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ABSTRACT

Neural networks face catastrophic forgetting of previously learned knowledge
when training on new task data. While the field of continual learning has made
promising progress in reducing this forgetting, recent work has uncovered an
interesting phenomenon: existing techniques often exhibit a sharp performance
drop on prior tasks during the initial stages of new task training, a phenomenon
known as the “stability gap.” This phenomenon not only raises safety concerns
but also challenges the current understanding of neural network behavior in con-
tinual learning scenarios. Motivated by this discovery, we revisit two fundamental
questions in continual learning: 1) Is the past learned knowledge within deep
networks lost abruptly or gradually? and 2) Is past learned knowledge ever com-
pletely erased? Our analysis reveals that abrupt forgetting occurs not only in the
final fully connected layer but also permeates the feature space and most layers,
sparing only the earliest layers. Alarmingly, a single gradient update can severely
disrupt the learned class structure. We identify degenerate solutions in the softmax
cross-entropy loss as a major contributing factor, with memory samples exhibiting
higher feature norms compared to new samples. To address these issues, we pro-
pose Adaptive Angular Replay (AAR), a simple yet effective approach that learns
features in hyperspherical space using feature and weight normalization. Angular
ER demonstrates a strong ability to preserve class structure during task transi-
tions. Additionally, we introduce an adaptive scaling strategy to further mitigate
the stability gap and improve overall accuracy.

1 INTRODUCTION

Machine learning has increasingly relied on training large models on static datasets to achieve im-
pressive results, often surpassing human capabilities in a wide range of tasks. However, these tasks
are typically confined and static after deployment, reflecting a key limitation of neural network op-
timization: the assumption of independent and identically distributed (iid) training and testing data.
In real-world scenarios, data is dynamic, continuously evolving with new information arriving at
an unprecedented rate, often violating the iid assumption. As a result, neural networks are prone
to “catastrophic forgetting” (CF) (French, 1999; Delange et al., 2021), where models abruptly lose
previously learned knowledge when exposed to new, non-iid data. In such cases, learning agents
face the challenge of absorbing new information efficiently. To address these challenges, fields like
continual learning (CL) and lifelong learning have gained significant attention, focusing on reducing
the impact of catastrophic forgetting while adapting to changing data distributions.

Research efforts to mitigate catastrophic forgetting have led to various promising solutions, with
replay-based methods achieving state-of-the-art performance (Hadsell et al., 2020; Wang et al.,
2021). Despite their success, recent studies have revealed an unexpected phenomenon: while
rehearsal-based continual learning techniques reduce forgetting, they still exhibit significant perfor-
mance drops during the initial phase of training on new tasks. This temporary performance decline,
followed by recovery, is termed the “stability gap”(De Lange et al.). Though transient, the stability
gap introduces potential risks to continual learning systems and underscores the need for a deeper
understanding of how neural networks behave in CL settings.

Fundamental Open Questions In this paper, we explore a critical yet unresolved question in the
literature: Does the knowledge embedded in a neural network degrade abruptly or gradually during
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continual learning? Empirical studies generally suggest that as more tasks are introduced (Delange
et al., 2021; Mai et al., 2022), performance on prior tasks deteriorates, leading to the assumption
of gradual knowledge loss. However, these evaluations are typically conducted after each task is
fully trained. When performance is monitored at every gradient step, recent findings on stability
gap suggest a different dynamic: performance on previous tasks drops sharply in the early stages
of training on a new task and only gradually recovers afterward. This abrupt drop raises the possi-
bility of sudden knowledge loss during training. Nevertheless, a drop in task performance does not
necessarily indicate a complete loss of knowledge across the entire network. Previous works have
identified a task-recency bias in the final fully connected (FC) layer (Wu et al., 2019; Mai et al.,
2022; Zhao et al., 2020), which can significantly affect the final performance. One hypothesis is
that the stability gap is driven by this bias in the FC layer. Some supporting evidence for this is that
when visualizing the training trajectories in the loss landscape, the network parameters drift slowly
from low-loss regions to higher-loss areas as training progresses (Verwimp et al., 2021; Zhang et al.,
2022). In summary, although it has been demonstrated there is abrupt loss of task’s performance,
whether the core network experiences abrupt or gradual knowledge loss—and to what extent of
knowledge retention or loss within the deeper network layers—remains unclear.

