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Abstract

Visual processing begins with a feedforward sweep that
creates an initial perceptual representation, which is then
refined through recurrent (lateral and feedback) process-
ing. While recurrent signals in visual regions are abun-
dant, their functional role in perceptual inference remains
largely unclear. Using functional magnetic resonance
imaging (fMRI) and artificial neural network (ANN) model-
ing, we aimed to examine whether recurrence modulates
how images are represented in early and late visual re-
gions. Participants were briefly presented with novel am-
biguous images that were challenging to categorize. A
visual mask followed these images either immediately or
after a delay, thereby blocking or allowing for recurrent
processing. We found that activity in early visual regions
was best encoded by early layers of a convolutional neu-
ral network. These representations could no longer be
observed when images were immediately masked. Con-
versely, activity in later ventral and dorsal visual regions
was best encoded by later layers, and remained robust in
the immediate masking condition. Comparing the brain
alignment of ANNs with different recurrent dynamics re-
vealed that activity in later ventral regions under delayed
masking was best explained by a model with both lateral
and feedback recurrence, suggestive of a role for recur-
rence in perceptual inference. The general strengthening
of feature-specific representations with delayed masking
likely reflects an interplay between early and late visual
cortex, where lateral recurrence may help denoise low-
level features to form more accurate high-level interpre-
tations, which in turn may help disambiguate low-level
features through feedback.

Keywords: perceptual inference; lateral and feedback recur-
rence; visual feature hierarchy

Introduction

We do not always immediately understand what we see.
When objects are obscured by noise (e.g., Johnson & Ol-
shausen, 2005) or otherwise deviate from what we commonly
experience (e.g., Spaak et al., 2022), their categorization
may require extended processing time. This behavioral phe-
nomenon is mirrored in the brain: While object-selective neu-
ral responses to non-challenging visual input can be decoded

as early as 100 ms after stimulus onset (Liu et al., 2009), de-
coding of more challenging input emerges substantially later
(Tang et al., 2014). One interpretation of this extended pro-
cessing time is that the initial feedforward sweep of information
provides an immediate first interpretation of the input (Van-
Rullen, 2008). However, this initial interpretation may be insuf-
ficient for challenging input, necessitating multiple iterations of
recurrent processing to refine the interpretation over time (van
Bergen & Kriegeskorte, 2020; Thorat et al., 2021).

Two distinct lines of research have investigated different
computational aspects of recurrent processing in visual per-
ception.

The first line demonstrates that for challenging images,
high-level category information emerges only later in time
(Tang et al., 2018; Kar et al., 2019; Rajaei et al., 2019). These
studies found that behavioral and neural responses to chal-
lenging images are better predicted by ANNs incorporating lat-
eral recurrence, a mechanism that enhances a signal within a
brain region or network layer through integration across noisy
neighbouring neurons (Lindsay, 2021). However, these stud-
ies primarily focused on high-level features at higher process-
ing stages, leaving open questions about the role of early vi-
sual regions and their interactions with higher visual regions
during perceptual inference. Understanding this interplay is
crucial, as lateral recurrence in early visual areas has been
hypothesized to enhance signal quality for subsequent higher-
level processing, while higher-level representations might si-
multaneously shape early visual processing through top-down
influences.

The second line demonstrates that representations in ear-
lier visual regions can become tuned to higher-level features
during later stages of processing (Schwiedrzik & Freiwald,
2017; Uran et al., 2022; Richter et al., 2024). This ’fea-
ture inheritance’ could potentially be the result of feedback
recurrence from higher to lower visual regions, thus biasing
lower-level processing based on higher-level knowledge—-
effectively testing hypotheses about object categories against
incoming sensory input (Lee & Mumford, 2003).

Bringing together these two lines raises the question of
whether and how recurrent computations within and between
the different stages of visual processing may jointly solve ob-
ject recognition for challenging input.

To address this question, we conducted an fMRI study ex-
amining how early and later visual regions represented chal-



Figure 1: Stimuli and trial structure. A) Example images of hybrid objects created using Midjourney, combining either two
inanimate or animate object categories. B) A 50 ms hybrid stimulus was followed by a 300 ms phase-scrambled mask, presented
either directly (immediate mask) or after a 300 ms grey screen (delayed mask). On probe trials, participants indicated via button
press which of two presented object categories matched the hybrid stimulus.

lenging visual input that could be processed either briefly (pre-
cluding recurrent interactions) or more extensively (allowing
recurrent interactions), using a backward masking approach.

