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ABSTRACT

In this paper, we establish the global convergence of the actor-critic algorithm
with a significantly improved sample complexity of O(ϵ−3), advancing beyond
the existing local convergence results. Previous works provide local convergence
guarantees with a sample complexity of O(ϵ−2) for bounding the squared gradient
of the return, which translates to a global sample complexity of O(ϵ−4) using
the gradient domination lemma. In contrast to traditional methods that employ
decreasing step sizes for both the actor and critic, we demonstrate that a constant
step size for the critic is sufficient to ensure convergence in expectation. This key
insight reveals that using a decreasing step size for the actor alone is sufficient
to handle the noise for both the actor and critic. Our findings provide theoretical
support for the practical success of many algorithms that rely on constant step
sizes.

1 INTRODUCTION

Markov Decision Processes (MDPs) offer a foundational framework for addressing sequential
decision-making tasks, with applications spanning diverse fields such as robotics, finance, and
healthcare (Sutton & Barto, 2018). The objective of these tasks is to derive a policy that optimally
guides decision-making within an environment, relying on local reward signals to inform actions
(Puterman, 1994). A variety of approaches have been proposed for discovering such optimal poli-
cies or optimizing learning objectives like regret. Beyond value-based methods (Azar et al., 2017;
Jin et al., 2018; Agrawal & Agrawal, 2024; Ji & Li, 2024), policy gradient methods have emerged
as a prominent and widely adopted class of algorithms (Sutton et al., 2000; Schulman et al., 2017).
Gradient-based methods are highly favorable to practice due to their easy adaptability to various
policy parametrizations, structured state-action space, and deep learning tools. Despite their exten-
sive empirical success, the theoretical understanding of their convergence properties remains poorly
understood until recently. Recent works have explored the global convergence of policy gradient
methods using exact gradient oracles across various settings (Agarwal et al., 2020; Mei et al., 2022;
Kumar et al., 2024; Liu et al., 2024a;b) with an iteration complexity of O(ϵ−1). However, in prac-
tice, the exact gradient is rarely accessible, leading to the adoption of actor-critic methods, where
both the actor and critic are updated concurrently using samples from trajectories (Sutton & Barto,
2018; Puterman, 1994).

The theoretical analysis of actor-critic algorithms faces significant challenges due to the strong cou-
pling between the actor and critic. Both components evolve together, influencing each other’s up-
dates, with their randomness also entangled. This interaction complicates separating and analyzing
them individually. Traditional approaches use two-time-scale methods Borkar (2008), where the
actor operates on a slower timescale, treating the critic as nearly converged, and the critic views the
actor as nearly stationary Konda & Tsitsiklis (1999); Bhatnagar et al. (2009a). These approaches
impose restrictive step sizes, leading to slow convergence.

More recent studies have shifted towards non-asymptotic local convergence in expectation, often
measured using the squared norm of the gradient of the return (Zhang et al., 2020b; Olshevsky &
Gharesifard, 2023; Chen et al., 2021; Chen & Zhao, 2024; Kumar et al., 2023). These studies achieve
a sample complexity of O(ϵ−2), improving the limitations of two-time-scale methods by allowing
for less restrictive step sizes. By leveraging gradient domination lemmas, which upper bound the
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sub-optimality by the gradient norm, these methods also extend to global convergence, albeit with
slower sample complexity rates of O(ϵ−4).

The analysis involves formalizing and analyzing the complex interdependent system (of actor and
critic). The key part is to tracking the variance of the critic’s Q-value estimation as the policy evolves,
establishing its convergence. This simplifies the interdependent system leading to convergence of
the actor as well. However, this decaying variance of critic, mandates a decaying step size for the
critic, which can’t be used for constant step sizes.

To summarize, the existing methods, have huge gap between the policy gradient convergence com-
plexity of O(ϵ−1) and the slower O(ϵ−4) sample-based complexities of actor-critic methods. Ad-
ditionally, these methods still lack a theoretical explanation for the empirical success observed in
practical applications, leaving room for further research into bridging this gap.

n our approach, the critic views the actor’s evolving policy as adversarial but treats these changes
as diminishing over time, given the actor’s decreasing learning rate. Instead of tracking variance
as in previous methods, we focus on the critic’s bias, proving that this bias decays in line with the
actor’s learning rate. This allows for any step size in the critic’s updates, with constant step sizes
being optimal. The key intuition is: In every iterate, the critic reduces the bias while actor increase
it by changing the policy. But Q-evaluation being a contraction operator, so it reduces the error by a
constant factor while critic ability to mess with critic decreases with time. The outcome being a very
efficient tracking by the critic. On the other hand, the actor also operates independently from the
critic, only seeing the critic’s biased gradient, which diminishes over time with the actor’s decreasing
learning rate. This effectively decouples the actor and critic while retaining key information.

We formulate a sub-optimality recursion, which is more challenging than in the exact gradient case
found in Xiao (2022); Zhang et al. (2020b), due to the presence of a time-dependent learning rate.
To address this, we develop an elegant ODE tracking methodology for solving these recursions,
yielding significantly improved bounds. Additionally, when this ODE tracking method is applied
to the recursion for the exact gradient case, it produces better results compared to existing bounds,
such as those in Mei et al. (2022).

Contributions. Our contributions are threefolds.

Firstly, we establish an improved global convergence of actor-critic methods in softmax-
parameterized discounted reward MDPs with sample complexity of O(ϵ−3), hence reducing the
gap (see Table 1.1 for a comparison).

Secondly, we develop new techniques to show a constant learning rate for the critic is sufficient to
ensure global convergence, simplifying algorithmic implementation. This is surprising and defies
the traditional wisdom in Borkar (2008); Konda & Tsitsiklis (1999); Bhatnagar et al. (2009a); Dalal
et al. (2019); Chen et al. (2021); Chen & Zhao (2024) that proposes use of decreasing step sizes for
both the actor and the critic to average out the stochasticity.

