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Abstract

This paper explores the integration of Large Language Models (llm) with Bayesian Op-
timization (bo) in the domain of chemical reaction optimization with the showcase study
on Buchwald-Hartwig reactions. By leveraging llms, we can transform textual chemi-
cal procedures into an informative feature space suitable for bo. Our findings show that
even out-of-the-box open-source llms can map chemical reactions for optimization tasks,
highlighting their latent specialized knowledge. The results motivate the consideration
of further model specialization through adaptive fine-tuning within the bo framework for
on-the-fly optimization. This work serves as a foundational step toward a unified com-
putational framework that synergizes textual chemical descriptions with machine-driven
optimization, aiming for more efficient and accessible chemical research.
The code is available at: https://github.com/schwallergroup/bochemian

Keywords: Bayesian Optimization, Gaussian processes, Large Language Models, Chem-
ical Reaction Optimization

1. Introduction

Navigating the landscape of chemical reaction optimization is an inherently complex task,
as this space is characterized by numerous variables and parameters that influence each
other in ways both subtle and profound (Taylor et al., 2023). The application of machine
learning (ml) to chemistry has made strides (Coley et al., 2020; Jorner et al., 2021; Schwaller
et al., 2022), yet chemical reaction optimization is a field often constrained by a scarcity
of data. This limitation renders the application of many ml techniques less than optimal.
The answer to these challenges has shifted the spotlight to Bayesian Optimization (bo) as
an efficient strategy in low-data scenarios where data are sparse but the stakes are high
(Shields et al., 2021; Schweidtmann et al., 2018; Eyke et al., 2020; Felton et al., 2021; Häse
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et al., 2021; Pomberger et al., 2022; Müller et al., 2022; Torres et al., 2022; Hickman et al.,
2022; Wigh et al., 2023; Guo et al., 2023).

While bo provides a powerful framework for guiding the search in the vast chemical
space, its effectiveness is deeply entwined with the quality of the representations used for
the reactions (Ranković et al., 2023). The field offers a plethora of ways to encode these,
from one-hot encoding (Chuang and Keiser, 2018) and molecular fingerprints (Rogers and
Hahn, 2010; Schneider et al., 2015; Capecchi et al., 2020; Probst et al., 2022), to quantum
mechanical descriptors (Ahneman et al., 2018; Shields et al., 2021) and data-driven repre-
sentations (Schwaller et al., 2021). Each comes with its set of trade-offs, be it computational
overhead, interpretability, or the required expertise to create and employ them. In this in-
tricate context, one medium stands out for its simplicity, flexibility and depth — natural
language. Chemists have long documented the fine details of reactions in textual formats in
research papers and supplementary materials, creating a rich collection of information vital
for reproducibility and deeper understanding of the nature of chemical reactions (Vaucher
et al., 2020; Guo et al., 2021; White, 2023).

Recent advancements in Large Language Models (llms) have garnered considerable
attention, particularly their utility in a multitude of scientific endeavors (Wei et al., 2022;
Bran et al., 2023; Boiko et al., 2023). These models, initially employed for text encoding and
generation in data-rich problems, have evolved to solve nuanced challenges in data-scarce
fields (Jablonka et al., 2023b). Their capabilities extend beyond mere text generation to
potential reasoning and understanding, making them rational candidates for converting
human-readable text into computationally actionable insights.

The synergy between the Bayesian optimization and large language models is a novel
approach evaluated both in terms of facilitating the usage of bo in highly specialized chem-
istry domains (Jablonka et al., 2023a) or employing llms through in-context learning (Han
et al., 2023) for direct catalyst optimization (Caldas Ramos et al., 2023). Moreover, Cal-
das Ramos et al. (2023) shows that Bayesian optimization coupled with language model
embeddings provides promising results for synthesizing novel catalysts. These approaches
motivate the exploration of this paradigm further.

Natural language plays a dual role in both chemistry, where it is used to describe chem-
ical reactions, and in large language modeling, where models trained on general text gain
expertise in specialized fields, including chemistry. If llms internally maintain a state
capable of understanding chemical language and if chemists have been leveraging natu-
ral language for reaction descriptions in both daily and academic communications, can we
harness the power of llms to transform the ”chemist language” into meaningful and pow-
erful representations for downstream tasks including Bayesian optimization for chemical
reactions?