Key findings. In this work, we investigate the network’s change dynamics during task transitions to
answer these questions. Our findings reveal that the stability gap extends beyond the final FC layer,
affecting the network’s internal representations. Notably, we show that the stability gap persists
even when using a Near-Class-Mean classifier instead of cross-entropy classifier. Centered Kernel
Alignment (CKA) analysis reveals abrupt changes in representations in later network layers, while
earlier layers experience more gradual and subtle shifts. Crucially, we observe that the class structure
in the feature space can be entirely disrupted by just a single gradient step, underscoring the intensity
of knowledge loss in the network’s deeper layers.

Proposed Solutions. To mitigate this abrupt loss of class structure and address the stability gap, we
identify degenerate solutions in the softmax cross-entropy loss as a key factor. This degeneration
leads to much higher feature norms for memory samples compared to the new samples. To address
this issue, we propose a simple but effective solution called Adaptive Angular Replay (AAR), which
promotes learning in hyper-spherical space using feature and weight normalization. Angular ER
preserves the class structure more effectively than prior methods. Additionally, to further reduce the
stability gap and improve overall accuracy, we introduce an adaptive scaling strategy that comple-
ments Angular replay. Together, these methods significantly enhance the performance of continual
learning systems by preserving knowledge more effectively throughout training.

Contributions Our contributions are as follows:

• We provide several insights into knowledge retention and loss in non-stationary data set-
tings: 1) The stability gap extends beyond the final FC layer and affects the entire network
and feature space. 2) There is a complete loss of class structure in the feature space during
task transitions. 3) Knowledge loss in later layers is abrupt, whereas in early layers, it is
more gradual.

• We identify degenerate solutions in the cross-entropy loss that result in higher feature
norms, contributing to the loss of class structure.

• We propose Adaptive Angular Replay, a simple and effective solution to mitigate the stabil-
ity gap by learning features in hyperspherical space, complemented by an adaptive scaling
factor to further enhance performance.

2 RELATED WORK

Continual learning: We consider the online continual learning setting with a non-stationary (po-
tentially infinite) stream of data Dt: at each time step t, the continual learning agent receives an
incoming batch of data samples Bt = {xi, yi}i=1,..,|Bt| that are drawn from the current data distri-
bution P(Dt). The period of time where the data distribution stays the same is often called a task
or experience in the continual learning literature. An abrupt change in the data distribution occurs
when the task changes. The standard objective during training is to minimize the empirical risk on
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all the data seen so far:

min
θ

R(θ) = min
θ

1∑
t |Bt|

∑
t

∑
x,y∈Bt

L (fθ(x), y) , (1)

with loss function L, the CL network function f , and its associated parameters θ.

Stability Gap: (De Lange et al.) identified stability gap. This phenomenon is further discussed and
studied in the context of pre-trained large language model (Guo et al., 2024) and in the incremental
Learning of Homogeneous Tasks (Kamath et al., 2024). Our work focuses on conventional continua
learning settings with non-stationary data.

Forgetting mitigation techniques. Continual learning algorithms address catastrophic forgetting
in three main ways: replay-based methods (Chaudhry et al., 2018; Aljundi et al., 2019) store and
replay past samples to mitigate forgetting; regularization-based methods (Rebuffi et al., 2017; Li
& Hoiem, 2017) use regularization losses to encourage retention of past knowledge; architecture-
based methods Mallya & Lazebnik (2018); Serra et al. (2018) separate parameters for different tasks
to avoid interference.

