problem, while the lower part demonstrates the KBE-DME framework for dynamically constructing VQA test data.

dynamically generated data remains constrained. Moreover, perturbation approaches offer little control over the difficulty level of the generated data. To achieve both a broader range of dynamically generated data and finer-grained difficulty control, we propose KBE-DME, a dynamic multimodal evaluation framework that regenerates new test data instead of merely perturbing existing ones.

3 KBE-DME

3.1 GRAPH FORMULATION

We represent a multimodal VQA problem using a graph formulation, where each problem is abstracted as a structured graph composed of multiple multimodal knowledge triplets.

Knowledge Triplet A unit of knowledge can be represented as a multimodal knowledge triplet (s, r, o) . (s, r, o) , where s denotes the subject of the triple, r specifies the relation, and o corresponds to the object associated with s under relation r .

Graph Definition of Static VQA We treat the s and o in a knowledge triplet as vertices in the graph, and use the corresponding triplet (s, r, o) as an directed edge connecting s and o . We first construct visual knowledge triplets $M = \{(s_m, r_m, o_m)\}$ to represent the visual information of a VQA sample, and then construct textual knowledge triplets $T = \{(s_t, r_t, o_t)\}$ to represent the worldwide textual background knowledge of the VQA sample. Based on this representation, we construct a Visual Graph $G_M = \langle V_M, E_M \rangle$ with visual knowledge triplets, which is:

$$V_M = \{s, o \mid \exists (s, r, o) \in M\}, E_M = \{(s_m, o_m, [r_m]) \mid \exists (s_m, r_m, o_m) \in M\} \quad (1)$$

and a Textual Graph $G_T = \langle V_T, E_T \rangle$ with textual knowledge triplets, which is:

$$V_T = \{s, o \mid \exists (s, r, o) \in T\}, E_T = \{(s_t, o_t, [r_t]) \mid \exists (s_t, r_t, o_t) \in T\} \quad (2)$$

The formal representation is as follows:

216 Note that we formulate the edge set E as a edge (s, o) with property r to handle the relation between
 217 s, o .

219 The nodes in the visual subgraph G_M are composed of the subjects **and** objects from the visual
 220 knowledge triplets M , and each visual knowledge triplet m corresponds to a directed edge e_m in
 221 the graph. The textual subgraph G_T is constructed in the same manner. A concrete example is
 222 illustrated in Figure 2.

223 However, answering a VQA question typically does not require utilizing all the multimodal information
 224 (G_M and G_T) contained in the sample. Instead, only a subset of key information(G_K) is
 225 necessary to arrive at the correct answer. Based on this observation, we extract the key knowledge
 226 triplets $K = \{(s_k, r_k, o_k)\} \subseteq M \cup T$ that are essential for answering the VQA question from the
 227 set of visual knowledge triplets M and textual knowledge triplets T . These triples are then used to
 228 construct a new key multimodal knowledge subgraph $G_K = \langle V_K, E_K \rangle$, which is:

$$V_K = \{s, o \mid \exists(s, r, o) \in K\}, E_K = \{(s_k, o_k, [r_k]) \mid \exists(s_k, r_k, o_k) \in K\} \quad (3)$$

231 The role of G_K is similar to a graphical representation of the rationale required to answer a VQA
 232 question.

234 At this stage, we obtain a graph representation for each static VQA problem $S_0 = \{I_0, Q_0, A_0\}$,
 235 S_0 denotes the original data of a given test VQA sample, where I_0 , Q_0 , and A_0 represent the cor-
 236 responding input image, input question, and answer, respectively. The potential multimodal knowl-
 237 edge contained in the problem is modeled as a visual subgraph G_M and a textual subgraph G_T ,
 238 while the key information required to answer the question is captured by the key subgraph G_K .
 239 Consequently, dynamically altering a VQA problem can be naturally formulated as dynamically
 240 modifying its corresponding key subgraph G_K .

$$S_0 = \{I_0, Q_0, A_0\} \sim \{G_M, G_T, G_K\} \quad (4)$$

243 **Graph Representation of Dynamic VQA** Intuitively, there are two ways to modify the key sub-
 244 graph G_K corresponding to a VQA sample.

246 **(1) Re-Selection:** by choosing a different set of key knowledge triples $K' = \{(s_{k'}, r_{k'}, o_{k'})\} \subseteq$
 247 $M \cup T \neq K$ from the existing visual subgraph M and textual subgraph T , we can generate a new key
 248 subgraph $G_{K'} = \langle V_{K'}, E_{K'} \rangle$. The formal expression is given as follows:

$$V_{K'} = \{s, o \mid \exists(s, r, o) \in K'\}, E_{K'} = \{(s_{k'}, o_{k'}, [r_{k'}]) \mid \exists(s_{k'}, r_{k'}, o_{k'}) \in K'\} \quad (5)$$

251 The new VQA sample S'_0 can be then formulated as:

$$S'_0 = \{I_0, Q'_0, A'_0\} \sim \{G_M, G_T, G_{K'}\} \quad (6)$$

254 **(2) External Knowledge Exploration:** by selecting appropriate knowledge triplets from external
 255 sources, we expand the original set of key triples K into an extended set $K_n = \{(s_{k_n}, r_{k_n}, o_{k_n})\}$
 256 with new textual triplets set N . Using K_n , we generate a new key subgraph $G_{K_n} = \langle V_{K_n}, E_{K_n} \rangle$.
 257 Unlike Re-Selection, T_n is expanded together with the augmentation of the triplets. The formal
 258 expression is as follows:

$$V_{K_n} = \{s, o \mid (s, r, o) \in K_n\}, E_{K_n} = \{(s_{k_n}, o_{k_n}, [r_{k_n}]) \mid \exists(s_{k_n}, r_{k_n}, o_{k_n}) \in K_n\} \quad (7)$$

$$T_n = N \cup T, K_n = N \cup K. \quad (8)$$

264 The new VQA sample S_n can be formulated as shown above.

$$S_n = \{I_0, Q_n, A_n\} \sim \{G_M, G_{T_n}, G_{K_n}\} \quad (9)$$

268 As the corresponding graph structure is updated, the original VQA problem is transformed into a
 269 new one for evaluation. We view the difficulty of the generated VQA problem based on the number
 of edges $|E_K|$ in its key subgraph G_K .

