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ABSTRACT

The rapid progress of multimodal large language models (MLLMs) calls for more
reliable evaluation protocols. Existing static benchmarks suffer from the potential
risk of data contamination and saturation, leading to inflated or misleading per-
formance evaluations. To address these issues, we first apply Graph formulation
to represent a static or dynamic VQA sample. With the formulation, we propose
Knowledge-enhanced Benchmark Evolution(KBE), a dynamic multimodal evalu-
ation framework. KBE first analyzes the original static benchmark, then expands
it by integrating multimodal knowledge, transforming the static benchmark into
a controllable, dynamic evolving version. Crucially, KBE can both reconstruct
questions by Re-selecting visual information in the original image and expand ex-
isting questions with external textual knowledge. It enables difficulty-controllable
evaluation by adjusting the degree of question exploration. Extensive experiments
demonstrate that KBE alleviates the risk of data contamination, data saturation,
and provides a more comprehensive assessment of MLLM capabilities.

1 INTRODUCTION

Multimodal large language models(MLLMs) have been developing rapidly in recent years, demon-
strating remarkable performance across a wide range of tasks(Li et al., 2024; Bai et al., 2025).
This rapid progress has motivated the creation of an increasing number of multimodal benchmarks
designed to evaluate their capabilities. Several traditional static benchmarks(Marino et al., 2019;
Schwenk et al., 2022) have been carefully curated with comprehensive testing coverage and rigor-
ous construction processes. These benchmarks provide evidence of how current multimodal models
perform across diverse multimodal tasks, and are crucial in understanding the strengths and weak-
nesses of MLLMs.

However, current evaluation practices also suffer from several implicit limitations. A primary con-
cern lies in the risk of data contamination(Song et al., 2025). Most of the aforementioned open-
source benchmarks release their test samples and labels to facilitate reproducibility of comparison
across different multimodal large models. While this openness ensures transparency, it also in-
creases the risk that open-sourced test data may be inadvertently leaked into training corpora of
existing MLLMs. The wide availability of benchmark test sets means that portions of these datasets
can be unintentionally included during large-scale pretraining. As a result, the reliability of static
open-source benchmarks gradually diminishes over time, since their effectiveness as unbiased eval-
uators is compromised by potential overlap with training data. Another issue lies in data saturation.
As multimodal large language models continue to develop rapidly, their performance on many es-
tablished benchmarks keeps improving. However, the difficulty static benchmarks remains fixed and
cannot evolve along with the increasing capabilities of newer MLLMs. As a result, certain models
have already achieved high scores on some widely used datasets OK-VQA(Marino et al., 2019),
raising concerns about the diminishing discriminative power of such benchmarks. In this scenario,
benchmarks that were once sufficiently challenging can no longer provide a reliable separation be-
tween state-of-the-art systems, thereby limiting their utility in driving future progress.

To address these concerns, a conventional approach is to constantly design new benchmarks whose
difficulty is suitable for evaluating the current capabilities of MLLMs. Such new constructed bench-
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Figure 1: Figure of the original VQA test sample S0, the perturbed test sample S̃0 generated by
perturbation methods, and the dynamically generated test sample S1 produced by KBE-DME. Here,
GK denotes the key information subgraph extracted from a VQA test sample. As shown, the per-
turbed VQA test sample does not alter the underlying GK of the question.

marks can temporarily control task difficulty and mitigate the risks of data contamination. However,
the validity of these benchmarks inevitably diminishes over time, and the repeated construction of
specialized static datasets requires substantial human effort and is time-consuming. We argue that a
more sustainable solution is to develop frameworks that enables benchmarks to evolve with MLLMs,
enabling dynamic evaluation. Only through such adaptive benchmarks can we overcome the dual
limitations of data contamination and data saturation inherent in the traditional evaluation with static
benchmark.

There are some dynamic evaluation methods(Yang et al., 2025) based on perturbation. However, the
perturbed VQA test sample sometimes does not alter the core of the question as shown in Figure
1. To overcome the challenges of data contamination and data saturation, we introduce KBE-DME:
Dynamic Multimodal Evaluation via Knowledge-Enhanced Benchmark Evolution. Our approach
starts with the multimodal tasks represented in the standard VQA format, and further modeling each
VQA problem using a Graph formulation with mutlimodal knowledge triplets. For every question,
we extract a set of candidate multimodal knowledge triplets and then identify the subset composed of
key triplets that are necessary for answering the question. Based on this representation, KBE-DME
introduces a framework dynamically evolves benchmarks in two different ways: 1.Re-selection of
key triplets from the pool of candidate multimodal knowledge triplets, which indicates the reason-
ing rationale required to answer the question; 2.Exploration with external knowledge triplets, where
new triplets are incorporated into the key triplets set to enrich the knowledge required. By integrat-
ing the modified key triplets with the information of original VQA sample, KBE-DME synthesizes
novel, knowledge-enhanced VQA questions with controllable difficulty. These dynamic questions
can continuously evolve with the progress of multimodal large models through our framework. This
dynamic construction not only mitigates the risks of test set leakage but also ensures that the diffi-
culty of evaluation adapts to the improving capabilities of MLLMs.

Our proposed method, KBE-DME, exhibits strong generalization ability and can be applied to trans-
form different multimodal VQA datasets for dynamic evaluation. We apply KBE-DME on two
widely used benchmarks, OK-VQA(Marino et al., 2019) and A-OKVQA(Schwenk et al., 2022),
and evaluate five representative MLLMs using our dynamic evaluation framework. Through ex-
tensive experiments and analyses of the generated dynamic test data, our results demonstrate that
KBE-DME is capable of dynamically constructing test sets of various difficulty levels based on static
benchmarks. This enables a dynamic and difficulty-controllable evaluation of MLLMs, effectively
overcoming the limitations of traditional static benchmarks.

Our contributions are:
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• We introduce a novel graph formulation to represent a VQA sample, where the multimodal
knowledge is represented as triplets. Within this formulation, the process of dynamic test
data generation for evaluation can be naturally expressed as transformations of triples in
the graph structure.

• We propose KBE-DME, a dynamic evaluation framework which evolves static multimodal
benchmarks via re-selection and exploration strategy, generating difficulty-controllable test
data that co-evolves with the progress of MLLMs.