Thirdly, in the case where the exact gradient is accessible (i.e., policy gradient method), we provide
a fine-grained analysis of the convergence rate, demonstrating that even a single iteration improves
the current iterate (decreases sub-optimality) (see Table 3). This is unlike the previous results (Mei
et al., 2022) where convergence rate was only meaningful when the number of iterations was very
high, k > O

(
SC2

PL

(1−γ)5

)
1. This is made possible due to our new techniques for solving the underlying

recurrence relations in the AC algorithm (see Lemma 4), which could be of independent interest.

1.1 RELATED WORKS

Our results touch on the convergence of both policy gradient and actor-critic algorithms and we
describe the related works to ours below.

Policy gradient convergence: Asymptotic convergence of policy gradient has been well-
established in Williams (1992); Sutton et al. (1999); Kakade (2001); Baxter & Bartlett (2001). More

1where S, γ, CPL represents the state space cardinality, discount factor and mismatch coefficient respec-
tively
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Table 1: Related Work: Sample Complexity of Actor Critic Algorithms
Work Convergence Sample

Complexity
Actor Step
size ηk

Critic Step size
βk

Konda & Tsitsiklis
(1999)

∥∇Jπ∥ ≤ ϵ Asymptotic ηk = o(βk)
∑

η2k, β
2
k < ∞ =∑

ηk, βk

Bhatnagar et al.
(2009a)

∥∇Jπ∥ ≤ ϵ Asymptotic ηk = o(βk)
∑

η2k, β
2
k < ∞ =∑

ηk, βk

Olshevsky & Ghare-
sifard (2023)

∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2

Chen et al. (2021) ∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2

Chen & Zhao (2024) ∥∇Jπ∥ ≤ ϵ Õ(ϵ−4) k−
1
2 k−

1
2

Ours J∗ − Jπ ≤ ϵ Õ(ϵ−3) k−
2
3 β

Õ hides logarthmic factors. Local convergence implies global convergence, see Proposition 1.
These works are for different settings such average reward, discounted reward, finite state space,

and infinite state space, please refer to the individual work for more details.

recently finite time convergence guarantees were studied in Agarwal et al. (2020); Zhang et al.
(2020a); Xu et al. (2020a). Notably Mei et al. (2020) established a key result (gradient domination
lemma) that provides sufficient conditions to obtain global convergence guarantees.

Actor-critic convergence: The closest to our work is the local convergence of actor-critic algo-
rithm with (equivalent see Table 1) sample complexity of O(ϵ−4) Olshevsky & Gharesifard (2023).
This work provides the first sample complexity for the global convergence of the actor-critic al-
gorithm. No additional assumptions are made compared to the setting where the exact gradient is
known.

Xu et al. (2020b) establishes the global convergence of the natural actor-critic algorithm with a sam-
ple complexity of O(ϵ−4) in discounted reward MDPs. However, the natural actor-critic algorithm
demands additional computations, which can be challenging. Yuan et al. (2022) too establishes
global convergence with sample complexity of O(ϵ−3), however, it requires an additional structural
assumption on the problem which is highly restrictive.

The subsequent paper is organized as follows. In Section 2, we establish key notations, definitions,
and results from prior literature. In Section 3, we show how we use our novel solution of recurrence
to lead to a fine-grained convergence guarantee for policy gradient (known gradients). Finally in
Section 3.1, we describe our results for actor-critic methods

2 PRELIMINARIES

We consider the class of infinite horizon discounted reward MDPs with finite state space S and
finite action space A with discount factor γ ∈ [0, 1) Sutton & Barto (2018); Puterman (1994). The
underlying environment is modeled as a probability transition kernel denoted by P . We consider
the class of randomized policies Π = {π : S → ∆A}, where a policy π maps each state to
a probability vector over the action space. The transition kernel corresponding to a policy π is
represented by Pπ : S → S, where Pπ(s′|s) =

∑
a∈A π(a|s)P (s′|s, a) denotes the single step

probability of moving from state s to s′ under policy π. Let R(s, a) denote the single step reward
obtained by taking action a ∈ A in state s ∈ S. The single-step reward associated with a policy π at
state s ∈ S is defined as Rπ(s) =

∑
a∈A π(a|s)R(s, a). The discounted average reward (or return)

3
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Jπ associated with a policy π is defined as:

Jπ = E

[ ∞∑
n=0

γnRπ(sk) | π, P, s0 ∼ µ

]
= µT (I − γPπ)−1Rπ, (1)

where µ ∈ ∆S denotes the initial state distribution. It can be alternatively expressed as Jπ =
(1− γ)−1

∑
s∈S dπ(s)Rπ(s), where dπ = (1− γ)µT (I − γPπ)−1 is the stationary measure under

the transition kernel Pπ . Value function vπ := (I − γPπ)−1Rπ satisfies the following Bellman
equation vπ = Rπ+γPπvπPuterman (1994); Bertsekas (2007). The Q-value function Qπ ∈ RS ×A

associated with a policy π is defined as Qπ(s, a) = R(s, a) + γ
∑

s′∈S P (s′|s, a)vπ(s′) for all
(s, a) ∈ S ×A. For simplicity, we will also assume ∥R∥∞ ≤ 1.

In this paper, we consider soft-max policy parameterized by θ ∈ RS ×A as πθ(a|s) = eθ(s,a)∑
a eθ(s,a)

Mei et al. (2022). The objective is to obtain an optimal policy π∗ that maximizes the return Jπ . We
denote J∗ as a shorthand for the optimal return Jπ∗

. Among many methods, the policy gradient
method is arguably the most widely used algorithm given as

θk+1 := θk + ηk∇Jπθk , (2)
where ηk is the learning rate, in most vanilla form Sutton & Barto (2018). The policy gradient can
be derived as

∂Jπθ

∂θ(s, a)
= (1− γ)−1dπθ (s)πθ(a|s)Aπθ (s, a),

where Aπ(s, a) := Qπ(s, a) − vπ(s) is advantage function Mei et al. (2022). The return Jπθ is a
highly non-concave function, making global convergence guarantees for the above policy gradient
method very challenging. However, the return Jπθ is L = 8

(1−γ)3 -smooth with respect to θ Mei
et al. (2022), leading to the following result.
Lemma 1. [Sufficient Increase Lemma]Mei et al. (2022) With ηk = 1

L in policy gradient in equa-
tion 2, we have the monotone improvement as

Jπθk+1 − Jπθk ≥ 1

2L
∥∇Jπθk ∥22, ∀k ∈ N

where L = 8
(1−γ)3 is smoothness constant of the return Jπθ w.r.t. θ.

