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Abstract

How should we evaluate the quality of generative models? Many existing metrics
focus on a model’s producibility, i.e. the quality and breadth of outputs it can
generate. However, the actual value from using a generative model stems not
just from what it can produce but whether a user with a specific goal can produce
an output that satisfies that goal. We refer to this property as steerability. In this
paper, we first introduce a mathematical decomposition for quantifying steerability
independently from producibility. Steerability is more challenging to evaluate than
producibility because it requires knowing a user’s goals. We address this issue
by creating a benchmark task that relies on one key idea: sample an output from
a generative model and ask users to reproduce it. We implement this benchmark in
user studies of text-to-image and large language models. Despite the ability of these
models to produce high-quality outputs, they all perform poorly on steerability.
These results suggest that we need to focus on improving the steerability of genera-
tive models. We show such improvements are indeed possible: simple image-based
steering mechanisms achieve more than 2x improvement on this benchmark.

1 Introduction

There is a wedge between how we evaluate generative models and how we intend to use them. For
example, a common way to evaluate image generation models is to measure the quality of outputs
they can generate, e.g. by measuring how realistic or diverse the images they produce are [70, 32, 46].
But when these models are used by people, their success depends on more than just what they’re
capable of producing: can users create the images they actually want?
In this paper, we introduce methods for quantifying model steerability: how well can a user with
a specific end goal guide a model to achieve that goal? Evaluating and benchmarking steerability
is necessary for improving the real-world performance of generative models, in the same way that
producibility benchmarks have been crucial for improving the quality of their outputs [19]. But
creating a benchmark for steerability is challenging for two reasons. First, existing methods for
evaluating models under human use [48, 39, 81] blend steerability and producibility: if a model
doesn’t produce the image a user wants, is it because it’s incapable of producing it or because it can’t
be steered? Second, measuring steerability requires knowing a human user’s goals, which are often
latent or difficult to articulate.
We first provide a mathematical framework for modeling steerability and producibility. The key
insight of this framework is to decompose model performance into two terms: a producibility term
(how well can models produce the kinds of outputs a human may want), and a steerability term (how
well can models be steered by humans towards the best output they’re capable of producing).
We then propose a procedure that resolves the core challenges of benchmarking steerability. The
procedure: sample an output from a model and instruct users to steer the model toward that output.
This procedure is straightforward and can be applied to a variety of generative models. For example, for
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A book shelf with 3 blue 
books on the left side 
and 3 red books on the 
right side with a wooden 
divider between them 
that is built into the shelf.

Attempt 1
A book shelf with 3 blue 
books on the left side 
and 3 red books on the 
right side… The image 
isn't a picture of the 
entire bookshelf, it’s 
only of one level of the 
shelf. Again, there is 
only a total of 6 books.

A book shelf with 3 blue 
books on the left side 
and 3 red books on the 
right side... Again, there 
is only a total of 6 books. 
There are only 3 books 
on each side, DO NOT 
put more than 3 total 
books.

Attempt 2 Attempt 3 Attempt 1 Attempt 2 Attempt 3

Other users 
(see appendix for prompts)

Goal image Example user

Figure 1: A goal image and attempts by users to steer toward it. To ensure the goal image is producible, it is
sampled from the same model used for steering (here, DALL-E 3). Bolding added to prompts for emphasis. See
Figure 10 for the full prompts.

text-to-image models, it calls for showing humans an image sampled from a model and then instructing
them to prompt that same model to reproduce the image. This procedure addresses the two key
challenges: first, as suggested by the framework, it evaluates a generative model by how well humans
can steer it towards an output it is capable of producing. Second, to overcome the lack of access to
a user’s goal, it induces a goal by instructing users to get as close to as possible to a provided output.
We implement this benchmark in a large-scale user study for two domains: text-to-image models and
large language models. Across the board, we find that the steerability of models is poor, both for
normal participants and professional prompt engineers. For the image models, human annotators rate
the attempted reproductions as dissatisfactory 60% of the time. Moreover, attempts to refine prompts
do not reliably improve outputs; after five tries, the final image is closer to the goal image only 62%
of the time (compared to a base rate of 50%).
Like many metrics, it is easy to optimize for steerability alone. However, this could come at the
expense of producibility. To assess whether differences between models reflect true steerability
improvements, we provide another mathematical decomposition that disentangles gains from better
steering mechanisms and gains from producibility differences. This decomposition requires a
predictive model of steerability; we show that steerability can be predicted with machine learning
methods, and use it to analyze models, finding that steerability differences reflect both true
improvements in steering mechanisms along with differences in producibility.
Finally, we show that the problem of poor steerability is addressable. We consider a simple steering
mechanism that uses two ingredients: First, after an initial text prompt, we enable users to steer via
suggested images rather than by prompt rewrites. Second, rather than suggesting images randomly,
we use an auxiliary model to suggest images. Despite the simplicity of this technique, it achieves
more than 2x improvement over text steering.

2 Framework

We define a generative model 𝑚 over a domain 𝑋 to have two components: a producible set 𝑆𝑚 ⊆ 𝑋
and a steering mechanism that allows humans to produce an instance in 𝑆𝑚. For example, the
producible set of a text-to-image model is all the images the model can generate, and its steering
mechanism is the text interface that humans use to guide generations.1

How do humans interact with the generative model? We assume that a human is trying to generate an
instance to satisfy a specific use case. For example, someone using an image generation model may
be looking for a certain kind of image, and would try to prompt the model to produce such an image.
To model a specific user’s use case, we define a family of reward functions R where each 𝑟 ∈ R is a
function over instances 𝑟 : 𝑋 → R. Each use case is defined by a single reward function.

1We can also consider distributions over producible instances rather than a single producible set without loss
of generality; we use set notation here for simplicity but will also consider distributions in Section 4.
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A human interacts with a generative model with the goal of producing an output that maximizes their
reward. We define ℎ(𝑚, 𝑟) ∈ 𝑆𝑚 as the instance that is produced when a human with reward function
𝑟 interacts with the model 𝑚. We refer to ℎ as the steering function; it describes how someone with a
specific reward function would steer a model to maximize it.2 This notation abstracts away details about
how interactions are constructed (e.g. the number of attempts users have to prompt a model). While
we exclude these details in our notation, our experiments will explicitly consider different settings.
A human’s reward when using a generative model is 𝑟 (ℎ(𝑚, 𝑟)). This quantity describes how effective
a generative model is under human interaction. However, it blends a model’s steerability with the
quality of its producible set 𝑆𝑚. To see this, we introduce additional notation to decompose the reward.
For a set of instances 𝐴, define 𝑟∗𝐴 as the maximum reward when constrained to instances in 𝐴:

𝑟∗𝐴 = max
𝑥∈𝐴

𝑟 (𝑥). (1)

Denoting by 𝑟∗𝑋 the maximum reward over all possible instances, the largest possible reward for a
given reward function is 𝑟∗𝑋. A model’s efficacy can be summarized by the gap between this largest
possible reward and the model’s reward: 𝑟∗𝑋 − 𝑟 (ℎ(𝑚, 𝑟)). This gap can be decomposed:

𝑟∗𝑋 − 𝑟 (ℎ(𝑚, 𝑟)) =
producibility gap︷    ︸︸    ︷
𝑟∗𝑋 − 𝑟∗𝑆𝑚 +

steerability gap︷               ︸︸               ︷
𝑟∗𝑆𝑚 − 𝑟 (ℎ(𝑚, 𝑟)) . (2)

The first term, 𝑟∗𝑋 − 𝑟∗𝑆𝑚 , is the producibility gap; it captures how well the producible set of a model
aligns with the set of all possible instances 𝑋 , regardless of how steerable the model is. Meanwhile,
the second term is the steerability gap; it describes how well a model can be steered by humans
towards the best instance the model is capable of producing.
The decomposition in Equation 2 describes a single reward function; in practice, a model’s total
reward will be averaged over all reward functions that humans may have. Thus, the producibility
gap can equivalently be characterized by considering only the set of instances 𝑇 that humans may
want to produce, i.e. those that maximize a feasible reward function (so that 𝑟∗𝑋 = 𝑟∗𝑇 for all 𝑟). This
decomposition reveals a couple of results. The first is that with perfect steering, a model’s performance
can simply be evaluated by comparing the producible set 𝑆𝑚 to the set of instances people may want
to produce, 𝑇 . However, with imperfect steering, a model can in principle be capable of producing all
instances humans may want (i.e. 𝑆𝑚 = 𝑇), and yet produce images ℎ(𝑚, 𝑟) with arbitrarily bad reward
when steered by a human. Thus, both terms are needed to benchmark model quality under human use.
Many existing ML benchmarks (e.g. image evaluation metrics like Inception Score [70] and Fréchet
Inception Distance [32]) only measure producibility. This is partially due to the challenge of measuring
steerability, which relies on human reward functions that may be unknown. Recent benchmarks have
been proposed for evaluating the success of human-AI interactions [48, 39, 81]. While important for
understanding overall efficacy, these benchmarks combine producibility and steerability into a single
metric. Decomposing these effects is important for improving models along each dimension, which are
optimized with different pipelines; e.g. producibility may be improved through model architecture and
training data, while steerability may be enhanced through new interfaces and alignment techniques.
Benchmark task. In this paper, we propose and implement a benchmark task for measuring a model’s
steerability independently of its producibility. This task is revealed in the framework above: measure
how well humans can steer a model toward the highest-reward instances it is capable of producing.
Evaluating a model’s steerability is challenging because we often don’t have access to human reward
functions. Even if we did have access to reward functions, evaluating the gap by finding the instance
in a model’s producible set 𝑆𝑚 that maximizes the reward function may be intractable. Here, we
describe a simple procedure to induce reward functions that circumvents these challenges. For a given
model 𝑚, we first sample an instance 𝑥𝑔 ∼ 𝑃 from a distribution 𝑃 over the model’s producible set
𝑆𝑚. We refer to 𝑥𝑔 as the goal instance. To induce a reward function, we show a human the goal
instance 𝑥𝑔 and instruct them to use the generative model to reproduce it. Specifically, we instruct
them to generate an instance as close as possible to the goal instance 𝑥𝑔, as judged by other humans.
In this sense, we’re inducing an ideal point reward function [20]:

𝑟 (𝑥) = −𝑑 (𝑥𝑔, 𝑥), (3)
2In practice this function could differ between humans, even if they have the same reward function. For nota-

tional simplicity we report a single function ℎ, which can be interpreted as the aggregated function over humans.
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Figure 2: Human ratings (0-10 scale) measuring the similarity between human-steered text-to-image model
outputs and their corresponding goal images. Left: For each model, the average similarity of all user-generated
images to their goal images. Right: For each model, the average similarity of users’ first and last attempted
generated images to their goal images. Bars represent single standard errors.

where 𝑑 (·, ·) ∈ R+ is the distance function as judged by humans (with the property that 𝑑 (𝑥, 𝑥) = 0).
Therefore, for a given goal instance 𝑥𝑔, the steerability gap is

𝑟∗𝑆𝑚 − 𝑟 (ℎ(𝑚, 𝑟)) = min
𝑥′∈𝑆𝑚

𝑑 (𝑥𝑔, 𝑥′) + 𝑑 (𝑥𝑔, ℎ(𝑚, 𝑟)) = 𝑑 (𝑥𝑔, ℎ(𝑚, 𝑟)),
where the equality is due to the fact that the goal instance 𝑥𝑔 ∈ 𝑆𝑚. Finally, to evaluate the steerability
gap, we ask separate human annotators to rate the similarity of 𝑥𝑔 and ℎ(𝑚, 𝑟). We repeat this process
across goal instances and human users to form an aggregate steerability measure for the model 𝑚.
This task is straightforward and can be applied to any domain where there’s a natural notion of human
similarity. For example, to implement this benchmark for text-to-image models, we first sample an
image from the model’s producible set. We then show this image to a human, and instruct them to
prompt the model to produce the image (see Figure 1). We then take the image they produce and ask
other humans to rate how close the two images are.

3 Benchmarking steerability

We now evaluate the steerability of image-generation models using the task described in Section 2.
In a large-scale user study, we find that model steerability is poor, both for survey respondents and
professional prompt engineers. Overall, annotators rate the attempted reproductions as dissatisfactory
60% of the time. To the extent that there is improvement, more than half of this improvement can be
matched by a blind steering mechanism that generates edits of a user’s first prompt without knowing
the goal image. We find similar results in a smaller user study for steering LLMs (Appendix B).
Setup. We use the framework described in Section 2 to study the steerability of text-to-image models.
These include models, such as Stable Diffusion [23], that are prompted via text to generate images.
We refer to this type of steering as text steering. We note that some models allow other mechanisms
for steering, such as negative prompts [3] and image inpainting [82]. We focus our study on text
prompting because it is the most common mechanism across these models, although we find similar
results when we expand to other settings, such as allowing users to experiment with random seeds or
control classifier-free guidance settings [34] (see Appendix B).
We study 10 text-to-image models. We consider four variants of the Stable Diffusion models:
SD3-large, SD3.5-medium, SD3.5-large, and SD3.5-large-turbo [23]. We also consider two versions
of DALL-E: DALL-E 2 [67] and DALL-E 3 [5]. We also consider Flux-dev [6], Flux-1.1-pro-ultra
[6], Ideogram-v2-turbo [37], and Photon-flash [57]. We use publicly available APIs for each model:
Stability AI for the stable diffusion models, the OpenAI API for the DALL-E models, and the
Replicate AI API for all other models.
Benchmark. For each model, we sample a goal image from the model’s producible set by prompting
it with a random image caption from the PixelProse dataset [73]. We then show the goal image to a
human user and instruct them to generate an image as close as possible to the goal image. We give
them 5 attempts to prompt the model. After each prompt, they are shown the image generated by the
model and given the option to refine their prompt to improve the generated image. We repeat this
process across goal images and users.
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Model Imp POM-1 POM-5
DALL-E 2 0.60 (0.04) 0.64 (0.06) 0.72 (0.05)
DALL-E 3 0.58 (0.04) 0.56 (0.07) 0.52 (0.06)
Flux-dev 0.66 (0.04) 0.48 (0.07) 0.64 (0.06)
Flux-1.1-pro-ultra 0.54 (0.05) 0.49 (0.07) 0.55 (0.06)
Ideogram-v2-turbo 0.61 (0.04) 0.46 (0.07) 0.70 (0.05)
Photon-flash 0.74 (0.04) 0.45 (0.07) 0.56 (0.06)
SD3-large 0.51 (0.05) 0.52 (0.07) 0.52 (0.06)
SD3.5-medium 0.66 (0.04) 0.64 (0.06) 0.68 (0.05)
SD3.5-large-turbo 0.69 (0.04) 0.56 (0.06) 0.61 (0.06)
SD3.5-large 0.63 (0.04) 0.54 (0.07) 0.68 (0.05)

Average 0.62 (0.04) 0.54 (0.07) 0.62 (0.06)
Table 1: Steerability is poor for all models in our benchmark. Imp shows Improvement Rate and POM-1 and
POM-5 show Prompt-Output Misalignment on users’ 1st and 5th attempts, respectively. Single standard errors
are shown in parentheses. See Figure 20 for a visual depiction of these metrics.

Most of the models we consider rely on random seeds to generate images; the same prompt with205

di!erent random seeds may result in di!erent images. In our surveys, we don’t provide users with the206

random seed used to generate the goal image. This reflects how these models are used in practice: if207

a model is able to generate an image a user wants, the user typically won’t know the specific seed(s)208

necessary to generate that image. In Appendix A, we repeat our main experiment but allow users to209

choose random seeds in addition to prompts, finding no significant change in steering performance.210

We consider the following metrics for judging how close steerers come to their goal. All metrics use211

separate human annotators from the humans who perform the steering:212

• Satisfaction rate: For each image produced by a human steerer, we ask annotators to rate213

how satisfied they’d be if, in trying to generate the corresponding goal image, they instead214

got the one produced by human steering. We use a four-point scale: 4 is very satisfied, 3 is215

somewhat satisfied, 2 is somewhat unsatisfied, and 1 is very unsatisfied.216

• Image Similarity Rating: A rating on a 10-point scale for how similar a given image is to the217

goal image (with 10 being the most similar).218

• Improvement Rate (Imp): The percent of the time human raters judge the 5th attempted219

generated image to be closer to the goal image than the first attempt. For each comparison, we220

take the majority over 3 human raters. See Figure 20 for a visual summary of improvement221

rate.222

• Prompt-Output Misalignment (POM): The percent of the time that human judges deem223

human steering prompts as better descriptions of the goal image than of the image actually224

generated by the prompt. In other words, POM measures the frequency with which the225

model’s generated output fails to match what a human would reasonably expect from their226

prompt for recreating a goal image. We compute POM scores for both the 1st prompt227

(POM-1) and the last prompt (POM-5) that humans attempt. See Figure 20 for a visual228

summary of prompt-output misalignment.229

We recruit survey participants on the Prolific platform [67]. We received an IRB review and230

exemption for this study. For all of our surveys, we paid respondents an implied rate of $12.50-$13.50231

per hour, and the median survey completion time ranged from 9-15 minutes across tasks. See232

Appendix C for more survey details. In total, we collect data for 554 goal images, resulting in 2,770233

total (goal image, generated image) pairs across 277 di!erent survey-takers. We collect a total of234

18,550 ratings across the four metrics. We release all of the data we collect in hopes that it will235

lead to further evaluation and improvement of model steering.236

Results. We find that across the board, model steerability is poor. Annotators rate the attempted237

reproductions as unsatisfactory 60% of the time; moreover, 27% say they’d be “very unsatisfied” with238

the attempted reproductions compared to only 10% saying they’d be “very satisfied”. The image239

similarity results on a 10-point scale are depicted in Figure 2. The best model is Photon-flash, while240

the worst model is DALL-E 2. In general, there is not much di!erence between di!erent-sized models241

in the same family, although larger ones perform marginally better. See Figure 1 and Figure 11 for242

examples of steering attempts.243

We also analyze prompt-output misalignment (POM) in Table 1. Recall that POM-1 measures the244

fraction of the time that the first prompt a user attempts is rated as a better description of the goal245
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Figure 3: Left: Steerability is poor for all models. Imp shows Improvement Rate and POM-1 and POM-5
show Prompt-Output Misalignment on users’ 1st and 5th attempts, respectively (standard errors in parentheses).
Right: When a blind LLM is given the same number of attempts as humans to rewrite a prompt, it achieves
more than half of the human improvement. Improvement is measured by the difference between a user’s first
and best DreamSim score with the goal image (bars represent single standard errors).

Most of the models we consider rely on random seeds to generate images; the same prompt with
different random seeds may result in different images. In our surveys, we don’t provide users with the
random seed used to generate the goal image. This reflects how these models are used in practice: if
a model is able to generate an image a user wants, the user typically won’t know the specific seed(s)
necessary to generate that image. In Appendix B, we repeat our main experiment but allow users to
choose random seeds in addition to prompts, finding no significant change in steering performance.
We consider various metrics for judging steering attempts. All metrics use separate human annotators
from the ones who perform the steering. Satisfaction rate measures whether annotators would be
satisfied with the steered image in trying to produce the goal image, according to a four-point scale (very
unsatisfied to very satisfied). Image similarity rating asks the same question but on a 10-point scale.
Improvement rate (Imp) is the percent of the time human raters judge the last attempted generated image
to be closer to the goal image than the first attempt. Prompt-Output Misalignment (POM) measures the
percent of the time human judges deem human steering prompts to be better descriptions of the goal
images than the corresponding generated images. In other words, POM measures the frequency with
which the model’s generated output fails to match what a human would reasonably expect from their
prompt for recreating a goal image. We compute POM scores for both the 1st prompt (POM-1) and
the last prompt (POM-5) that humans attempt. See Figure 20 for a visual summary of these metrics.
We recruit survey participants on the Prolific platform [64]. We received an IRB review and
exemption for this study. For all of our surveys, we paid respondents an implied rate of $12.50-$13.50
per hour, and the median survey completion time ranged from 9-15 minutes across tasks. See
Appendix D for more survey details. In total, we collect data for 554 goal images, resulting in 2,770
total (goal image, generated image) pairs across 277 different survey-takers. We collect a total of
18,550 ratings across the four metrics. We release all of the data we collect.3