• We conduct extensive experiments with KBE-DME on two static VQA benchmarks, eval-
uate five representative MLLMs and perform detailed analyses of the dynamically gen-
erated data. The results demonstrate that KBE-DME enables high-quality and difficulty-
controllable dynamic evaluation of MLLMs.

The full data and code will be released upon acceptance.

2 RELATED WORK

2.1 STATIC MULTIMODAL EVALUATION

Static multimodal evaluation has long served as the standard paradigm for assessing the capabili-
ties of multimodal models. Early efforts introduced benchmarks such as MSCOCO Captions(Chen
et al., 2015), VQA-v2(Goyal et al., 2017), OK-VQA(Marino et al., 2019), TextVQA (Singh et al.,
2019), DocVQA (Mathew et al., 2021b), InfoVQA (Mathew et al., 2021a) and A-OKVQA(Schwenk
et al., 2022), which provided fixed datasets and standardized metrics to measure abilities such as vi-
sual understanding, reasoning, and image–text alignment. These static benchmarks played a crucial
role in model developing progress by offering a common ground for model comparison. With the
rapid advancement of multimodal large models (MLLMs) in recent years(Li et al., 2024; Bai et al.,
2025), previous proposed benchmarks are no longer sufficient to meet the need for evaluating in-
creasingly powerful MLLMs. To keep pace with increasingly powerful models, plenty of new static
benchmarks have been proposed, aiming to provide broader coverage and more challenging tasks.
For example, some specific benchmarks such as ChartQA(Masry et al., 2022) focuses on chart un-
derstanding; and others such as MMBench(Liu et al., 2024), MME(Fu et al., 2024), MMStar (Chen
et al., 2024) and SEED-Bench(Li et al., 2023) provide comprehensive multi-dimensional evaluations
like reasoning, OCR, and others.

Despite their success, static multimodal benchmarks remain inherently constrained by fixed diffi-
culty and potential data contamination once released(Yang et al., 2025). Although some studies
have attempted to change their evaluation questions(Shah et al., 2019; Gokhale et al., 2020), these
methods are typically designed for specific datasets and are difficult to serve as a widely applicable
dynamic evaluation strategy for other multimodal static benchmarks. As models continue to evolve,
even carefully curated datasets may gradually lose their discriminative power, highlighting the need
for dynamic and adaptive evaluation paradigms that can co-evolve with model capabilities.

2.2 DYNAMIC EVALUATION

To mitigate the data contamination and data saturation issues, recent studies have explored dynamic
evaluation(Jiang et al., 2025; Yang et al., 2025), where test data are perturbed(Yang et al., 2025)
or regenerated(Jiang et al., 2025) to adapt difficulty and reduce data contamination effects. In the
field of text-only dynamic evaluation, DyVal(Zhu et al., 2024a) dynamically generate test samples
to mitigate data comtamination. NPHardEval(Fan et al., 2024) generate new samples for NP-hard
math problems evaluation. MPA(Zhu et al., 2024b) apply agent to generate new evluation samples.

However, in the multimodal domain, research on dynamic evaluation remains relatively limited.
VLB(Yang et al., 2025) represents one of the first attempts to bootstrap both images and text simul-
taneously by editing objects or backgrounds in images, replacing or rephrasing words in questions,
and adding related or unrelated textual content to perturb the original VQA problems. Liu & Zhang
(2025) proposes a multimodal dynamic evaluation framework to perturb the multimodal task itself
instead of perturbing inputs. While perturbation-based methods indeed modify the test inputs, their
impact is relatively limited compared to regenerating entirely new test data. As a result, the scope of
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Figure 2: Figure of our Graph Formulation and the KBE-DME framework. The upper part of the
figure uses a static VQA sample S0 to exemplify our graph representation of a VQA problem, while
the lower part demonstrates the KBE-DME framework for dynamically constructing VQA test data.

dynamically generated data remains constrained. Moreover, perturbation approaches offer little con-
trol over the difficulty level of the generated data. To achieve both a broader range of dynamically
generated data and finer-grained difficulty control, we propose KBE-DME, a dynamic multimodal
evaluation framework that regenerates new test data instead of merely perturbing existing ones.

3 KBE-DME

3.1 GRAPH FORMULATION

We represent a multimodal VQA problem using a graph formulation, where each problem is ab-
stracted as a structured graph composed of multiple multimodal knowledge triplets.

Knowledge Triplet A unit of knowledge can be represented as a multimodal knowledge triplet
(s, r, o). (s, r, o), where s denotes the subject of the triple, r specifies the relation, and o corresponds
to the object associated with s under relation r.

Graph Definition of Static VQA We treat the s and o in a knowledge triplet as vertices in the
graph, and use the corresponding triplet (s, r, o) as an directed edge connecting s and o. We first
construct visual knowledge triplets M = {(sm, rm, om)} to represent the visual information of
a VQA sample, and then construct textual knowledge triplets T = {(st, rt, ot)} to represent the
worldwide textual background knowledge of the VQA sample. Based on this representation, we
construct a Visual Graph GM =< VM , EM > with visual knowledge triplets, which is:

VM = {s, o | ∃(s, r, o) ∈ M}, EM = {(sm, om, [rm]) | ∃(sm, rm, om) ∈ M} (1)

and a Textual Graph GT =< VT , ET > with textual knowledge triplets, which is:

VT = {s, o | ∃(s, r, o) ∈ T}, ET = {(st, ot, [rt]) | ∃(st, rt, ot) ∈ T} (2)

The formal representation is as follows:
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Note that we formulate the edge set E as a edge (s, o) with property r to handle the relation between
s, o.

The nodes in the visual subgraph GM are composed of the subjects and objects from the visual
knowledge triplets M , and each visual knowledge triplet m corresponds to a directed edge em in
the graph. The textual subgraph GT is constructed in the same manner. A concrete example is
illustrated in Figure 2.

However, answering a VQA question typically does not require utilizing all the multimodal infor-
mation (GM and GT ) contained in the sample. Instead, only a subset of key information(GK) is
necessary to arrive at the correct answer. Based on this observation, we extract the key knowledge
triplets K = {(sk, rk, ok)} ⊆ M ∪ T that are essential for answering the VQA question from the
set of visual knowledge triplets M and textual knowledge triplets T . These triples are then used to
construct a new key multimodal knowledge subgraph GK =< VK , EK >, which is:

VK = {s, o | ∃(s, r, o) ∈ K}, EK = {(sk, ok, [rk]) | ∃(sk, rk, ok) ∈ K} (3)

The role of GK is similar to a graphical representation of the rationale required to answer a VQA
question.