270 3.2 KNOWLEDGE ENHANCED BENCHMARK EVOLUTION FRAMEWORK
271272 We represent each VQA sample in the formulation of a graph and model the dynamic evaluation
273 process accordingly. In the following, we present our concrete design, our Dynamic Evaluation
274 Framework. Our overall pipeline can be divided into three components: Extract, Exploration, and
275 express.
276277 **Extract** We first perform information extraction based on the input image, question, and answer
278 of the given VQA data, obtaining the corresponding visual knowledge triplets M and textual knowl-
279 edge triplets T . We then identify the key triplets K that are required to answer the VQA question by
280 combining the extracted triplets with the original VQA input. To achieve this, we employ the power-
281 ful and general-purpose multimodal model GPT-4o. Once M , T , and K are obtained, we construct
282 the graph representations of the VQA sample, namely visual graph G_M , textual graph G_T , and key
283 subgraph G_K according to Eq (1). We believe that for a reasonable VQA sample, its corresponding
284 G_K should contain at least one edge from G_M , i.e., at least one visual triplet. Otherwise, answering
285 this VQA sample would not require any visual information, which we consider to be unreasonable.
286 Therefore, we retain only results whose G_K includes at least one edge originating from G_M .
287288 **Explore** After obtaining G_M , G_T , and G_K for an original question, we expand the original prob-
289 lem to generate new VQA questions. Specifically, we adopt two strategies for question expansion
290 and generation: **Triplets Re-Selection** and **Triplets Exploration**.
291292 To ensure the reliability of knowledge during the exploration process, we introduce a filtering step.
293 We first perform an Answer filtering step, which consists of three components: representativeness
294 filtering, part-of-speech filtering, and cycle-check filtering. Representativeness filtering is used to
295 determine whether the corresponding triplet (s,r,o) is representative. Part-of-speech filtering exam-
296 ines the POS of the candidate Answer. Specifically, we assume that answers with a noun POS are
297 more suitable for further exploration. Finally, cycle-check filtering ensures that for newly expanded
298 triplets, the output cannot be identical to any subject in the original key triples, since this would
299 introduce cycles in G_K , leading to unreasonable generated new question.
300301 For a VQA sample S_0 from an existing dataset, we assume that representative filtering has already
302 been considered during its construction, and thus all original questions are regarded as passing this
303 step. We then apply part-of-speech filtering to the original answer A_0 , which divides the samples into
304 two groups: $Post1$, where A_0 is a noun, and $PostF$, where it is not. For data belonging to $PostF$,
305 we perform Re-Selection to construct new VQA questions whose answers are nouns, resulting in a
306 new set $Post2$. Finally, $Post1$ and $Post2$ together form $Post$, the collection of VQA questions
307 whose answers all satisfy the noun constraint.
308309 The concrete implementation of Re-Selection is as follows. We first identify the image root node
310 of G_M , i.e., the node where v=IMAGE. We then search within G_M and G_T for paths that include
311 this image root node. Among these, we define as the valid path set those paths whose terminal node
312 (i.e., the endpoint of the last edge) is a noun. Finally, we select the longest path from this valid set
313 to serve as the new key graph $G_{K'}$. A concrete example is illustrated in Figure 2.
314315 For the data in $Post$, we perform knowledge exploration. Specifically, we first employ GPT to
316 generate a set of candidate expandable knowledge triplets, where the subject s of each triplet corre-
317 sponds to the current answer. We then apply our filtering strategies to these Answer-Related Triplets.
318 Finally, from the filtered triplets that meet the requirements, we randomly select one for knowledge
319 exploration and incorporate it into the current problem’s key subgraph G_K to obtain new key sub-
320 graph G_{K_1} . Using the KBE-DME framework, we can iteratively repeat this process up to three
321 times, thereby obtaining key subgraphs with different hop expansions, namely G_{K_2} and G_{K_3} .
322323 **Express** We employ GPT to transform the generated key subgraph into a new VQA ques-
324 tion–answer pair. Taking the first expansion as an example, we provide GPT with the image, ques-
325 tion, and answer of the current VQA sample S_0 , along with its corresponding key subgraph G_K . We
326 then specify the knowledge triplet to be expanded and designate the new VQA answer as the output
327 of this triplet. Finally, GPT is instructed to generate a new input question based on this information,
328 thereby completing the transformation from the graph representation to a new VQA sample.
329

324
 325 Table 1: Main Results of five different MLLMs on original static benchmark(raw) and our generated
 326 dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework.

327 328 329 Model	330 331 332 333 334 335 OK-VQA				336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 A-OKVQA			
	Raw	1-hop	2-hop	3-hop	Raw	1-hop	2-hop	3-hop
GPT-4o	50.33	47.62	42.07	39.19	60.13	50.82	41.34	36.27
Gemini-2.5-pro	49.94	41.55	36.87	32.92	58.99	46.57	34.48	32.03
Claude	52.26	46.03	41.82	37.60	57.68	48.85	38.73	32.84
LLaVA-OV	53.46	36.53	31.45	29.52	60.78	38.56	30.56	25.33
Qwen-2.5-VL	47.35	42.24	37.68	33.04	57.35	43.95	37.42	30.88

338 4 EXPERIMENT

340 4.1 EXPERIMENT SETUP

342 **Datasets** We choose OK-VQA(Marino et al., 2019) and A-OKVQA(Schwenk et al., 2022) as the
 343 primary static datasets for our experiments. Specifically, we select the validation splits of these
 344 datasets. The validation sets of OK-VQA and A-OKVQA contain approximately 5k and 1.1k sam-
 345 ples, respectively. From these, we select 2.6k samples from OK-VQA and 0.6k samples from A-
 346 OKVQA as the starting points for the static test sets in our dynamic evaluation.

348 **Evaluated MLLMs** Our evaluation covers both closed-source models, including GPT-4o(OpenAI
 349 et al., 2024), Gemini-2.5-pro(Comanici et al., 2025), and Claude(Anthropic, 2024), as well as open-
 350 source models und, namely LLaVA-OV-7B(Li et al., 2024) and Qwen-2.5-VL-7B(Bai et al., 2025).
 351 To ensure fair comparison in answering VQA questions, we restrict the length of the models’ re-
 352 sponses. Considering possible alias cases, we employ GPT-4o to determine whether the response of
 353 the tested model to a VQA question corresponds to the provided answer.