We analyzed stimulus features at different levels of abstrac-
tion, using the ANN AlexNet trained on ecologically relevant
objects (Mehrer et al., 2021). Additionally, we analyzed stim-
ulus features emerging from networks with different recurrent
dynamics, using variants of the ANN BLT (Thorat et al., 2023).
As challenging stimuli, we created ambiguous (animate or
inanimate) images that combined features from two distinct
categories (e.g., a goat-cat with slanted cat eyes and goat
horns; Fig. 1A). These novel hybrid stimuli were designed
to prevent rapid recognition based on prior knowledge. To
manipulate the degree of recurrent processing, we employed
backward masking using phase-scrambled images. These
masks are thought to broadly activate visual cortex, thereby
interfering with ongoing stimulus-specific processing (Macknik
& Martinez-Conde, 2008). We reasoned that when the mask
was presented shortly after image onset, recurrent process-
ing is largely prevented, while delayed mask onset allows for
recurrent processing to occur.

Results
Participants performed an object categorization task while un-
dergoing fMRI. On each trial, they viewed an image contain-
ing either an animate or inanimate hybrid object for 50 ms. A
phase-scrambled mask of 300 ms followed the hybrid stimu-
lus either directly (immediate mask) or after a 300 ms grey
screen (delayed mask). The temporal constraints of the visual
system’s neurophysiology and anatomy (Thorpe, 1990), com-
bined with evidence from pharmacological perturbation (Kar
& DiCarlo, 2021), suggest that feedback modulates stimulus
processing in inferior temporal cortex after 150 ms. Since
the immediate mask appears 50 ms after stimulus onset and
requires 100 ms to reach high-level regions via the feedfor-

ward sweep, it arrives at these regions at the critical mo-
ment to disrupt emergent recurrent processing of the stimulus,
whereas the delayed mask arrives only after some feedback
processing has already occurred. Participants were occasion-
ally prompted to indicate which of two object categories was
present in the hybrid stimulus (Fig. 1B).

Delayed mask onset facilitates behavioural task
performance

The categorization accuracy was well above chance level in
both masking conditions (immediate mask: 70.2% accuracy,
t30 = 18.47, p < 0.001, BF10 > 100; delayed mask: 81.5%
accuracy, t30 = 21.12, p < 0.001, BF10 > 100), indicating
that participants not only engaged with the task but also re-
liably perceived and categorized the hybrid stimuli. Delaying
the mask onset by 300 ms improved both accuracy (11.2%
increase, t30 = 7.23, p < 0.001, BF10 > 100; Fig. 2A) and
response time (81 ms speed up, t30 = 3.89, p < 0.001, BF10
= 56.52; Fig. 2B). Importantly, since hybrid stimuli were pre-
sented for the same duration in both conditions, the perfor-
mance benefits observed in the delayed mask condition sug-
gest that the additional processing time before mask onset
may have led to improved category representations.

Delayed mask onset increases visual cortical
activity

Using participant-level general linear models, we estimated
condition-specific cortical activity during immediate and de-
layed mask trials. A group-level ANOVA revealed stronger ac-
tivation for delayed versus immediate masks across two broad
clusters in bilateral visual regions (Fig. 3A), extending from V2
along both the ventral and dorsal streams. This widespread
increase of visual activity aligns with the behavioral benefits
of delayed masking, suggesting that the immediate mask suc-
cessfully interrupted visual processing while the delayed mask



Figure 2: Object recognition performance for hybrid images.
A) Accuracy and B) response time for immediate (purple)
and delayed mask (orange) conditions. Density plots: par-
ticipant distributions, grey lines: within-participant means, cir-
cles: means, error bars: confidence intervals, *p < 0.001.

permitted continued processing.
To quantify effects across the visual processing hierarchy,

we selected five regions of interest (ROI; Fig. 3B) in line with
the visual system as defined in the multimodal parcellation by
Glasser et al. (2016): primary visual cortex (V1), early visual
cortex (EVC; V2-V4), and ventral stream (V8 to ventromedial
visual cortex), which process increasingly abstract visual fea-
tures. Additionally, we included MT+ (V3CD to medial superior
temporal area) and the dorsal stream (V3A to intraparietal sul-
cus) as control regions, which are less commonly implicated in
processing of static images. From each ROI, we selected the
1,000 most image-responsive vertices per hemisphere, iden-
tified using an independent localizer experiment.