Results. We find that steerability is poor across models. Annotators rate the attempted reproductions
as unsatisfactory 60% of the time; moreover, 27% say they’d be “very unsatisfied” with the attempted
reproductions compared to only 10% saying they’d be “very satisfied”. The image similarity results
on a 10-point scale are depicted in Figure 2. The best model is Photon-flash, while the worst model
is DALL-E 2. In general, there is not much difference between different-sized models in the same
family, although larger ones perform marginally better. We find an average POM-1 score of 0.54,
which means that more than half the time, a human’s description aligns with the goal image better
than the generated image. See Figure 1 and Figure 11 for examples of steering attempts.
Poor steerability isn’t due only to poor initial attempted generations. Figure 3 shows the improvement
rate: only 62% of the time are images generated by a human’s 5th attempt ranked as more similar to
the goal image than images generated by a human’s 1st attempt (compared to a baseline of 50%). To
assess the impact of longer-term steering experience, we also repeat the main experiment with a small
group of professional prompt engineers recruited via Upwork [79]. Across 34 examples, professionals

3https://github.com/SarahBentley/Steerability
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only slightly outperform non-experts, with final similarity scores 10% higher (see Appendix B).
However, they also show no reliable improvement over attempts, with even lower improvement rates.
Additionally, we find that even what appears to be improvement can be partially explained by the
opportunity for users to try out different prompts. To quantify this, we “blindly” generate edits of a
user’s first prompt without knowing the goal image by instructing a large language model (LLM) to
produce 𝑘 variations of a user’s first prompt. We then measure the maximum similarity score between
the 𝑘 images produced by the blind prompts and the goal image. The results in Figure 3 show that
this blind form of steering attains a substantial portion of human improvement; when humans and a
blind LLM have the same number of attempts to rewrite a prompt, the LLM achieves 52% of
the human improvement. Further, 87% of the human improvement can be achieved by a blind LLM
with 20 opportunities to rewrite the prompt. These results help calibrate the scale of user improvement
by considering “lottery effects” of reprompting. We provide more details in Appendix C.1.
Because our metrics are based on human annotations, they might be subject to human variability. In Ap-
pendix B, we repeat our study using model-based similarity metrics; CLIP embedding cosine similarity
[66] and DreamSim [25]. We observe patterns consistent with our human annotations (Figure 5).
Steerability vs. prompt-image alignment. While there exist metrics for prompt-image alignment
like CLIP [31], steerability measures something distinct: user intent. If many images are consistent
with a single prompt or if a user has many desiderata that are infeasible to convey in a single prompt,
CLIP scores can be high with poor steerability. Still, a natural question is how much of steerability can
be attributed to prompt-image (mis)alignment empirically. Figure 6 plots the relationship between each
attempt’s prompt-image alignment (measured via CLIP) and steerability score. The correlation is low:
0.32. While poor prompt-image alignment is a factor for poor steerability, it cannot fully explain it.

4 Comparing producibility and steerability

One way to artificially improve a model’s steerability is to limit the outputs it can produce. However,
this could come at the expense of producibility, since the model wouldn’t be able to generate as many
outputs. Here we ask: is there a way to assess whether steerability improvements reflect genuine
improvements in steering mechanisms as opposed to differences in producibility?
We first study a setting where there is a controllable tradeoff between producibility and steerability:
when steerability is artificially improved by constraining all images to come from the same random
seed. Specifically, we consider different versions of Stable Diffusion 3.5 Large Turbo: the default
model, along with three versions that constrain the number of random seeds the model can use to
produce images. We measure steerability and producibility scores for each version. Figure 7 in
Appendix C.1 demonstrates a tradeoff: as the model becomes more constrained, it’s easier to steer,
but less capable of producing. While there’s a tradeoff in this artificial setting, it’s possible for
a model to have better metrics than another for both producibility and steerability; indeed, while
DALL-E 3 is more sophisticated than DALL-E 2, our empirical results show that it does not have
worse steerability. Like many other metrics (e.g. Type-I and Type-II errors), it’s important to measure
multiple dimensions — producibility and steerability — to evaluate and improve models.
We formalize this tradeoff with another decomposition. Consider two image-generation models 𝑀1
and 𝑀2 with average steerability rewards 𝑅1 and 𝑅2. Here we expand on the notation in Section 2
by considering each model’s distribution over producible images: 𝑝1 (𝑥) and 𝑝2 (𝑥).4 Each model
also has a steering mechanism that results in some expected reward for each image being reproduced:
denote by 𝜇𝑖 (𝑥) the average reward a user whose goal is to produce image 𝑥 receives when using
𝑀𝑖 . The difference in steerability between the two models can be expressed as:

𝑅2 − 𝑅1 =
∫

𝑝2 (𝑥) [𝜇2 (𝑥) − 𝜇1 (𝑥)]𝑑𝑥 +
∫

𝑝2 (𝑥)𝜇1 (𝑥)𝑑𝑥 −
∫

𝑝1 (𝑥)𝜇1 (𝑥)𝑑𝑥 (4)

= E𝑝2 (𝑥 ) [𝜇2 (𝑋) − 𝜇1 (𝑋)]︸                         ︷︷                         ︸
improvement due to steering mechanism

+E𝑝2 (𝑥 ) [𝜇1 (𝑋)] − E𝑝1 (𝑥 ) [𝜇1 (𝑋)]︸                                     ︷︷                                     ︸
improvement due to producible set

. (5)

The first term holds the producible set constant and measures differences due to the steering
mechanism alone. Meanwhile, if the difference is dominated by the second term, improvement

4Here each 𝑥 denotes an image, although it can also be characterized as an image and corresponding prompt.
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Model 𝐿2

Model Only (Baseline) 0.082 (0.025)
Model + Reference Image 0.167 (0.056)
Model + Text Prompt 0.459 (0.040)
Model + Image + Text 0.493 (0.035)

Figure 4: Left: Performance of models for predicting steerability. Right: Each model’s steerability improvement
over DALL-E 2 broken into two components: one based on di!erences in the steering mechanism, the other
based on di!erences in the producible set (Equation 5). While models do have better steering mechanisms than
DALL-E 2, it only accounts for half of their improvements.

We again find poor steerability of the LLM generated headlines. We find that human raters are very294

satisfied with the generated headline only 17% of the time. Additionally, the average improvement295

rate includes 50% in its margin of error, indicating that human raters only find improvements between296

first and last steering attempts about half the time. We provide more detailed results in Table 2.297

4 Analyzing steerability failures298

Here we analyze the failure modes of current prompting-based image models using data collected as299

part of the benchmark in Section 3.300

Steerability is predictable. Having collected data from image-generation models, we now turn to301

modeling: how predictable is the steerability of a particular instance? We consider four possible302

settings for predicting steerability (as measured by DreamSim score): a baseline that uses only the303

name of the generative model, a predictive model that uses the reference image, a model that uses a304

user’s prompt, and a model that uses both the reference image and the user’s prompt (we never use305

the images produced by the prompts). We split the data collected in Section 3 into 80/20 train/test306

splits. The baseline is a simple neural network only taking the name of the generative model. For the307

remaining models, we encode the prompts and/or images with CLIP and train a regression head to308

predict steerability scores from the resulting embeddings and a one-hot encoding of the model name.309

For the models taking prompts as inputs we also fine-tune two to four layers of CLIP.310

Section 4 shows the predictive performance of each model on a held-out split. Overall, we find that311

steerability is quite predictable: the highest-performing model can explain nearly half of the variance312

in steerability scores.313

Model 𝐿2 MSE
Model only 0.082 (0.025) 0.974 (0.071)
Model + ref. image 0.167 (0.056) 0.813 (0.179)
Model + prompt 0.459 (0.040) 0.543 (0.034)
Model + image + prompt 0.493 (0.035) 0.508 (0.033)

Possible tradeo!s in producibility and steerability. One way to artificially improve a model’s314

steerability is to limit the outputs it can produce, e.g. by constraining all images to be generated315

by the same random seed. However, this would come at the expense of producibility (Equation 2),316

since the model wouldn’t be able to generate as many outputs. Here we ask: empirically, how much317

do steerability improvements reflect genuine improvements in steering mechanisms as opposed to318

di!erences in producible sets?319

The predictive model of steerability enables us to answer this question. To see this, consider two320

image-generation models with average steerability scores 𝑀1 and 𝑀2. Here we expand on the notation321

in Section 2 by considering each model’s distribution over producible images: 𝑁1 (𝑂) and 𝑁2 (𝑂). Each322

model also has a steering mechanism that results in some expected reward for each image being323
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Figure 4: Left: Predictive performance using CLIP-based methods to predict steerabiltiy. Right: Each model’s
steerability improvement over DALL-E 2 broken into two components: one based on di!erences in the steering
mechanism, the other based on di!erences in the producible set (Equation 5). While models do have better
steering mechanisms than DALL-E 2, it only accounts for half of their improvements.