At this stage, we obtain a graph representation for each static VQA problem S0 = {I0, Q0, A0},
S0 denotes the original data of a given test VQA sample, where I0, Q0, and A0 represent the cor-
responding input image, input question, and answer, respectively. The potential multimodal knowl-
edge contained in the problem is modeled as a visual subgraph GM and a textual subgraph GT ,
while the key information required to answer the question is captured by the key subgraph GK .
Consequently, dynamically altering a VQA problem can be naturally formulated as dynamically
modifying its corresponding key subgraph GK .

S0 = {I0, Q0, A0} ∼ {GM , GT , GK} (4)

Graph Representation of Dynamic VQA Intuitively, there are two ways to modify the key sub-
graph GK corresponding to a VQA sample.

(1) Re-Selection: by choosing a different set of key knowledge triples K ′ = {(sk′ , rk′ , ok′)} ⊆
M ∪ T ̸= K from the existing visual subgraph M and textual subgraph T , we can generate a new
key subgraph GK′ =< VK′ , EK′ >. The formal expression is given as follows:

VK′ = {s, o | ∃(s, r, o) ∈ K ′}, EK′ = {(sk′ , ok′ , [rk′ ])|∃(sk′ , rk′ , ok′ ) ∈ K ′} (5)

The new VQA sample S′
0 can be then formulated as:.

S′
0 = {I0, Q′

0, A
′
0} ∼ {GM , GT , GK′} (6)

(2) External Knowledge Exploration: by selecting appropriate knowledge triplets from external
sources, we expand the original set of key triples K into an extended set Kn = {(skn , rkn , okn)}
with new textual triplets set N . Using Kn, we generate a new key subgraph GKn =< VKn , EKn >.
Unlike Re-Selection, Tn is expanded together with the augmentation of the triplets. The formal
expression is as follows:

VKn = {s, o | (s, r, o) ∈ Kn}, EKn = {(skn , okn , [rkn ]) | ∃(skn , rkn , okn) ∈ Kn} (7)

Tn = N ∪ T,Kn = N ∪K. (8)

The new VQA sample Sn can be formulated as shown above.

Sn = {I0, Qn, An} ∼ {GM , GTn
, GKn

} (9)

As the corresponding graph structure is updated, the original VQA problem is transformed into a
new one for evaluation. We view the difficulty of the generated VQA problem based on the number
of edges |EK | in its key subgraph GK .

5
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3.2 KNOWLEDGE ENHANCED BENCHMARK EVOLUTION FRAMEWORK

We represent each VQA sample in the formulation of a graph and model the dynamic evaluation
process accordingly. In the following, we present our concrete design, our Dynamic Evaluation
Framework. Our overall pipeline can be divided into three components: Extract, Exploration, and
express.

Extract We first perform information extraction based on the input image, question, and answer
of the given VQA data, obtaining the corresponding visual knowledge triplets M and textual knowl-
edge triplets T . We then identify the key triplets K that are required to answer the VQA question by
combining the extracted triplets with the original VQA input. To achieve this, we employ the power-
ful and general-purpose multimodal model GPT-4o. Once M , T , and K are obtained, we construct
the graph representations of the VQA sample, namely visual graph GM , textual graph GT , and key
subgraph GK according to Eq (1). We believe that for a reasonable VQA sample, its corresponding
GK should contain at least one edge from GM , i.e, at least one visual triplet. Otherwise, answering
this VQA sample would not require any visual information, which we consider to be unreasonable.
Therefore, we retain only results whose GK includes at least one edge originating from GM .

Explore After obtaining GM , GT , and GK for an original question, we expand the original prob-
lem to generate new VQA questions. Specifically, we adopt two strategies for question expansion
and generation: Triplets Re-Selection and Triplets Exploration.

To ensure the reliability of knowledge during the exploration process, we introduce a filtering step.
We first perform an Answer filtering step, which consists of three components: representativeness
filtering, part-of-speech filtering, and cycle-check filtering. Representativeness filtering is used to
determine whether the corresponding triplet (s,r,o) is representative. Part-of-speech filtering exam-
ines the POS of the candidate Answer. Specifically, we assume that answers with a noun POS are
more suitable for further exploration. Finally, cycle-check filtering ensures that for newly expanded
triplets, the output cannot be identical to any subject in the original key triples, since this would
introduce cycles in GK , leading to unreasonble generated new question.

For a VQA sample S0 from an existing dataset, we assume that representative filtering has already
been considered during its construction, and thus all original questions are regarded as passing this
step. We then apply part-of-speech filtering to the original answer A0, which divides the samples into
two groups: PosT 1, where A0 is a noun, and PosF , where it is not. For data belonging to PosF ,
we perform Re-Selection to construct new VQA questions whose answers are nouns, resulting in a
new set PosT 2. Finally, PosT 1 and PosT 2 together form PosT , the collection of VQA questions
whose answers all satisfy the noun constraint.

The concrete implementation of Re-Selection is as follows. We first identify the image root node
of GM , i.e., the node where v=IMAGE. We then search within GM and GT for paths that include
this image root node. Among these, we define as the valid path set those paths whose terminal node
(i.e., the endpoint of the last edge) is a noun. Finally, we select the longest path from this valid set
to serve as the new key graph GK′ . A concrete example is illustrated in Figure 2.

For the data in PosT , we perform knowledge exploration. Specifically, we first employ GPT to
generate a set of candidate expandable knowledge triplets, where the subject s of each triplet corre-
sponds to the current answer. We then apply our filtering strategies to these Answer-Related Triplets.
Finally, from the filtered triplets that meet the requirements, we randomly select one for knowledge
exploration and incorporate it into the current problem’s key subgraph GK to obtain new key sub-
graph GK1 . Using the KBE-DME framework, we can iteratively repeat this process up to three
times, thereby obtaining key subgraphs with different hop expansions, namely GK2 and GK3

Express We employ GPT to transform the generated key subgraph into a new VQA ques-
tion–answer pair. Taking the first expansion as an example, we provide GPT with the image, ques-
tion, and answer of the current VQA sample S0, along with its corresponding key subgraph GK . We
then specify the knowledge triplet to be expanded and designate the new VQA answer as the output
of this triplet. Finally, GPT is instructed to generate a new input question based on this information,
thereby completing the transformation from the graph representation to a new VQA sample.