Analyzing mean activation over these image-sensitive ver-
tices corroborated the whole-cortex findings, showing stronger
activation for the delayed versus immediate mask condition
across all ROIs (pFDR < 0.001; Fig. 3C). V1 showed a small
but significant modulation despite not being detected in the
whole-cortex analysis, likely because cluster-based correction
is less sensitive to the weaker and more diffuse activity differ-
ence in V1.

Delayed mask onset enhances feature tuning in
visual cortex

To investigate what kind of visual information is present in
the brain under different masking conditions, we extracted
image representations at different levels of abstraction from
AlexNet, a convolutional neural network that hierarchically
processes low-level image features in early layers and high-
level image features in late layers Cichy et al. (2016). For
top image-responsive vertices of each ROI, we trained cross-
validated ridge regression models to predict single-trial BOLD
estimates from layer-specific AlexNet activations to hybrid im-
ages. Model performance was assessed by means of the neu-
ral predictivity of ANN features—referred to as brain score—
by correlating predicted with observed BOLD estimates in

held-out test data, averaged across top image-responsive ver-
tices per ROI.

Across all layers, the delayed mask yielded higher brain
scores than the immediate mask in all ROIs but MT+ (main
effect of mask: pFDR < 0.05; Fig. 4A), aligning with our uni-
variate findings of enhanced visual processing for the delayed
mask. This suggests that extended processing time enhanced
the representations of visual features in both lower-order and
higher-order visual regions.

For V1 and EVC, the immediate mask condition showed
near-zero encoding accuracy across all layers, indicating an
almost complete lack of stimulus information in early visual
regions. In contrast, ventral and dorsal stream ROIs still con-
tained significant stimulus information and tuning to high-level
image features when the stimulus was masked immediately.

When the stimulus was masked after a delay, there was
strong stimulus information in both early (V1 and EVC) and
late (ventral and dorsal) visual regions. Activity in early visual
regions could best be encoded based on early AlexNet lay-
ers, whereas the ventral and dorsal stream regions had peak
performance for the final AlexNet layer.

Delayed mask onset improves ventral stream
alignment with recurrent networks
To investigate whether the increase in feature tuning with the
delayed mask can be attributed to recurrent processing, we
compared brain scores across networks exhibiting different
recurrent dynamics. For this purpose, we utilized variants
of the object classification network BLT, developed and pre-
trained on ecologically relevant objects (Mehrer et al., 2021)
by Thorat et al. (2023). BLT with its four hidden layers was
chosen because networks with fewer layers have been shown
to better capture hierarchical processing along the visual path-
ways (e.g., Nonaka et al., 2021). We included a network with
only feedforward connections, a network with additional lateral
(within-region) recurrence, a network with additional feedback
(higher-to-lower-region) recurrence, and a network with both
lateral and feedback recurrence. Activations for feedforward
networks were extracted from the initial and only timestep, as
these networks do not exhibit temporal dynamics. In contrast,
activations for recurrent networks were extracted from the final
10th timestep to capture the influence of recurrence over ex-
tended processing time. Brain scores were evaluated on the
networks’ dedicated V1 layer for the V1 ROI, V2 layer for the
EVC ROI, and IT layer for the ventral stream, MT+ and dorsal
stream ROIs.

Focusing on the general benefit of no recurrence versus
(lateral and feedback) recurrence, we found significant main
effects of masking across all ROIs but MT+ (p < 0.05) and a
significant main effect of network for the ventral stream (F (1,
33) = 5.1, p = 0.031). Specifically, the increase in brain scores
for the recurrent network compared to the feedforward net-
work under delayed masking, as shown in Fig. 4B, suggests
that lateral and feedback recurrence together better account
for activity in this higher visual region than a purely feedfor-
ward network.