The above result guarantees monotonic improvement at each iteration, ensuring convergence to a
stationary point where the gradient becomes zero. Furthermore, the following result provides a
crucial structural property of our problem, which is instrumental in achieving global convergence.
Lemma 2. (Performance Difference Lemma, Agarwal et al. (2020)) Let J∗ be the globally optimal
reward. Then for any π ∈ Π, the suboptimality of Jπ can be expressed as:

J∗ − Jπ = (1− γ)−1
∑
s

dπ
∗
(s)

∑
a∈A

Qπ(s, a)[π∗(a|s)− π(a|s)].

Observe that the result equates the sub-optimality on RHS (a global quantity) with only the Q-value
(a local quantity). This is crucially exploited in Gradient Domination Lemma 3 that upper bounds
the sub-optimality with the norm of the gradient.
Lemma 3. (Gradient Domination Lemma, Mei et al. (2022)) The sub-optimality is upper bounded
by the norm of the gradient as

∥∇Jπθk ∥2 ≥ c√
SCPL

[
J∗ − Jπθk

]
,

where CPL = maxk∥ dπ∗

d
πθk

∥∞ is mismatch coefficient and c = mink mins πθk(a
∗(s)|s),

The result states that the norm of the gradient vanishes only when the sub-optimality is zero. In other
words, the gradient is zero only at the optimal policies. This, combined with the Sufficient Increase
Lemma, directly leads to the global convergence of the policy gradient update rule in equation 2.

However, the above lemma requires the mismatch coefficient CPL to be bounded, which can be
ensured by setting the initial distribution µ(s) > 0 for all states. Additionally, the result requires
the constant c to be strictly greater than zero. This condition can be satisfied by initializing the
parameterization with θ0 = 0 or by ensuring it remains bounded. Furthermore, as the iterates
progress towards an optimal policy, the constant c remains bounded away from zero.
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3 MAIN

The policy gradient method is widely regarded as one of the most successful algorithms in practice,
with numerous variants developed over the past few decades Sutton & Barto (2018); Schulman
et al. (2015); Mnih et al. (2015). However, its theoretical convergence properties remained poorly
understood until recent works Bhandari & Russo (2024); Agarwal et al. (2020); Xiao (2022); Mei
et al. (2022); Kumar et al. (2024) established global convergence guarantees for equation 2, where
ηk = 1

L is the learning rate, with L = 8
(1−γ)3 being the smoothness constant of the return Jπθ with

respect to θ Mei et al. (2022).

It is standard to equate the gradient (∥∇Jπθk ∥2) in the Gradient Domination Lemma 3 and the
Sufficient Increase Lemma 1, leading to:

2L
(
Jπθk+1 − Jπθk

)
≥ c2

SC2
PL

[
J∗ − Jπθk

]2
,

which allows us to obtain the following sub-optimality recursion, with ak := J∗ − Jπθk and σ =
c2(1−γ)3

16SC2
PL

:

ak − ak+1 ≥ σa2k. (3)

The result below provides the bound on the above recursion. Note that proof of all the results in the
paper, can be found in the appendix.

Lemma 4. Given ak − ak+1 ≥ σa2k, where σ = c2(1−γ)3

16SC2
PL

, we have

ak ≤ 1
1
a0

+ σk
, ∀k ≥ 0.

The proof is provided in Appendix A.1. Lemma 4 directly yields the convergence result below.
Theorem 1. The exact policy gradient iterates equation 2, with learning rate ηk = 1

L and σ =
c2(1−γ)3

16SC2
PL

, converge as

J∗ − Jπθk ≤ 1
1

J∗−J
πθ0

+ σk
.

Asymptotically (when k → ∞), the above rate is approximately 1
1

J∗−J
πθ0

+σk
, which is similar to the

existing rate of 16SC2
PL

c2(1−γ)6k Mei et al. (2022), with the improvement by a factor of 1
(1−γ)3 . However,

note that the constant 16SC2
PL

c2(1−γ)6 ≫ 2
1−γ is significantly larger than the worst possible sub-optimality

of 2
1−γ . Therefore, the existing rate 16SC2

PL

c2(1−γ)6k does not provide meaningful bounds for initial iterates

until k =
8SC2

PL

c2(1−γ)5 . In contrast, our result improves the existing rate by a factor of 1
(1−γ)3 for large

k ≫ 1 and offers meaningful convergence even for small k.

Table 2: Relative sub-optimality ( 1−γ
2 ak) with iterates

k 0 1 10 102 103 104 105 106 107

Mei et al. (2022) ∞ 8 ∗ 107 8 ∗ 106 8 ∗ 105 8 ∗ 104 8000 800 80 8
Ours 1 0.999998 0.99998 0.9998 0.998 0.98 0.88 0.44 0.07

Taking γ = 0.9, S = 1000, CPL = c = 1, J∗ − J0 = 2
1−γ

The difference between our bound and the previous one is illustrated numerically in Table 2, where
1

1

J∗−J
πθ0

+σk
and 1

1

J∗−J
πθ0

+σk
are computed for different k. In Table 2, it can be seen that the pre-

vious bounds provide a significantly large upper bound on the sub-optimality for the initial iterates,
while our method demonstrates improvement from the very first iterates.
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The recursion ak − ak+1 ≥ σa2k occurs in the projected policy gradient update rule (with direct
parameterization) in Liu et al. (2024b;a), yielding a convergence rate of O

(
σ
k

)
. Consequently,

Lemma 4 offers a similar result improvement, resulting in a convergence rate of O
(

1
1
a0

+σk

)
.

Now we move to the analysis of actor-critic algorithm which is the core contribution of this work.