355 4.2 MAIN RESULTS

357 We expand each original question up to three hops following the procedure illustrated in Figure 2.
 358 We then evaluate five multimodal large language models on the datasets obtained after expansion of
 359 different hops, with the results presented in the Table 1. To generate three dynamic VQA samples
 360 from one static VQA sample, we need to apply the model approximately 11 times, an average
 361 of 3.67 model calls per newly generated question. Considering that current VQA questions and
 362 answers are relatively short, the cost is significantly lower and the construction efficiency is much
 363 higher compared with manually reconstructing the dataset with different difficulty.

365 We observe that as the number of expansion hops increases, the performance of all five tested models
 366 declines across both datasets. This indirectly demonstrates that our dynamic evaluation framework
 367 provides reliable control over task difficulty.

368 In addition, we find that some models exhibit relatively smooth performance degradation across
 369 different expansion hops, such as GPT-4o, Claude, and Qwen-2.5-VL in the dynamic evaluation
 370 based on the OK-VQA dataset. However, for Gemini-2.5-pro and LLaVA-OV, the performance
 371 drop is more pronounced during the first expansion, while the decline becomes more gradual in
 372 subsequent hops. In the dynamic evaluation based on the A-OKVQA dataset, GPT-4o and Claude
 373 again maintain relatively smooth degradation, whereas Qwen-2.5-VL shows a comparatively larger
 374 drop at the first expansion than at later ones.

375 The marginal effect makes it reasonable that the performance gap between models diminishes as the
 376 test questions become more difficult. However, if a model exhibits a substantial performance drop at
 377 the very first expansion, this may indicate a potential risk of data contamination on the corresponding
 dataset.

378
 379 Table 2: Several statistical metrics of original VQA data and the VQA questions generated with
 380 exploration of different hops. The statistical metrics including the average number of words in the
 381 questions, the average number of words in the answers, the average number of edges $|E_K|$ in the key
 382 subgraphs G_K , and the number of distinct relations among the triplets in the entire corresponding
 383 dataset.

Attribute	OK-VQA				A-OKVQA			
	Raw	1-hop	2-hop	3-hop	Raw	1-hop	2-hop	3-hop
Question Words	8.18	15.2	17.5	18.8	8.89	15.7	17.9	19.3
Answer Words	1.19	1.50	1.53	1.53	1.17	1.45	1.54	1.52
$ E_K $	2.98	4.04	5.04	6.04	3.16	4.23	5.23	6.23
All Relations	2979	4172	5136	6011	1263	1602	1900	2175

392
 393 Table 3: Human_Study of KBE-DME on OK-VQA Benchmark. For the 150 generated VQA sam-
 394 ples, we evaluated: (1) VQA_Reasonable: whether the sample is a reasonable VQA problem; (2)
 395 Triplets_Correct: whether each key triplet is correct, and (3) VQA_Triplets_Alignment: whether the
 396 question aligns with the key triplets. We report the average human evaluation scores for these gen-
 397 erated questions, with the values in parentheses indicating inter-annotator agreement.

	VQA_Reasonable	Triplets_Correct	VQA_Triplets_Alignment
3-hop Aver	95.0(90.1%)	96.8(93.6%)	97.9(95.7%)

5 QUALITY ANALYSIS

5.1 STATISTICS

To better analyze the differences between our newly generated data and the original VQA data, we conduct a statistical analysis on both sets of VQA samples. The results are presented in Table 2. We observe that on both benchmarks, as the number of expansion hops increases, the newly generated VQA samples tend to have longer questions. This is often due to the fact that answering these questions requires longer reasoning chains, which in turn makes the questions more complex. We also find that the number of edges in the key subgraph increases steadily with more hops, and consequently, the number of relation types involved in the visual and textual knowledge triples also grows. These results demonstrate that the newly generated VQA questions achieve higher distributional diversity, greater question complexity, and longer rationales compared to the original or lower-hop expansions, thereby producing more challenging VQA problems. This suggests that through the KBE-DME framework, we can evolve a static VQA benchmark into a dynamically changing dataset with controllable difficulty for the dynamic evaluation of multimodal large language models.

5.2 HUMAN STUDY

In addition to ensuring the diversity of dynamically generated data with controllable difficulty, it is also essential to guarantee their quality. We sampled 150 dynamically generated evaluation VQA instances from the OK-VQA dataset for human evaluation. We assessed the dynamic generation process of VQA questions from three perspectives: (1) whether the newly generated VQA sample is itself reasonable as a VQA problem (VQA_Reasonable); (2) whether each triplet in the corresponding set of key knowledge triples K is correct (Triplets_Correct); and (3) whether the generated VQA question is consistent with its corresponding key knowledge triplets (VQA_Triplets_Alignment). The evaluation results are presented in the Table 3. Prompt can be seen in Appendix A. The human evaluation results demonstrate that our dynamic evaluation framework, KBE-DME, can generate high-quality VQA data with correct and well-aligned key triplets. This further validates the accuracy of our framework and the reliability of the generated VQA data.