Figure 3: BOLD responses to immediate vs. delayed mask conditions. A) Whole-cortex contrast. Black outline: cluster at p
< 0.05. B) Five visual cortex ROIs were defined from the parcellation by Glasser et al. (2016). C) Mean BOLD response in
immediate (purple) and delayed (orange) mask conditions over top image-responsive vertices per ROI. Density plots: participant
distributions; circles: means; error bars: ±SEM; *pFDR < 0.001 between conditions.

Discussion
Visual recognition of objects under challenging conditions
(e.g., occlusion) has been found to rely on recurrent process-
ing in visual cortex (Tang et al., 2014). Previous studies have
shown that visual cortex is modulated by both lateral con-
nections within a region (Gilbert & Wiesel, 1989; Self et al.,
2014) and feedback connections from later regions (Gilbert &
Li, 2013; Roelfsema & de Lange, 2016), but the contribution
of these connections to perceptual inference is not well under-
stood. Here, we set out to elucidate whether and how recur-
rent processing transforms feature representations across the
visual hierarchy.

Increased visual activity for delayed masking as a
marker of recurrent processing

When stimuli were masked after a delay, compared to imme-
diately, this led to a small activity increase in early visual and
a large activity increase in later visual areas. As the only
difference between immediate and delayed mask conditions
pertained to the stimulus-onset asynchrony between stimu-
lus and mask, with sensory input being otherwise identical
across conditions (50 ms stimulus, 300 ms mask), we inter-
pret this activity difference as reflecting sustained processing
of stimulus information—a hallmark of recurrent processing.
This interpretation is supported by our finding that networks

with recurrent dynamics reflect activity in higher visual regions
better than purely feedforward networks under delayed mask-
ing. Additionally, this aligns with previous electrophysiological
evidence of sustained activity between image offset and mask
onset (Bacon-Macé et al., 2005), neuroimaging studies show-
ing increased visual activity with delayed mask onset (Green
et al., 2005), and computational models demonstrating recur-
rent involvement in visual processing from 100 ms after image
onset (Loke et al., 2022).

One concern with the mask design might be that an im-
mediate mask disrupts the excitatory stimulus offset response
typically seen for images, thereby interfering with bottom-up
processing. Our design mitigated this concern by implement-
ing a 300 ms interval between image and mask offset, shown
to leave the offset response intact (Macknik & Livingstone,
1998). Another concern might be that the predictability of
the delayed mask (inferred from the absence of an immediate
mask) reduces its effectiveness by suppressing it as a distrac-
tor. However, our findings showed no significant differences
in brain scores between immediate and delayed mask con-
ditions when encoding AlexNet features of the mask instead
of the stimulus (pFDR > 0.05 for all ROIs), suggesting similar
processing of the mask in both conditions with minimal dif-
ferences in attention. The exclusive involvement of visual re-
gions in the immediate versus delayed mask contrast further



Figure 4: Cross-validated brain scores averaged across top image-responsive vertices using features from A) different AlexNet
layers and B) BLT variants with different recurrent dynamics (B: feedforward connections, BL: feedforward and lateral recurrent
connections, BT: feedforward and feedback recurrent connections, BLT: feedforward, lateral and feedback recurrent connec-
tions), shown for immediate (purple) and delayed (orange) mask conditions over ROIs. Error bands and bars: ±SEM.

indicates that our paradigm primarily engaged recurrent pro-
cesses throughout the visual cortex rather than higher-order
cognitive control.

Recurrent processing in early and later visual
cortex

Unlike later visual regions, early visual regions showed no
sensitivity to image-specific features when recurrent process-
ing was interrupted immediately. This suggests that the mask
primarily interfered with processing in early regions, which
could be explained by our use of phase-scrambled masks that
preserve low-level but not higher-level image statistics, po-
tentially making them more disruptive to early visual regions.
However, the robust brain scores in later visual regions and
above-chance behavioral recognition even under immediate
masking indicate that early visual regions must have initially
represented low-level features, as feature and response pro-
cessing in later regions build on this input. The brief and weak
initial presence of features in early regions is likely obscured
in the summed nature of the BOLD signal by the prolonged
mask input.