3.1 ACTOR-CRITIC METHODS

Above studies, however, assume access to the exact policy gradient at each iteration, which is rarely
feasible in practice. In this work, we focus on sample based policy gradient method also known
as actor critic algorithm. The actor-critic algorithm, which is sample-based policy gradient method
and thus more practical, presents a greater challenge. Actor-critic methods have been studied for a
long time, from asymptotic convergence on two timescales Konda & Tsitsiklis (1999); Bhatnagar
et al. (2009b) to finite time two time scale Zhang et al. (2020b); Olshevsky & Gharesifard (2023);
Chen et al. (2021) until finite-time single-timescale convergence Chen & Zhao (2024). These works
establish local convergence bounding the average expected square of gradient of the return, with
following state-of-the-art rate

K∑
k=1

1

K
∥∇Jπk∥22 ≤ O(K− 1

2 ), Chen&Zhao (2024).

Using Gradient Domination Lemma 3, this local convergence translates to O(ϵ−4) sample complex-
ity of global convergence, as shown in the result below.

Proposition 1. If E∥∇Jπk∥22 ≤ O(k−
1
2 ) then J∗ − EJπk ≤ O(k−

1
4 ).

Proof. From Gradient Domination Lemma 3, we have

E∥∇Jπk∥22 ≥ E
[
J∗ − Jπk

]
≥ c2

SC2
PL

[
J∗ − EJπk

]2
, (from Jenson’s inequality).

Hence if E∥∇Jπk∥22 ≤ O(k−
1
2 ) then

[
J∗−EJπk

]2
≤ O(k−

1
2 ), implying J∗−EJπk ≤ O(k−

1
4 ).

Algorithm 1 Online Actor Critic Algorithm

Input: Initialize Q0 and θ0 arbitrarily, and ηk = η0

(
1

1+c6k

) 2
3

for k ≥ 0, where the c6 is a
positive constant.

1: while not converged; k = k + 1 do
2: Sample (s, a) ∼ dπθk and get the next state and action s′ ∼ P (·|s, a), a′ ∼ πθk(·|s′) .

3: Update the policy parameter

θk+1(s, a) = θk(s, a) + ηk(1− γ)−1Ak(s, a),

where Ak(s, a) = Qk(s, a)− vk(s) and vk(s) =
∑

a πθk(a|s)Qk(s, a).

4: Update Q-value

Qk+1(s, a) = Qk(s, a) + β
[
R(s, a) + γQk(s

′, a′)−Qk(s, a)
]
.

5: end while

In this work, we study a simple actor-critic algorithm in Algorithm 1. Our objective is to obtain a
policy π that maximizes the expected discounted return Jπ using the samples. Since, the Algorithm
1 is random, hence we focus on the expected return Jk := E[Jπθk ] at time k.

6
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Note that the algorithm requires samples sk ∼ dπθk at each iteration, which is a common assumption
in most works on the discounted reward setting Zhang et al. (2020b); Konda & Tsitsiklis (1999);
Bhatnagar et al. (2009a); Chen et al. (2021); Kumar et al. (2023); Olshevsky & Gharesifard (2023);
Chen & Zhao (2024). This can be achieved by initializing the Markov chain with s0 ∼ µ, and at
each step i, continuing the chain with probability γ by sampling si+1 ∼ Pπθk (·|si), or terminating
the chain with probability (1− γ). Once the chain terminates, we randomly select a state uniformly
as sk. This process ensures that the state sk is sampled from dπθk . However, this approach increases
the average computational complexity by a factor of 1

1−γ . There may be more efficient methods to
achieve this sampling, but we omit these for clarity.

3.2 CRITIC CONVERGENCE

In this section, we analyze the expected convergence of the Q-value evaluation (critic) in Algorithm
1, using samples drawn from the evolving policy, which is complex. Therefore, we first fix a policy
π and consider the Q-value evaluation:

Qk+1(sk, ak) = Qk(sk, ak) + β [R(sk, ak) + γQk(s
′
k, a

′
k)−Qk(sk, ak)] , (4)

where the states are sk ∼ dπ , the actions are ak ∼ π(·|sk), the next states are s′k ∼ P (·|sk, ak), and
the subsequent actions are a′k ∼ π(·|s′k). Taking the expectation , we obtain:

EQk+1 = EQk + βDπ [R+ γPπEQk − EQk] ,

where Dπ((s, a), (s′, a′)) = dπ(s)π(a|s)1((s, a) = (s′, a′)) is a diagonal matrix, and
Pπ((s

′, a′), (s, a)) = P (s′|s, a)π(a′|s′) represents the transition dynamics under policy π.

Lets define momentum Bellman operator as

Tπ
β Q := Q+ βDπ (R+ γPπQ−Q) ,

then observe that Tπ
β Q

π = Qπ . To ensure the convergence of EQk, we make one of the following
three assumptions.
Assumption 1. We assume that one of the following holds for all Q, π

1. There exists a λ > 0 such that:

⟨Qπ −Q,Dπ(I − γPπ)Q
π −Q⟩ ≥ λ∥Qπ −Q∥22,

which implies: ∥Tπ
β Q − Qπ∥2 ≤ α∥Q − Qπ∥2, (from Proposition 5), where α =√

1− λ2

2 taking β = λ
2 .

2. There exists an α < 1 such that ∥Dπ(Tπ
β Q−Qπ)∥∞ ≤ α∥Dπ(Q−Qπ)∥∞.

3. There exists an α < 1 such that ∥Dπ(Lπ
βA − Aπ)∥∞ ≤ α∥Dπ(A − Aπ)∥∞,

where Aπ(s, a) = Qπ(s, a) −
∑

a π(a|s)Qπ(s, a), and (Lπ
βA)(s, a) = (Tπ

β Q)(s, a) −∑
a π(a|s)(Tπ

β Q)(s, a).