	VQA S_0	VQA S_1	VQA S_2	VQA S_3
I_0		I_0 	I_0 	I_0
Q_0	What kind of birds are those?	Q_1 What taxonomic order do the red and black birds in this image belong to?	Q_2 What is the typical habitat for the birds depicted in this image?	Q_3 What is the primary vegetation found in the typical habitat of the birds shown in this image?
A_0	woodpecker	A_1 piciformes	A_2 forests	A_3 trees
K_0	<p>V1: (IMAGE, depict, BIRDS) V3: (BIRDS, have color, red and black) T1: (WOODPECKER, type of, BIRD)</p>	<p>K_1 V1: (IMAGE, depict, BIRDS) V3: (BIRDS, have color, red and black) T1: (WOODPECKER, type of, BIRD) T5: (WOODPECKER, Taxonomic order, PICIFORMES)</p>	<p>K_2 V1: (IMAGE, depict, BIRDS) V3: (BIRDS, have color, red and black) T1: (WOODPECKER, type of, BIRD) T5: (WOODPECKER, Taxonomic order, PICIFORMES) T6: (PICIFORMES, typical habitat, FORESTS)</p>	<p>K_3 V1: (IMAGE, depict, BIRDS) V3: (BIRDS, have color, red and black) T1: (WOODPECKER, type of, BIRD) T5: (WOODPECKER, Taxonomic order, PICIFORMES) T6: (PICIFORMES, typical habitat, FORESTS) T7: (FORESTS, primary vegetation, TREES)</p>

Figure 3: An example from our data construction process on OK-VQA. S_0 denotes the original VQA sample, where I_0 , Q_0 , and A_0 represent the corresponding image, question, and answer, and K_0 is the associated set of key knowledge triples. For the generated data S_i at different hop levels i , we keep the input image unchanged while reconstructing the corresponding questions and answers by altering the composition of the key knowledge triples.

5.3 CASE STUDY

We present an example of the data construction process from OK-VQA, as illustrated in the Figure 3. Our KBE-DME first analyzes the original VQA problem and identifies the key knowledge triples. After the filtering process and the possible Re-Selection step (as illustrated in the Figure 2), KBE-DME searches for textual knowledge triples whose subjects correspond to the original answer (such as T5: (WOODPECKER, Taxonomic order, PICIFORMES)). Following an additional filtering step, a selected triple is incorporated into the original key knowledge set, and based on this updated set of key triples, KBE-DME generates a new VQA question as "What taxonomic order do the red and black birds in this image belong to?". By repeating this process, we can iteratively expand and generate new VQA question–answer pairs corresponding to different sets of key knowledge triples, indicating the effectiveness of our proposed framework.

6 CONCLUSION

In this paper, we first introduce a graph-based representation to model VQA data and the dynamic evaluation process. We then propose KBE-DME, a dynamic multimodal evaluation framework. Building upon two static VQA benchmarks, OK-VQA and A-OKVQA, we dynamically construct VQA test samples with varied difficulty levels and conduct comprehensive analyses of the diversity and quality of our dynamically constructed data. We further evaluate five different open- and closed-source multimodal large language models under these dynamically generated test data. Experimental results show that KBE-DME can dynamically generate high-quality test data with controllable difficulty, while the evaluation results reveal consistent performance degradation of all tested models on harder data. Overall, KBE-DME provides a generalizable framework that can be applied to diverse multimodal benchmarks, effectively alleviates the risk of data saturation and contamination inherent in traditional static evaluation.

486 ETHICS STATEMENT
487488 We adhere to the ICLR Code of Ethics. Our released dataset sources data from open-source datasets
489 as indicated, following their license and copyright restrictions. Our released dataset containing
490 synthetic data is for research only and does not aim at conveying any information about real-life.
491492 REPRODUCIBILITY STATEMENT
493494 We submit our dataset through supplementary material. We have disclosed the models and prompts
495 used for data generation in Section 3 and 4. We have clearly cited and listed the checkpoints of the
496 MLLMs used for evaluation in 4.
497498 REFERENCES
499500 Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf, 2024.504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
506 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
507 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
508 URL <https://arxiv.org/abs/2502.13923>.509 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
510 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
511 language models?, 2024. URL <https://arxiv.org/abs/2403.20330>.513 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
514 C. Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server, 2015. URL
515 <https://arxiv.org/abs/1504.00325>.516 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
517 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
518 Gaffney, Asaf Aharoni, Nathan Lintz, et al. Gemini 2.5: Pushing the frontier with advanced
519 reasoning, multimodality, long context, and next generation agentic capabilities, 2025. URL
520 <https://arxiv.org/abs/2507.06261>.522 Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
523 benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei Ku,
524 Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
525 for Computational Linguistics (Volume 1: Long Papers)*, pp. 4092–4114, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
526 225. URL <https://aclanthology.org/2024.acl-long.225/>.528 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiaowu
529 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
530 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.532 Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. Vqa-lol: Visual question an-
533 swering under the lens of logic. In *Computer Vision – ECCV 2020: 16th European Conference,
534 Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI*, pp. 379–396, Berlin, Heidelberg,
535 2020. Springer-Verlag. ISBN 978-3-030-58588-4. doi: 10.1007/978-3-030-58589-1_23. URL
536 https://doi.org/10.1007/978-3-030-58589-1_23.538 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
539 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.

540 Han Jiang, Xiaoyuan Yi, Zhihua Wei, Ziang Xiao, Shu Wang, and Xing Xie. Raising the bar:
 541 Investigating the values of large language models via generative evolving testing. In *Forty-second*
 542 *International Conference on Machine Learning*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=0REM9ydeLZ)
 543 [forum?id=0REM9ydeLZ](https://openreview.net/forum?id=0REM9ydeLZ).

544 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 545 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024.
 546 URL <https://arxiv.org/abs/2408.03326>.

548 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 549 marking multimodal llms with generative comprehension, 2023. URL [https://arxiv.org/](https://arxiv.org/abs/2307.16125)
 550 [abs/2307.16125](https://arxiv.org/abs/2307.16125).

552 Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinran Zheng, Hui Wang,
 553 Hai-Tao Zheng, Fei Huang, Jingren Zhou, and Philip S. Yu. Benchmarking multimodal re-
 554 trieval augmented generation with dynamic VQA dataset and self-adaptive planning agent. In
 555 *The Thirteenth International Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=VvDEuyVXkG)
 556 [forum?id=VvDEuyVXkG](https://openreview.net/forum?id=VvDEuyVXkG).

557 Ming Liu and Wensheng Zhang. Reasoning multimodal large language model: Data contamination
 558 and dynamic evaluation, 2025. URL <https://arxiv.org/abs/2506.07202>.

559

560 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 561 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
 562 model an all-around player?, 2024. URL <https://arxiv.org/abs/2307.06281>.

563 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 564 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf*
 565 *conference on computer vision and pattern recognition*, pp. 3195–3204, 2019.