Figure 4 shows the predictive performance of each model on a held-out split. Overall, we find that289

steerability is quite predictable: the highest-performing model can explain nearly half of the variance290

in steerability scores.291

Model 𝐿2 MSE
Model only 0.082 (0.025) 0.974 (0.071)
Model + image 0.167 (0.056) 0.813 (0.179)
Model + prompt 0.459 (0.040) 0.543 (0.034)
Model + image + prompt 0.493 (0.035) 0.508 (0.033)

Possible tradeo!s in producibility and steerability. One way to artificially improve a model’s292

steerability is to limit the outputs it can produce. However, this would come at the expense of293

producibility (Equation 2), since the model wouldn’t be able to generate as many outputs. Here we294

ask: empirically, how much do steerability improvements reflect genuine improvements in steering295

mechanisms as opposed to di!erences in producibility?296

This question can be formalized and answered using the predictive model of steerability. To see this,297

consider two image-generation models with average steerability rewards 𝑀1 and 𝑀2. Here we expand298

on the notation in Section 2 by considering each model’s distribution over producible images: 𝑁1 (𝑂)299

and 𝑁2 (𝑂). Each model also has a steering mechanism that results in some expected reward for each300

image being reproduced: denote by 𝑃1 (𝑂) the average reward a user whose goal is to produce image 𝑂301

receives from model 1, with 𝑃2 (𝑂) the analogous quantity for model 2. The di!erence in steerability302

between the two models can be expressed as303

𝑀2 → 𝑀1 =
∫

𝑁2 (𝑂) [𝑃2 (𝑂) → 𝑃1 (𝑂)]𝑄𝑂 +
∫

𝑁2 (𝑂)𝑃1 (𝑂)𝑄𝑂 →
∫

𝑁1 (𝑂)𝑃1 (𝑂)𝑄𝑂 (4)

= E𝐿2 (𝑀 ) [𝑃2 (𝑅) → 𝑃1 (𝑅)]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
improvement due to steering mechanism

+E𝐿2 (𝑀 ) [𝑃1 (𝑅)] → E𝐿1 (𝑀 ) [𝑃1 (𝑅)]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
improvement due to producible set

. (5)

The first term holds the producible set constant and measures di!erences in the success of the steering304

mechanism alone. Meanwhile, if the di!erence is dominated by the second term, improvement cannot305

be attributed to di!erences in the steering mechanism; only the producible set is changing. (See306

Appendix A for more details and a derivation.)307

We use our predictive model from above as a plug-in estimator for 𝑃1 (𝑂) and 𝑃2 (𝑂) and approximate308

Equation 5 with 50 Monte-Carlo samples. Figure 4 compares each model to DALL-E 2. Each model309

has a statistically significant improvement in steerability over DALL-E 2. Across models, half of this310

improvement can be attributed to genuine improvements in steering mechanisms, while the other half311

is attributed to di!erences in producibility sets. This shows that while there’s not quite a tradeo!312

between producibility and steering — DALL-E 2 is a weaker model than DALL-E 3 and has worse313

steerability — that a substantial amount of the improvement in steering is due to the di!erences in314

images each model produces.315

In Appendix C.1, we study a setting where there is a tradeo! between producibility and steerability:316

when steerability is artificially improved by constraining all images to come from the same random seed.317
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Figure 4: Left: Predictive performance using CLIP-based methods to predict steerabiltiy. Right: Each model’s
steerability improvement over DALL-E 2 broken into two components: one based on di!erences in the steering
mechanism, the other based on di!erences in the producible set (Equation 5). While models do have better
steering mechanisms than DALL-E 2, it only accounts for half of their improvements.

This question can be formalized with another decomposition. Consider two image-generation models238

𝐿1 and 𝐿2 with average steerability rewards 𝑀1 and 𝑀2. Here we expand on the notation in Section 2239

by considering each model’s distribution over producible images: 𝑁1 (𝑂) and 𝑁2 (𝑂).3 Each model240

also has a steering mechanism that results in some expected reward for each image being reproduced:241

denote by 𝑃𝐿 (𝑂) the average reward a user whose goal is to produce image 𝑂 receives when using242

𝐿𝐿 . The di!erence in steerability between the two models can be expressed as:243

𝑀2 → 𝑀1 =
∫

𝑁2 (𝑂) [𝑃2 (𝑂) → 𝑃1 (𝑂)]𝑄𝑂 +
∫

𝑁2 (𝑂)𝑃1 (𝑂)𝑄𝑂 →
∫

𝑁1 (𝑂)𝑃1 (𝑂)𝑄𝑂 (4)

= E𝑀2 (𝑁 ) [𝑃2 (𝑅) → 𝑃1 (𝑅)]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
improvement due to steering mechanism

+E𝑀2 (𝑁 ) [𝑃1 (𝑅)] → E𝑀1 (𝑁 ) [𝑃1 (𝑅)]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
improvement due to producible set

. (5)

The first term holds the producible set constant and measures di!erences in the success of the steering244

mechanism alone. Meanwhile, if the di!erence is dominated by the second term, improvement245

cannot be attributed to di!erences in the steering mechanism; only the producible set is changing.246

(See Appendix A for more details and a derivation.)247

Model 𝑀2 MSE
Baseline 0.000 (0.000) 1.061 (0.000)
Model only 0.082 (0.025) 0.974 (0.071)
Model + prompt 0.459 (0.040) 0.543 (0.034)
Model + image + prompt 0.493 (0.035) 0.508 (0.033)

Estimating the terms in Equation 5 involves training a predictor 𝑃̂𝐿 (𝑅) to predict steerability from248

inputs for each image-generation model. How well can ML methods predict steerability? We consider249

four possible predictive models: a baseline using only the model being steered as a feature, a model250

also using the reference image, a model using a user’s prompt, and a model using both the reference251

image and the user’s prompt (we never use the images produced by the prompts). We split the data252

collected in Section 3 into 80/20 train/test splits. To predict steerability, we encode the prompts253

and/or images with CLIP and train a regression head to predict DreamSim scores from the resulting254

embeddings and a one-hot encoding of the model name. For the models taking prompts as inputs we255

additionally fine-tune CLIP layers. The training and analyses were performed on a single A100 GPU.256

Figure 4 shows the predictive performance of each model on held-out data. Overall, steerability is257

quite predictable: the highest-performing model can explain nearly half of the variance in steerability258

scores. Still, we imagine that more sophisticated prediction methods can do even better. We release259

all data in hopes that predicting steerability can be a new kind of benchmark.260

We now estimate Equation 5 using Monte-Carlo sampling. Equation 5 reports results using the best261

predictive model (we find similar results across models). We compare each model to DALL-E 2, since262

it is the only model for which other models have consistently better steerability. Across models, half263

3Here we consider each 𝑂 to represent an image, although it can be equivalently characterized as an image
and corresponding user prompt.
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Figure 4: Left: Predictive performance using CLIP-based methods to predict steerability (standard errors in
parentheses). Right: Each model’s steerability improvement over DALL-E 2 broken into two components: one
based on differences in the steering mechanism, the other based on differences in the producible set (Equation 5).

PixelProse Tiles
Avg. change % improve Avg. change % improve

Text steering 0.025 (0.010) 54.7% (3.6%) 0.029 (0.015) 56.2% (5.1%)
Image steering (random proposals) 0.040 (0.007) 62.0% (4.9%) 0.053 (0.005) 66.8% (2.6%)
Image steering (learned proposals) 0.053 (0.008) 74.2% (5.4%) 0.072 (0.007) 70.7% (3.0%)

Table 1: Image steering outperforms text steering, with further improvements coming from learning proposal
distributions. We show each method’s improvement between the first and last generated image, both with the
average magnitude of improvement (avg. change), and the percent of time there is an improvement (% improve).
Similarity scores are measured with DreamSim [25]. Standard errors are in parentheses.

cannot be attributed to differences in the steering mechanism; only the producible set is changing.
While Equation 5 isn’t a causal quantity, it accounts for how differences are distributed, and it’s
mathematically equivalent to decompositions of group differences used to study economic outcomes
[24]. See Appendix A for a derivation.
Estimating the terms in Equation 5 involves training a predictor 𝜇̂𝑖 (𝑋) to predict steerability from
inputs for each image-generation model. How well can ML methods predict steerability? We consider
four predictive models: a baseline using only the data mean, a model using only the model being
steered as a feature, a model also using a user’s prompt, and a model using both the goal image
and the user’s prompt. We split the data collected in Section 3 into 80/20 train/test splits. To
predict steerability, we encode the prompts and/or images with CLIP and fine-tune CLIP layers and a
regression head to predict DreamSim scores from the resulting embeddings and a one-hot encoding
of the model name. The training and analyses were performed on a single A100 GPU.
Figure 4 shows the predictive performance of each model on held-out data. We find that the
highest-performing model can explain nearly half of the variance in steerability scores. We imagine
that more sophisticated prediction methods can do even better.
We now estimate Equation 5 using Monte-Carlo sampling. Figure 4 reports results using the best
predictive model. We compare each model to DALL-E 2, since it is the only model for which
other models have consistently better steerability. Across models, half of this improvement can be
attributed to genuine improvements in steering mechanisms, while the other half is attributed to
differences in producibility sets. This means, for example, that the images that DALL-E 3 is more
likely to produce than DALL-E 2 are easier for people to steer to regardless of the model.

5 Steerability can be improved

The results in Section 3 suggest the need to focus on improving the steerability of generative models.
Here, we consider a simple alternative form of steering image models, based on selecting images
instead of refining prompts. In a user study with 500 human steerers, this new steering mechanism
results in more than 2x improvements over text steering.
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Image steering. Our results in Section 3 suggest that prompting is an inefficient steering mechanism.
Here, we consider a simple alternative form of steering, which we refer to as image steering. As
before, humans begin by providing a prompt to a model, which is then used to generate an image.
However, instead of relying on humans to rearticulate a new prompt, the model returns variations
of the image. The user can either select a preferred variation or stick with their original image, at
which point the model suggests new variations. This procedure does not require rearticulating textual
prompts; instead, the model does the “rearticulating” while the human chooses between options.
Specifically, given a current image 𝑥, new images 𝑥′ are sampled from a steering distribution 𝑞(𝑥′ |𝑥) and
suggested to the user. The efficacy of image steering depends on this steering distribution. Which image
variations should be suggested? We consider two approaches: one is to suggest random perturbations
in latent space. However, some sets of image variations will be more helpful to humans than others,
regardless of the goal image they’re trying to generate. So we also consider a second approach, which
learns a steering distribution that suggests a set of images likely to improve steering (independently of
the goal image). We use a simple RL technique that learns the optimal distance between current and
suggested images by simulating human steerers offline; we describe more details in Appendix C.2.
Results. We use our benchmark to evaluate image steering. We focus on two sampling distributions
to generate goal images. We first consider prompts from the PixelProse dataset to generate goal
images (as in Section 3). To also understand the effects in a domain where human articulation is more
difficult, we consider images generated from prompts about abstract geometric patterns. Specifically,
we prompt Claude-3.5-Sonnet to provide 25 variations of prompts involving geometric patterns on
tiles and use these prompts to generate images. For the image steering methods, we only suggest
two new images per round and do not allow users to update their text prompt. We also limit the
number of attempts to 5 to allow for a direct comparison to text steering.
Because our goal is to compare steering methods rather than generative models, we use a fixed
model: Stable Diffusion 1.4 [68], which is open-source, allowing us to perform perturbations.
Moreover, at 860M parameters, it is large enough to produce high-quality images but small enough to
enable efficient image generation given our academic-level computing constraints. We recruited 500
participants from Prolific to perform steering. Because image steering involves perturbing the model’s
latent space, we could not rely on black-box APIs. Instead, we used a server of 8 H100 GPUs to
perform image generation and perturbation; we found the process to be efficient. We use DreamSim to
rate the similarity of the generated and target images. Because all methods use prompting to generate
the first image, we evaluate methods by their improvement between the first and last generated image.
The results are summarized in Table 1. Across both domains and evaluation metrics, image steering
outperforms text steering. While learning the proposal distribution expands on these improvements,
there is already ample improvement without it. In both domains, the average total improvement is
more than 2x the improvement for text steering. Figure 9 shows how generated images improve as
human users continue to steer. While the improvement for text steering is relatively flat, image steering
has steeper improvements (see Figure 12 and Figure 13 for examples). These results demonstrate that
good steering performance on our benchmark is attainable; the fact that this simple image steering
mechanism attains good results suggests that more sophisticated procedures can do even better.