This study takes up the task of answering this question by rigorously evaluating various
llm representations in the context of Bayesian optimization with Gaussian process surro-
gate models (MacKay et al., 1998; Quinonero-Candela and Rasmussen, 2005) on chemical
reaction optimization data. Specifically, we leverage llms to transform chemical procedures
into a feature space amenable for bo and analyze the intersection of chemical language and
optimization. By demonstrating the efficacy of this hybrid approach in identifying high-yield
chemical reactions, we make a compelling case for the synergy between textual descriptions
of chemical procedures and machine-driven optimization strategies.
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2. Methods

The main focus of this study is to evaluate the approach of using different llm embeddings
in Bayesian optimization for chemical reactions. Traditionally, chemical reactions have been
explored using quantum mechanic (qm) descriptors. Pioneering work in Bayesian optimiza-
tion for chemistry (Shields et al., 2021) utilized these representations in the search space
of Buchwald-Hartwig coupling reactions (Ahneman et al., 2018) showcasing their applica-
bility to navigate the space towards rich high-yielding regions. These descriptors, although
effective, come with computational overhead and require domain-specific expertise for their
calculation and interpretation. Recently, simpler and more computationally efficient repre-
sentations on this dataset have been explored in (Griffiths, 2023). However, there are no
examples of reporting performance of llm embedded features in the domain of Buchwald-
Hartwig reactions.

This dataset provides a set of evaluated chemical compounds, namely three bases, four
ligands, 22 additives, and 15 aryl halides (Ahneman et al., 2018; Sandfort et al., 2020),
which constitute the search space for bo algorithm. Importantly, the dataset comprises
reactions that yield five different products. We leverage this diversity by optimizing our
model for each individual product, thereby partitioning the dataset accordingly. To enable
the analysis, we started by generating a procedure template with placeholders for each of
the chemical compounds used and populating them with associated molecular Simplified
molecular-input line-entry system (smiles) (Anderson et al., 1987; Weininger, 1988; Wang
et al., 2019).

2.1 Data representation

These procedures are then propagated to various language models for text embedding.
We used Massive Text Embedding Benchmark (MTEB) Leaderboard to differentiate five
best performing classes of models, namely bge (Xiao et al., 2023), gte (Li et al., 2023), e5
(Wang et al., 2022), Instructor model (Su et al., 2022) and OpenAI’s text embeddings (ada)
(Neelakantan et al., 2022) and within each class the models containing largest set of pa-
rameters. Only the closed-source ada embeddings were previously used by (Caldas Ramos
et al., 2023). For a comprehensive understanding of each model’s architecture and training,
refer to the Appendinx 4. To compare llm embeddings to more chemistry specialized fea-
tures, we also employ rxnfp and drfp reaction representations. rxnfp (Schwaller et al.,
2021) is a data-driven approach that directly maps reaction SMILES to continuous space by
finetuning transformer models (Vaswani et al., 2017) on reaction type classification tasks.
drfp (Probst et al., 2022) - differential reaction fingerprint, evaluates and hashes the sym-
metric difference of the sets containing the circular molecular n-grams generated from 1)
reactants and reagents and 2) reaction products, resulting in a chemically meaningful and
computationally efficient binary reaction fingerprints. The drfp was the best-performing
chemistry-informed representation in work on additive optimization (Ranković et al., 2023).

2.2 Bayesian Optimization

Bayesian optimization is a powerful framework for optimizing black-box functions by guided
sampling of the points in the search space through balancing the trade off between explo-
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ration and exploitation. The central component of the bo technique is a probabilistic
surrogate model that provides a representation of the underlying function, alongside the
uncertainty into its predictions. The uncertainty estimates can be crucial in the decision-
making process, indicating the model’s confidence in the generated version of the objective
function. To navigate through these uncertainties, Bayesian optimization involves an ac-
quisition function that pinpoints the prospective areas of the design space where the true
objective function could possibly contain optimal values.

We employ Bayesian optimization (bo) to guide the exploration of the search space
towards these promising regions. Our bo setup consists of a Gaussian process surrogate
model with a Matern kernel (ν = 2.5) and expected improvement (ei) acquisition function.
We select the 10 initial points using k-means clustering method (Morishita and Kaneko,
2022) to widely cover the exploration space for the initial stages of bo algorithm. In order
to mimic the real-life scenario of an experimental chemist, we optimize the objective using
Kriging believer batch strategy (Ginsbourger et al., 2010) with five suggestions per iteration.
The optimization runs for 20 iterations and we repeat each configuration over 20 different
seeds to ensure robust results.