566

567 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
 568 mark for question answering about charts with visual and logical reasoning. In Smaranda Mure-
 569 san, Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the Association for Computational*
 570 *Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May 2022. Association for Compu-
 571 *tational Linguistics*. doi: 10.18653/v1/2022.findings-acl.177. URL <https://aclanthology.org/2022.findings-acl.177>.

572

573 Minesh Mathew, Viraj Bagal, Rubén Pérez Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V
 574 Jawahar. Infographicvqa, 2021a. URL <https://arxiv.org/abs/2104.12756>.

575

576 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for vqa on document
 577 images, 2021b. URL <https://arxiv.org/abs/2007.00398>.

578

579 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, et al.
 580 Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

581

582 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mot-
 583 taghi. A-okvqa: A benchmark for visual question answering using world knowledge, 2022. URL
 584 <https://arxiv.org/abs/2206.01718>.

585

586 Meet Shah, Xinlei Chen, Marcus Rohrbach, and Devi Parikh. Cycle-consistency for robust visual
 587 question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 588 *Recognition*, pp. 6649–6658, 2019.

589

590 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 591 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 592 *Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.

593

594 Dingjie Song, Sicheng Lai, Mingxuan Wang, Shunian Chen, Lichao Sun, and Benyou Wang. Both
 595 text and images leaked! a systematic analysis of data contamination in multimodal llm, 2025.
 596 URL <https://arxiv.org/abs/2411.03823>.

594 Yue Yang, Shuibai Zhang, Wenqi Shao, Kaipeng Zhang, Yi Bin, Yu Wang, and Ping Luo. Dynamic
 595 multimodal evaluation with flexible complexity by vision-language bootstrapping, 2025. URL
 596 <https://arxiv.org/abs/2410.08695>.

597 Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
 598 Dynamic evaluation of large language models for reasoning tasks, 2024a. URL <https://arxiv.org/abs/2309.17167>.

599 600 Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic evaluation of large
 601 language models by meta probing agents, 2024b. URL <https://arxiv.org/abs/2402.14865>.

604

605 A PROMPT

606

607 The prompts are presented as follows:

608

609

610 Graph Extraction Prompt

611 You are a helpful assistant. You need to analyze the visual information subgraph and textual
 612 information subgraph implied in the input information of a VQA instance, which includes
 613 an image, a question, and an answer. Please output and number the visual and textual knowl-
 614 edge subgraphs in the form of knowledge triples. Then please generate the corresponding
 615 answer rationale in the form of knowledge triples, including only the necessary knowledge
 616 triples.

617 Here is an example of output visual and textual knowledge subgraphs.

618 Visual Information Subgraph:

619 V1.(Image, contains, motorcycle)
 620 V2.(motorcycle, has color, black)
 621 V3.(motorcycle, has component, engine)
 622 V4.(motorcycle, has feature, two wheels)
 623 V5.(motorcycle, is on, road or track)

Textual Information Subgraph:

624 T1.(motorcycle, can be used for, race)
 625 T2.(sport, has type, race)
 626 T3.(race, requires, high speed vehicle)
 627 T4.(high speed vehicle, includes, motorcycle)

628 Multimodal Answer Rationale:

629 V1.(Image, contains, motorcycle)
 630 T1.(motorcycle, can be used for, race)
 631 T2.(sport, has type, race)

632 Now, please generate the visual and textual information subgraphs for a VQA example.

633 Here is the VQA instance:

634 Image: The given image

635 Question: {Question content}

636 Answer: {Model response}

637 Please generate: the visual knowledge subgraph implied in the image
 638 and the textual knowledge subgraph implied in the question and answer.

639 Visual Information Subgraph:

640 Textual Information Subgraph:

Multimodal Answer Rationale:

641
 642 Figure 4: Graph extraction prompt.

643

644 B USE OF LLMs

645

646 LLMs are employed to facilitate our writing process, which involves refining prose and rectifying
 647 grammatical and lexical errors. Additionally, LLMs are utilized for identifying pertinent related

648
649

Key Triplets Extraction Prompt

650
651
652
653
654
655
656

You are a helpful assistant. You will be given a (VQA) Visual Question Answering instance that includes an input image, a question, and its corresponding answer, as well as a set of corresponding visual and textual information in the form of triplets. The triplets in the visual information contain only visual information implied in the image, excluding any textual background knowledge. The triplets in the textual information include only relevant textual background knowledge. Please select the necessary key information triplets that are required to answer this VQA question. Below are some examples:

=====Example1=====

VQA Question: The man wearing a hat what is the name of that hat?

VQA Answer: cowboy hat

Visual Information triplets:

V1: (IMAGE, depict, MAN)

V2: (MAN, wear, HAT)

V3: (HAT, have type, COWBOY HAT)

V4: (MAN, ride, HORSE)

V5: (HORSE, is on, PATH)

V6: (PATH, is in, MOUNTAINOUS AREA)

V7: (IMAGE, contain, BACKPACK)

V8: (BACKPACK, have color, red)

Textual Information triplets:

T1: (COWBOY HAT, is a type of, HAT)

T2: (COWBOY HAT, typically worn by, COWBOYS)

T3: (COWBOY, commonly associated with, HORSE RIDING)

T4: (COWBOY HAT, used for, SUN PROTECTION)

Key information triplets to answer the question:

V1: (IMAGE, depict, MAN)

V2: (MAN, wear, HAT)

V3: (HAT, have type, COWBOY HAT)

=====Example2=====

VQA Question: How many teeth does this animal use to have?

VQA Answer: 26

Visual Information triplets:

V1: (IMAGE, depict, CAT)

V2: (CAT, have color, beige)

V3: (CAT, is on, WINDOWSILL)

V4: (WINDOWSILL, is part of, WINDOW)

V5: (CAT, is in state, RELAXED)

Textual Information triplets:

T1: (ANIMAL, typically have, TEETH)

T2: (CAT, category of, ANIMAL)

T3: (CAT, usually have, 26 TEETH)

Key information triplets to answer the question:

V1: (IMAGE, depict, CAT)

T3: (CAT, usually have, 26 TEETH)

Now, please select the Key information triplets given the image, question and answer of a VQA example with its corresponding Visual and Textual Information triplets.

