
Evasive Answers in Financial Q&A: Earnings Calls vs. FOMC Press Conferences

Khaled Al Nuaimi^{1,2}, Gautier Marti¹, Alexis Marchal¹, Mohamad Alansari², Andreas Henschel²

¹Abu Dhabi Investment Authority, UAE

²Khalifa University, UAE

{khaled.alnuaimi, gautier.marti, alexis.marchal}@adia.ae

{100061914, andreas.henschel}@ku.ac.ae

Abstract

1 Question–answer (Q&A) sessions in earnings calls and central bank press conferences
2 provide high-stakes, unscripted insights into firms and the macroeconomy.
3 Executives often respond evasively by avoiding, reframing, or obscuring answers,
4 which limits transparency and biases downstream NLP tasks such as sentiment,
5 risk, and event prediction. We introduce the task of *evasive answer detection* in
6 financial Q&A and propose a three-level taxonomy grounded in pragmatics and
7 psychology. Using annotated transcripts from earnings calls and FOMC press
8 conferences, we show that lightweight features including hedges, verbosity, tense
9 shifts, and semantic alignment capture robust signals of evasiveness. Our base-
10 lines demonstrate that evasiveness is linguistically and semantically distinct from
11 sentiment and veracity, supporting its treatment as a standalone problem. This
12 work establishes a foundation for benchmarks and models that incorporate eva-
13 siveness cues into financial NLP pipelines, market surveillance, and transparency
14 assessment.

15 1 Introduction

16 Transparency, defined as the availability of firm-specific information to external stakeholders [Bush-
17 man et al., 2004], is essential for efficient markets. While much work has examined prepared disclo-
18 sures, less attention has been paid to how executives and policymakers communicate in unscripted
19 interactions such as question–answer (Q&A) segments in earnings calls or Federal Open Market
20 Committee (FOMC) press conferences. These exchanges provide high-stakes, real-time insights,
21 but also create opportunities for strategic communication.

22 Executives and central bankers often respond to difficult questions in ways that obscure, reframe,
23 or avoid direct answers. Such evasiveness limits transparency and can bias downstream financial
24 NLP tasks including sentiment analysis, risk assessment, and event forecasting. Unlike sentiment or
25 veracity, which concern *what* is said, evasiveness concerns whether and how a question is answered,
26 requiring discourse-level analysis of the alignment between questions and answers.

27 We introduce the task of **evasive answer detection** in financial Q&A. Our contributions are three-
28 fold: (i) a psychology- and pragmatics-informed taxonomy of evasive strategies spanning broad,
29 mid-level, and fine-grained categories; (ii) annotated datasets of Q&A from both earnings calls and
30 FOMC press conferences, enabling direct cross-domain analysis; and (iii) baseline models using
31 lightweight, interpretable features—hedge counts, verbosity, tense usage, and semantic alignment—
32 that capture systematic markers of evasiveness distinct from sentiment and factuality. By formal-
33 izing this task, we aim to support benchmarks and models that treat evasiveness as a standalone
34 phenomenon, with applications to analyst tools, transparency assessment, and market surveillance.

35 **2 Related Work**

36 **Sentiment, veracity, and obfuscation.** Most prior work in financial NLP has focused on senti-
37 ment and factuality. Domain-specific lexicons [Loughran and McDonald, 2011] and models such
38 as FinBERT [Yang et al., 2020, Liu et al., 2020] capture tone in earnings calls and filings, while
39 veracity detection emphasizes factual correctness [Leite et al., 2025, Irnawan et al., 2025]. These
40 approaches assess *what* is said, not whether a question was answered. Communication research links
41 evasive language to lower disclosure quality and worse outcomes: vague or overly positive language
42 predicts restatements [Larcker and Zakolyukina, 2012], and about 11% of analyst questions receive
43 “non-answers”, more common under regulatory scrutiny or poor performance [Gow et al., 2021].
44 The management obfuscation hypothesis [Bushman and Smith, 2005, Khalmetski et al., 2017] sim-
45 ilarly argues that executives obscure information strategically when fundamentals are weak.

46 **Evasiveness and strategic communication.** Recent computational work models evasiveness
47 more directly. Chen et al. [2025] measure topic divergence between questions and answers, showing
48 that evasiveness predicts negative market reactions. Their approach treats evasion as a scalar latent
49 signal. In contrast, our work introduces an explicit, psychology-informed taxonomy, annotated
50 datasets from both corporate and policy domains, and baselines grounded in interpretable features.
51 The taxonomy adapts discourse pragmatics [Grice, 1975], psychological models of equivocation
52 [Bavelas et al., 1990], and rhetorical strategies from political interviews [Bull, 1998, Rasiah, 2010]
53 to financial Q&A, where evasion has direct market consequences.