6
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Table 1: Main Results of five different MLLMs on original static benchmark(raw) and our generated
dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework.

Model OK-VQA A-OKVQA
Raw 1-hop 2-hop 3-hop Raw 1-hop 2-hop 3-hop

GPT-4o 50.33 47.62 42.07 39.19 60.13 50.82 41.34 36.27
Gemini-2.5-pro 49.94 41.55 36.87 32.92 58.99 46.57 34.48 32.03
Claude 52.26 46.03 41.82 37.60 57.68 48.85 38.73 32.84
LLaVA-OV 53.46 36.53 31.45 29.52 60.78 38.56 30.56 25.33
Qwen-2.5-VL 47.35 42.24 37.68 33.04 57.35 43.95 37.42 30.88

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets We choose OK-VQA(Marino et al., 2019) and A-OKVQA(Schwenk et al., 2022) as the
primary static datasets for our experiments. Specifically, we select the validation splits of these
datasets. The validation sets of OK-VQA and A-OKVQA contain approximately 5k and 1.1k sam-
ples, respectively. From these, we select 2.6k samples from OK-VQA and 0.6k samples from A-
OKVQA as the starting points for the static test sets in our dynamic evaluation.

Evaluated MLLMs Our evaluation covers both closed-source models, including GPT-4o(OpenAI
et al., 2024), Gemini-2.5-pro(Comanici et al., 2025), and Claude(Anthropic, 2024), as well as open-
source models und, namely LLaVA-OV-7B(Li et al., 2024) and Qwen-2.5-VL-7B(Bai et al., 2025).
To ensure fair comparison in answering VQA questions, we restrict the length of the models’ re-
sponses. Considering possible alias cases, we employ GPT-4o to determine whether the response of
the tested model to a VQA question corresponds to the provided answer.

4.2 MAIN RESULTS

We expand each original question up to three hops following the procedure illustrated in Figure 2.
We then evaluate five multimodal large language models on the datasets obtained after expansion of
different hops, with the results presented in the Table 1. To generate three dynamic VQA samples
from one static VQA sample, we need to apply the model approximately 11 times, an average
of 3.67 model calls per newly generated question. Considering that current VQA questions and
answers are relatively short, the cost is significantly lower and the construction efficiency is much
higher compared with manually reconstructing the dataset with different difficulty.

We observe that as the number of expansion hops increases, the performance of all five tested models
declines across both datasets. This indirectly demonstrates that our dynamic evaluation framework
provides reliable control over task difficulty.

In addition, we find that some models exhibit relatively smooth performance degradation across
different expansion hops, such as GPT-4o, Claude, and Qwen-2.5-VL in the dynamic evaluation
based on the OK-VQA dataset. However, for Gemini-2.5-pro and LLaVA-OV, the performance
drop is more pronounced during the first expansion, while the decline becomes more gradual in
subsequent hops. In the dynamic evaluation based on the A-OKVQA dataset, GPT-4o and Claude
again maintain relatively smooth degradation, whereas Qwen-2.5-VL shows a comparatively larger
drop at the first expansion than at later ones.

The marginal effect makes it reasonable that the performance gap between models diminishes as the
test questions become more difficult. However, if a model exhibits a substantial performance drop at
the very first expansion, this may indicate a potential risk of data contamination on the corresponding
dataset.

7
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Table 2: Several statistical metrics of original VQA data and the VQA questions generated with
exploration of different hops. The statistical metrics including the average number of words in the
questions, the average number of words in the answers, the average number of edges |EK | in the key
subgraphs GK , and the number of distinct relations among the triplets in the entire corresponding
dataset.

Attribute OK-VQA A-OKVQA
Raw 1-hop 2-hop 3-hop Raw 1-hop 2-hop 3-hop

Question Words 8.18 15.2 17.5 18.8 8.89 15.7 17.9 19.3
Answer Words 1.19 1.50 1.53 1.53 1.17 1.45 1.54 1.52
|EK | 2.98 4.04 5.04 6.04 3.16 4.23 5.23 6.23
All Relations 2979 4172 5136 6011 1263 1602 1900 2175

Table 3: Human Study of KBE-DME on OK-VQA Benchmark. For the 150 generated VQA sam-
ples, we evaluated: (1) VQA Reasonable: whether the sample is a reasonable VQA problem; (2)
Triplets Correct: whether each key triplet is correct, and (3) VQA Triplets Alignment: whether the
question aligns with the key triplets. We report the average human evaluation scores for these gen-
erated questions, with the values in parentheses indicating inter-annotator agreement.

VQA Reasonable Triplets Correct VQA Triplets Alignment

3-hop Aver 95.0(90.1%) 96.8(93.6%) 97.9(95.7%)

5 QUALITY ANALYSIS

5.1 STATISTICS

To better analyze the differences between our newly generated data and the original VQA data, we
conduct a statistical analysis on both sets of VQA samples. The results are presented in Table 2.
We observe that on both benchmarks, as the number of expansion hops increases, the newly gener-
ated VQA samples tend to have longer questions. This is often due to the fact that answering these
questions requires longer reasoning chains, which in turn makes the questions more complex. We
also find that the number of edges in the key subgraph increases steadily with more hops, and conse-
quently, the number of relation types involved in the visual and textual knowledge triples also grows.
These results demonstrate that the newly generated VQA questions achieve higher distributional di-
versity, greater question complexity, and longer rationales compared to the original or lower-hop
expansions, thereby producing more challenging VQA problems. This suggests that through the
KBE-DME framework, we can evolve a static VQA benchmark into a dynamically changing dataset
with controllable difficulty for the dynamic evaluation of multimodal large language models.