3. Results & Discussion

Following the methodology outlined in the Method section, we employed various reaction
representations to embed reactions from the Buchwald-Hartwig dataset. Figure 1 (f) offers
a direct comparison of these representations in their effectiveness to reach the 99th quantile
of the reaction search space. Notably, all examined representations outperform a random
selection approach, underscoring their utility in systematically exploring the reaction land-
scape. Among the llm-based representations we can observe slight differences between the
representations using different language models. Instructor embeddings, that map the pro-
cedures to vectors through the specialized query Represent the chemistry procedure:

are particularly interesting. These embeddings surpass other llm-based approaches but also
closely approximate the performance of more chemically explicit methods - drfp. drfp
maps reactants and products from the reaction SMILES to a binary vector representing
the interplay of diverse reaction elements. They explicitly describe chemical realm, yet
perform only marginally better than llm-based embeddings stemming from encoding reac-
tion procedures. Interestingly, representations derived from simply embedding the reaction
procedure using large language models outperform other data-driven methods coming from
reaction classes fine-tuned transformer models, such as rxnfp. This outcome suggests the
synthesis text-based llm embeddings, are not just semantically rich but also remarkably
informative in the context of chemical reactions. Nevertheless, a rxnfp transformer model
fine-tuned on a more related task could yield improved embeddings.

To further analyze their performance in uncovering high-yielding reactions in the process
of chemical optimization we kept track of the progress of reaching the optimal parameters
for each reaction dataset. We present the bo trajectories in plots (a-e) of Figure 1. For the
sake of brevity and clarity in visualization, we grouped different llm-based representations
under a single category. We can see that even though the maximum achievable yields vary
across the five different reactions in this dataset, (bo paths consistently guide the search
towards these maxima, reaffirming the informativeness of llm-based representations.
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Figure 1: Visualization of Bayesian optimization (BO) paths and reaction representation perfor-
mance. (a-e), BO paths for different reaction representations over 20 iterations using the Kriging
batch strategy, based on 20 repeated seed runs. Each line represents the trajectory of the maximum
value found during optimization, while the shaded regions depict the standard deviation. Language
modeling embeddings for reactions are averaged and presented as a single line for each reaction. (f)
Performance of reaction representations, averaged across five reactions, showcasing the efficacy of
each representation. Presented metric measures the percentage of the 99th quantile achieved during
the optimization. (g) t-SNE visualization of the latent space derived from instructor embeddings.
Data points are colored by yield, with shapes differentiating the reactant aryl halide used in the
reaction.

Additionally, we validate their informativeness through a t-SNE latent space visualiza-
tion. As shown in Figure 1 (g), instructor embeddings are able to distinguish between the
high-yield and low-yield reactions. The yield-based color coding displays evident clusters of
reaction with similar outcomes. Diving deeper into the analysis of the latent space, we ob-
serve chemical significance of its particular organization. More specifically, we can see how
different reactants (marked with different symbols in the plot) influence the yield. Beyond
the yield differentiation, the arrangement of data points in the latent space offers additional
insights. Specifically, the organization of the latent space pushes reactions with the same
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aryl halide closer to each other. This layered insight reinforces the multidimensional content
richness of llm embeddings in capturing both semantic properties and chemical nuances.

4. Conclusion

In this work, we have extended the boundaries of llm applications further into the realm
of chemistry. We showcased that these models, even when deployed in an out-of-the-box
manner, possess the capacity to map complex chemical reactions into a form suitable for
Bayesian optimization. This outcome underscores the notion that llms, despite their gen-
eralist training, harbor a latent specialized knowledge that can be tapped into for various
scientific directions.

The findings naturally lead to the question: If general-purpose embeddings are already
so effective, what can be achieved through specialization through fine-tuning? Future work
aims to incorporate these approaches within the Bayesian optimization framework. The ob-
jective is to evolve the embeddings during the optimization campaign and adapt to different
chemical reactions on the fly.

Moreover, this work serves as a foundational step toward a unified computational frame-
work designed to assist chemists across the complete research cycle—from the conceptualiza-
tion of reaction procedures to their evaluation, vectorization, and subsequent optimization
using bo. Additionally, the ability of llms to not only represent the chemical data well but
also interact effectively with domain experts, sets the stage for a new era of machine-assisted
chemical research that is both more efficient and accessible.
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Appendix A.