The first assumption is standard and has been made in all the previous works, to the best of our
knowledge Olshevsky & Gharesifard (2023); Chen et al. (2021); Chen & Zhao (2024); Bhatnagar
et al. (2009a); Konda & Tsitsiklis (1999); Zhang et al. (2020b). It guarantees the convergence of
Q-value evaluation. Specifically, under the first item of Assumption 1, the update rule equation 4
converges as ∥EQk − Qπ∥2 → αk∥EQ0 − Qπ∥2. Unfortunately this assumption is too restrictive
as it requires dπ(s, a) ≥ 0 for all state and action, as the co-ordinates which are not visited by the
policy, can’t be updated.

Fortunately, in policy gradient methods, we don’t require Qπ instead DπQπ for the gradient updates,
hence, the second item in the Assumption 1 is enough to ensure ∥Dπ(EQk−Qπ)∥∞ → αk∥EQ0−
Qπ∥∞ in the Q-value evaluation update rule equation 4.

Further, the last item in Assumption 1, is even less restrictive than the second item. As the policy
update progress in the actor-critic method, the policy πk converges to a deterministic optimal policy
consequently Aπk → 0 ( as Aπ = 0 for deterministic policy π). This may leads to even better error
control in the critic updates.

7
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Q-evaluation with evolving policy with coupled randomness. The above assumption ensures
the convergence gradient evaluation for the fixed policy. In our case (Algorithm 1) the policy πθk

evolves but with decreasing rate (∥θi+1 = θi∥ ≤ 2
(1−γ)2 as |Ak+1(s, a)| ≤ 2

1−γ ). Hence, we have
the following Q-value evaluation:

Qk+1(sk, ak) = Qk(sk, ak) + β [R(sk, ak) + γQk(s
′
k, a

′
k)−Qk(sk, ak)] , (5)

where sk ∼ dπ, ak ∼ πθk(·|sk), s′k ∼ P (·|sk, ak), and a′k ∼ πθk(·|s′k). Moreover,
{θk}k≥0 and {sk}k≥0 are not independent, that is, their noise are coupled. Hence, E[Qk] =

E{θi}k≥0
[Πk−1

i=0 T
πθi

β Q0] is not satisfied.

This coupling makes the analysis of the bias term E⟨DπθkAπθk , Dπθk (Ak−Aπθk )⟩ very challenging
(this term is required in the actor section) and a core technical contribution of the paper. We use novel
techniques in the result below computing the term.

The result below states that each of three assumptions above can ensure the evaluation of the gradient
under the evolving policy.
Lemma 5. In Algorithm 1, we have

|E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩| ≤ cqηk, ∀k ≥ 1.

where cq is a constant defined in the appendix.

The above result presented in a form which convenient for the analysis later, however it essentially
implies the bias in the gradient diminishes over time that is ∥EDπθk (Ak −Aπθk )∥∞ = O(ηk).

The proof of the above result can be found in the appendix. We know that Q-value evaluation is
γ-contraction operator Sutton & Barto (2018); Puterman (1994), that is, Q-evaluation converges
linearly for the fixed policy. The above result states that the for the evolving policy, Q-evaluation
tracking is also very efficient. Notably, the result above ensures the convergence of critic in expec-
tation irrespective of actor. This greatly helps in the analysis of the Algorithm 1, as it decouples the
critic and actor.

3.3 CONVERGENCE OF ACTOR

In this section, we focus on the convergence of the actor update rule,
θk+1(sk, ak) = θk(sk, ak) + ηk(1− γ)−1Ak+1(sk, ak), (6)

as presented in Algorithm 1. Note that by construction, ∥Ak∥∞ ≤ 2
1−γ , a fact that will be used in

the analysis later.

We begin with deriving a sufficient increase lemma for our noisy and biased gradient ascent which
can be seen as the extension of the similar result in Mei et al. (2022).
Lemma 6. Let θk be the iterate obtained Algorithm 1 . Then,

E[Jπθk+1 − Jπθk ] ≥ ηk
1− γ

[
E∥∇Jπθk ∥22 + E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩ − 2Lηk

(1− γ)3

]
.

The proof in the appendix.

Recall that we use Jk := EJπθk as a shorthand. The result below provides the sub-optimality
recursion.
Lemma 7. Taking ak = 1−γ

2 (J∗ − Jk), we get the recursion

ak − ak+1 ≥ ηk
[
c1a

2
k − c2ηk

]
, (7)

where c2 :=
cq

1−γ + L
(1−γ)3 , c1 := c2

2SC2
PL

, L = 8
(1−γ)3 smoothness coefficient, and the constant cq

is defined in the appendix.
Lemma 8. The ak is upper bounded as

ak ≤ 1

(1 + c6k)
1
3

, ∀k ≥ 0,

where c6 =
3c21
4c2

.

8
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Upper bounding the above recursion is very challenging (and a core technical contribution of the
paper) due presence of time dependent variables. We develop elegant methods to solve this recursion
which can be found in the appendix.

3.4 ACTOR-CRITIC CONVERGENCE

The result below demonstrates the convergence of Algorithm 1 with a sample complexity of O(ϵ−3),
which is significantly faster than the existing sample complexity of O(ϵ−4), as summarized in Table
1.

Theorem 2. For step size ηk = η0

(
1

1+c6k

) 2
3

, βk = β in Algorithm 1, we have the following
convergence

J∗ − Jk ≤ 2

(1− γ)(1 + c6k)
1
3

, ∀k ≥ 0,

where c6 = 3c4(1−γ)2

16S2C4
PL(

cq
1−γ + L

(1−γ)3
)
.

We summarize the key components of the result as:

1. Convergence Rate of Q-Value Evaluation with Diminishing Adversarial Evolving Pol-
icy : Since Q-value evaluation is a γ-contraction for a fixed policy, we find that with a
slowly changing policy, the Q-value evaluation converges at the same rate as the policy
itself.

2. Convergence of Actor using Gradient with Diminishing Bias: We obtain sub-optimality
recursion using modified sufficient increase lemma derived from smoothness of the return
and gradient domination lemma.

3. Solving the Recursion: Solving the recursion is the most challenging part of this work.
We develop a general framework that demonstrates how this recursion mirrors the behavior
of the underlying ordinary differential equation (o.d.e.).