54 **3 Psychology-Informed Taxonomy of Evasiveness**

55 Our taxonomy integrates three strands of theory: (i) Gricean maxims of discourse pragmatics [Grice,
56 1975], (ii) psychological models of equivocation [Bavelas et al., 1990], and (iii) fine-grained rhetor-
57 ical strategies from political communication [Bull, 1998, Rasiah, 2010]. It is organized into three
58 levels: **Level 1 (Rasiah)** distinguishes *Direct*, *Intermediate*, and *Fully Evasive* answers; **Level 2**
59 (**Bavelas**) groups evasions into *Omission*, *Vagueness*, *Non-Sequitur*, and *Restatement*; and **Level 3**
60 (**Bull**) specifies twelve rhetorical subtypes such as *Deflection*, *Agenda Shifting*, *Refusal to Answer*,
61 and *Partial Answer*.

62 More information is provided in Appendix A, which includes the full label definitions, precedence
63 rules, and additional examples. For illustration, Figure 2 shows the mid-level Bavelas categories,
64 and Table 1 gives annotated (Q, A) examples across all three levels.

65 **4 Datasets**

66 **4.1 Earnings Calls**

67 We use quarterly earnings call transcripts of U.S. listed firms (2019–2022), scraped from The Mot-
68 ley Fool and available on Kaggle.¹ The corpus covers 18,755 calls from 2,876 companies. We focus
69 on the **Q&A segments**, extracting ~17,000 analyst–executive pairs (about 9 per call) with a hy-
70 brid pipeline of heuristics and LLM parsing. Each pair is annotated with our three-level taxonomy
71 (Rasiah, Bavelas, Bull) and enriched with features such as length, hedges, tense, and embedding
72 alignment. The processed data and annotations are released for replicability.²

73 **4.2 FOMC Press Conferences**

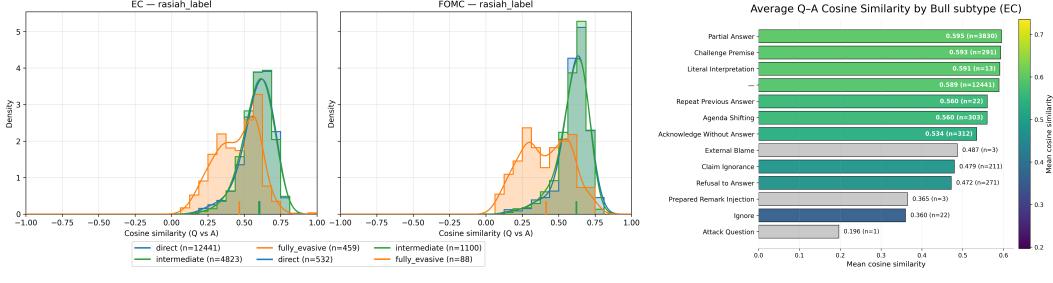
74 We also compile all 83 Federal Open Market Committee (FOMC) press conferences from 2011–
75 2025,³ spanning Chairs Bernanke, Yellen, and Powell. This corpus contains 1,728 journalist–Chair
76 pairs (Figure 6). Pairs are annotated with the same scheme as above (evasion, sentiment, tense)
77 using LLM prompts, validated on a stratified human subset. Data and prompts are also released.⁴

¹<https://www.kaggle.com/datasets/tpotterer/motley-fool-scraped-earnings-call-transcripts>

²<https://www.kaggle.com/datasets/gautiermarti/earnings-calls-qa-evasive-answers>

³<https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm>

⁴<https://www.kaggle.com/datasets/gautiermarti/fomc-press-conferences-qa-evasive-answers>



(a) Cosine similarity by Rasiah labels for EC and FOMC. (b) Mean similarity by Bull subtype (EC).

Figure 1: Semantic alignment between questions and answers.

78 5 Empirical Results with LLM-Assisted Annotations

79 5.1 Annotation Pipeline

80 We use a large language model (Claude 4 Sonnet) strictly as an *annotator*, assigning Rasiah (di-
 81 rect/intermediate/fully evasive), Bavelas (omission, vagueness, non-sequitur, restatement), and Bull
 82 subtypes to each Q-A pair. Prompts specify definitions and tie-breakers, and outputs are categor-
 83 ical. Annotations were produced at scale and validated on a stratified human subset. Details and
 84 examples are given in the appendix.