5.2 HUMAN STUDY

In addition to ensuring the diversity of dynamically generated data with controllable difficulty, it is
also essential to guarantee their quality. We sampled 150 dynamically generated evaluation VQA
instances from the OK-VQA dataset for human evaluation. We assessed the dynamic generation
process of VQA questions from three perspectives: (1) whether the newly generated VQA sample is
itself reasonable as a VQA problem (VQA Reasonable); (2) whether each triplet in the correspond-
ing set of key knowledge triples K is correct (Triplet Correct); and (3) whether the generated VQA
question is consistent with its corresponding key knowledge triplets (VQA Triplets Alignment).
The evaluation results are presented in the Table 3. Prompt can be seen in Appendix A. The human
evaluation results demonstrate that our dynamic evaluation framework, KBE-DME, can generate
high-quality VQA data with correct and well-aligned key triplets. This further validates the accu-
racy of our framework and the reliability of the generated VQA data.
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What kind of birds are

those?

woodpecker

𝐼0

𝑄0

𝐴0

VQA 𝑆0

piciformes

𝐼0

𝑄1

𝐴1

VQA 𝑆1

What is the typical habitat

for the birds depicted in 

this image?

forests

𝐼0

𝑄2

𝐴2

VQA 𝑆2

What is the primary 

vegetation found in the 

typical habitat of the birds 

shown in this image?

trees

𝐼0

𝑄3

𝐴3

VQA 𝑆3

𝐾0

What taxonomic order do the 

red and black birds in this 

image belong to?

𝐾1 𝐾2 𝐾3

V1: (IMAGE, depict, 

BIRDS)

V3: (BIRDS, have color, 

red and black)

T1: (WOODPECKER, 

type of, BIRD)

V1: (IMAGE, depict, 

BIRDS)

V3: (BIRDS, have color, 

red and black)

T1: (WOODPECKER, 

type of, BIRD)

T5: (WOODPECKER, 

Taxonomic order, PICIFORMES)

V1: (IMAGE, depict, 

BIRDS)

V3: (BIRDS, have color, 

red and black)

T1: (WOODPECKER, 

type of, BIRD)

T5: (WOODPECKER, 

Taxonomic order, PICIFORMES)

T6: (PICIFORMES, 

typical habitat, FORESTS)

V1: (IMAGE, depict, 

BIRDS)

V3: (BIRDS, have color, 

red and black)

T1: (WOODPECKER, 

type of, BIRD)

T5: (WOODPECKER, 

Taxonomic order, PICIFORMES)

T6: (PICIFORMES, 

typical habitat, FORESTS)

T7: (FORESTS, 

primary vegetation, TREES)

Figure 3: An example from our data construction process on OK-VQA. S0 denotes the original
VQA sample, where I0, Q0, and A0 represent the corresponding image, question, and answer, and
K0 is the associated set of key knowledge triples. For the generated data Si at different hop levels i,
we keep the input image unchanged while reconstructing the corresponding questions and answers
by altering the composition of the key knowledge triples.

5.3 CASE STUDY

We present an example of the data construction process from OK-VQA, as illustrated in the Figure
3. Our KBE-DME first analyzes the original VQA problem and identifies the key knowledge triples.
After the filtering process and the possible Re-Selection step (as illustrated in the Figure2), KBE-
DME searches for textual knowledge triples whose subjects correspond to the original answer (such
as T5: (WOODPECKER, Taxonomic order, PICIFORMES)). Following an additional filtering step,
a selected triple is incorporated into the original key knowledge set, and based on this updated set
of key triples, KBE-DME generates a new VQA question as ”What taxonomic order do the red
and black birds in this image belong to?”. By repeating this process, we can iteratively expand and
generate new VQA question–answer pairs corresponding to different sets of key knowledge triples,
indicating the effectiveness of our proposed framework.

6 CONCLUSION

In this paper, we first introduce a graph-based representation to model VQA data and the dynamic
evaluation process. We then propose KBE-DME, a dynamic multimodal evaluation framework.
Building upon two static VQA benchmarks, OK-VQA and A-OKVQA, we dynamically construct
VQA test samples with varied difficulty levels and conduct comprehensive analyses of the diversity
and quality of our dynamically constructed data. We further evaluate five different open- and closed-
source multimodal large language models under these dynamically generated test data. Experimental
results show that KBE-DME can dynamically generate high-quality test data with controllable diffi-
culty, while the evaluation results reveal consistent performance degradation of all tested models on
harder data. Overall, KBE-DME provides a generalizable framework that can be applied to diverse
multimodal benchmarks, effectively alleviates the risk of data saturation and contamination inherent
in traditional static evaluation.
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A PROMPT

The prompts are presented as follows:

Graph Extraction Prompt

You are a helpful assistant. You need to analyze the visual information subgraph and textual
information subgraph implied in the input information of a VQA instance, which includes
an image, a question, and an answer. Please output and number the visual and textual knowl-
edge subgraphs in the form of knowledge triples. Then please generate the corresponding
answer rationale in the form of knowledge triples, including only the necessary knowledge
triples.
Here is an example of output visual and textual knowledge subgraphs.
Visual Information Subgraph:
V1.(Image, contains, motorcycle)
V2.(motorcycle, has color, black)
V3.(motorcycle, has component, engine)
V4.(motorcycle, has feature, two wheels)
V5.(motorcycle, is on, road or track)
Textual Information Subgraph:
T1.(motorcycle, can be used for, race)
T2.(sport, has type, race)
T3.(race, requires, high speed vehicle)
T4.(high speed vehicle, includes, motorcycle)
Multimodal Answer Rationale:
V1.(Image, contains, motorcycle)
T1.(motorcycle, can be used for, race)
T2.(sport, has type, race)
Now, please generate the visual and textual information subgraphs for a VQA example.
Here is the VQA instance:
Image: The given image
Question: {Question content}
Answer: {Model response}
Please generate: the visual knowledge subgraph implied in the image
and the textual knowledge subgraph implied in the question and answer.
Visual Information Subgraph:
Textual Information Subgraph:
Multimodal Answer Rationale:

Figure 4: Graph extraction prompt.