Hyperspherical embedding. Hyperspherical embedding has gained significant attention in vari-
ous machine learning domains. The concept of hyperspherical prototypical networks Mettes et al.
(2019) is proposed for few-shot learning and demonstrates improved performance by constraining
embeddings to lie on a hypersphere. In the context of continual learning, the effectiveness of hy-
perspherical embedding remains under-explored. In particular, when employing the Cross-Entropy
loss in continual learning, it is typically computed based on dot similarity between the feature vector
and prototype vector. Our work investigates how and why hyperspherical features are particularly
useful for reducing the stability gap in continual learning. We explore the implications of using
hyperspherical embeddings and analyze their impact on the stability and performance of continual
learning models.

3 ANALYSIS: THE NETWORK BEHAVIOR AT TASK TRANSITION

Understanding how and why the stability gap occurs is crucial not only for practical applications but
also as a scientifically intriguing phenomenon that can deepen our understanding of network learn-
ing behaviors in the context of non-stationary data distributions. We aim to use this phenomenon as
a lens to explore the processes of information loss and retention during the learning of new informa-
tion. To this end, we present a series of analyses focused on the behavior of the network during task
transitions.

3.1 REVISIT A SIMPLE BASELINE: NEAREST CLASS MEAN CLASSIFIER

The cross-entropy classifier is the most widely used option in continual learning. In a CE classifier,
the model’s final layer is a fully connected layer with weight matrix W ∈ RD×N , where N is the
number of classes. A well-known phenomenon in continual learning, referred to as task-recency
bias or biased fully connected layer (Wu et al., 2019; Zhao et al., 2020), occurs when the logits
output and norm of the weights corresponding to new classes becomes significantly higher than that
of old classes. This bias is believed to contribute to catastrophic forgetting. A common explanation
attributes this bias to class imbalance, as the exemplar set storing past data is often small, meaning
the number of samples for new classes typically exceeds that for old classes.

To explore whether the final FC layer causing the stability gap, we revisit the simple baseline of the
Nearest-Class-Mean (NCM) classifier, which has been employed in several continual learning stud-
ies as a method to reduce forgetting (Rebuffi et al., 2017; Mai et al., 2021). Unlike the cross-entropy
classifier, NCM does not rely on a fully connected layer for predictions but instead uses learned
features to compute class prototypes from memory samples. Inference is then performed based on
the distance between the input and the nearest class prototype. More specifically, it computes a pro-
totype vector for each class observed so far, µ1, ...µc where µc = 1

|Pc|
∑

p∈Pc
φ(p) is the average

feature vector of all exemplars for a class c. It also computes the feature vector of the image that
should be classified and assigns the class label with most similar prototype:
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(a) Test accuracy of Task 1 (b) Test accuracy of Task 12

Figure 1: Nearest-Class-Mean classifier vs. cross-entropy classifier. The experiment is conducted
by splitting CIFAR100 into sequential 20 tasks)

y∗ = argmin
y=1,...,t

∥φ(x)− µy∥ . (2)

While NCM has been shown to mitigate forgetting and enhance overall accuracy at the end of train-
ing, its effect on the stability gap remains unclear. We compare the performance of continual eval-
uation using CE and NCM classifiers in Figure 1. Our results demonstrate that NCM significantly
reduces the stability gap compared to the CE classifier. However, it’s noteworthy that a gap persists
even with the NCM classifier.

Specifically, the test accuracy for the first task exhibits sharp “spikes,” where performance drops
dramatically during task transitions before gradually recovering. This observation suggests that
the stability gap is not solely attributable to the final fully connected (FC) layer, but also involves
changes in the underlying feature representations.

3.2 LOSS AND RETENTION OF CLASS STRUCTURE

We investigate how task transitions affect learned features, particularly in two aspects: 1) the extent
to which class structure is disrupted in the feature space, and 2) how the forgetting-recovery behavior
propagates through the network layers.

The extent of knowledge loss. To address the first question, we visualize feature representations at
three key points in training: a) before training on a new task, b) after a single gradient step on the
new task, and c) after the new task’s training is complete. As shown in Fig 2, we observe a complete
loss of class structure after just one gradient step (Fig 2 b). This surprising result raises the question
of whether past knowledge is fully erased in the whole network or if some degree of information is
retained.