85 5.2 Prevalence and Typology

86 At the Rasiah level, earnings calls are dominated by direct answers (70%), with 27% intermediate
 87 and only 3% fully evasive. FOMC press conferences invert this balance: intermediate answers
 88 dominate (64%), with fewer direct (31%) and 5% fully evasive. At the Bavelas level, vagueness and
 89 non-sequiturs are most common in both domains, while omission and restatement are rare.

90 5.3 Linguistic Regularities

91 Domain comparisons reveal systematic contrasts:

- 92 • **Length.** FOMC questions and answers are consistently longer than earnings calls.
- 93 • **Vocabulary.** Earnings call answers are more lexically diverse, while FOMC Chairs rely on
 94 narrower phrasing.
- 95 • **Tense.** Corporate evasions often shift toward the future (hopeful projections), whereas
 96 FOMC evasions re-anchor in the present (restating mandate).
- 97 • **Sentiment.** In earnings calls, intermediate evasions and agenda shifting often carry a cau-
 98 tionally positive bias, while FOMC evasions are overwhelmingly neutral.
- 99 • **Semantics.** Embedding similarity cannot distinguish direct from intermediate answers
 100 (Figure 1a), but does capture fully evasive cases (lower alignment).

101 Appendix B provides additional descriptive evidence, including distributions of question and an-
 102 swer lengths, the number of questions per event, cross-domain comparisons, and summary statistics
 103 broken down by evasion category.

104 5.4 Market Reactions

105 We construct an event-level score $Rasiah_{i,t}$ by mapping labels to $\{\text{direct} = 1, \text{intermediate} = 0, \text{evas-}$
 106 $\text{itive} = -1\}$ and averaging across all Q-A pairs in an event (earnings call or FOMC press conference).
 107 This score summarizes the overall transparency of a session.

108 We then regress event-day returns and volatility on this measure of evasiveness. For earnings calls,
 109 higher directness predicts significantly positive abnormal returns on the event day (Table 3; $t > 3$).
 110 For FOMC press conferences, the coefficient is also positive but not statistically significant (Table 4),

111 which is consistent with the smaller sample size (82 events versus \sim 1,500 earnings calls) and the
112 higher noise in index-level returns.

113 By contrast, volatility reacts more consistently across both domains. Direct answers are associated
114 with significantly higher event-day volatility: for earnings calls the effect is extremely strong (Ta-
115 ble 5, $t=36$, $R^2 \approx 45\%$), while for FOMC the coefficient remains positive and significant despite
116 the smaller sample (Table 6, $t=3.7$, $R^2 \approx 15\%$). This pattern suggests that direct answers increase
117 the amount of tradable information available, creating more scope for investor disagreement, while
118 evasive answers dampen immediate reactions by withholding information.

119 Robustness checks using alternative return windows (3-day returns, ex-post monthly returns) and
120 volatility measures (realized variance, ex-post 1-month volatility) yield results of similar magnitude
121 and direction. Full regression outputs are reported in Appendix C.

122 In sum, linguistic analysis highlights clear domain-specific styles of evasion, while market regres-
123 sions show that transparency is rewarded with higher returns and volatility across both corporate and
124 policy contexts.

125 **6 Limitations**

126 This study is preliminary and several caveats remain. First, our LLM-based annotations are val-
127 idated only on a stratified subset, and detailed inter-annotator agreement will require expansion.
128 Second, broad categories such as *partial answer* may need refinement; in particular, partial disclo-
129 sure strategies can be decomposed into narrower forms. Third, our reliance on large proprietary
130 models (Claude 4 Sonnet) raises questions of reproducibility with open-source systems. Finally,
131 both datasets focus on U.S. earnings calls and the FOMC; generalization to other geographies or in-
132 stitutions remains untested. These findings should be judged primarily by their utility in downstream
133 tasks rather than as absolute ground truth.

134 **7 Broader Impacts**

135 Our datasets and methods enable more transparent financial NLP by detecting evasive communica-
136 tion, with applications in analyst tools, regulatory oversight, and academic research. At the same
137 time, generative models could also be misused to engineer more sophisticated evasive answers, rais-
138 ing dual-use concerns. We release prompts and annotations to encourage scrutiny and responsible
139 use of transparency-aware GenAI in finance.