6 Related work

Our work on evaluating steerability is contextualized by a large body of existing work focused on
evaluating and improving human-AI interaction. For example, Lee et al. [48] develop a framework
for evaluating human-language model interaction, and further research explores gaps in current
human-AI interactions and proposes methods for improvement [13, 80, 44, 14, 56, 38, 10]. In the
context of text-to-image generation models, many benchmarks involving steerability evaluate the
process of editing images with generative models [82, 76, 4, 72, 26]. Editing is a useful strategy
for steering so these benchmarks clearly measure steerability. However, unlike our framework, they
are not measuring steerability in isolation — in order to edit a generated image to perfectly match
a goal image, a model must be capable of producing the goal image in the first place.
In the LLM literature, steerability and producibility are also typically evaluated in conjunction
[11, 63, 58, 51]. For example, Zamfirescu-Pereira et al. [85] conduct a user study finding that
non-AI experts struggle to make systematic progress in prompt design with chatbots. While these
evaluation frameworks are important for understanding overall efficacy, they combine producibility
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and steerability into a single metric. Decomposing these effects is crucial for improving models along
each dimension, and our framework studies steerability in isolation.
Our main study focuses on evaluating the steerability of image generation models. There exist many
text-to-image generation benchmarks for measuring the quality of generated images in non-interactive
experiments [54, 62, 28, 69, 35], some of which have found systematic failures (e.g. due to shared CLIP
encodings) [78]. Other evaluation metrics include measures of: (i) text-image alignment [31, 49, 50];
(ii) similarity to a reference image (often using embeddings from models like CLIP) [87, 83, 66, 9];
(iii) image quality [71]; and (iv) human preferences [25, 43, 84, 65, 47]. Most frequently, these
metrics are used to measure producibility and not steerability, as is the goal of our paper.
In this paper we choose to evaluate text steering and image steering as our primary mechanisms.
However, prior work highlights many alternative steering mechanisms. Examples in image generation
include negative prompting [3], manipulating prompts and their embeddings [17, 29], adding
conditional controls [86], using human image edits [88], and generally leveraging textual and image
inputs to guide the model [61, 8, 30]. Examples for other generative tasks include extracting and
moving along interpretable axes in the latent space [21, 7, 55, 75, 16], updating model weights
[18, 15, 42], and editing prompts [41, 45]. These mechanisms are all amenable to our framework and
test; while we find that image steering outperforms text steering in our surveys, we do not attempt to
suggest it is the best overall steering mechanism. Future work should explore these other approaches.
Similar to how we learn steering distributions for image steering, existing approaches use
reinforcement learning to align models with human preferences [40]. For example, Hilgard et al. [33]
develop a training procedure to optimize machine representations for human-model collaboration.
Reinforcement learning from human feedback (RLHF) is also used to improve the alignment of
LLMs [12, 2, 52] or generated images [47, 53] with human preferences. While these methods are
similar to our technique in that they use human preferences to adjust model behavior, their goals
are different; RLHF is designed to align model outputs with human preferences, while our technique
is designed to align model steering with human intuitions.
Our work complements recent findings by Jahani et al. [39] and Vodrahalli & Zou [81], who conduct
large-scale experiments on human uses of generative models. Like our work, these experiments
focus on how well humans can prompt image-generation models to produce certain goal images. A
key difference is that we focus on measuring steerability in isolation from producibility, so we only
include reference images in a model’s producible set.

7 Conclusion

This paper introduced a mathematical framework and benchmark for evaluating the steerability of gener-
ative models. We implemented the benchmark, which revealed shortcomings in text-to-image models.
We also showed steerability can be improved, achieving progress with simple alternative mechanisms.
Our work has several limitations and future directions worth noting. While there are many methods
for steering models, we focused on text steering and image steering. However our framework can
accommodate many forms of steering, and future work should explore other approaches. Additionally,
we only considered a basic implementation for suggesting images that lead to better steering. The
fact that even this basic implementation achieved improvements suggests that more sophisticated
methods applied to larger models could yield even greater benefits. Finally, while we’ve focused
on whether steerability improves during single interactions, it would be interesting to study longer
time-horizons, e.g. over the course of months.
We designed the benchmark with the goal of avoiding copyright issues: each image used in the
benchmark is generated by a text-to-image model, and is not drawn from any external, copyrighted
dataset. Still, as with any use of text-to-image models, it’s possible that a model may produce a
copyrighted image. Moreover, improved steerability could also facilitate malicious uses. However,
understanding and quantifying steerability is an important prerequisite for responsible deployment
and mitigation planning.
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Figure 5: Rankings of the steerability of image generation models according to human ratings, DreamSim, and
CLIP embedding cosine similarity.

A Derivation of Equation 5.

Here we derive Equation 5. Consider two models, 𝑚1 and 𝑚2, and denote each model’s distribution
over producible instances: 𝑝1 (𝑥) and 𝑝2 (𝑥). Each model also has a steering mechanism that results
in some expected reward for each image being reproduced: denote by 𝜇1 (𝑥) the average reward a
user whose goal is to produce image 𝑥 receives from model 1, with 𝜇2 (𝑥) the analogous quantity
for model 2. Formally, 𝜇𝑖 (𝑥) = E[𝑟𝑋 (ℎ(𝑀, 𝑟𝑋)) |𝑋 = 𝑥, 𝑀 = 𝑚𝑖], where the reward function is
subscripted by the goal instance 𝑥 to make its dependence explicit. To simplify notation, we will
define 𝑆𝑚 (𝑥) = 𝑟𝑥 (ℎ(𝑚, 𝑟𝑥)), so that 𝜇𝑖 (𝑥) = E[𝑆𝑀 (𝑥) |𝑀 = 𝑚𝑖].
Denote by 𝑅1 the average steerability for model 1 and 𝑅2 the analogous quantity for model 2. By the
law of iterated expectation,

𝑅𝑖 = E[𝑆𝑀 (𝑋) |𝑀 = 𝑚𝑖] = E[E[𝑆𝑀 (𝑋) |𝑋 = 𝑥, 𝑀 = 𝑚𝑖] |𝑀 = 𝑚𝑖] = E𝑝𝑖 (𝑥 ) [𝜇𝑖 (𝑋)] . (6)

Therefore, we can write

𝑅2 − 𝑅1 = E𝑝2 (𝑥 ) [𝜇2 (𝑋)] − E𝑝1 (𝑥 ) [𝜇1 (𝑋)]
=
∫

𝑝2 (𝑥)𝜇2 (𝑥)𝑑𝑥 −
∫

𝑝1 (𝑥)𝜇1 (𝑥)𝑑𝑥.

Add and subtract the “cross-term”
∫
𝑝2 (𝑥)𝜇1 (𝑥)𝑑𝑥:

𝑅2 − 𝑅1 =
∫

𝑝2 (𝑥)𝜇2 (𝑥)𝑑𝑥 −
∫

𝑝2 (𝑥)𝜇1 (𝑥)𝑑𝑥 +
∫

𝑝2 (𝑥)𝜇1 (𝑥)𝑑𝑥 −
∫

𝑝1 (𝑥)𝜇1 (𝑥)𝑑𝑥

=
∫

𝑝2 (𝑥) [𝜇2 (𝑥) − 𝜇1 (𝑥)]𝑑𝑥 +
∫

𝑝2 (𝑥)𝜇1 (𝑥)𝑑𝑥 −
∫

𝑝1 (𝑥)𝜇1 (𝑥)𝑑𝑥
= E𝑝2 (𝑥 ) [𝜇2 (𝑋) − 𝜇1 (𝑋)]︸                         ︷︷                         ︸

improvement due to steering mechanism

+E𝑝2 (𝑥 ) [𝜇1 (𝑋)] − E𝑝1 (𝑥 ) [𝜇1 (𝑋)]︸                                     ︷︷                                     ︸
improvement due to producible set

.

B Additional results

In this section we present additional analyses of our steerability benchmarks for text-to-image models
and LLMs.

B.1 Comparing human-judged metrics to automatic metrics.

For our main experiment, we use human ratings to evaluate model similarity. In Table 2 we consider
algorithmic similarity metrics: DreamSim [25] and CLIP [31]. As shown in Figure 5, we find that
the DreamSim and CLIP image similarity metrics are relatively aligned with human ratings.
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Table 2: The DreamSim scores and CLIP embedding cosine similarities of generated and goal images from the
benchmark on steering text-to-image generative models. DreamSim Avg and CLIP Avg describe the average
similarity of each model’s generated images with their corresponding goal images.

Model DreamSim Avg CLIP Avg
DALL-E-2 0.52 (0.01) 0.75 (0.01)
DALL-E-3 0.62 (0.01) 0.78 (0.01)
Flux-dev 0.70 (0.01) 0.83 (0.01)
Flux-1.1-pro-ultra 0.66 (0.01) 0.82 (0.01)
Ideogram-v2-turbo 0.66 (0.01) 0.83 (0.01)
Photon-flash 0.68 (0.01) 0.85 (0.01)
SD3-large 0.68 (0.01) 0.84 (0.01)
SD3.5-medium 0.67 (0.01) 0.81 (0.01)
SD3.5-large-turbo 0.65 (0.01) 0.82 (0.01)
SD3.5-large 0.67 (0.01) 0.82 (0.01)
Average 0.65 (0.00) 0.82 (0.00)
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Figure 6: Steerability scores are only weakly correlated with prompt-image alignment scores based on CLIP. We
calculate CLIPScore by computing the cosine similarity between normalized CLIP embeddings of the prompt
and image. While cosine similarity is on a scale from −1 to 1, we find most scores are between 0 and 0.4,
aligning with prior work [31].