=====VQA Input=====

Image: The given image

VQA Question: {VQA_Q}

VQA Answer: {VQA_A}

Visual Information triplets:

{Visual_Information_triplets_str}

Textual Information triplets:

{Textual_Information_triplets_str}

Key information triplets to answer the question:

700
701

Figure 5: Key triplets extraction prompt.

702
703
704
705706 Knowledge Generation Prompt
707

708 You are a helpful assistant. You will receive a VQA example. Please generate some knowl-
 709 edge triplets related to the answer. You should understand the meaning of the answer by
 710 combining the image and the question in the VQA, and then generate answer-related knowl-
 711 edge triplets. The newly generated knowledge triplets should not conflict with the informa-
 712 tion in the original VQA example. A triplet can be represented as (s, r, o), where s is the
 713 subject (an object), r is the corresponding relation, and o is either an attribute of the object
 714 or another object. Use uppercase for objects and lowercase for attributes. Here, s is the
 715 relation subject, r is the related relation, and o is the result of the relation corresponding to
 716 s. Generated knowledge triplets (s, r, o) should follow the following requirements:

- 717 1. The subject (s) must always be the answer itself.
- 718 2. The relation (r) must be specific and unique. Do not use vague terms like is a or
 719 has; instead, refine them into clear categories or attributes, such as taxonomic_class, pri-
 720 mary_covering, foot_type.
- 721 3. Please ensure that within a triplet (s, r, o), the object (o) is unique given the specified
 722 subject (s) and relation (r). In a triplet (s, r, o), the o must be an object, not an attribute.
- 723 4. The output format must strictly be one triplet per line: (s, r, o).

724 Below are some examples:

725 =====Example1=====

726 VQA_Question: What country does this appear to be?

727 VQA_Answer: scotland

728 Answer Related Knowledge Triples:

729 (SCOTLAND, geographic_location, united_kingdom)
 730 (SCOTLAND, primary_landscape, highlands)
 731 (SCOTLAND, common_tree_type, deciduous)

732 =====Example2=====

733 VQA_Question: What animal is this boat mimicing?

734 VQA_Answer: duck

735 Answer Related Knowledge Triples:

736 (DUCK, taxonomic_class, AVES)
 737 (DUCK, taxonomic_order, ANSERIFORMES)
 738 (DUCK, taxonomic_family, ANATIDAE)
 739 (DUCK, common_category, WATERFOWL)
 740 (DUCK, typical_habitat, WATER)
 741 (DUCK, primary_covering, FEATHERS)
 742 (DUCK, mouth_structure, BEAK)
 743 (DUCK, foot_type, WEBBED_FEET)
 744 (DUCK, typical_sound, QUACK)
 745 (DUCK, diet_type, OMNIVORE)

746 Below is the VQA sample for generating extended knowledge:

747 Image: The given image

748 VQA_Question: {VQA_Q}

749 VQA_Answer: {VQA_A}

750 After generating the relevant (s, r, o) triplets, check each triplet individually and generate all
 751 possible o values for the given s and r. If a tuple (s, r, o) contains multiple outputs for the
 752 same s and r, delete that tuple. If o is an attribute rather than an object, also delete that tuple.

753 Answer Related Knowledge Triples:

754
755

756 Figure 6: Knowledge generation prompt.

756
757
758
759
760
761
762
763

764 Representative Filter Prompt

765
766 Here are some triplets related to a VQA example. Each triplet is composed of (s, r, o). I
767 will provide you with the corresponding VQA example, and based on the VQA context, you
768 need to determine whether the given o is representative for the specified s and r.
769 If it is representative, please output Yes.
770 If the relation is too broad or ambiguous to determine a unique representative, simply output
771 No.
772 Please output only the triplet numbers and their corresponding results: Yes or No.
773 You must evaluate every triplet and output the corresponding result in order.
774 Here are some examples:
775 =====Example1=====
776 VQA_Question: What type of platform should this vehicle be on?
777 VQA_Answer: track
778 Related Triplets:
779 1.(TRACK, primary_use, TRANSPORTATION)
780 2.(TRACK, common_association, TRAINS)
781 3.(TRACK, typical_material, STEEL)
782 Representative Judgment:
783 1.No
784 2.Yes
785 3.Yes
786 =====Example2=====
787 VQA_Question: Name the material used to make this car seat shown in this picture?
788 VQA_Answer: cloth
789 Related Triplets:
790 1.(CLOTH, typical_use, UPHOLSTERY)
791 2.(CLOTH, material_origin, TEXTILE)
792 3.(CLOTH, common_source, PLANT_FIBERS)
793 Representative Judgment:
794 1.Yes
795 2.No
796 3.Yes
797 The following are examples to be judged:
798 Image: The given image.
799 VQA_Question: {VQA_Q}
800 VQA_Answer: {VQA_A}
801 Related Triplets: {Related_Triplets}
802 Representative Judgment:

Figure 7: Representative filter prompt.

803
804
805
806
807
808
809

810
811

Question Generation Prompt

812
813
814
815
816
817
818
819
820
821
822
823
824
825

Please generate a new VQA question based on an original VQA question and the related information triplets. A triplet can be represented as (s, r, o), where s is the subject (an object), r is the corresponding relation, and o is either an attribute of the object or another object. Use uppercase for objects and lowercase for attributes. We will provide you with the triplets necessary for forming the new question. These triplets consist of those used to answer the original VQA question as well as additional newly introduced triplets. We will also specify the answer for the new question along with the corresponding answer information triplet. You should combine the given original question and all the knowledge triplets to generate the new VQA question. The new VQA question must ensure that its answer is the specified one and that it is related to the provided answer triplet. The new question must not contain the original question's answer, and it should require the use of all provided knowledge triplets in order to be answered. Apart from the information in the newly added triplets, the new question must not include more information than the original question. Below are some examples:

=====Example=====:

Original VQA Question: What country does this appear to be?

Original VQA Answer: scotland.

Related Information Triplets for Original VQA sample:

visual_triplets_list:

V2: (IMAGE, depict, SHEEP)

V3: (IMAGE, depict, LAND ROVER)

textual_triplets_list:

T1: (SHEEP, commonly found in, SCOTLAND)

T2: (LAND ROVER, associated with, BRITISH COUNTRYSIDE)

T3: (BRITISH COUNTRYSIDE, includes, SCOTLAND)

Related Information triplet for New Answer in Generated VQA sample:

(SCOTLAND, traditional_clothing, KILT)

New Answer in Generated VQA sample: KILT

Generated new VQA Question: What is the traditional clothing of the country shown in this image?