140 **8 Conclusion**

141 We introduced the task of evasive answer detection in financial Q&A and released two annotated
142 datasets covering earnings calls and FOMC press conferences, produced with LLM prompts and val-
143 idated on human subsets. Our analysis highlights consistent markers of evasiveness, such as reduced
144 Q–A alignment, brevity or verbosity, and tense shifts, while also revealing domain-specific differ-
145 ences: corporate executives tend to hedge through optimistic, forward-looking language, whereas
146 central bankers rely more on neutral, present-tense framing. Lightweight linguistic and semantic fea-
147 tures already capture robust signals, supporting the view that evasiveness should be treated as distinct
148 from sentiment or veracity. Taken together, these resources establish a foundation for benchmark
149 construction and model development in financial NLP, with direct implications for analyst tools,
150 regulatory screening, and market surveillance. Future work will focus on refining the taxonomy, in
151 particular by subdividing partial answers into finer-grained strategies, extending human validation,
152 and exploring downstream applications ranging from investment signals to transparency assessment.

153 **References**

154 Janet Beavin Bavelas, Alex Black, Nicole Chovil, and Jennifer Mullett. *Equivocal communication*.
155 Sage Publications, Inc, 1990.

156 Peter Bull. Equivocation theory and news interviews. *Journal of Language and Social Psychology*,
157 17(1):36–51, 1998.

158 Robert Bushman, Joseph Piotroski, and Abbie Smith. What determines corporate transparency?
 159 *Journal of Accounting Research*, 42(2):207–252, 2004.

160 Robert M Bushman and Abbie J Smith. Financial accounting information and corporate governance.
 161 *Journal of Accounting and Economics*, 32(1-3):237–333, 2005.

162 Yanzhen Chen, Huaxia Rui, and Andrew B Whinston. Conversation analytics: Can machines read
 163 between the lines in real-time strategic conversations? *Information Systems Research*, 36(1):
 164 440–455, 2025.

165 Ian D Gow, David F Larcker, and Anastasia A Zakolyukina. Non-answers during conference calls.
 166 *Journal of Accounting Research*, 59(4):1349–1384, 2021.

167 Herbert P Grice. Logic and conversation. In *Syntax and Semantics: Vol. 3: Speech Acts*, pages
 168 41–58. Academic Press, 1975.

169 Bassamtiano Renaufalgi Irnawan, Sheng Xu, Noriko Tomuro, Fumiyo Fukumoto, and Yoshimi
 170 Suzuki. Claim veracity assessment for explainable fake news detection. In *Proceedings of the
 171 31st International Conference on Computational Linguistics*, pages 4011–4029, 2025.

172 Kiryl Khalmetski, Bettina Rockenbach, and Peter Werner. Evasive lying in strategic communication.
 173 *Journal of Public Economics*, 156:59–72, 2017.

174 David F Larcker and Anastasia A Zakolyukina. Detecting deceptive discussions in conference calls.
 175 *Journal of Accounting Research*, 50(2):495–540, 2012.

176 João A Leite, Olesya Razuvayevskaya, Kalina Bontcheva, and Carolina Scarton. Weakly supervised
 177 veracity classification with llm-predicted credibility signals. *EPJ Data Science*, 14(1):16, 2025.

178 Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li, and Jun Zhao. Finbert: A pre-trained fi-
 179 nancial language representation model for financial text mining. In Christian Bessiere, editor,
 180 *Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-
 181 20*, pages 4513–4519. International Joint Conferences on Artificial Intelligence Organization, 7
 182 2020. doi: 10.24963/ijcai.2020/622. URL <https://doi.org/10.24963/ijcai.2020/622>.
 183 Special Track on AI in FinTech.

184 Tim Loughran and Bill McDonald. When is a liability not a liability? Textual analysis, dictionaries,
 185 and 10-Ks. *The Journal of finance*, 66(1):35–65, 2011.

186 Parameswary Rasiah. A framework for the systematic analysis of evasion in parliamentary dis-
 187 course. *Journal of Pragmatics*, 42(3):664–680, 2010. ISSN 0378-2166. doi: <https://doi.org/10.1016/j.pragma.2009.07.010>.

189 Yi Yang, Mark Christopher Siy Uy, and Allen Huang. FinBERT: A Pretrained Language Model for
 190 Financial Communications. *arXiv preprint arXiv:2006.08097*, 2020.

191 **A Evasiveness Taxonomy Definitions**

192 **Scope.** We define an evasive answer as a response that fails to directly address the core informational
 193 intent of a question via omission, ambiguity, reframing, or selective disclosure. Labels are applied
 194 per (Q, A) pair. When multiple tactics are present, annotate the *dominant* tactic (see precedence
 195 below).

196 **A.1 Level 1 — Response Type (Rasiah-style)**

- 197 • **Direct** — Clear, relevant, and sufficiently specific answer to the focal question. It may
 198 include brief context but addresses the asked point (often includes numbers, dates, mecha-
 199 nisms, or decisions).
- 200 • **Intermediate** — Partially responsive: touches the topic but with hedging, selectivity, or
 201 missing specifics (answers *some* but not *all* of what was asked).
- 202 • **Fully Evasive** — Substantively non-responsive: avoids, deflects, or reframes such that the
 203 question’s informational intent is not addressed.