B.2 LLM steerability.

We also apply our framework to evaluate the steerability of large language models (LLMs). Just as in
image generation, we provide users a goal instance — a piece of text — and instruct them to iteratively
prompt an LLM to output the goal text. We prohibit users from using words in the goal text to prevent
them from simply prompting the LLM to repeat it. We study 5 LLMs: Gemini-1.5-flash [77], Gemini-
2.0-flash-exp [27], GPT-4o [36], Claude-3.5-Sonnet [1], and Llama-3.3-70B-Instruct-Turbo [22].
For each LLM, we sample a goal text from its producible set by prompting it to rewrite a news headline
from the Kaggle News Category dataset using a particular style and tone [59, 60]. We provide users
with both the original and goal headlines, and instruct them to prompt the LLM to rewrite the original
headline in order to output the goal headline. Importantly, users are allowed to use words from the
original but not the goal headline in their prompt, so they cannot directly instruct the LLM to output
the goal headline. We give users 5 attempts to prompt the model. See Table 4 for an example. More
survey details are in Appendix D.
We use two kinds of human annotations to judge the steerability of LLMs: satisfaction rate (a 4-point
scale from “very unsatisfied” to “very satisfied”) and improvement rate (as before). We recruit survey
participants on Prolific, yielding 132 respondents, 118 goal headlines, and 2,030 total ratings. We
again find poor steerability: human raters are very satisfied with the generated headline only 17% of
the time. Additionally, the average improvement rate includes 50% in its margin of error, indicating
that improvements over steering attempts occur only half the time.
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Table 3: Few users are very satisfied with the generated headlines produced from steering LLMs, and human
raters find improvements between the first and last generated headline about half the time. “Satisfaction Rating”
shows the average satisfaction of raters on a scale from 1 (very unsatisfied) to 4 (very satisfied). “Very Satisfied”
describes the fraction of satisfaction ratings equal to 4, and “Improvement” measures the fraction of time a user’s
last headline is rated as more similar than their first.

Model Satisfaction Rating Very Satisfied Improvement
Claude-3-5-Sonnet-20241022 2.54 (0.06) 0.15 (0.02) 0.59 (0.06)
Gemini-1.5-Flash 2.59 (0.07) 0.21 (0.03) 0.45 (0.06)
Gemini-2.0-Flash-Exp 2.48 (0.07) 0.17 (0.03) 0.44 (0.05)
GPT-4o 2.65 (0.07) 0.17 (0.03) 0.40 (0.06)
Llama-3.3-70B-Instruct-Turbo 2.48 (0.08) 0.19 (0.03) 0.42 (0.06)
Overall 2.54 (0.03) 0.18 (0.38) 0.47 (0.03)

Table 4: In our benchmark on the steerability of LLMs, humans are instructed to prompt an LLM to rewrite the
original headline as the goal headline, without using words that appear in the goal headline but not the original.
Below we show five rounds of user instructions and the resulting model outputs.
Item Text
Original
Headline

What James Gandolfini’s Son Learned Last Night

Goal
Headline

Progeny of ’Sopranos’ Icon: A Critical Analysis of Michael Gandolfini’s Artistic Evolution

Prompt
Preamble

I will give you instructions to rewrite this news headline: "What James Gandolfini’s Son Learned Last Night". Only return the rewritten
headline. Here are my instructions:

Attempt Instructions (User Input) Generated Headline (Model Output)
1 Try to make it sound more like a scientific article, looking into the

matter with a dose of skepticism; make it sound like the artist’s
creation is novel, as if it collected from the previous creations and
presented something more.

Recent Analysis Suggests Novel Patterns in Gandolfini Heir’s
Artistic Evolution: A Critical Examination

2 Same as above, then: Now, for the first part of the title, do it in a
more artsy, creative way; imply that the artist represents a class
of itself; imply a parent-child relationship with art; highlight the
high-pitched voice of the artist.

High Notes of Heredity: A Scientific Investigation into the Next-
Generation Gandolfini’s Novel Artistic Synthesis

3 Same as above, then: Now make it less scientific and more like a
journal title.

The High Notes of a Legacy: How Gandolfini’s Heir Reimagines
the Family Opus

4 Same as above, then: Now use a bit less fancy words after: say the
artist’s name and surname after.

The Sopranos’ Echo: How a Son’s High Notes Carry His Father’s
Legacy

5 Same as above, then: Now use less fancy words; include the artist’s
full name at the end.

A New Voice in Artistic Lineage: Michael Gandolfini Explores
Depths of Character

In Table 3 we show complete results from this experiment. Table 4 contains examples of headlines.

B.3 Allowing users to choose seeds during text steering.

To evaluate text steering in its most flexible form, we conduct an additional survey in which we allow
users to provide seeds in addition to text prompts when generating images. Thus if a user happens to
find a seed with generated images that have a similar style to the goal image, they can continue using
that seed. If not, they can try different seeds. In contrast, in our prior text steering survey we did not
specify seeds, so each iteration of image generation used a random seed. The seed-choosing survey
includes all image generation models in our study except DALL-E 2 and DALL-E 3, which do not
allow the specification of seeds in their API. We find that allowing users to specify the seed results in
no statistically significant changes in their average DreamSim scores. We show the results in Table 5.

B.4 Steering with classifier-free guidance.

To evaluate text steering with a more sophisticated steering mechanism, we conduct an additional
survey allowing users to specify classifier-free guidance (CFG) settings to Stable Diffusion 3.5
Medium. Classifier-free guidance is a technique used in generative models, where the model generates
samples conditioned on both the input and a guidance signal, without relying on an explicit classifier,
to improve the alignment of generated outputs with user intentions [34]. We focus specifically on
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Table 5: The average DreamSim score per attempt when users can vs. cannot choose their own seed during
image generation. We find no statistically significant change in the similarity of generated images to goal images,
as measured by DreamSim.

Attempt Choosing Seed Not Choosing Seed
1 0.663 (0.017) 0.639 (0.008)
2 0.671 (0.017) 0.661 (0.007)
3 0.665 (0.019) 0.683 (0.007)
4 0.682 (0.018) 0.684 (0.007)
5 0.690 (0.017) 0.695 (0.007)
Average 0.674 (0.008) 0.672 (0.003)

Stable Diffusion because it is one of the few that allows CFG inputs in its API. In the survey, we allow
users to choose a number from 1 to 10 for the guidance scale. We instruct them to choose how strictly
they want the image generation process to adhere to their prompt text, with higher values keeping
their images closer to their prompts, but potentially resulting in unrealistic images. We recommend
users a default value of 4. Using this survey, we can compare the steerability of Stable Diffusion 3.5
Medium with and without CFG. Our results are shown in Table 6. We find no statistically significant
improvement in steering when users can specify CFG parameters.

Table 6: Comparison of average steering performance with and without CFG across 5 attempts, as measured by
DreamSim.

Attempt Without CFG With CFG
1 0.638 (0.020) 0.664 (0.018)
2 0.662 (0.020) 0.677 (0.017)
3 0.676 (0.015) 0.667 (0.017)
4 0.681 (0.015) 0.703 (0.015)
5 0.693 (0.015) 0.682 (0.017)
Average 0.670 (0.008) 0.679 (0.007)

B.5 Steering performance of prompt engineers.

How much does training or experience in steering generative models improve steerability? To answer
this question, we compare the steering performance on non-experts and prompt engineers. Our main
experiment was conducted by non-experts on the Prolific platform, so we repeat our experiment with
5 prompt engineers recruited on the Upwork platform [79]. To reduce noise from different models and
while having a direct comparison between the user groups, we restrict steering to Stable Diffusion 3.5
Large Turbo. Our results are shown in Table 7. Across 34 steering rounds we found prompt engineers
were better than the average steerer, but only slightly: final similarity scores were only 10% higher
than for non-experts. Moreover, we find that professional prompt engineers don’t reliably improve
between their first and last attempts, with even lower improvement rates than among the non-expert
cohort.

C Additional details

C.1 Evaluating blind steering.

To evaluate the extent to which users’ steering improvement rates can be attributed to learning (gaining
an understanding of how to steer the model) vs. random chance, we prompt an LLM to blindly
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Table 7: Per-attempt DreamSim scores for regular users and prompt engineers over five attempts.

Attempt Regular users Prompt engineers
1 0.631 (0.019) 0.767 (0.014)
2 0.636 (0.020) 0.772 (0.010)
3 0.669 (0.018) 0.777 (0.014)
4 0.654 (0.019) 0.772 (0.014)
5 0.670 (0.016) 0.741 (0.025)
Average 0.652 (0.008) 0.766 (0.007)