Please generate a new VQA question based on the information provided below, following the given example and requirements. The provided information is as follows:

Original VQA Image: The given image.

Original VQA Question: {Ori_VQA_Q}

Original VQA Answer: {Ori_VQA_A}.

Related Information Triplets for Original VQA sample: {Key_Triples_str}

Related Information triplet for New Answer in Generated VQA sample: {New_VQA_related_Triplets}

New Answer in Generated VQA sample: {New_VQA_Answer}

Generated new VQA Question:

840
841
842
843
844

Figure 8: Question generation prompt.

845
846
847
848
849

Judging Prompt

850
851
852
853

Please analyze whether a given response to a VQA question matches its corresponding answer. If they match, output "Yes"; otherwise, output "No". Only output the judgment result "Yes" or "No". We will provide relevant image information to assist in the judgment.

Image: The given image.

Response: {Response}

Answer: {Answer}

862
863

Figure 9: Judging prompt.

864
 865 Table 4: Main Results of five different MLLMs on original static benchmark(raw) and our generated
 866 dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework with
 867 strict character matching as evaluation method.

868 869 870 Model	871 872 873 874 875 876 OK-VQA				877 878 879 880 881 A-OKVQA			
	Raw	1-hop	2-hop	3-hop	Raw	1-hop	2-hop	3-hop
GPT-4o	47.00	32.77	29.17	23.91	53.27	35.13	25.33	26.31
Gemini-2.5-pro	46.38	30.29	25.57	22.59	53.43	32.84	25.49	24.18
Claude	49.36	32.11	30.91	26.81	49.51	33.44	24.84	24.67
LLaVA-OV	53.19	23.17	19.85	18.14	58.82	25.49	18.30	15.85
Qwen-2.5-VL	41.24	24.41	24.26	21.08	47.06	28.10	21.08	18.63

878
 879 Table 5: Main Results of five different MLLMs on original static benchmark(raw) and our generated
 880 dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework with
 881 Qwen2-VL-72B as Dynamic Generation Model.

882 883 884 Model	885 886 887 888 889 890 OK-VQA			
	Raw	1-hop	2-hop	3-hop
GPT-4o	50.00	29.47	28.16	25.53
Gemini-2.5-pro	45.26	26.58	22.89	23.42
Claude	46.84	30.00	29.47	25.00
LLaVA-OV	52.11	20.00	20.53	18.16
Qwen-2.5-VL	42.89	27.11	23.68	22.37

891
 892 works. All content produced by these models undergoes human verification prior to its inclusion in
 893 the manuscript.

894 C ABLATION STUDY OF EVALUATION METHOD

895
 896 We attempted to directly use strict character matching as an additional evaluation method to analyze
 897 the results, and results are shown in the table below.

898
 899 As shown in Table 4, even after switching to a different evaluation method, the conclusions in
 900 the table remain consistent with conclusions in our paper. 1.In most cases, the difficulty control
 901 behaves as expected, and there is indeed a trend of diminishing marginal effects. Under strict string
 902 matching, the evaluation results of the models become slightly lower. Overall, as the number of
 903 expansion hops increases, the difficulty does increase. However, when a model already performs
 904 poorly on the current question, generating an even more difficult question becomes challenging,
 905 which may lead to some fluctuations in accuracy. 2.GPT-4o and Claude continue to perform well,
 906 while LLaVA-OV remains the model with the largest accuracy fluctuations.

907 D ABLATION STUDY OF DYNAMIC GENERATION MODEL

908
 909 We apply the open-source model Qwen2-VL-72B instead of GPT to generate questions and con-
 910 ducted the corresponding experiments on the subset of OK-VQA. We obtain 380 samples after the
 911 filter process. We evaluated whether the model’s responses were correct using string matching. The
 912 results are shown in the Table 5 below.

913
 914 As shown, when using Qwen2-VL-72B to dynamically generate questions, the majority of the results
 915 still satisfy the requirements of difficulty control and dynamic generation. Using stricter matching
 916 criteria leads to a certain drop in accuracy. When a question is already very challenging for a model,

918
 919 Table 6: Comparisons of current dynamic evaluation methods, NPHardEval(Fan et al., 2024), Dy-
 920 Val(Zhu et al., 2024a), MPA(Zhu et al., 2024b) and VLB(Yang et al., 2025).^{*} means that although the
 921 DyVal paper includes a preliminary study on sentiment classification, their framework still cannot
 922 be directly applied to broad non-reasoning generation tasks. Dyn-VQA(Li et al., 2025) is different
 923 from all these methods, we will discuss it separately.

Methods	Multimodal	Task Generalize	Not Adversarial Methods	External Knowledge	Difficulty Control
NPHardEval	✗	✗	✓	✗	Algorithm-depended
DyVal	✗	✗ [*]	✓	✗	Fine-grained
MPA	✗	✓	✗	✓	Coarse-grained
VLB	✓	✓	✗	✗	Coarse-grained
KBE-DME	✓	✓	✓	✓	Fine-grained

932
 933 it may be difficult to generate an even harder one. This could cause slight fluctuations, but overall
 934 the difficulty control remains consistent. The conclusions in the table are aligned with those in the
 935 paper: the difficulty control is generally effective, GPT-4o and Claude still perform the best, and
 936 LLaVA-OV continues to exhibit the largest variation in accuracy. As for the issue of model-internal
 937 biases: For the data generated in our current framework, bias does not affect the conclusion. Whether
 938 using data generated by GPT or by Qwen2-VL-72B, GPT and Claude consistently perform the best,
 939 while LLaVA-OV exhibits the most dramatic fluctuations. In fact, even within the Qwen-VL family,
 940 Qwen-2.5-VL doesn't achieve much better performance on data generated by Qwen2-VL-72B than
 941 by GPT. This suggests that, within our framework, the model's accuracy in answering questions
 942 remains the primary determinant, and using different models for data generation does not affect the
 943 overall conclusions.