4 CONCLUSION AND DISCUSSION

We establish global convergence of actor-critic algorithms with significantly improved sample com-
plexity of Oϵ−3 compared to existing rate of O(ϵ−4).The most remarkable finding of our analysis
is the guaranteed convergence of the algorithm with a constant learning rate for the critic, as often
used in practice. Traditionally, decreasing step sizes are deemed essential for both the actor and
critic to reduce noise Borkar (2008); Olshevsky & Gharesifard (2023); Chen et al. (2021); Chen &
Zhao (2024). However, our results show that a decreasing step size for the actor alone suffices to
average out noise, marking a departure from the two-time-scale theory. This works reduces the gap
between theoretical understanding and empirical success of the algorithm.

Our framework is quite general, hence the approach can be extended to other settings such as average
reward, function approximation setting. We leave this for the future work.

In traditional two-time-scale algorithms, the inner loop perceives the outer loop as stationary, while
the outer loop regards the inner loop as converged, leading to asymptotic decoupling Borkar (2008).

We introduce a novel analytical framework where the inner and outer loops are ”blind” to each
other. The the inner loop (critic) views the the outer loop (actor) as adversarial but with diminishing
influence as the actor’s learning rate decreases, leading to the critic’s bias reduction over time. On
the other hand, the outer loop, uses this critic biased feedback (gradient) provided by the inner loop.
Since, the bias diminishes with time, it allows the outer loop converge.

This framework for resolving the two time scale coupling, combined with our novel elegant method-
ology to bound the recursions, can be used to analysis other two-time scale algorithms.
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A PROOF OF MAIN TEXT

A.1 EXACT GRADIENT POLICY GRADIENT

Lemma 9. Given ak − ak+1 ≥ σa2k, where σ = c2(1−γ)3

16SC2
PL

, we have

ak ≤ 1
1
a0

+ σk
, ∀k ≥ 0.

Proof. Let uk := 1
1
a0

+σk
, implying duk

dk = −σu2
k. We have σ ≤ 1−γ

4 as CPL, S ≥ 1, c ≤ 1 by

definition, this implies 1
2σ ≥ 2

1−γ ≥ a0 ≥ uk. We will prove by induction that ak ≤ uk for all
k ≥ 0. For the base case, we have a0 ≤ u0 = a0, by definition. Assuming ak ≤ uk, we have

ak+1 ≤ ak − σa2k, (from definition σ ≤ σ),

≤ uk − σu2
k, (as h(x) = x− σx2 is increasing for x ≤ 1

2σ
and ak ≤ uk ≤ a0 ≤ 1

2σ
),

= uk − σ

∫ k+1

x=k

u2
kdx, (dummy integral),

≤ uk − σ

∫ k+1

x=k

u2
xdx, (as ux is decreasing with x),

= uk+1, (as
duk

dk
= −σu2

k ).

This proves ak ≤ uk ≤ 1
1
a0

+σk
for all k ≥ 0.

A.2 CONVERGENCE OF CRITIC

In this section, we take Assumption 1, item 2. For the item 1 and item 3, similar proof and intuitions
follows.

Proposition 2. Given ∥Q∥∞ ≤ 1
1−γ , we have,

|⟨Dπ1Aπ2 , Dπ
(
(Tπ3

β )mQ−Qπ3⟩
)
| ≤ 4αm

(1− γ)2
, ∀πi,m.

Proof.

|⟨Dπ1Aπ2 , Dπ
(
(Tπ3

β )mQ−Qπ3⟩
)
| ≤∥Dπ1Aπ2∥1∥Dπ3(Tπ3

β )m(Q−Qπ3
)
∥∞

≤ 2

1− γ
∥Dπ3

(
(Tπ3

β )mQ−Qπ3
)
∥∞, (as ∥Aπ∥∞ ≤ 2

1− γ
, ∥dπ∥1 = 1)

(a) ≤ 2αm

1− γ
∥Dπ3(Q−Qπ3)∥∞

≤ 4αm

(1− γ)2
, (as ∥Q∥∞, ∥Qπ∥∞ ≤ 1

1− γ
)

The inequality (a) comes from recursivelyusing ∥Dπ(Tπ
β Q − Qπ)∥∞ ≤ α∥Dπ(Q − Qπ)∥∞, as

assumed in the Assumption 1, item 2

Lemma 10. In Algorithm 1, we have

|E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩| ≤ Cqηk, ∀k ≥ 1.

Proof. We show our proof works under the Assumption 1, item 2. For item 1 and item 3, similar
proof follows.
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Lets fix k. Lets deine the remainder (smoothness) term: For 0 ≤ m ≤ k − 1,

ck−m−1 : = E⟨Dπθk−mAπθk−m , Dπθk−m (
1

α
T

πθk−m

β )m
(
Qk−m −Qπθk−m

)
⟩

− E⟨Dπθk−m−1Aπθk−m−1 , Dπθk−m−1 (
1

α
T

πθk−m−1

β )m
(
Qk−m −Qπθk−m−1

)
⟩

= E⟨Dπθk−mAπθk−m , Dπθk−m (
1

α
G

πθk−m

β )m
(
Qk−m −Qπθk−m

)
⟩

− E⟨Dπθk−m−1Aπθk−m−1 , Dπθk−m−1 (
1

α
G

πθk−m−1

β )m
(
Qk−m −Qπθk−m−1

)
⟩,

where Gπ := (I − βDπ(I − γPπ)). From the Assumption 1, item 2, we have ∥DπGπv∥∞ ≤
α∥Dπv∥∞ for all v. This implies the operator norm of 1

αD
πGπv is 1. This implies all the consi-

tituents term in Ck−m−1 have norm O(1) (that is no dependence on α). Hence, from smoothness,
we get |ck| ≤ Cηk−1 for some constant C dependent only possibly on 1

1−γ , S and A.