steer image generation models. Specifically, we randomly sample a set of 100 human steering traces
from our prior experiment, each of which contains a goal image and five prompts and generated
images, corresponding to the human’s 5 steering attempts. To have an LLM blindly perform steering,
we prompt GPT-4o to produce variations of the user’s first attempt prompt for all 100 goal images,
then use these variations to generate images. Importantly, we do not provide GPT-4o any additional
information about the goal image. For each of the generated images, we calculate the DreamSim
similarity to the goal image to evaluate the effectiveness of blind steering.
We repeat this experiment four times, prompting GPT-4o to produce 4, 7, 10, and 20 variations of the
first attempt prompts. For example, to produce 4 variations of a user’s first attempt prompt, we prompt
GPT-4o as follows: “Provide four different, more detailed variations of this description and label
them (1), ..., (4): ...". We calculate the maximum DreamSim score (measuring the similarity of the
generated images to the goal image) among the LLM’s prompt variations and calculate how much it
improves over the user’s first attempt DreamSim score. For each goal image, we consider the LLM’s
improvement score to be the difference between its highest DreamSim score and the human’s first
attempt DreamSim score. If this difference is negative, meaning the LLM’s best score is worse than
the human’s first attempt, the improvement is 0. Likewise, we consider the human’s improvement
score to be the difference between their best score and their first attempt score, according to DreamSim.
To calculate the expected human improvement due to random chance, we divide the mean LLM
improvement score by the mean human improvement score. Thus this quantity summarizes the
percentage of human steering progress that can be achieved through arbitrarily varying their first
prompt. The results are shown in Figure 3.
Artificially improving steerability hurts producibility. Constraining all images to be generated
by the same random seed might artificially improve steerability while worsening producibility since
the model wouldn’t be able to generate as many outputs. To study the relationship between model
steerability and producibility in Figure 7, we considered different versions of Stable Diffusion 3.5
Large Turbo: the default model, along with three versions that constrain the number of random
seeds the model can use to produce images. To compute steerability, we ran the survey described
in Section 3 but constrained the goal image and all user-generated images to be in the relevant set
of random seeds. When we constrain to one seed, this means that each image is generated using
the same random seed as the goal image. When we constrain to two seeds, this means that the goal
image is generated using a single random seed (e.g. 42), and each attempt the user has to generate the
goal image either uses that same random seed (42) or a different, fixed random seed (e.g. 43); for
each attempt, this choice is sampled uniformly at random. We consider 1, 2, 3, and the default set of
random seeds (4294967294). We measure steerability using the DreamSim similarity score between
goal and generated images, averaging over rounds and attempts.
In contrast, producibility here refers to how similar the closest image in a model’s set of producible
images comes to some goal image. To measure this, we first sample a prompt uniformly at random
from PixelProse [73], which we then use to generate an image from a non-Stable Diffusion model.
We then ask: how close can the Stable Diffusion model under consideration come to generating this
image? Intuitively, models that are able to produce more random seeds can produce a larger set of
images and could come closer. However, finding the optimal image in the model’s producible set is
an optimization challenge, because it requires a combinatorial optimization over possible prompts.
Instead, we approximate this optimization by searching over random variations of the prompt used
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Figure 7: While artificially decreasing the number of images a model can produce improves steerability, it
results in worse producibility. Each point represents Stable Diffusion 3.5 Large Turbo constrained to a different
number of seeds. Similarity scores are calculated with DreamSim [25].
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Figure 8: The value function for each round of image generation.

to generate the original image. Specifically, we prompt an LLM to generate slight variations of the
original prompt used to generate the image (using the same method as in Appendix B), and then
generate images for each prompt variation and each random seed. We then find the generated image
that is closest to the original image using DreamSim, which we report as our similarity score. When
there are more than 30 possible (prompt, seed) variations, we subsample to only include 30 to make
the problem tractable. Overall, we perform this procedure for 50 different goal images for each of the
4 Stable Diffusion variations under consideration. The results are depicted in Figure 7.

C.2 Reinforcement learning.

In this section, we provide implementation details for our reinforcement learning technique for
suggesting images to users.
The efficacy of image steering depends on the steering distribution 𝑞(𝑥′ |𝑥). How should variations
of images be suggested to human users? The steering distribution depends on the generative model
being used, and here we consider models like diffusion models [74] that are based on transformations
of noise vectors and text embeddings. That is, denote an image 𝑥 = 𝑓 (𝑧), where 𝑧 ∈ R𝐷 is a vector
of random noise concatenated with a prompt embedding. One possible steering distribution is to
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Figure 9: Improvement with image steering is more than twice that of text steering on the tiles dataset. Similarity
is measured with DreamSim. Single standard errors in parentheses.

sample 𝜖 ∼ N(𝜇, 𝜎2) with 𝜖 ∈ R𝐷 and then to decode a new image 𝑥′ = 𝑓 (𝑧 + 𝜖). This is the random
sampling mechanism we consider.
However, some sets of suggested image variations will be more helpful to humans than others,
regardless of the goal image they’re trying to generate. For example, consider two sets of suggested
images, one of which contains images that humans find similar and the other that contains images that
humans find distinct from one another yet are all similar to the current image. The variety of the latter
set makes it more likely that a human can reach their goal image.
Instead of using random sampling as a steering distribution, we propose a reinforcement learning
(RL) technique that learns a steering distribution in order to maximize human steering capabilities.
Specifically, we parameterize the steering distribution 𝑞𝜙 (𝑥′ |𝑥) with parameters 𝜙. Slightly modifying
notation from Section 2 to make the steering function’s dependence on 𝑞𝜙 explicit, denote by
ℎ(𝑚, 𝑟 |𝑞𝜙) ∈ 𝑆𝑚 the instance that is produced when a human with reward function 𝑟 interacts with a
model 𝑚 with steering distribution 𝑞𝜙 . The goal is to optimize

arg max
𝜙

E𝑟 [𝑟 (ℎ(𝑚, 𝑟 |𝑞𝜙))] . (7)

We consider learning a simple steering distribution that suggests image variations as a function of the
human steerer’s behavior. We consider learning the optimal size of the perturbation. Specifically,
we define the steering distribution as 𝑞(𝑥′ |𝑥, 𝑡, 𝑠), where 𝑡 ∈ N is the attempt number and 𝑠 ∈ {0, 1}
indicates whether the user stayed with the previous image suggestion or chose a new one. Rather than
perturbing both the text embeddings and latent representations, we found that focusing solely on the
latent space was sufficient. For a given latent vector z, we generate variations using a mixture of the
original latent and a random noise vector:

𝑧′ =

√︄
1

𝑠2 + (1 − 𝑠)2 ((1 − 𝑠)𝑧 + 𝑠𝜖) (8)

where 𝑠 ∈ [0, 1] is the mixture scale and 𝜖 ∼ N(0, 𝐼) is standard Gaussian noise. The normalization
factor ensures the variance of z’ matches that of z. This perturbation scheme preserves the model’s
learned manifold better than additive noise while allowing controlled exploration.
In principle, the policy 𝜙 can be optimized with humans-in-the-loop, e.g. by measuring and optimizing
the reward for different steering distributions when humans use them. However, this can be expensive
as it requires many human users. Instead, we simulate a human’s behavior with an agent; given a
human’s prompt for a goal image (collected offline), the agent always chooses the image suggestion
it deems most similar to the goal image, as measured by the DreamSim similarity metric [25].
The reward for a single episode is then the similarity between the final image and the goal image.
Importantly, while we have access to the goal image at train time (e.g. to choose the image that’s most
similar), in order to mimic real world use, the policy does not depend on the goal image.
We implement this procedure by discretizing the continuous mixture scale space into 10 equally
spaced buckets between 0.1 and 1.0. The policy must choose a mixture scale for each of the 4 rounds
of interaction. To handle the combinatorial nature of this sequential decision problem, we decompose
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the policy into independent decisions per round. We use Thompson Sampling to balance exploration
and exploitation. For each (round, bucket) pair, we maintain empirical reward statistics (counts and
means). The posterior for each pair is approximated as a normal distribution:

𝜇𝑟 ,𝑏 ∼ N
(
𝜇̂𝑟 ,𝑏,

𝜎2

𝑛𝑟 ,𝑏 + 1

)
(9)

where 𝜇̂𝑟 ,𝑏 is the empirical mean reward, 𝑛𝑟 ,𝑏 is the number of times bucket b was chosen in round r,
and 𝜎2 is a prior variance parameter (set to 1.0 in our experiments).
During training, we:

1. Sample a mean from each bucket’s posterior for each round
2. Choose the bucket with highest sampled mean
3. Play an episode using the corresponding mixture scales
4. Update statistics for chosen (round, bucket) pairs using the episode reward

The reward for an episode is the improvement in similarity between the final generated image and the
goal image, compared to the initial generated image.
We trained for 60,000 episodes using Stable Diffusion 1.4 as the base model. Each episode used a
different prompt and reference image sampled from our dataset. Episodes were run with 4 rounds of
interaction and 2 image variations per round. We used the DreamSim perceptual similarity metric
both for the simulator’s choices during training and for evaluation.

D Survey details

We recruited survey participants on the Prolific platform [64]. For all of our surveys, we paid
respondents an implied rate of $12.50-$13.50 per hour, and the median survey completion time
ranged from 9-15 minutes across tasks. We recruited different users for each survey. We received
an IRB review and exemption for this study. We conducted the following surveys on text steering
for image generation models: steering (Figure 14, Figure 15), generated vs. goal image similarity
ratings on a 10-point scale (Figure 16), improvement ratings (Figure 18), generated image satisfaction
ratings on a 4-point scale (Figure 17), prompt-output misalignment ratings (Figure 19), steering with
allowing users to choose seeds, and steering with a constrained number of seeds. We conducted
three analogous surveys on text steering for LLMs: steering, generated vs. goal headline satisfaction
ratings on a 4-point scale, and improvement ratings. For all experiments involving rewriting multiple
prompts, we always used rewrites from scratch. That is, a user sees their previous prompt, they’re
given the opportunity to edit it, and then submit it to the model. Finally, we conducted surveys for
image steering with and without RL, and in both the general and tiles domains. See Figure 14 and
Figure 15 for examples.
Since it can be difficult to rate the similarity of images, we calibrate users in the similarity surveys by
(1) consecutively showing them 5 generated images for the same goal image (in a random order) and
(2) providing them at least one duplicate (goal image, goal image) pair for each of the 6 goal images
they see (in a random order). Providing users duplicates gives them a chance to see how a rating of
10 should look, and ordering goal images consecutively allows users to go back and forth between
images to be more consistent in their ratings.

E Additional examples

Table 4 shows a user’s attempt at steering an LLM toward rewriting a headline as the corresponding goal
headline. Meanwhile, Figure 12 shows examples of users performing image steering. Additionally,
Figure 13 shows examples of users leveraging image steering specifically to reproduce goal images of
tile patterns.
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A wooden bookshelf with two sections, 
each containing neatly arranged 
hardcover books. The left section has 
four books in shades of blue, while the 
right section has four books in shades 
of red. The books are evenly aligned, 
standing upright with their spines facing 
outward. The wooden shelf has a warm 
brown tone with visible wood grain. The 
lighting is soft and even, casting subtle 
shadows on the books and shelf for a 
realistic effect. The image has a sharp, 
high-quality texture, with the books 
appearing smooth and slightly glossy.

Create an image of 6 books in a shelf. 
On the left will be three blue books and 
the right three red books. A wooden 
structure at the middle of the shelf to 
divide these six books into three eqaul

A wooden bookshelf with two sections, 
each containing neatly arranged 
hardcover books. The left section has 
three books in shades of blue, while the 
other section has three books in shades 
of red

one  bookcase shelf containing only 3 
blue books graduated in shade from 
light to dark.  A vertical partition shelf 
and then three red books

A bookcase shelf containing 3 blue 
books graduated in shade from light to 
dark.  A vertical partition shelf and then 
three red books

 a shelf containing only 3 blue books 
graduated in shade from light to dark.  A 
vertical partition shelf and then three 
red books

 A book case with two compartments. 
The left compartment has three books 
of various shades of blue. From left 
which is the lightest shade of blue, to 
right which has the darkest shade of 
blue. As you move left the shade of blue 
gets darker across the three books. The 
right compartment of the books shelf 
also has three books. This time with 
three red books.