The scope of knowledge loss in the network. To further investigate how information is lost or
retained during task transitions, we turn to Centered Kernel Alignment (CKA), a neural network
representation similarity measure. CKA and other related algorithms provide a scalar score (between
0 and 1) determining how similar a pair of (hidden) layer representations are, and have been used to
study many properties of deep neural networks.

CKA(X,Y) =
HSIC

(
XXT,YYT

)√
HSICTXXT,XXT

)√
HSICSIYYT,YYT

) (3)

To assess how the model evolves during the training of a new task, we compare the hidden represen-
tations at each gradient step to those of the model before the new task training begins. Specifically,
in Equation 3, X = ϕL

t represents the activation at a particular layer for all memory data during
gradient step t. Correspondingly, Y = ϕL

0 represents the activation at the same layer for all memory
data before the training of the new task commences.
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Figure 2: Loss of class structure in the feature representation: T-sne visualization of representation
of memorized samples during the training.

(a) layer 1 (b) layer 2 (c) layer 3

(d) layer 4 (e) Layer 5

Figure 3: Sudden knowledge loss in the backbone of network measured by CKA: hidden represen-
tations changes happen during task transition except the early layers

Figure 3 reveals that abrupt changes occur predominantly in deeper layers (layers 4 and 5) through-
out the learning process. The most significant alterations to representations take place during the first
gradient step, followed by a period of partial recovery. In middle layers (2 and 3), sudden changes
are observed only for the initial few tasks. As the model encounters more tasks, these abrupt shifts
become less pronounced. The shallow layer (layer 1) exhibits no sudden changes.

4 METHODS: ADAPTIVE HYPERSPHERICAL REPLAY

4.1 HYPERSPHERICAL REPLAY TO MAINTAIN THE CLASS STRUCTURE

In this section, we investigate the perspective of loss function and analyze how CE loss may be
problematic for continual learning and shows that a simply modification can reduce the stability
challenge significantly.

The effect of degenerate solutions in softmax cross-entropy loss. Equation 4 gives an equivalent
form of CE loss. Based on this, we have Equation 5, which suggest that as long as the feature can
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Figure 4: Feature norm disparity: The feature norm of memory samples are significantly higher than
that of new samples.

be correctly classified the loss can be trivially further minimized by increasing feature norm. How-
ever, increasing feature norm does not necessarily making the feature more discriminative. These
degnerate solutions with high feature norms does not influence IID setting much as it influences all
training samples. However, this is particularly problematic for continual learning. As the memory
samples are trained repeatedly by the model, while the new samples are never seen by the model at
the start of training. Thus, we hypothesize that degeneracy in CE loss can lead to a large disparity
in the feature norm of memory samples and new samples.

LCE = log

1 +
∑
i ̸=y

exp
(
w⊤

i ϕ−w⊤
y ϕ
) (4)

lim
∥x∥→∞

LCE =

{
0 if ∀i ̸= y,w⊤

y ϕ > w⊤
i ϕ

+∞ if ∃i ̸= y,w⊤
y ϕ < w⊤

i ϕ
(5)

Informally, we summarize this the relationship between feature norm and CE loss in the following
claim.

Claim 1 (informal): In continual learning scenarios, given sufficient computational iterations with
cross-entropy loss, the feature norms of memory samples consistently and substantially exceed those
of new task samples.

We verify this claim empirically in Figure 4. The norm of features of memory samples is signifi-
cantly higher than that of the new samples. As the softmax score is linearly related to feature norm.
An immediate problem arising from this feature norm difference is that it leads to a large disparity
between the softmax scores and the loss of new samples and memory samples, which increases the
stability gap.

Angular Similarity. To avoid the effect of degeneracy in CE loss, we propose to train the CE loss
in the hypersphere. In particular, we write CE loss in the form of cosine similarity. By assume a
zero bias vector and normliza the weight vector and feature vector to be 1. We have angular CE in
Equation 7.