Now, we focus on the original term. By definition, we have

E⟨DπθkAπθk , Dπθk (Qk −Qπθk )⟩
=ck−1 + E⟨Dπθk−1Aπθk−1 , Dπθk−1 (Qk −Qπθk−1 )⟩

=ck−1 + E
[
E

[
⟨Dπθk−1Aπθk−1 , Dπθk−1 (Qk −Qπθk−1 )⟩ | Fk−1

]
,

=ck−1 + E
[
⟨Dπθk−1Aπθk−1 , Dπθk−1

(
E

[
Qk | Fk−1

]
−Qπθk−1

)
⟩
]

=ck−1 + E
[
⟨Dπθk−1Aπθk−1 , Dπθk−1

(
T

πθk−1

β Qk−1 −Qπθk−1

)
⟩
]
, (from def. of Tπ

β )

=ck−1 + E
[
⟨Dπθk−1Aπθk−1 , Dπθk−1T

πθk−1

β

(
Qk−1 −Qπθk−1

)
⟩
]
, (as Tπ

β Q
π = Qπ)

=ck−1 + αE
[
⟨Dπθk−1Aπθk−1 , Dπθk−1

1

α
T

πθk−1

β

(
Qk−1 −Qπθk−1

)
⟩
]
, (note Tπ

β is assumed α contraction)

=ck−1 + αck−2 + α2E
[
⟨Dπθk−2Aπθk−2 , Dπθk−2 (

1

α
T

πθk−2

β )2
(
Qk−1 −Qπθk−2

)
⟩
]
, (unrolling one more step)

=

k−1∑
m=0

αk−1−mcm + αkE
[
⟨Dπθ0Aπθ0 , Dπθ0 (

1

α
T

πθ0

β )k
(
Q0 −Qπθ0

)
⟩
]
, (unrolling till end)

Now, taking the absolute value, and using triangle inequlaity, we have

|E⟨DπθkAπθk , Dπθk (Qk −Qπθk )⟩| (8)

≤
k∑

m=1

αm−1|ck−m|+ 4αk

(1− γ)2
, (from Proposition 2), (9)

≤C

k∑
m=1

αm−1ηk−m +
4αk

(1− γ)2
(10)

≤Ccηηk, (from Proposition 3). (11)

Similarly, we can bounds on

|E⟨DπθkAπθk , Dπθk (Qk −Qπθk )⟩| ≤ cqηk,

for appropriate cq .

We know that Q-value evaluation is γ-contraction operator Sutton & Barto (2018); Puterman (1994),
that is, Q-evaluation converges linearly for the fixed policy. The above result states that the for the
evolving policy, Q-evaluation tracking is also very efficient. Notably, the result above ensures the
convergence of critic in expectation irrespective of actor. This greatly helps in the analysis of the
Algorithm 1, as it decouples the critic and actor.
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Proposition 3 (Critic Bound). Given ηk = η0u
2
k, we have

N−1∑
k=0

αN−kηk + καN+1 ≤ cαηN , ∀N ≥ 0

where uk =
(

1
1+ck

) 1
3

, 0 ≤ α, c < 1 and cη = maxN≥0

(
2α

N
2

(
1 + N

2

) 5
3 + 2

1−α + αN+1(1 +

cN)
1
3

κ
η0

)
.

Proof. We have

N−1∑
k=0

αN−ku2
k =

M∑
k=0

αN−ku2
k +

N−1∑
k=M+1

αN−ku2
k, (12)

≤
M∑
k=0

αN−Mu2
k +

N−1∑
k=M+1

αN−ku2
M , (as u2

k, α
k are decreasing with k) (13)

≤
M∑
k=0

αN−Mu2
k +

u2
M

1− α
, (geometric sum) (14)

≤ αN−M (M + 1) +
u2
M

1− α
, (as u2

k ≤ 1) (15)

=
(
1 +

cN

2

)− 2
3
( α

N
2

(
1 + N

2

)
(1 + cN

2 )−
2
3

+
1

1− α

)
, (putting M =

N

2
) (16)

= 2
2
3

(
2 + cN

)− 2
3
(
α

N
2

(
1 +

N

2

) 5
3 +

1

1− α

)
, (as c ≤ 1) (17)

≤ 2
(
1 + cN

)− 2
3
(
α

N
2

(
1 +

N

2

) 5
3 +

1

1− α

)
, (18)

≤ 2u2
N

(
α

N
2

(
1 +

N

2

) 5
3 +

1

1− α

)
, (from definition of uN ) (19)

This implies

N−1∑
k=0

αN−kηk + καN+1 ≤ ηN

(
2α

N
2

(
1 +

N

2

) 5
3 +

2

1− α
+ αN+1(1 + cN)

1
3
κ

η0

)
, (20)

≤ cηηN , (21)
(22)

where cη = maxN≥0

(
2α

N
2

(
1 + N

2

) 5
3 + 2

1−α + αN+1(1 + cN)
1
3

κ
η0

)
. This concludes the

proof.

A.3 SUFFICIENT INCREASE LEMMA

Lemma 11. Let θk be the iterate obtained Algorithm 1 . Then,

E[Jπθk+1 − Jπθk ] ≥ ηk
1− γ

[
E∥∇Jπθk ∥22 + E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩ − 2Lηk

(1− γ)3

]
where Ecritic[· | θm,m ≤ k] is expectation over critic samples given the actor has already made
updates from θ0 to θk. Note that this is possible because samples are drawn independently for actor
and critic in Algorithm 1.
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Proof. From the smoothness of the return, we have

E
[
Jπθk+1 − Jπθk

]
≥ E

[
⟨∇Jπθk , θk+1 − θk⟩ −

L

2
∥θk+1 − θk∥2

]
,

≥ E
[ ηk
1− γ

⟨DπθkAπθk , Ak ⊙ 1k⟩ −
2Lη2k

(1− γ)4

]
, (from update rule equation 6)

≥ ηk
1− γ

E
[
⟨DπθkAπθk , DπθkAk⟩

]
− 2Lη2k
(1− γ)4

, ( as (sk, ak) ∼ dπθk )

≥ ηk
1− γ

[
E∥∇Jπθk ∥22 + E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩ − 2Lηk

(1− γ)3

]
, ( as ∇Jπθk = DπθkAπθk )

A.4 SUB-OPTIMALITY RECURSION

Lemma 12. Taking ak = 1−γ
2 (J∗ − Jk), we get the recursion

ak − ak+1 ≥ ηk
[
c1a

2
k − c2ηk

]
, (23)

where c2 :=
cq

1−γ + L
(1−γ)3 and c1 := c2

2SC2
PL

.