B USE OF LLMS

LLMs are employed to facilitate our writing process, which involves refining prose and rectifying
grammatical and lexical errors. Additionally, LLMs are utilized for identifying pertinent related
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Key Triplets Extraction Prompt

You are a helpful assistant. You will be given a (VQA) Visual Question Answering instance
that includes an input image, a question, and its corresponding answer, as well as a set of
corresponding visual and textual information in the form of triplets. The triplets in the visual
information contain only visual information implied in the image, excluding any textual
background knowledge. The triplets in the textual information include only relevant textual
background knowledge. Please select the necessary key information triplets that are required
to answer this VQA question. Below are some examples:
======Example1======:
VQA Question: The man wearing a hat what is the name of that hat?
VQA Answer: cowboy hat
Visual Information triplets:
V1: (IMAGE, depict, MAN)
V2: (MAN, wear, HAT)
V3: (HAT, have type, COWBOY HAT)
V4: (MAN, ride, HORSE)
V5: (HORSE, is on, PATH)
V6: (PATH, is in, MOUNTAINOUS AREA)
V7: (IMAGE, contain, BACKPACK)
V8: (BACKPACK, have color, red)
Textual Information triplets:
T1: (COWBOY HAT, is a type of, HAT)
T2: (COWBOY HAT, typically worn by, COWBOYS)
T3: (COWBOY, commonly associated with, HORSE RIDING)
T4: (COWBOY HAT, used for, SUN PROTECTION)
Key information triplets to answer the question:
V1: (IMAGE, depict, MAN)
V2: (MAN, wear, HAT)
V3: (HAT, have type, COWBOY HAT)
======Example2======:
VQA Question: How many teeth does this animal use to have?
VQA Answer: 26
Visual Information triplets:
V1: (IMAGE, depict, CAT)
V2: (CAT, have color, beige)
V3: (CAT, is on, WINDOWSILL)
V4: (WINDOWSILL, is part of, WINDOW)
V5: (CAT, is in state, RELAXED)
Textual Information triplets:
T1: (ANIMAL, typically have, TEETH)
T2: (CAT, category of, ANIMAL)
T3: (CAT, usually have, 26 TEETH)
Key information triplets to answer the question:
V1: (IMAGE, depict, CAT)
T3: (CAT, usually have, 26 TEETH)
Now, please select the Key information triplets given the image, question and answer of a
VQA example with its corresponding Visual and Textual Information triplets.
======VQA Input======
Image: The given image
VQA Question: {VQA Q}
VQA Answer: {VQA A}
Visual Information triplets:
{Visual Information triplets str}
Textual Information triplets:
{Textual Information triplets str}
Key information triplets to answer the question:

Figure 5: Key triplets extraction prompt.
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Knowledge Generation Prompt

You are a helpful assistant. You will receive a VQA example. Please generate some knowl-
edge triplets related to the answer. You should understand the meaning of the answer by
combining the image and the question in the VQA, and then generate answer-related knowl-
edge triplets. The newly generated knowledge triplets should not conflict with the informa-
tion in the original VQA example. A triplet can be represented as (s, r, o), where s is the
subject (an object), r is the corresponding relation, and o is either an attribute of the object
or another object. Use uppercase for objects and lowercase for attributes. Here, s is the
relation subject, r is the related relation, and o is the result of the relation corresponding to
s. Generated knowledge triplets (s, r, o) should follow the following requirements:
1.The subject (s) must always be the answer itself.
2.The relation (r) must be specific and unique. Do not use vague terms like is a or
has; instead, refine them into clear categories or attributes, such as taxonomic class, pri-
mary covering, foot type.
3.Please ensure that within a triplet (s, r, o), the object (o) is unique given the specified
subject (s) and relation (r). In a triplet (s, r, o), the o must be an object, not an attribute.
4.The output format must strictly be one triplet per line: (s, r, o).
Below are some examples:
=========================Example1===========================
VQA Question: What country does this appear to be?
VQA Answer: scotland
Answer Related Knowledge Triples:
(SCOTLAND, geographic location, united kingdom)
(SCOTLAND, primary landscape, highlands)
(SCOTLAND, common tree type, deciduous)
=========================Example2===========================
VQA Question: What animal is this boat mimicing?
VQA Answer: duck
Answer Related Knowledge Triples:
(DUCK, taxonomic class, AVES)
(DUCK, taxonomic order, ANSERIFORMES)
(DUCK, taxonomic family, ANATIDAE)
(DUCK, common category, WATERFOWL)
(DUCK, typical habitat, WATER)
(DUCK, primary covering, FEATHERS)
(DUCK, mouth structure, BEAK)
(DUCK, foot type, WEBBED FEET)
(DUCK, typical sound, QUACK)
(DUCK, diet type, OMNIVORE)
Below is the VQA sample for generating extended knowledge:
Image: The given image
VQA Question: {VQA Q}
VQA Answer: {VQA A}
After generating the relevant (s, r, o) triplets, check each triplet individually and generate all
possible o values for the given s and r. If a tuple (s, r, o) contains multiple outputs for the
same s and r, delete that tuple. If o is an attribute rather than an object, also delete that tuple.
Answer Related Knowledge Triples:

Figure 6: Knowledge generation prompt.
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Representative Filter Prompt

Here are some triplets related to a VQA example. Each triplet is composed of (s, r, o). I
will provide you with the corresponding VQA example, and based on the VQA context, you
need to determine whether the given o is representative for the specified s and r.
If it is representative, please output Yes.
If the relation is too broad or ambiguous to determine a unique representative, simply output
No.
Please output only the triplet numbers and their corresponding results: Yes or No.
You must evaluate every triplet and output the corresponding result in order.
Here are some examples:
==========Example1==========
VQA Question: What type of platform should this vehicle be on?
VQA Answer: track
Related Triplets:
1.(TRACK, primary use, TRANSPORTATION)
2.(TRACK, common association, TRAINS)
3.(TRACK, typical material, STEEL)
Representative Judgment:
1.No
2.Yes
3.Yes
==========Example2==========
VQA Question: Name the material used to make this car seat shown in this picture?
VQA Answer: cloth
Related Triplets:
1.(CLOTH, typical use, UPHOLSTERY)
2.(CLOTH, material origin, TEXTILE)
3.(CLOTH, common source, PLANT FIBERS)
Representative Judgment:
1.Yes
2.No
3.Yes
The following are examples to be judged:
Image: The given image.
VQA Question: {VQA Q}
VQA Answer: {VQA A}
Related Triplets: {Related Triplets}
Representative Judgment:

Figure 7: Representative filter prompt.
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Question Generation Prompt