204 **A.2 Level 2 — Equivocation Form (Bavelas-style)**

205 • **Omission** — Bypasses the request entirely (changes topic, declines to comment).

206 • **Vagueness** — Uses imprecise, generic, or abstract phrasing that withholds actionable detail
207 (e.g., “we’re optimistic,” “various factors”).

208 • **Non-Sequitur** — Provides content not relevant to the question’s intent (answers a different
209 question).

210 • **Restatement** — Paraphrases the question or prior material without adding new informa-
211 tion.

212 **A.3 Level 3 — Evasion Subtypes (Bull-style)**

213 1. **Avoidance / Deflection** — Moves away from the focal point (e.g., “Let me step back...”),
214 often to safer terrain.

215 2. **Acknowledging Without Answering** — Signals receipt/thanks or meta-discusses the
216 question but withholds substance (e.g., “Great question; as you know...”).

217 3. **Refusal to Answer** — Explicitly declines (“We don’t guide on that”, “Cannot comment”).

218 4. **Agenda Shifting** — Redirects to a preferred topic or KPI not asked about.

219 5. **Claiming Ignorance** — Asserts lack of knowledge/readiness (“We don’t have that number
220 handy”).

221 6. **Partial Answer / Selective Disclosure** — Answers only a subset (e.g., comments on rev-
222 enue but not margin when asked for both).

223 7. **Literal Interpretation** — Overly narrow reading to dodge the broader intent (hair-
224 splitting).

225 8. **Repetition of Prior Material** — Repeats earlier statement/guidance with no new content.

226 9. **Challenge Premise** — Disputes or reframes the question’s assumptions rather than an-
227 swering.

228 10. **Attack Question** — Labels the question as hypothetical, speculative, or unfair to avoid
229 answering.

230 11. **Attack Questioner** — Undermines the analyst/questioner (rare in financial settings).

231 12. **External Blame** — Attributes inability to answer to external constraints (regulatory, legal,
232 competitive).

233 **A.4 Operational Guidance**

234 **Unit of annotation.** Label per (Q, A) pair. If an answer contains multiple moves, choose the
235 dominant form/tactic driving non-responsiveness.

236 **Precedence (when multiple apply).** *Refusal > Challenge Premise > Agenda Shifting > Partial*
237 *Answer > Acknowledging w/o Answer > Literal Interpretation > Repetition > Claiming Ignorance*
238 *> External Blame > Avoidance/Deflection.* Use **Omission/Non-Sequitur/Vagueness/Restatement**
239 at Level 2 to summarize the psychological form of the chosen subtype.

240 **Heuristic cues (non-exhaustive).**

241 • *Directness* cues: concrete numbers, dates, time windows, named drivers/mechanisms, ex-
242 plicit decisions or guidance.

243 • *Vagueness* cues: hedges (“may”, “could”), indeterminate quantifiers (“some”, “various”),
244 abstract nouns without instantiation.

245 • *Non-Sequitur/Agenda* cues: abrupt topic/KPI switch; high lexical divergence from Q;
246 heavy promotional content.

247 • *Omission/Refusal* cues: “no comment”, “we don’t guide”, legal/regulatory disclaimers.

248 • *Partial Answer* cues: answers only one conjunct of a multi-part Q; ignores requested di-
249 mensions (e.g., margin when asked revenue *and* margin).

250 **A.5 Mapping Between Levels (typical alignments)**

Level 2 (Form) Common Level 3 Subtypes	
Omission	Refusal; Avoidance/Deflection; External Blame; Claiming Ignorance
Vagueness	Acknowledging w/o Answer; Partial Answer; Literal Interpretation; Repetition
Non-Sequitur	Agenda Shifting; Challenge Premise; Attack Question/Questioner
Restatement	Repetition of Prior Material; Acknowledging w/o Answer

252 **Examples (micro-templates).**

253 • *Partial Answer (Vagueness)*: Q: “Revenue & margin outlook?” A: “Revenue should grow
254 mid-single digits given APAC momentum.”

255 • *Agenda Shifting (Non-Sequitur)*: Q: “Regulatory impact on Q3 profits?” A: “What’s im-
256 portant is our 10% revenue growth this quarter.”

257 • *Refusal (Omission)*: Q: “Will you cut headcount next quarter?” A: “We don’t comment on
258 future workforce actions.”

259 • *Acknowledging w/o Answer (Vagueness)*: “Great question. As we’ve said, we remain
260 focused on long-term value.”