Proof. From Sufficient Increase Lemma 6, we have

Jk+1 − Jk ≥ ηk
1− γ

[
E∥∇Jπθk ∥22 − |E⟨DπθkAπθk , Dπθk (Ak −Aπθk )⟩| − 2Lηk

(1− γ)3

]
≥ ηk

1− γ

[
E∥∇Jπθk ∥22 − cqηk − 2Lηk

(1− γ)3

]
, from Lemma 5

≥ ηk
1− γ

(
E
c2(J∗ − Jπθk )2

SC2
PL

− cqηk − 2Lηk
(1− γ)3

)
, (from GDL Lemma 3)

≥ ηk
1− γ

( c2(J∗ − Jk)
2

SC2
PL

− cqηk − 2Lηk
(1− γ)3

)
, (from Jenson’s inequality)

≥ ηk
1− γ

( c2(J∗ − Jk)
2

SC2
PL

− 2cqηk
1− γ

− 2Lηk
(1− γ)3

)
, (from Lemma 5).

A.5 CONVERGENCE OF ACTOR

Lemma 13. The ak is upper bounded as

ak ≤ 1

(1 + c6k)
1
3

, ∀k ≥ 0.

where c6 =
3c21
4c2

.

Proof. Let uk =
(

1

1+
3c21
4c2

k

) 1
3 be the solution of the ode duk

dk = − c21
4c2

u4
k with u0 = 1. The learning

rate is chosen as ηk = c1
2c2

u2
k, implying λ0 = c1

2c2
.

From suboptimality recursion equation 7, we have We have

ak+1 ≤ ak + c2η
2
k − c1a

2
k

15
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Let us define the function

h(x) := x+ c2η
2
k − c1ηkx

2.

Observe that function h(x) is increasing for all x ≤ 1. This is because the derivative of the function

dh(x)

dx
= 1− 2c1ηkx (24)

≥ 1− 2c1x, (as ηk ≤ 1) (25)

≥ 1− x, (as c1 =
c2

2SC2
PL

≤ 1

2
), (26)

≥ 0, ∀x ≤ 1. (27)

We will prove ak ≤ uk for k ≥ 0 by induction arguments. By construction, we have a0 ≤ u0 = 1.
Assuming ak ≤ uk, from the definition of h, we have

ak+1 ≤ h(ak), (28)
≤ h(uk), (as ak ≤ uk ≤ 1 and h(x) is increasing for x ≤ 1) (29)

= uk + c2η
2
k − c1ηku

2
k, (from definition of h) (30)

= uk + c2λ
2
0u

4
k − c1λ0u

4
k, (as λk = λ0u

2
k) (31)

= uk − c21
4c2

u4
k, (as λ0 =

c1
2c2

) (32)

= uk − c21
4c2

∫ k+1

x=k

u4
kdx, (division of unity) (33)

≤ uk − c21
4c2

∫ k+1

x=k

u4
xdx, (as ux is a decreasing function) (34)

= uk+1, ( by definition
dux

dx
= − c21

4c2
u4
x). (35)

Hence, from the induction arguments, we get, for all k ≥ 0,

ak ≤ uk =
1

(1 +
3c21
4c2

k)
1
3

(36)

≤ 1

(1 + c6k)
1
3

, (37)

where c6 =
3c21
4c2

.

A.6 EXPLORATION ASSUMPTION ITEM 1 EQUIVALENT MOMMENTUM BELLMAN OPERATOR

We define Pπ((s
′, a′), (s, a)) = P (s′|s, a)π(a′|s′) and Dπ((s′, a′), (s, a)) = 1

(
(s′, a′) = (s, a)

)
(1− γ)

∑∞
n=0 γ

nµT (Pπ)n(s).

Proposition 4. cγ = maxπ,Q
∥Dπ(I−γPπ)Q∥

∥Q∥ ≤ 1 + γ.
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Proof.

∥Dπ(I − γPπ)Q∥ ≤ ∥DπQ∥+ γ∥DπPπQ∥ (38)

≤ ∥Q∥+ γ∥DπPπQ∥, (as
∑
s,a

|D((s, a), (s, a))| = 1) (39)

= ∥Q∥+ γ

√∑
s,a

(
d(s, a)⟨Pπ(·|(s, a)), Q⟩

)2
, (40)

≤ ∥Q∥+ γ

√∑
s,a

(
d(s, a)∥Pπ(·|(s, a))∥∥Q∥

)2
, (41)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

(
d(s, a)

)2 ∥Pπ(·|(s, a))∥2, (42)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

d(s, a)∥Pπ(·|(s, a))∥21, (43)

= (1 + γ)∥Q∥. (44)

Proposition 5. For any policy π, let Qn+1 = Qn + βDπ
[
R+ γPπQn −Qn

]
then

∥Qπ −Qn+1∥ ≤
√
1− λ2

2
∥Qπ −Qn∥2.

Proof.

Un := Dπ
[
R− (I − γPπ)Qn

]
(45)

= Dπ
[
Qπ − γPπQ

π − (I − γPπ)Qn

]
, (using Qπ = R+ γPπQ

π) (46)

= Dπ
(
I − γPπ

)(
Qπ −Qn

)
(47)

Lets look at

∥Qπ −Qn+1∥2 = ∥Qπ −Qn − βUn∥2, (definition of Qn+1)

= ∥Qπ −Qn∥2 + β2∥Un∥2 − 2β⟨Qπ −Qn, Un⟩
≤ ∥Qπ −Qn∥2 + β2∥Un∥2 − 2βλ∥Qπ −Qn∥2, (from Assumption 1)

≤ (1 + 2β2 − 2βλ)∥Qπ −Qn∥22, (from Proposition 4)

≤ (1− λ2

2
)∥Qπ −Qn∥22, (taking β =

λ

2
).
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