Please generate a new VQA question based on an original VQA question and the related
information triplets. A triplet can be represented as (s, r, o), where s is the subject (an object),
r is the corresponding relation, and o is either an attribute of the object or another object.
Use uppercase for objects and lowercase for attributes. We will provide you with the triplets
necessary for forming the new question. These triplets consist of those used to answer the
original VQA question as well as additional newly introduced triplets. We will also specify
the answer for the new question along with the corresponding answer information triplet.
You should combine the given original question and all the knowledge triplets to generate the
new VQA question. The new VQA question must ensure that its answer is the specified one
and that it is related to the provided answer triplet. The new question must not contain the
original question’s answer, and it should require the use of all provided knowledge triplets
in order to be answered. Apart from the information in the newly added triplets, the new
question must not include more information than the original question. Below are some
examples:
======Example======:
Original VQA Question: What country does this appear to be?
Original VQA Answer: scotland.
Related Information Triplets for Original VQA sample:
visual triplets list:
V2: (IMAGE, depict, SHEEP)
V3: (IMAGE, depict, LAND ROVER)
textual triplets list:
T1: (SHEEP, commonly found in, SCOTLAND)
T2: (LAND ROVER, associated with, BRITISH COUNTRYSIDE)
T3: (BRITISH COUNTRYSIDE, includes, SCOTLAND)
Related Information triplet for New Answer in Generated VQA sample:
(SCOTLAND, traditional clothing, KILT)
New Answer in Generated VQA sample: KILT
Generated new VQA Question: What is the traditional clothing of the country shown in this
image?
Please generate a new VQA question based on the information provided below, following
the given example and requirements. The provided information is as follows:
Original VQA Image: The given image.
Original VQA Question: {Ori VQA Q}
Original VQA Answer: {Ori VQA A}.
Related Information Triplets for Original VQA sample: {Key Triplets str}
Related Information triplet for New Answer in Generated VQA sample:
{New VQA related Triplets}
New Answer in Generated VQA sample: {New VQA Answer}
Generated new VQA Question:

Figure 8: Question generation prompt.

Judging Prompt

Please analyze whether a given response to a VQA question matches its corresponding an-
swer. If they match, output ”Yes”; otherwise, output ”No”. Only output the judgment result
”Yes” or ”No”. We will provide relevant image information to assist in the judgment.
Image: The given image.
Response: {Response}
Answer: {Answer}

Figure 9: Judging prompt.
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Table 4: Main Results of five different MLLMs on original static benchmark(raw) and our generated
dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework with
strict character matching as evaluation method.

Model OK-VQA A-OKVQA
Raw 1-hop 2-hop 3-hop Raw 1-hop 2-hop 3-hop

GPT-4o 47.00 32.77 29.17 23.91 53.27 35.13 25.33 26.31
Gemini-2.5-pro 46.38 30.29 25.57 22.59 53.43 32.84 25.49 24.18
Claude 49.36 32.11 30.91 26.81 49.51 33.44 24.84 24.67
LLaVA-OV 53.19 23.17 19.85 18.14 58.82 25.49 18.30 15.85
Qwen-2.5-VL 41.24 24.41 24.26 21.08 47.06 28.10 21.08 18.63

Table 5: Main Results of five different MLLMs on original static benchmark(raw) and our generated
dynamic benchmark with exploration of different(1-3) hops through our KBE-DME framework with
Qwen2-VL-72B as Dynamic Generation Model.

Model OK-VQA
Raw 1-hop 2-hop 3-hop

GPT-4o 50.00 29.47 28.16 25.53
Gemini-2.5-pro 45.26 26.58 22.89 23.42
Claude 46.84 30.00 29.47 25.00
LLaVA-OV 52.11 20.00 20.53 18.16
Qwen-2.5-VL 42.89 27.11 23.68 22.37

works. All content produced by these models undergoes human verification prior to its inclusion in
the manuscript.

C ABLATION STUDY OF EVALUATION METHOD

We attempted to directly use strict character matching as an additional evaluation method to analyze
the results, and results are shown in the table below.

As shown in Table 4, even after switching to a different evaluation method, the conclusions in
the table remain consistent with conclusions in our paper. 1.In most cases, the difficulty control
behaves as expected, and there is indeed a trend of diminishing marginal effects. Under strict string
matching, the evaluation results of the models become slightly lower. Overall, as the number of
expansion hops increases, the difficulty does increase. However, when a model already performs
poorly on the current question, generating an even more difficult question becomes challenging,
which may lead to some fluctuations in accuracy. 2.GPT-4o and Claude continue to perform well,
while LLaVA-OV remains the model with the largest accuracy fluctuations.

D ABLATION STUDY OF DYNAMIC GENERATION MODEL

We apply the open-source model Qwen2-VL-72B instead of GPT to generate questions and con-
ducted the corresponding experiments on the subset of OK-VQA. We obtain 380 samples after the
filter process. We evaluated whether the model’s responses were correct using string matching. The
results are shown in the Table 5 below.

As shown, when using Qwen2-VL-72B to dynamically generate questions, the majority of the results
still satisfy the requirements of difficulty control and dynamic generation. Using stricter matching
criteria leads to a certain drop in accuracy. When a question is already very challenging for a model,
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Table 6: Comparisons of current dynamic evaluation methods, NPHardEval(Fan et al., 2024), Dy-
Val(Zhu et al., 2024a), MPA(Zhu et al., 2024b) and VLB(Yang et al., 2025).∗ means that although the
DyVal paper includes a preliminary study on sentiment classification, their framework still cannot
be directly applied to broad non-reasoning generation tasks. Dyn-VQA(Li et al., 2025) is different
from all these methods, we will discuss it separately.

Methods Multimodal Task Not Adversarial External Difficulty
Generalize Methods Knowledge Control

NPHardEval ✗ ✗ ✓ ✗ Algorithm-depended
DyVal ✗ ✗∗ ✓ ✗ Fine-grained
MPA ✗ ✓ ✗ ✓ Coarse-grained
VLB ✓ ✓ ✗ ✗ Coarse-grained

KBE-DME ✓ ✓ ✓ ✓ Fine-grained

it may be difficult to generate an even harder one. This could cause slight fluctuations, but overall
the difficulty control remains consistent. The conclusions in the table are aligned with those in the
paper: the difficulty control is generally effective, GPT-4o and Claude still perform the best, and
LLaVA-OV continues to exhibit the largest variation in accuracy. As for the issue of model-internal
biases: For the data generated in our current framework, bias does not affect the conclusion. Whether
using data generated by GPT or by Qwen2-VL-72B, GPT and Claude consistently perform the best,
while LLaVA-OV exhibits the most dramatic fluctuations. In fact, even within the Qwen-VL family,
Qwen-2.5-VL doesn’t achieve much better performance on data generated by Qwen2-VL-72B than
by GPT. This suggests that, within our framework, the model’s accuracy in answering questions
remains the primary determinant, and using different models for data generation does not affect the
overall conclusions.