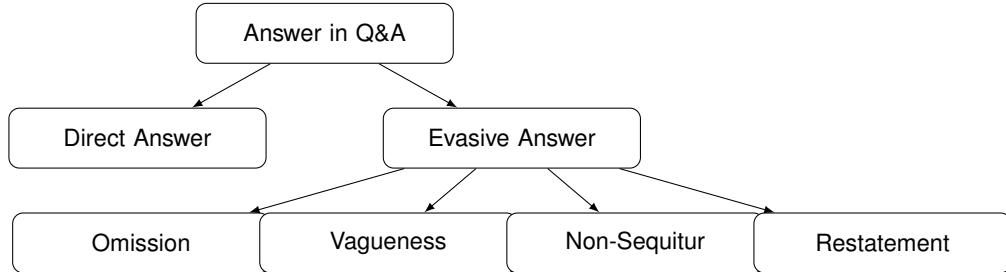
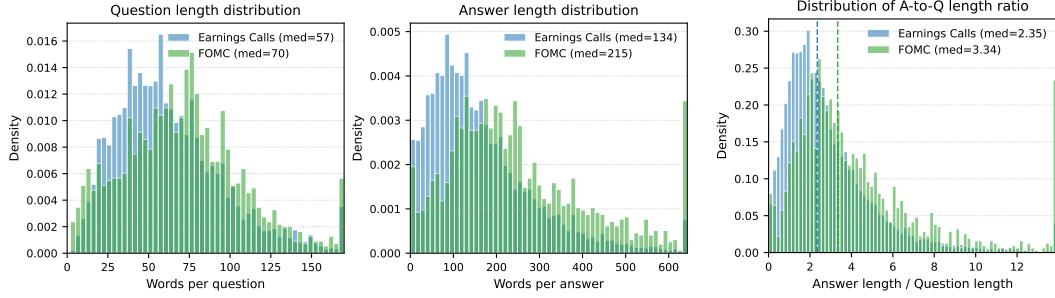


Figure 2: Mid-level taxonomy of evasive answers (Bavelas categories). Each category contains finer-grained rhetorical strategies.

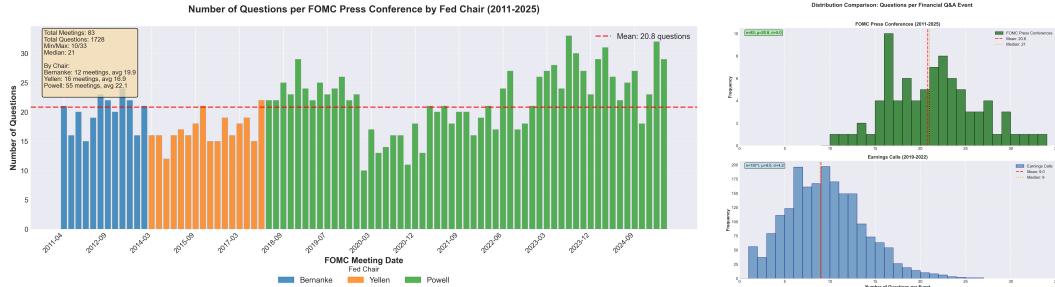
Question	Answer	Rasiah	Bavelas	Subtype (Bull)
Will you revise earnings guidance for next quarter?	We remain focused on delivering long-term value to shareholders.	fully_evasive	Omission	Avoidance (Deflection)
What explains the decline in margins?	There are several interacting macroeconomic factors, including supply chain volatility and input costs.	intermediate	Vagueness	Obfuscation (Vague / Complex)
How will the new regulations affect your Q3 profits?	What’s important to highlight is that our revenues have grown 10% this quarter.	fully_evasive	Non-Sequitur	Misdirection (Answering a Different Question)
Can you comment on both revenue and margin outlooks?	Revenue will increase 8% due to Asia-Pacific expansion.	fully_evasive	Omission	Partial Answer (Selective Disclosure)
Chair Powell, how confident are you that inflation will return to 2% without a significant rise in unemployment?	We continue to believe the labor market remains resilient and our tools are well positioned to achieve our mandate.	intermediate	Vagueness	Acknowledging Without Answer
Will the Committee rule out another rate hike this year?	It would be premature to speculate on future decisions; we will remain data dependent.	fully_evasive	Omission	Refusal to Answer
Has the banking sector stress influenced your baseline forecast?	No, our baseline outlook remains unchanged, though we are closely monitoring developments.	direct	—	—

Table 1: Example annotations using our three-level taxonomy: Rasiah (response type), Bavelas (evasion form), and Bull (evasion subtype).