Generating reaction procedures

The following reaction setup was used to generate reaction procedures. The template was
populated with associated smiles for each compound for all data points. In comparison to the
original reaction procedure extracted from the supplementary material in (Ahneman et al.,
2018), this procedure keeps only the variable components of the procedure to ensure efficient
mapping of the reaction search space. We found that including the general instructions that
are same for all the data points damages the representations for bo purpose so we therefore
restrict the information in procedures to variable components that describe the search space.
Additional experimentation is needed to assess whether different encoding strategies could
help alleviate this problem. For example, general (and mutual for all the data points in the
search space) instructions could be mapped separately and added (in vector form) to the
design space embeddings.

Reaction Setup

The following solutions were prepared in DMSO:

- Ligand: {ligand_smile}

- Aryl halide: {aryl_halide_smile}

- Additive: {additive_smile}

- Base: {base_smile}

In the future, more information could be added to this synthesis description, including
reaction conditions and amounts. For the Buchwald-Hartwig dataset, the conditions and
amounts were kept constant (Ahneman et al., 2018). The original procedure contains more
fine-grained information.

Original procedure: Reaction Setup The following solutions were prepared in DMSO:
catalyst (0.05 M), aryl halide (0.50 M), toluidine (0.50 M), additive (0.50 M), and base
(0.75 M). These solutions were added to a 384-well source plate (80 µL per well). The
Mosquito HTS liquid handling robot was used to dose each of these solutions (200 nL each)
into a 1536-well plate. The plate was sealed and heated to 60 °C. After 16 h, the plate was
opened and the Mosquito was used to add internal standard to each well (3 µL of 0.0025 M
di-tert-butylbiphenyl solution in DMSO). At that point, aliquots were sampled into 384-well
plates and analyzed by UPLC (Ahneman et al., 2018).

Large language models for embeddings

BGE embeddings

BGE embeddings (Xiao et al., 2023) are derived from the C-Pack suite, a comprehensive
package aimed at advancing the field of general Chinese embeddings. It consists of three
major components: a benchmarking suite (C-MTEB), a large text embedding dataset (C-
MTP), and a family of embedding models (C-TEM), among which BGE is one. Their
state-of-the-art performance on the MTEB benchmark with the subset of English models,
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made them a valid choice for the bo framework. Topping the leader board scores and
exceeding prior models by up to 10% at the time of release, attested to their effectiveness
in various downstream tasks from classification to clustering. These results also suggested
potential applicability in the domain of chemical reaction optimization.

The model behind these embeddings incorporates a diligent training procedure from
pretraining, general purpose fine-tuning to task-specific fine-tuning. The models are pre-
trained on a massive corpus using a tailored algorithm designed to support the embedding
task. The Wudao corpora (Yuan et al., 2021) served as the foundational dataset. The
released English data, however, is reported to be twice the size of Chinese corpora. Follow-
ing the pretraining procedure, the models underwent fine-tuning on C-MTP via contrastive
learning, aimed at discriminating paired texts from negative samples. Further refinements
were made using labeled data from C-MTP employing strategies such as instruction-based
fine-tuning to help the model adapt to different tasks.

GTE embeddings

GTE (Li et al., 2023) is a versatile text embedding model trained with multi-stage
contrastive learning. It capitalizes on advancements in unifying diverse NLP tasks and is
trained over a variety of datasets. With a relatively modest parameter count of 110M,
GTEbase not only outperforms OpenAI’s black-box embedding API (Neelakantan et al.,
2022) but also surpasses models with 10x larger parameters on key benchmarks.

The model employs a deep Transformer encoder, initialized with pretrained language
models like BERT (Devlin et al., 2018). It uses a dual-encoder architecture with mean pool-
ing. GTE is initially pretrained on approximately 800M text pairs from diverse sources,
such as web pages, academic papers and code repositories. Fine-tuning is performed on
smaller, annotated datasets, and incorporates both symmetric and asymmetric tasks. Ad-
ditionaly, the authors applied data sampling and improved contrastive loss mechanisms for
effective training.

E5 embeddings

E5 embeddings (Wang et al., 2022) emanate from a contrastive training approach with
a large-scale dataset named CCPairs. These embeddings are designed for general-purpose
tasks like retrieval, clustering, and classification. E5 outperforms models with 40x more
parameters when fine-tuned on the MTEB benchmark. The model is pretrained on their
own curated CCPairs constructed by combining various semistructured data sources such
as CommunityQA, Common Crawl and Scientific paper. Additionally they use biencoder
architecture with a pre-trained Transformer encoder for text embeddings. In-batch nega-
tives are employed for contrastive loss. Further training is conducted on labeled data from
diverse tasks. Moreover they apply hard negatives and knowledge distillation techniques
and score embeddings using a cosine similarity scaled by a temperature parameter.