944 In addition, we manually evaluated 50 sampled cases when applying Qwen2-VL-72B to extract
 945 triplets, achieving an accuracy of 86%, which demonstrates a good level of triplet correctness when
 946 applying an open-sourced MLLMs to extract.

948 E COMPARISON WITH PREVIOUS WORK

950 From the Table 6, we can observe that among the listed related works, only VLB and our proposed
 951 KBE-DME target multimodal tasks, and both exhibit a certain level of task generalization. However,
 952 the main methods designed in VLB are adversarial approaches applied to the original problems, and
 953 it requires the generated new questions to share the same answers as the original ones. VLB does not
 954 incorporate external knowledge to update the questions, nor can it distinguish fine-grained difficulty
 955 differences between different types of operations at the same difficulty level(Such as Adding New
 956 Objects (Hard) + Word Substitution (Hard) versus Expanding Original Images (Hard) + Sentence
 957 Rephrasing (Hard)). Consequently, its difficulty control remains coarse-grained.

958 The problem construction and difficulty control in NPHardEval depend heavily on specific algorithmic
 959 configurations and thus cannot be generalized to other tasks. DyVal is also primarily designed
 960 for reasoning tasks. Although the authors attempted to apply it to a sentiment classification task, it
 961 still cannot be directly used for broader non-reasoning generative tasks. MPA, despite adopting an
 962 agent-based approach and partially using domain knowledge when adding an incorrect answer, still
 963 relies on adversarial methods for updating questions, and the key subgraphs corresponding to the
 964 new questions remain unchanged.

965 Dyn-VQA is more special and different from all these methods. Our KBE-DME differs from Dyn-
 966 VQA in the following two main aspects:

967 (1)KBE-DME is a dynamic evaluation framework that can generate dynamic data for any static
 968 VQA dataset, rather than being a proposed dataset itself. In contrast, Dyn-VQA is a benchmark
 969 consists of 1,452 questions. The two differ in nature and in their intended application scenarios.
 970 KBE-DME, however, primarily modifies the original VQA questions. We don't require models to
 971 retrieve corresponding knowledge to answer such VQAs. We only use external knowledge to help
 972 construct new questions.

972
 973 Table 7: Average words number of output of five different MLLMs on original static bench-
 974 mark(raw) and our generated dynamic benchmark with exploration of different(1-3) hops through
 975 our KBE-DME framework.

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Model	999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 OK-VQA				1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 A-OKVQA			
Raw	1-hop	2-hop	3-hop	Raw	1-hop	2-hop	3-hop	
GPT-4o	4.14	4.15	4.52	4.62	3.76	3.62	4.32	4.73
Gemini-2.5-pro	3.26	2.70	2.63	2.79	2.65	2.63	2.83	2.77
Claude	8.78	9.00	9.06	9.15	8.98	9.20	9.23	9.12
LLaVA-OV	1.22	1.24	1.23	1.23	1.20	1.20	1.83	1.25
Qwen-2.5-VL	6.99	7.26	7.16	7.14	7.41	7.26	7.19	7.35

(2)The definition of dynamicity in KBE-DME and Dyn-VQA is defined differently, and their approaches to difficulty control also differ. The Dyn-VQA dataset is constructed by human annotators, whereas KBE-DME enables dynamic evaluation on any static VQA dataset. The notion of dynamic in Dyn-VQA mainly reflects the dynamic retrieval of mRAG methods and the fact which may change over time. This form of dynamic is different from KBE-DME. KBE-DME does not focus on such time-sensitive dynamics. As illustrated in Figures 1, 2, and 3 of the paper, as well as the context example in the prompt of Figure 4, KBE-DME focuses on the sample itself. Its dynamicity lies in the dynamic transformation of the original question, aiming to address the issues of data contamination and data saturation in static evaluation. What’s more, because Dyn-VQA’s answers depend on real-world temporal changes, maintaining the correctness of the dataset requires continuous human effort. Finally, Dyn-VQA defines difficulty levels based on the rate of knowledge change, which is unsuitable for VQA questions whose underlying knowledge remains stable over long periods.

F ANALYSIS OF OUTPUT OF MODELS

We calculated the average number of generated words for different models across different questions, and the results are shown in the Table7. Although in some cases the average output length of the model does increase with task difficulty, it is not rigorous to analyze the model’s effort in answering questions solely based on its average output length. There are two main reasons for this: (1) The answer lengths of different VQA questions are inconsistent, which leads to variability in the model’s output length. For different dynamically generated questions, the number of words required in their corresponding answers may naturally vary. (2) The different models differ in settings and output style, which also leads to inconsistencies in output length. For example, the open-source LLaVA-OV model has not do RL training for reasoning capabilities, so it often outputs only the final answer without providing intermediate reasoning. In contrast, models such as Claude not only generate a certain amount of reasoning chains but also tend to follow specific output formats.

The two points above imply that it is not rigorous to assess the amount of effort a model spends on answering questions, whether by comparing the average output lengths of different models on questions of the same difficulty, or by comparing a single model’s output lengths across questions of different difficulty levels. It is inherently difficult to measure a model’s “effort” in answering questions. To address this, we are conducting a human evaluation experiment on a subset of OK-VQA to directly assess the difficulty of dynamic generated VQAs.

G HUMAN STUDY OF DIFFICULTY CONTROL

We randomly sampled 150 VQA questions from the Dynamic VQAs from OK-VQA dataset for human difficulty annotation. The results show that the agreement between human annotators and our difficulty control is 84.15%, while the inter-annotator agreement is 64.06% (measured using the Pearson correlation coefficient). The annotation prompt is shown in the Figure 10.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

1045
1046

Difficulty Human Study Prompt

1047
1048
1049

We will provide two Visual Question Answering instances. Please evaluate which of the two VQA questions is more difficult. If the first VQA question is more difficult than the second, output 1; otherwise, output 2.

1050

=====VQA1=====

1051

Image: The given image.

1052

Question: {Question1}

1053

Answer: {Answer1}.

1054

=====VQA2=====

1055

Image: The given image.

1056

Question: {Question2}

1057

Answer: {Answer2}.

1058

Evaluation Output:

1059

1060
1061

Figure 10: Difficulty Human Study Prompt.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079