The smaller, yet evident impact of the immediate mask on

later visual regions suggests that these regions also benefited
from continued recurrent processing. There are three poten-
tial mechanisms that could account for this benefit. First, lat-
eral recurrence in these later regions could denoise higher-
level representations, as proposed by Tang et al. (2018). Sec-
ond, lateral recurrence in early regions may produce a de-
noised signal that is easier for later regions to process. Third,
feedback recurrence may allow later regions to test their inter-
pretations against early-region representations, enabling con-
tinuous refinement of perceptual inference.

One potential implication of the immediate mask mainly in-
terfering with early regions could be that it also drives the be-
havioral drop in performance. This explanation is in line with
recent research showing a link between masking effects in
mouse V1 and behaviour (Gale et al., 2024), yet further re-
search is needed to probe the importance of early-region re-
currence for perceptual behaviour more explicitly.

Recurrent processing strengthens hierarchical
feature encoding

When masking with a delay, early regions showed increased
sensitivity to lower-level features and later brain regions to



higher-level features. This pattern mirrors the hierarchical fea-
ture encoding typically found along the visual pathway (Kravitz
et al., 2013) and commonly observed when modelling brain
responses with ANN representations (Mehrer et al., 2021).
Therefore, the primary role of lateral and feedback recurrence
appears to be improving feature representations over time, ul-
timately enabling correct object categorization.

In V1, we may not have observed the low-level feature en-
coding typically seen in fMRI and CNN layer alignment stud-
ies because our hybrid images were presented more briefly
while being more challenging to process than the familiar ob-
jects used in previous research. For our stimuli, stronger fea-
ture tuning in V1 could require extended processing, involving
sustained bottom-up drive and feedback from high-level brain
regions, which may only reach V1 later.

Our results align with feedback recurrence models where
high-level interpretations are translated to low-level features
to test compatibility with sensory input, supported by studies
showing an enhanced representation of low-level features that
are predicted by the observer (Kok et al., 2012) or facilitated by
semantic knowledge (Doerig et al., 2022). Other studies have
found that early brain regions signal the error about a predic-
tion made based on higher-level information (Schwiedrzik &
Freiwald, 2017; Uran et al., 2022; Richter et al., 2024), show-
ing feature inheritance. The apparent absence of such feature
inheritance in our study might reflect differences in the un-
derlying inference process. In earlier work, participants could
typically develop strong expectations about upcoming stimuli,
leading to robust top-down predictions of image content. In
contrast, our experiment used ambiguous stimuli where par-
ticipants could only iteratively build and revise expectations
over time, potentially resulting in weaker and less precise top-
down predictions.

Conclusions

We find that extended processing in the absence of input,
resulting from recurrent processing, plays a crucial role in
strengthening feature representations across the visual hier-
archy, in both early and later visual regions, leading to im-
proved perceptual performance. These findings suggest that
the brain may achieve robust object recognition through dy-
namic interactions between different levels of visual process-
ing and highlight the relevance of recurrence in visual cortex
for behavior.

Methods

Participants

Thirty-four participants (25 female; age 19-34 years, M = 24)
took part in the experiment. All participants reported no neu-
rological or psychiatric disorders and had normal or corrected-
to-normal vision. Participants gave written informed consent
and received an expense allowance of C15/hour of testing.
The study was conducted in accordance with the Declaration
of Helsinki and approved by the METC Oost-Nederland ethics
committee under the blanket approval for the protocol ’Imaging

Human Cognition’ (NL45659.091.14). Behavioral data from
four participants were excluded due to technical issues.

Stimuli
We developed a set of 702 hybrid object images by combining
two object categories into novel images (e.g., an umbrella-
stool or goat-cat, Fig. 1A). Using the AI program Midjourney
5.1, we paired each object category within sets of 27 ani-
mate or 27 inanimate categories with every other one. The
object categories were selected from a normative dataset of
1,200 concrete nouns (VanArsdall & Blunt, 2022). We in-
cluded only object categories that were known by > 95% of
participants in previous norming studies and were primarily
experienced through vision rather than other sensory modal-
ities (Lynott et al., 2020). Any ambiguous, disturbing, unlim-
ited, extinct, class-level, subordinate and synonymous object
names were excluded. To ensure diverse object categories,
we clustered object categories based on their semantic simi-
larity using GloVe word embeddings (Pennington et al., 2014)
and randomly selected one object category from each group
of semantically similar words (r > 0.45). Object categories ex-
ceeding 2.5 SD in concreteness, familiarity, word frequency,
valence, arousal (VanArsdall & Blunt, 2022), or perceptual
strength (Lynott et al., 2020) were excluded.