Instructor embeddings

instructor (Su et al., 2022) is a multi-task text embedding model trained with task-
specific instructions. It is built on the GTR model family and designed to generate task-
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and domain-specific embeddings without further training. instructor achieves state-of-
the-art performance on 70 diverse datasets, improving the average score by 3.4% compared
to previous best models.

It utilizes GTR models (Ni et al., 2021) as the backbone encoder. Embeddings are gen-
erated by concatenating input text and task instructions, followed by mean pooling. For the
training objective, it uses a text-to-text problem formulation for various tasks, maximizing
the similarity between positive pairs and minimizing it for negative pairs. Additionally, the
authors apply bidirectional in-batch sampled loss. The models are trained on a curated
MEDI dataset, which comprises 330 tasks annotated with human-written instructions.

Ada embeddings

Ada embeddings (Neelakantan et al., 2022) stem from contrastive pretraining on a large
scale showcasing that this procedure can produce high-quality text and code embeddings.
The model is trained unsupervised and achieves state-of-the-art results in various tasks. It
is also the only closed-source model evaluated in this study.

The embeddings generate a relative improvement of 4% and 1.8% over the previous
highest-scoring unsupervised and supervised models in linear-probe classification. In seman-
tic search, they show a relative improvement of 23.4%, 14.7%, and 10.6% on MSMARCO,
Natural Questions, and TriviaQA. The code embeddings improve by 20.8% on code search.

The training procedure involves a Transformer encoder to map text and code to vector
representations. The authors employ special token delimiters for a more stable training
together with contrastive learning with in-batch negatives. The model is initialized with
other pretrained models to achieve optimal performance. The training is done on naturally
occurring paired data for text and uses (text, code) pairs for code. It is noted, however, that
large batch sizes are crucial for optimal performance which could hinder general applicability
for groups without extensive computational resources.

Additional analysis of the latent space

Figure 2 shows the remaining components of the reaction, displayed using different shape
markers in the scatter plot of t-SNE latent space. While it is difficult to uncover the
structural properties of the latent space for different additives, the bases, similarly to aryl
halide presented in the main part of the paper, show clear separation in the space, however
still dispersed across. These properties are not as present for the latent organization of
different ligands and additives. Regardless, the positioning of bases and reactants already
provides relevant information in estimating how well the embeddings decipher important
chemical information from the textual procedures.

Bayesian optimization framework

Gaussian process prior

The function f(x) is modeled as a Gaussian Process (gp) with mean µ(x) and covariance
K(x, x′).

f(x) ∼ GP(µ(x),K(x, x′))
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Figure 2: t-SNE visualized instructor embeddings, colored by yield. Each of the plots show
different reaction components (ligand, additive, base), while the data points are represented with
specific shape based on the unique values of the used reaction components.

Posterior update

After observing some data D = {(xi, yi)}ni=1, the posterior distribution of the function is
updated:

f(x)|D ∼ N (µn(x), σ2
n(x))

where µn(x) and σ2
n(x) can be computed using the kernel matrix K and the observed data.

Acquisition Function

The acquisition function α(x) guides the next sampling point.

xnext = arg maxα(x)

Popular acquisition functions include Expected Improvement (ei), Probability of Improve-
ment (pi), and Upper Confidence Bound (ucb).

• Expected Improvement (EI):

αEI(x) = E[f(x) − f(xbest)|D]

• Probability of Improvement (PI):

αPI(x) = P (f(x) ≥ f(xbest) + ϵ)

• Upper Confidence Bound (UCB):

αUCB(x) = µn(x) + κσn(x)

Optimization loop

The BO loop iteratively updates the gp model and selects new points based on the acqui-
sition function.

xnext = arg maxα(x|D)

D = D ∪ {(xnext, f(xnext))}
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Figure 3: bo paths for instructor embeddings over five different reactions and 20 seed runs (averages
across total of 100 different runs). Sequential optimization iterates for 100 steps, at each selecting
only one point to evaluate. In contrast, with batch optimization we take a selection of five points at
each step and run the whole optimization process shorter (20 iterations).