A shelf with 6 book on it, 3 books a 
various shade of blue. The 3 other 
books are various shades of red. The 
shades of colour range from left 
(lightest shade) to right (darkest shade).

 An image of a part of a book case. The 
image shows just two compartments of 
the book case with a total of six books, 
split in two compartments with three 
books in each compartment. The left 
compartment has three books of 
various shades of blue. From left which 
is the lightest shade of blue, to right 
which has the darkest shade of blue. As 
you move left the shade of blue gets 
darker across the three books. The right 
compartment of the books shelf also 
has three books. This compartment has 
three red books.

Goal image

Attempt 1 Attempt 2 Attempt 3

Attempt 1 Attempt 2 Attempt 3

Attempt 1 Attempt 2 Attempt 3

Figure 10: Full prompts for the examples in Figure 1
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Goal Image

"Draw a metal pump. It should have
wheels and they should be like the
wheels of an office chair."

Attempt 1

"Draw a photo realistic metal pump.
It should have wheels and they
should be like the wheels of an
office chair."

Attempt 2

"Draw a photo realistic hand
powered metal pump. One with a
straight black handle. It should
have wheels and they should be like
the wheels of an office chair."

Attempt 3

"Draw a thin metal cylinder. It
should have office chair wheels and
at the top should be a horizontal
black handle."

Attempt 4

"Draw a thin metal cylinder. It
should have office chair wheels and
at the top should be a horizontal
black handle. It should have 4
wheels. The wheels are at the end
of 4 branches of black plastic,
like that of an office chair."

Attempt 5

Goal Image

"A road with traffic and next to
the road are palm trees. "

Attempt 1

"A long straight road with traffic
and next to the road are palm trees
and a big yellow sign with banners.
"

Attempt 2

"A long straight road with traffic
cars and next to the road there
are: palm trees, orange flags
raised and a big yellow sign. "

Attempt 3

"A long straight road with traffic
cars and next to the road there
are: a lot of palm trees, orange
flags raised and a big yellow sign.
"

Attempt 4

"A long straight road with traffic
and lots of cars, and next to the
road there are: a lot of palm
trees, orange flags raised and a
big yellow sign. "

Attempt 5

Goal Image

"Two blue and gold on the bottom
candle holders, with lighted
candles inside "

Attempt 1

"Two lighted candles inside a dark
blue cup with gold in the bottom
and white background"

Attempt 2

"Two lighted candles inside a dark
blue goblet in the shape of a  with
gold in the bottom and white
background"

Attempt 3

"Two lighted candles inside a dark
blue goblet in the shape of a  with
gold in the bottom and a bit of
black and white background"

Attempt 4

"Two lighted candles that can be
seen inside a dark blue goblet in
the shape of a  with gold in the
bottom and a bit of black and white
background"

Attempt 5

Goal Image

"There are three object. Each
object is a square with a smaller,
rectangular "handle" on the top of
the square. Both the square and the
handle have a slightly raised edge
to them. Each object has a
different colour. The one farthest
to the left is a light taupe, the
middle object is a darker taupe,
and the far right object is white.
The white object is turned slightly
inwards."

Attempt 1

"There are three objects. Each
object is a square. Each square has
an added  rectangular portion that
has been added to the top of the
square that looks like a handle.
Both the square and the rectangle
have a slightly raised edge to
them. Each object has a different
colour. The one farthest to the
left is a light brown colour. The
middle object is a medium brown
colour, and the far right object is
white. The white object is turned
slightly inwards towards the middle
object. The perspective is looking
down on the objects from above."

Attempt 2

"There are three objects as viewed
from above. Each object is in the
shape of a a square. Each square
has an added  rectangular portion
that has been added to the top of
the square that looks like a
handle. Both the square and the
rectangle have a slightly raised
edge to them. Each object has a
different colour. The one farthest
to the left is a light brown
colour. The middle object is a
medium brown colour, and the far
right object is white. The white
object is turned slightly inwards
towards the middle object. "

Attempt 3

"There are three objects as viewed
from above. Each object is in the
shape of a a square. Each square
has an added  rectangular portion
that has been added to the top of
the square that looks like a
handle. Both the square and the
rectangle have a slightly raised
edge to them. Each object has a
different colour. The one farthest
to the left is a light brown
colour. The middle object is a
medium brown colour, and the far
right object is white. The white
object is turned slightly inwards
towards the middle object. The
light source is coming from the
left and is creating shadows where
the edge is blocking the light. "

Attempt 4

"There are three objects as viewed
from above. Each object is in the
shape of a a square. Each square
has an added  rectangular portion
that has been added to the top of
the square that looks like a
handle. Both the square and the
rectangle have a slightly raised
edge to them. Each object has a
different colour. The one farthest
to the left is a light brown
colour. The middle object is a
medium brown colour, and the far
right object is white. The white
object is turned slightly inwards
towards the middle object. The
light source is coming from the
left and is creating shadows where
the edge is blocking the light. the
only colours are white, light
brown, dark brown and black (the
shadow)."

Attempt 5

Figure 11: Examples of steering text-to-image generative models using text.
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Goal Image

A drawing of a dog surrounded by
sharks. Black coloured

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

Middle of new york city with yellow
cabs

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

Colorful art piece with a lady as a
drawing

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

the image shows a silver sedan car
(BMW-ish). the tires are black with
yellowish knots on the rim. the rim
is also silver, however, the mirror
has a small touch on blue. the car
is zoomed in to show 2 doors from
one side and the front on the car
(bonnet) just enough to sow the
front tire

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Figure 12: Examples of steering image generation models with image steering; at each iteration, humans have
the choice to accept or reject a suggested edit.
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Goal Image

a 4 square image with blue and
yellow triangles

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

A lattice of emerald like diamond
shaped green pieces of glass joined
by a waven and smooth structure of
gold.

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

yellow tiles 4 blue tiles triangle
shape in the centre forming a
square

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Goal Image

it is a blue and white image.
consists of many squares in total
16. in the middle of each sqaure
there is a flower like structure
that is blue and on each ege there
is a blue structure that when the
squares meet and overlapp becomes a
circular structure

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Figure 13: Users’ attempts at using image steering to reproduce goal images of tile patterns that are difficult to
articulate.
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Figure 14: Instructions for an image generation survey.
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Figure 15: Example screen for an image generation survey with image steering.
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Figure 16: Example screen for the generated vs goal image similarity survey.

Figure 17: Example screen for the satisfaction rating survey.
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Figure 18: Example screen for the improvement rating survey.

Figure 19: Example screen for the prompt-output misalignment survey.
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Goal image Image 1 Image 5

…

A single shelf on a 
wooden book shelf, with a 
wooden divider in the 
middle. Three blue books 
on the left and three red 
books on the right.

Prompt 1
A single wooden shelf 
with a wooden divider in 
the middle. To the left of 
the divider is three books 
with blue covers. To the 
right are three books with 
red covers.

Prompt 5

Improvement

Is Goal imageImage 1 Image 5

Prompt-Output Misalignment (1)

Is
A single shelf on a 
wooden book shelf, with a 
wooden divider in the 
middle. Three blue books 
on the left and three red 
books on the right.

Prompt 1 a better description of Image 1 or Goal image

?

?

Prompt-Output Misalignment (5)

Is
A single wooden shelf 
with a wooden divider in 
the middle. To the left of 
the divider is three books 
with blue covers. To the 
right are three books with 
red covers.

Prompt 5 a better description of Image 5 or Goal image ?

or closer to  

Figure 20: Metrics used for evaluating the steerability of text-to-image models. See Section 3 for more details.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contributions are developing a mathematical framework to decompose
producibility and steerability (Section 2), using the framework to implement benchmarks on
the steerability of text-to-image and language models (Section 3), analyzing how models
achieve steerability (Section 4), and showing improvements are possible using a simple
image-based steering mechanism (Section 5). We state those contributions in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 7, as well as throughout the
text. For example, in Section 3 we discuss how, while we focus on steering image models
with text prompts because it is the most common, many other steering mechanisms have
been proposed in prior work [3, 82].
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For our theoretical framework in Section 2, we state assumptions and provide
derivations. For Equation 5 we provide a full derivation and state assumptions in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the data we collected for the steerability benchmarks on
text-to-image models and LLMs, as well as the scripts we used to analyze this data and
reproduce our results. We also describe our methodology for collecting this data in Section 3
and Appendix D. For the analysis in Section 4, we explain in detail how we trained models to
predict steerability. For image steering, we provide a detailed explanation of our methodology
in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

33



(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We provide all the data we collected for the steerability benchmarks on text-to-
image models and LLMs, as well as the scripts we used to analyze this data and reproduce
our results. Our code is well-documented and includes a ReadME with instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide training and test details for the models we train to predict steerability
in Section 4. We also provide details on learning the steering distribution for image steering
in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard errors for experimental results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The analyses in Section 4 were performed on a single A100 GPU, as noted
in the paper. We describe the compute necessary for learning the steering distribution in
Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: This paper presents work whose goal is to advance the field of Machine
Learning. While this paper is about maximizing steerability, an important caveat is that
without a good safety regime in place, good steerability could reduce safety. It’s important
to find ways to only improve steerability for intentions that align with societal values. For
example, one possibility is to highlight prompts that might pose risk and decrease steerability
for those.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper does not release any data or models that pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit the creators of the models we evaluated in Section 3, as well as the
original creators of DreamSim [25], CLIP [66], and CLIPScore [31].
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code and data as supplementary materials. We provide details
on how the data was collected in Appendix D, and further documentation in the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide screenshots of the full text of instructions given to participants in
Appendix D, as well as details about compensation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [Yes]
Justification: This paper presents datasets using data collected from human surveys. We
received an IRB review and exemption for this study. Details on our human surveys are
provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used LLMs for two of our experiments: benchmarking the steerability of
LLMs and “blind steering” (Section 3). We describe all necessary details in those sections
and Appendix C.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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