(a) Question and answer length distributions for Earnings Calls and FOMC (density histograms; legends show medians).

(b) Distribution of the answer-to-question length ratio.



(a) Number of questions per FOMC press conference over time, colored by Fed Chair. The dashed line shows the mean across meetings.

(b) Distribution comparison of the number of questions per event: FOMC press conferences (top) vs. earnings calls (bottom).

Figure 4: FOMC questions over time (left) and distributional comparison across event types (right).

261 B Datasets Summary Statistics

262 C Regression Results

Rasiah label	Question length		Answer length		Answer-to-Question ratio	
	EC	FOMC	EC	FOMC	EC	FOMC
Direct	54	66	124	194	2.24	3.03
Intermediate	63	73	168	248	2.59	3.69
Fully evasive	41	56	48	69	1.23	1.48

Table 2: Median question length, answer length, and answer-to-question ratio by Rasiah label for earnings calls (EC) and FOMC press conferences.

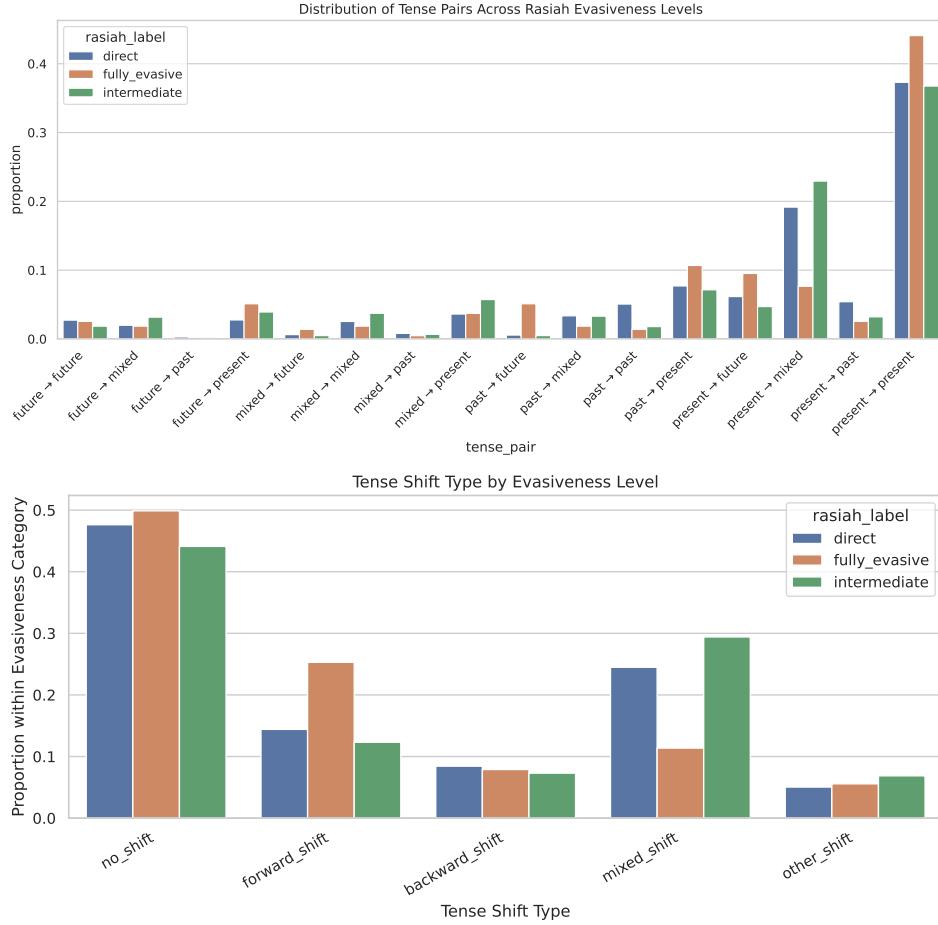
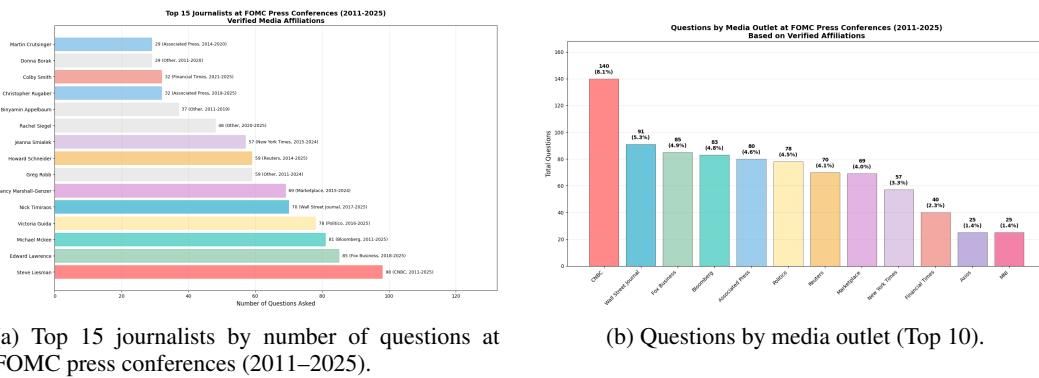