An online validation study with 34 native English speakers
(19 female; age 21-40 years, M = 32) assessed hybrid im-
age quality. Nine participants rated each image on a 5-point
Likert scale, indicating how likely each of the two constituent
object categories was represented in the hybrid (’Not at all’ to
’Extremely’). Images with median ratings ≥ 3 for both object
categories were retained. The final stimulus set comprised
216 images, with each object category appearing in 8 differ-
ent hybrids.

Mask stimuli were created by phase-scrambling hybrid im-
ages, which retains low-level image properties but renders hy-
brid objects unrecognizable.

Procedures
In the object recognition experiment, hybrid stimuli and masks
were presented as spheres subtending 5° of visual angle
while participants fixated a central bull’s eye. On probe trials
(5% of all trials per run), two object categories appeared on
screen and participants indicated via button press with their
right index finger (HHSC-2x4-C response pad, Current De-
signs) whether the category on the left or right matched the
preceding hybrid image. The alternative category was ran-
domly selected from the object categories of matching ani-
macy. Participants had 3 s to respond. Inter-trial intervals
followed a truncated exponential distribution ranging from 2 to
10 s (M = 3.1 s). The experiment was implemented using the
Psychophysics Toolbox (v3.0.18) in MATLAB (R2022a, Math-
Works).

The stimulus set comprised 216 images, evenly and ran-
domly assigned to immediate and delayed mask conditions
for every participant, with equal numbers of animate and inan-
imate objects in each condition. Each image appeared once



per run across the four experimental runs, yielding 864 total
trials. Images were paired with a random mask. Prior to the
experiment, participants were familiarized with half of the im-
ages from each masking condition over two days. Familiarity
effects are not reported here.

Following the object categorization experiment, participants
completed a localizer experiment. Each hybrid image from
the stimulus set was presented once, with images grouped
into blocks by animacy × mask condition. A block contained
19 images, with individual images displayed for 750 ms fol-
lowed by a 250 ms grey inter-stimulus interval. Three blocks
of phase-scrambled stimuli and three blocks of grey blank
screens served as control conditions. To maintain attention,
participants performed a one-back task, responding via but-
ton press to immediate image repetitions (5% of trials). The
total experimental duration was 1.5 hours.

MRI data acquisition

MRI data were collected on a 3-T Siemens MAGNETOM
Prisma or PrismaFit scanner using a 32-channel head coil.
During the object recognition and localizer experiments, con-
tinuous whole-brain fMRI data were acquired using an echo-
planar imaging sequence with a simultaneous multislice factor
of 6 (repetition time (TR) = 1,000 ms, echo time (TE) = 34 ms,
flip angle = 60°, voxel size = 2 mm isotropic, slice thickness
= 2 mm, slice number = 66, slice orientation = transversal,
slice order = interleaved, phase-encoding direction = anterior
to posterior, field of view = 210 mm by 210 mm, bandwidth =
2090 Hz/Px).

Before the object recognition experiment, field maps were
acquired with a gradient echo sequence (TR = 425 ms, TE1
= 2.2 ms, TE2 = 4.66 ms, phase-encoding direction = right to
left, bandwidth = 843 Hz/Px, all other parameters as reported
above). After the localizer experiment, anatomical images
were acquired using a T1-weighted magnetization-prepared
rapid gradient-echo sequence (TR = 2,300 ms, TE = 3.03 ms,
flip angle = 8°, voxel size = 1 mm isotropic, slice thickness =
1 mm, slice number = 192, slice orientation = sagittal, phase-
encoding direction = anterior to posterior, field of view = 256
mm by 225 mm, bandwidth = 130 Hz/Px).

MRI preprocessing

Data were preprocessed using fMRIPrep 23.2.0 (Esteban et
al., 2019), which is based on Nipype 1.8.6 (Gorgolewski et al.,
2011).