LCE = − log

(
eW

T
yi

ϕi+byi∑
j e

WT
j ϕi+bj

)

= − log

(
e∥Wyi∥∥ϕi∥ cos(θyi,i)+byi∑

j e
∥Wj∥∥ϕi∥ cos(θj,i)+bj

) (6)

Langular = − 1

N

N∑
i=1

log
es(t) cos θyi

es(t) cos θyi +
∑n

j=1,j ̸=yi
es(t) cos θj

(7)

where S(t) is a scaling factor.
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(a) Incoming batch (b) Memory batch

Figure 5: Adaptive scaling factor: Fade-in-Fade-out schedule.

Figure 6 (a) shows that angular CE successfully maintains the class structure during task transition
despite its simplicity.

4.2 FADE-IN-FADE-OUT: ADAPTIVE SCALING

∂ℓce
∂hj

=

{
s(t)(pj − 1) ≤ 0, qj = qy = 1

s(t)× pj ≥ 0, qj = 0
(8)

The effect of scaling factor. The scaling factor plays a crucial role in controlling the ”sharpness”
of the learning signal and the dynamics of gradients. As shown in Equation 8, it linearly affects the
magnitude of the entire gradient. Moreover, increasing the scaling factor (i.e., lowering the tem-
perature) makes the output probability distributions pj more extreme (closer to 0 or 1), potentially
leading to larger gradient differences across class logits. Conversely, decreasing the scaling factor
(i.e., raising the temperature) results in a more uniform distribution, reducing these differences and
making the model’s predictions more uncertain or diverse.

Adaptive Scaling. To enhance the stability of the continual learning process, we propose an adaptive
schedule for adjusting the scaling factor, as shown in Equation 10. This approach employs distinct
scaling factors for memory batches and incoming batches, implemented in two phases (see Figure 5):

1. “Fade-in” Phase: During the initial stage, the scaling factor for incoming batches begins at a low
value smin and gradually increases over time to smax. This allows the model to slowly adapt to new
information.

2. “Fade-out” Phase: Towards the end of training, we gradually decrease the scaling factor for in-
coming batches while simultaneously increasing it for memory batches. This strategy helps mitigate
forgetting of previously learned information.

The transitions between these phases and the rate of scaling factor adjustment are controlled by a
cosine function, ensuring smooth and continuous changes throughout the training process.

sinct = smin +
1

2
(smax − smin )

(
1 + cos

(
Tcur

T
2π − π

))
(9)

smem
t = smin +

1

2
(smax − smin )

(
1 + cos

(
Tcur

T
2π

))
(10)

where Tcur denotes the current gradient step, and T represents the total number of gradient steps in
the task training process.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Three continual learning benchmarks are used in the experiments: Seq-CIFAR100-20 randomly
splits the 100 classes of CIFAR100 into 20 sequential tasks. Each task contains five classes. Seq-
MiniImageNet-10 randomly splits the 100 classes in mini-ImageNet (Vinyals et al., 2016) dataset

7
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Table 1: Stability gap evaluation with worse case accuracy. * indicate the difference is statically
significant comparing AAR with NCM.

Dataset Seq-CIFAR100 Seq-Mini-ImageNet CLRS
CE 6.9 ± 0.5 8.5 ± 0.5 25.9 ± 1.3
NCM 13.8 ± 0.7 18.1 ± 0.6 26.6 ± 0.8
ACE 20.5 ± 1.3 9.9 ± 0.3 30.5 ± 1.6
Angular 30.7 ± 1.2 18.0 ± 0.8 39.1 ± 1.0
AAR 32.8* ±0.3 18.2 ± 1.3 40.5* ± 1.1

Table 2: Final accuracy in three continual learning benchmarks.* indicates the performance differ-
ence is statistically significant based on t-test analysis.