Figure 5: (Top) Distribution of question–answer tense pairs by Rasiah label. (Bottom) Distribution of tense shift types across Rasiah-style evasiveness levels.



(a) Top 15 journalists by number of questions at FOMC press conferences (2011–2025).

(b) Questions by media outlet (Top 10).

Figure 6: Distribution of questions in FOMC press conferences by (a) journalist and (b) media outlet.

Dep. Variable:	returns_0	R-squared (uncentered):	0.007			
Model:	OLS	Adj. R-squared (uncentered):	0.006			
Method:	Least Squares	F-statistic:	10.56			
Date:	Fri, 29 Aug 2025	Prob (F-statistic):	0.00118			
Time:	08:59:59	Log-Likelihood:	4897.2			
No. Observations:	1576	AIC:	-9792.			
Df Residuals:	1575	BIC:	-9787.			
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Rasiah_numeric_mean_per_doc	0.0013	0.000	3.249	0.001	0.000	0.002
Omnibus:	129.301	Durbin-Watson:	1.978			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	244.253			
Skew:	-0.553	Prob(JB):	9.15e-54			
Kurtosis:	4.579	Cond. No.	1.00			

Table 3: OLS regression of company returns (on earning call day) against the Rasiah numerical value averaged at the earning call document level.

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	returns_0	R-squared (uncentered):	0.010			
Model:	OLS	Adj. R-squared (uncentered):	-0.002			
Method:	Least Squares	F-statistic:	0.8397			
Date:	Fri, 29 Aug 2025	Prob (F-statistic):	0.362			
Time:	09:14:30	Log-Likelihood:	245.72			
No. Observations:	82	AIC:	-489.4			
Df Residuals:	81	BIC:	-487.0			
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Rasiah_numeric_mean_per_doc	0.0125	0.014	0.916	0.362	-0.015	0.040
Omnibus:	2.856	Durbin-Watson:	2.130			
Prob(Omnibus):	0.240	Jarque-Bera (JB):	2.234			
Skew:	-0.387	Prob(JB):	0.327			
Kurtosis:	3.234	Cond. No.	1.00			

Table 4: OLS regression of S&P 500 returns (on the FOMC press conference day) against the evasion measure (Rasiah numeric score) averaged at the document level.

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	sq_returns_0	R-squared (uncentered):	0.452			
Model:	OLS	Adj. R-squared (uncentered):	0.452			
Method:	Least Squares	F-statistic:	1300.			
Date:	Fri, 29 Aug 2025	Prob (F-statistic):	4.20e-208			
Time:	09:21:01	Log-Likelihood:	5338.3			
No. Observations:	1576	AIC:	-1.067e+04			
Df Residuals:	1575	BIC:	-1.067e+04			
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Rasiah_numeric_mean_per_doc	0.0106	0.000	36.059	0.000	0.010	0.011
Omnibus:	341.697	Durbin-Watson:	1.957			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	629.543			
Skew:	1.327	Prob(JB):	1.98e-137			
Kurtosis:	4.594	Cond. No.	1.00			

Table 5: OLS regression of volatility on the day of event onto our evasion measure for earnings calls.

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	sq_returns_0	R-squared (uncentered):	0.146			
Model:	OLS	Adj. R-squared (uncentered):	0.136			
Method:	Least Squares	F-statistic:	13.89			
Date:	Fri, 29 Aug 2025	Prob (F-statistic):	0.000358			
Time:	09:25:05	Log-Likelihood:	251.04			
No. Observations:	82	AIC:	-500.1			
Df Residuals:	81	BIC:	-497.7			
Df Model:	1					
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
Rasiah_numeric_mean_per_doc	0.0477	0.013	3.726	0.000	0.022	0.073
Omnibus:	3.134	Durbin-Watson:	0.897			
Prob(Omnibus):	0.209	Jarque-Bera (JB):	3.094			
Skew:	0.457	Prob(JB):	0.213			
Kurtosis:	2.737	Cond. No.	1.00			

Table 6: OLS regression of volatility of the S&P 500 on event day against our evasion measure for FOMC press conferences.

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.