In addition, we manually evaluated 50 sampled cases when applying Qwen2-VL-72B to extract
triplets, achieving an accuracy of 86%, which demonstrates a good level of triplet correctness when
applying an open-sourced MLLMs to extract.

E COMPARISON WITH PREVIOUS WORK

From the Table 6, we can observe that among the listed related works, only VLB and our proposed
KBE-DME target multimodal tasks, and both exhibit a certain level of task generalization. However,
the main methods designed in VLB are adversarial approaches applied to the original problems, and
it requires the generated new questions to share the same answers as the original ones. VLB does not
incorporate external knowledge to update the questions, nor can it distinguish fine-grained difficulty
differences between different types of operations at the same difficulty level(Such as Adding New
Objects (Hard) + Word Substitution (Hard) versus Expanding Original Images (Hard) + Sentence
Rephrasing (Hard)). Consequently, its difficulty control remains coarse-grained.

The problem construction and difficulty control in NPHardEval depend heavily on specific algorith-
mic configurations and thus cannot be generalized to other tasks. DyVal is also primarily designed
for reasoning tasks. Although the authors attempted to apply it to a sentiment classification task, it
still cannot be directly used for broader non-reasoning generative tasks. MPA, despite adopting an
agent-based approach and partially using domain knowledge when adding an incorrect answer, still
relies on adversarial methods for updating questions, and the key subgraphs corresponding to the
new questions remain unchanged.

Dyn-VQA is more special and different from all these methods. Our KBE-DME differs from Dyn-
VQA in the following two main aspects:

(1)KBE-DME is a dynamic evaluation framework that can generate dynamic data for any static
VQA dataset, rather than being a proposed dataset itself. In contrast, Dyn-VQA is a benchmark
consists of 1,452 questions. The two differ in nature and in their intended application scenarios.
KBE-DME, however, primarily modifies the original VQA questions. We don’t require models to
retrieve corresponding knowledge to answer such VQAs. We only use external knowledge to help
construct new questions.
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Table 7: Average words number of output of five different MLLMs on original static bench-
mark(raw) and our generated dynamic benchmark with exploration of different(1-3) hops through
our KBE-DME framework.

Model OK-VQA A-OKVQA
Raw 1-hop 2-hop 3-hop Raw 1-hop 2-hop 3-hop

GPT-4o 4.14 4.15 4.52 4.62 3.76 3.62 4.32 4.73
Gemini-2.5-pro 3.26 2.70 2.63 2.79 2.65 2.63 2.83 2.77
Claude 8.78 9.00 9.06 9.15 8.98 9.20 9.23 9.12
LLaVA-OV 1.22 1.24 1.23 1.23 1.20 1.20 1.83 1.25
Qwen-2.5-VL 6.99 7.26 7.16 7.14 7.41 7.26 7.19 7.35

(2)The definition of dynamicity in KBE-DME and Dyn-VQA is defined differently, and their ap-
proaches to difficulty control also differ. The Dyn-VQA dataset is constructed by human annotators,
whereas KBE-DME enables dynamic evaluation on any static VQA dataset. The notion of dynamic
in Dyn-VQA mainly reflects the dynamic retrieval of mRAG methods and the fact which may change
over time. This form of dynamic is different from KBE-DME. KBE-DME does not focus on such
time-sensitive dynamics. As illustrated in Figures 1, 2, and 3 of the paper, as well as the context
example in the prompt of Figure 4, KBE-DME focuses on the sample itself. Its dynamicity lies in
the dynamic transformation of the original question, aiming to address the issues of data contamina-
tion and data saturation in static evaluation. What’s more, because Dyn-VQA’s answers depend on
real-world temporal changes, maintaining the correctness of the dataset requires continuous human
effort. Finally, Dyn-VQA defines difficulty levels based on the rate of knowledge change, which is
unsuitable for VQA questions whose underlying knowledge remains stable over long periods.

F ANALYSIS OF OUTPUT OF MODELS

We calculated the average number of generated words for different models across different ques-
tions, and the results are shown in the Table7. Although in some cases the average output length
of the model does increase with task difficulty, it is not rigorous to analyze the model’s effort in
answering questions solely based on its average output length. There are two main reasons for this:
(1) The answer lengths of different VQA questions are inconsistent, which leads to variability in the
model’s output length. For different dynamically generated questions, the number of words required
in their corresponding answers may naturally vary. (2) The different models differ in settings and
output style, which also leads to inconsistencies in output length. For example, the open-source
LLaVA-OV model has not do RL training for reasoning capabilities, so it often outputs only the
final answer without providing intermediate reasoning. In contrast, models such as Claude not only
generate a certain amount of reasoning chains but also tend to follow specific output formats.

The two points above imply that it is not rigorous to assess the amount of effort a model spends
on answering questions, whether by comparing the average output lengths of different models on
questions of the same difficulty, or by comparing a single model’s output lengths across questions
of different difficulty levels. It is inherently difficult to measure a model’s ”effort” in answering
questions. To address this, we are conducting a human evaluation experiment on a subset of OK-
VQA to directly assess the difficulty of dynamic generated VQAs.

G HUMAN STUDY OF DIFFICULTY CONTROL

We randomly sampled 150 VQA questions from the Dynamic VQAs from OK-VQA dataset for
human difficulty annotation. The results show that the agreement between human annotators and
our difficulty control is 84.15%, while the inter-annotator agreement is 64.06% (measured using the
Pearson correlation coefficient). The annotation prompt is shown in the Figure 10.
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Difficulty Human Study Prompt

We will provide two Visual Question Answering instances. Please evaluate which of the two
VQA questions is more difficult. If the first VQA question is more difficult than the second,
output 1; otherwise, output 2.
=======================VQA1======================
Image: The given image.
Question: {Question1}
Answer: {Answer1}.
=======================VQA2======================
Image: The given image.
Question: {Question2}
Answer: {Answer2}.
Evaluation Output:

Figure 10: Difficulty Human Study Prompt.
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