Dataset Seq-CIFAR100 Seq-Mini-ImageNet CLRS
CE 37.3 ± 0.9 33.6 ± 0.6 30.0 ± 0.6
NCM 44.9 ± 0.8 35.4 ± 0.6 36.2 ± 0.9
ACE 43.1 ± 0.9 35.9 ± 0.6 31.0 ± 0.5
Angular 43.6 ± 0.4 36.4 ± 0.7 42.3 ± 1.3
AAR 45.4* ±0.3 36.4 ± 1.3 42.9* ± 1.1

into 10 tasks. CLRS25-NC is a real-world remote sensing dataset (Li et al., 2020). It contains 25
land cover classes, which are splitter into 5 tasks. Each tasks contains 5 classes.

We use a ResNet-18 for all datasets following (Mai et al., 2021; Aljundi et al., 2019). Single-head
evaluation is employed with a shared final layer trained for all the tasks. We employ augmentation
of random cropping and flipping and a memory size of 2000. The batch size for incoming data
and memory data are both 50. The learning rate is 0.1. All the experimental results we present are
averages of three runs.

A common metric is the end accuracy after training on T tasks. Using ft to indicate the version of
the model after the t-th overall training iteration, the accuracy of evaluation task Ek at this iteration
is denoted as A(Ek, ft). The end accuracy after N tasks is defined as

end-acct = 1
N

∑k=N
k=1 A(Ek, ft)

We measure the stability gap following De Lange et al.. The stability gap is measured by worse-case
accuracy instead of average accuracy, as follows.

wc-acct =
1

k
A (Ek, ft) +

(
1− 1

k

)
min-accTk

(11)

where min-acc gives a worst-case measure of how well knowledge is preserved in previously ob-
served tasks. More specifically, the average minimum accuracy (min-ACC) at current training task
Tk as the average absolute minimum accuracy over previous evaluation tasks Ei after they have been
learned:

min-accTk
=

1

k − 1

k−1∑
i

min
n

A (Ei, fn) ,∀t|Ti| < n ≤ t (12)

where the iteration number n ranges from after the task is learned until current iteration t.

5.2 RESULTS

As shown in Table 2, techniques including nearest-class-mean classifier, ACE ACE Caccia et al.
(2021) and the proposed adaptive angular replay can all significantly improve the worse-case ac-
curacy, with AAR achieving the largest improvement. Moreover, AAR can maintain the overall
performance and enhance the overall performance, especially in the case of a real-world remote
sensing datasets.
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(a) Angular Replay

(b) Adaptive Angular Replay

Figure 6: Class structure retention in Angular replay and Adaptive Angular Replay. Tsne visualiza-
tion of memory samples before the training of task 2 (left), after a single gradient step of the new
task (middle), and at the end of training (right)

5.3 ABLATION STUDIES

We conduct an ablation study to study the effect of learning features in hypersperirical space and
the effect of fade-in-fade-out scaling schedule. Figure 2 shows that using employing angular replay
can help maintain the class structure. Compared to using a static scaling schedule, the proposed
“fade-int-fade-out“ strategy can further reduce the stability gap and maintain the class structure.

6 CONCLUSION

Rehearsal-based methods play a central role in fighting catastrophic forgetting when learning from
non-stationary data streams. The phenomenon of stability gap raise question on current understand-
ing of how and why rehearsal mitigates forgetting. Our analysis on the internal workings of network
knowledge retention and loss reveals that 1) the stability gap is not confined to the final fully con-
nected layer but affects the entire network and feature space and 2) there is a complete disruption
of class structure in the feature space during task transitions, which can occur after just a single
gradient step. To address the stability challenge in continual learning, we have developed Adap-
tive Angular Experience Replay (AAR), a novel approach that promotes learning in hyperspherical
space. By using feature and weight normalization, Angular ER effectively mitigates the stability
gap and preserves class structure more efficiently than existing methods. Furthermore, our proposed
adaptive scaling strategy complements Angular ER, further reducing the stability gap and improving
overall accuracy in continual learning systems.
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