Anatomical data preprocessing. T1-weighted (T1w) im-
ages underwent intensity non-uniformity correction using
ANTs’ N4BiasFieldCorrection (Tustison et al., 2010) and skull-
stripping using ANTs’ antsBrainExtraction.sh workflow with
OASIS30ANTs as target template. Brain tissue segmentation
was performed using FSL’s fast (Zhang et al., 2001). Corti-
cal surfaces were reconstructed using FreeSurfer’s recon-all
(Dale et al., 1999). Brain masks were refined with a cus-
tom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray matter

of Mindboggle (Klein et al., 2017).

Functional data preprocessing. For each BOLD run,
head-motion parameters were estimated with respect to the
BOLD reference before any spatiotemporal filtering using
FSL’s mcflirt (Jenkinson et al., 2002). The estimated fieldmap
was aligned to the BOLD reference with rigid-registration and
field coefficients were then mapped onto the BOLD refer-
ence using the transform. The BOLD reference was then co-
registered to the T1w reference using boundary-based regis-
tration with six degrees of freedom (Greve & Fischl, 2009) as
implemented in FreeSurfer’s bbregister. The nuisance time
series derived from head motion estimates were expanded
with their temporal derivatives and quadratic terms (Satterth-
waite et al., 2013) as well as principal components from a thin
band (or crown) of voxels around the edge of the brain (Patriat
et al., 2017). BOLD time-series were resampled onto fsnative
surfaces using FreeSurfer’s mri vol2surf and smoothed to 6
mm FWHM using AFNI’s 3dBlurToFWHM.

Data analysis

fMRI univariate analyses. For the object recognition exper-
iment, single-participant BOLD responses were modeled us-
ing vertex-wise general linear models (GLMs) for each run
(AFNI’s 3dREMLfit). Experimental conditions (familiarity ×
mask) were modeled as 650 ms events using canonical hemo-
dynamic response functions. The model included nuisance
regressors for presentation of task screens, button responses,
head motion parameters with their quadratic terms and tem-
poral derivatives, as well as edge components.

After transformation to surface standard space (fsaver-
age), participant-level coefficients were submitted to a group-
level ANOVA (familiarity × mask × run; AFNI’s 3dANOVA3).
The main effect of the mask was cluster-corrected (formation
threshold p < 0.001, significance threshold p < 0.05; AFNI’s
SurfClust).

For the localizer experiment, each experimental condition
(animacy × mask conditions, and phase-scrambled condition)
was modeled by a separate regressor. Within each regres-
sor, individual image blocks were modeled as boxcar func-
tions spanning the duration of the respective block. Apart
from these details, the participant-level GLM analysis followed
the specifications of the object recognition experiment. For
each participant and ROI, we determined the 1,000 vertices
showing the strongest image responsiveness, defined as the
highest absolute mean beta coefficients across all animacy ×
mask conditions.

fMRI single-trial response estimation. Vertex-wise single-
trial responses to images in the object recognition experiment
were estimated using least-squares-sum regression (AFNI’s
3dLSS). Each trial was modeled separately while all other
trials were combined into a single regressor, requiring sep-
arate model estimation per trial. Apart from these details,
the participant-level single-trial models followed the specifica-
tions of the multi-condition univariate analysis. Single-trial es-



timates were averaged across their four repetitions to reduce
noise.

fMRI encoding models. To assess feature processing
across visual ROIs, we used ANN unit activations evoked by
hybrid images to model single-trial response estimates. For
activations from each ANN layer of both AlexNet (trained on
ecoset; Mehrer et al., 2021) and variants of BLT (Thorat et
al., 2023), encoding models were estimated for the 1,000 most
image-responsive vertices per ROI and hemisphere. Encod-
ing models were fitted using ridge regression with four-fold
cross-validation. Regularization parameters were optimized
within each training fold using generalized cross-validation
across 100 logarithmically spaced values (10−5 to 108) as im-
plemented in scikit-learn’s RidgeCV function (Pedregosa et
al., 2011). The performance of encoding models, or brain
score, was evaluated by correlating predicted with actual
single-trial BOLD estimates in held-out test data, averaging
correlation coefficients across folds and top image-responsive
vertices per ROI.

Statistics. Group-level comparisons against zero or chance
level were performed using one-sample t-tests, while condition
differences were assessed using dependent-sample t-tests.
Wilcoxon signed-rank tests were used when parametric as-
sumptions were violated. Evidence for alternative hypotheses
was quantified using Bayes factors (BF10), with BF10 > 100
indicating extreme evidence.
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