Batch strategy versus sequential optimization

In order to emulate the typical scenario evolving in a chemical lab, Bayesian optimization
is often trained to propose batch of experiments instead of a single point. While this is
a highly beneficial strategy for the laboratory, where parallel experiments could be run,
therefore saving time and utilizing resources optimally, it can have negative impact on the
Bayesian optimization surrogate models. Batching using Kriging believer strategy operates
on predicted values as true evaluations and retrains the surrogate model with predictions
until the batch is not filled. The model is eventually retrained with the addition of actual
observation once the batch is evaluated. In our experiments, batching minimally degrades
the optimization procedure observed by reaching similar outcomes with either strategy. On
the contrary, batch optimization covers the more realistic chemical optimization scenarios
and its facilitation is an important aspect when thinking of employing Bayesian optimization
in the real world.

Averaged performance metrics across seed runs for different configurations

Quant. 99 [%] Quant. 95 [%] Train/R2 Val./R2 Train/nlpd
Repr. Rxn batch

ada

1
1.0 0.78 ± 0.07 0.66 ± 0.02 0.97 ± 0.03 0.56 ± 0.04 2.45 ± 1.67
5.0 0.78 ± 0.15 0.67 ± 0.05 0.98 ± 0.02 0.50 ± 0.08 1.24 ± 2.29

2
1.0 0.99 ± 0.03 0.66 ± 0.03 0.84 ± 0.06 0.22 ± 0.53 3.52 ± 0.13
5.0 0.87 ± 0.17 0.59 ± 0.10 0.85 ± 0.07 0.39 ± 0.12 3.24 ± 1.17

3
1.0 0.72 ± 0.08 0.64 ± 0.05 0.83 ± 0.07 0.45 ± 0.05 3.15 ± 0.22
5.0 0.74 ± 0.08 0.59 ± 0.05 0.92 ± 0.09 0.40 ± 0.08 1.05 ± 2.52

4
1.0 0.56 ± 0.26 0.57 ± 0.09 0.89 ± 0.06 0.34 ± 0.11 2.88 ± 1.55

Continued on next page
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Quant. 99 [%] Quant. 95 [%] Train/R2 Val./R2 Train/nlpd
Repr. Rxn batch

5.0 0.47 ± 0.33 0.48 ± 0.12 0.96 ± 0.06 0.34 ± 0.10 0.17 ± 2.40

5
1.0 0.47 ± 0.17 0.59 ± 0.06 0.93 ± 0.06 0.18 ± 0.09 3.40 ± 0.46
5.0 0.58 ± 0.20 0.67 ± 0.08 0.96 ± 0.05 0.07 ± 0.13 2.65 ± 1.69

bge

1
1.0 0.86 ± 0.22 0.58 ± 0.05 0.90 ± 0.10 0.22 ± 0.17 3.36 ± 0.32
5.0 0.54 ± 0.16 0.47 ± 0.10 0.99 ± 0.02 0.23 ± 0.07 -0.99 ± 1.50

2
1.0 1.00 ± 0.00 0.59 ± 0.02 0.87 ± 0.03 0.13 ± 0.10 3.35 ± 0.13
5.0 0.96 ± 0.07 0.54 ± 0.06 1.00 ± 0.00 -0.41 ± 0.37 -1.58 ± 0.04

3
1.0 0.47 ± 0.17 0.50 ± 0.07 0.86 ± 0.08 0.09 ± 0.23 2.90 ± 0.21
5.0 0.55 ± 0.18 0.52 ± 0.06 0.87 ± 0.14 -0.04 ± 0.41 1.02 ± 2.60

4
1.0 0.59 ± 0.07 0.52 ± 0.06 0.96 ± 0.05 0.29 ± 0.17 1.67 ± 2.18
5.0 0.76 ± 0.20 0.62 ± 0.10 0.92 ± 0.05 0.32 ± 0.13 2.73 ± 1.20

5
1.0 0.66 ± 0.06 0.70 ± 0.06 0.95 ± 0.05 -0.55 ± 0.44 1.41 ± 2.47
5.0 0.62 ± 0.12 0.70 ± 0.14 0.95 ± 0.05 -0.03 ± 0.30 2.85 ± 1.44

drfp

1
1.0 0.88 ± 0.05 0.71 ± 0.04 1.00 ± 0.00 0.44 ± 0.06 0.64 ± 1.87
5.0 0.74 ± 0.09 0.70 ± 0.04 0.99 ± 0.06 0.18 ± 0.66 -1.20 ± 1.16

2
1.0 1.00 ± 0.00 0.67 ± 0.03 0.99 ± 0.02 0.45 ± 0.09 0.56 ± 2.00
5.0 0.99 ± 0.03 0.64 ± 0.03 0.98 ± 0.05 0.24 ± 0.53 1.80 ± 1.42

3
1.0 0.88 ± 0.06 0.80 ± 0.03 0.91 ± 0.08 0.06 ± 1.00 2.53 ± 0.35
5.0 0.86 ± 0.06 0.80 ± 0.02 0.98 ± 0.06 0.29 ± 0.63 -1.50 ± 1.81

4
1.0 0.96 ± 0.09 0.82 ± 0.04 0.99 ± 0.03 0.33 ± 0.19 -0.96 ± 1.53
5.0 0.86 ± 0.13 0.71 ± 0.06 0.98 ± 0.04 0.41 ± 0.20 -0.28 ± 1.95

5
1.0 0.86 ± 0.08 0.74 ± 0.07 1.00 ± 0.00 0.03 ± 0.31 -1.26 ± 0.06
5.0 0.84 ± 0.11 0.72 ± 0.06 1.00 ± 0.00 -0.08 ± 0.46 -1.25 ± 0.09

e5

1
1.0 0.66 ± 0.15 0.60 ± 0.07 0.93 ± 0.04 0.38 ± 0.29 3.19 ± 0.25
5.0 0.68 ± 0.16 0.57 ± 0.08 0.95 ± 0.07 0.45 ± 0.11 2.15 ± 1.83

2
1.0 0.93 ± 0.12 0.65 ± 0.06 0.79 ± 0.20 -0.37 ± 0.79 3.48 ± 0.41
5.0 0.98 ± 0.06 0.65 ± 0.04 0.91 ± 0.16 0.06 ± 0.56 2.13 ± 1.98

3
1.0 0.64 ± 0.11 0.60 ± 0.05 0.91 ± 0.04 0.21 ± 0.13 2.78 ± 0.28
5.0 0.52 ± 0.12 0.55 ± 0.05 0.95 ± 0.08 0.19 ± 0.11 -0.08 ± 2.49

4
1.0 0.63 ± 0.30 0.60 ± 0.09 0.85 ± 0.09 0.26 ± 0.17 3.42 ± 0.28
5.0 0.66 ± 0.25 0.56 ± 0.07 0.90 ± 0.09 0.33 ± 0.12 2.78 ± 1.53

5
1.0 0.64 ± 0.14 0.56 ± 0.09 0.98 ± 0.04 -0.44 ± 0.59 1.18 ± 2.20
5.0 0.66 ± 0.12 0.56 ± 0.08 0.97 ± 0.03 -0.38 ± 0.43 1.80 ± 2.12

gte

1
1.0 0.50 ± 0.11 0.53 ± 0.07 0.86 ± 0.19 0.31 ± 0.43 3.13 ± 1.41
5.0 0.49 ± 0.17 0.52 ± 0.08 0.95 ± 0.05 0.39 ± 0.17 2.10 ± 2.06

2
1.0 0.88 ± 0.25 0.58 ± 0.09 0.87 ± 0.12 -0.08 ± 0.77 3.12 ± 1.10
5.0 0.90 ± 0.17 0.56 ± 0.08 0.92 ± 0.04 0.42 ± 0.08 2.80 ± 1.51

3
1.0 0.65 ± 0.10 0.55 ± 0.11 0.84 ± 0.08 0.34 ± 0.23 3.07 ± 0.31
5.0 0.63 ± 0.12 0.54 ± 0.11 0.85 ± 0.10 0.08 ± 0.53 2.15 ± 2.06

4
1.0 0.72 ± 0.14 0.64 ± 0.04 0.89 ± 0.08 0.31 ± 0.20 3.40 ± 0.22

Continued on next page
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Quant. 99 [%] Quant. 95 [%] Train/R2 Val./R2 Train/nlpd
Repr. Rxn batch

5.0 0.71 ± 0.15 0.66 ± 0.07 0.90 ± 0.08 0.23 ± 0.22 2.62 ± 1.84

5
1.0 0.61 ± 0.17 0.63 ± 0.06 0.97 ± 0.03 -0.48 ± 0.56 3.20 ± 0.32
5.0 0.61 ± 0.19 0.62 ± 0.08 0.97 ± 0.03 -0.42 ± 0.56 2.72 ± 1.39

ins.

1
1.0 0.79 ± 0.10 0.76 ± 0.08 0.93 ± 0.04 0.21 ± 0.21 3.03 ± 1.08
5.0 0.68 ± 0.21 0.59 ± 0.16 0.95 ± 0.03 0.17 ± 0.20 2.57 ± 1.73

2
1.0 0.98 ± 0.06 0.60 ± 0.06 0.88 ± 0.06 0.30 ± 0.22 3.36 ± 0.26
5.0 0.98 ± 0.17 0.59 ± 0.09 0.90 ± 0.07 0.21 ± 0.34 2.17 ± 2.25

3
1.0 0.65 ± 0.12 0.69 ± 0.03 0.93 ± 0.07 -0.04 ± 0.51 0.92 ± 2.51
5.0 0.64 ± 0.31 0.69 ± 0.15 0.89 ± 0.06 0.34 ± 0.08 2.45 ± 1.48

4
1.0 0.89 ± 0.18 0.67 ± 0.10 0.92 ± 0.06 -0.30 ± 0.64 2.46 ± 1.78
5.0 0.76 ± 0.17 0.66 ± 0.06 0.95 ± 0.05 0.36 ± 0.23 2.33 ± 1.65

5
1.0 0.86 ± 0.17 0.73 ± 0.07 0.98 ± 0.03 -0.48 ± 0.40 0.61 ± 2.16
5.0 0.81 ± 0.23 0.72 ± 0.07 0.99 ± 0.04 -0.19 ± 0.39 -0.50 ± 1.79

rs

1
1.0 0.17 ± 0.13 0.14 ± 0.05 / ± / / ± / / ± /
5.0 0.17 ± 0.13 0.14 ± 0.05 / ± / / ± / / ± /

2 5.0 0.09 ± 0.09 0.12 ± 0.04 / ± / / ± / / ± /
3 5.0 0.16 ± 0.11 0.14 ± 0.04 / ± / / ± / / ± /
4 5.0 0.09 ± 0.10 0.14 ± 0.06 / ± / / ± / / ± /
5 5.0 0.07 ± 0.09 0.12 ± 0.05 / ± / / ± / / ± /

rxnfp

1
1.0 0.49 ± 0.04 0.45 ± 0.04 0.69 ± 0.06 0.49 ± 0.05 3.77 ± 0.10
5.0 0.55 ± 0.08 0.43 ± 0.05 0.79 ± 0.09 0.52 ± 0.03 3.61 ± 0.15

2
1.0 0.58 ± 0.13 0.45 ± 0.04 0.61 ± 0.07 0.45 ± 0.08 3.81 ± 0.08
5.0 0.46 ± 0.12 0.41 ± 0.04 0.57 ± 0.07 0.38 ± 0.08 3.83 ± 0.09

3
1.0 0.54 ± 0.06 0.41 ± 0.04 0.90 ± 0.05 0.32 ± 0.03 3.02 ± 0.12
5.0 0.51 ± 0.14 0.42 ± 0.11 0.92 ± 0.05 0.25 ± 0.13 2.90 ± 0.22

4
1.0 0.72 ± 0.13 0.58 ± 0.04 0.93 ± 0.05 0.23 ± 0.11 3.33 ± 0.35
5.0 0.73 ± 0.12 0.58 ± 0.07 0.92 ± 0.04 0.19 ± 0.08 3.43 ± 0.25

5
1.0 0.66 ± 0.12 0.67 ± 0.02 0.71 ± 0.08 0.26 ± 0.13 4.15 ± 0.15
5.0 0.57 ± 0.09 0.75 ± 0.06 0.72 ± 0.10 0.27 ± 0.08 4.10 ± 0.24

Table 1: Summary of optimization performance metrics across different reaction representations
and batch strategies: The table presents averaged metrics for Quantile 99% and 95% values, indica-
tive of the highest-performing regions discovered during the optimization. Additionally, R2 scores
and negative log-probability density (NLPD) are reported. The training set is extended at each step
of the optimization with evaluated data points. We report results at the end of the optimization
routine with 100 new points selected during optimization, while the validation set comprises the re-
maining design space, slightly under 700 points. Higher R2 and quantile percentages suggest better
optimization efficacy and model generalization, while lower NLPD values indicate a more accurate
and well-calibrated probabilistic model.
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