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Abstract: Inspired by the success of transfer learning in computer vision, roboti-
cists have investigated visual pre-training as a means to improve the learning ef-
ficiency and generalization ability of policies learned from pixels. To that end,
past work has favored large object interaction datasets, such as first-person videos
of humans completing diverse tasks, in pursuit of manipulation-relevant features.
Although this approach improves the efficiency of policy learning, it remains un-
clear how reliable these representations are in the presence of distribution shifts
that arise commonly in robotic applications. Surprisingly, we find that visual rep-
resentations designed for control tasks do not necessarily generalize under subtle
changes in lighting and scene texture or the introduction of distractor objects. To
understand what properties do lead to robust representations, we compare the per-
formance of 15 pre-trained vision models under different visual appearances. We
find that emergent segmentation ability is a strong predictor of out-of-distribution
generalization among ViT models. The rank order induced by this metric is more
predictive than metrics that have previously guided generalization research within
computer vision and machine learning, such as downstream ImageNet accuracy,
in-domain accuracy, or shape-bias as evaluated by cue-conflict performance. We
test this finding extensively on a suite of distribution shifts in ten tasks across two
simulated manipulation environments. On the ALOHA setup, segmentation score
predicts real-world performance after offline training with 50 demonstrations.
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1 Introduction

In spite of vast progress in computer vision, the question of how to learn a good visual representation
for robotics remains open [1]. Elsewhere in computer vision, internet datasets are retrofit to new
tasks with transfer learning, which promises both generalization and fast adaptation to downstream
tasks in exchange for large-scale pre-training. But in the field of robotics, this promise has yet to be
fulfilled even though policies learned from pixels struggle substantially with data efficiency [2] and
especially generalization under visual changes in a scene [3].

Recent work [4, 5] posits that the missing piece is a large pre-training dataset of object interactions
across diverse environments — the ImageNet [6] or CommonCrawl [7] of manipulation. That is, if
we want to improve the visual generalization ability of pre-trained models we simply need to collect
datasets of this kind at scale. Indeed, training on large datasets of first-person human interaction
data increases policy performance and learning efficiency downstream [8, 9], but these evaluations
occur in environments that are very similar to those used for policy learning. Robotic applications
commonly contain environments with varying lighting conditions, scene textures, and background
objects, and we want pre-trained representations to allow the robot to handle such variability. Yet we
have few concrete measures of how well pre-trained representations generalize out-of-distribution.
To take a step towards understanding these problems, our goal in this paper is to thoroughly answer
the questions “which models generalize?” and “how can we predict generalization ability?”
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With Segmenting-Features accuracy drops 37% 
with distractors

Without Segmenting-Features accuracy drops 
85% with distractors

Figure 1: We find that the emergent segmenta-
tion ability of ViT attention heads (measured by
Jaccard index) predicts performance under visual
distribution shift. We refer to models with this
property as having “segmenting-features.” Notice
how the attention of MVP shifts towards the sugar
box distractor object in the bottom right image.
The impact of this factor overshadows other de-
sign choices such as data relevance.

Our first key finding is that, when evaluated under
visual distribution shifts, models that are designed
for manipulation and control do not outperform stan-
dard visual pre-training methods. This finding vio-
lates our intuitions about what is needed to scale up
robot learning and brings into question what consti-
tutes relevant data, how to quantify useful features,
and the importance of design choices such as model
architecture. In other words, we need more guid-
ing principles to understand what representations are
good for manipulation and make the problem of iter-
ating on pre-training strategies much more straight-
forward. Currently, evaluating a pre-trained policy
requires training and rolling out downstream policies
across multiple environments and experimental con-
ditions. Instead, we can take inspiration from com-
puter vision, which has developed proxies for robust
performance on out-of-distribution datasets [10].

Our second key finding is that the emergent seg-
mentation ability of a ViT model is a strong pre-
dictor of out-of-distribution generalization perfor-
mance. We visualize this phenomenon, which we refer to as “segmenting-features,” in Figure 1.
Other metrics of model quality, such as linear probes on ImageNet [11], and out-of-distribution per-
formance, such as in-domain accuracy [12] and shape-bias [13], are not predictive for this model
class, despite their predictive power in other commonly-studied domains like image classification.
This hints at the possibility that the transfer setting of manipulation differs from computer vision
tasks typically studied within the robustness literature.

To reach the conclusions above, we run 9,000 different simulated evaluations. Our simulated en-
vironments are adapted from two different existing visual distribution shift benchmarks [14, 15] to
capture the shifts that arise commonly in robotics applications: changes in lighting, background and
object texture, and the appearance of distractors. More specifically, we train policies on top of 15
pre-trained models, including 4 models designed for manipulation or control: R3M [8], two MVP
variants [9, 16], and VIP [17]. We further validate these findings by comparing a model designed
for manipulation against a model with a similar parameter count on a real-world screwdriver pick-
up task using the ACT training framework [18]. Through these experiments, we make two striking
findings: (1) pre-trained visual models designed for control do not necessarily generalize better than
models pre-trained on more standard vision datasets and (2) the emergent segmentation performance
of a ViT model is a strong predictor of the out-of-distribution generalization of a down-stream policy.

2 Related Work

Representation learning for manipulation. The correct approach to visual representation learning
for robotics is still an open question. There is evidence that separating visual representation learn-
ing from policy learning can further improve performance [19, 20]. Recent works have shown that
models pre-trained on large manipulation-relevant datasets [21, 4, 22, 5] or learned with visual affor-
dances from RGBD data [23] can improve the efficiency and performance of policy learning [24] in
comparison to standard vision datasets such as ImageNet [6], but they do not focus on performance
under visual distribution shift. We evaluate the performance of R3M [8], MVP [9, 16], and VIP [17].
Other work has studied generalization of pre-trained representations to new reinforcement learning
tasks for manipulation [17] and navigation [25] where the agent is able to train on visual data from
the new environment. Our objects of study are models that map RGB image data into single-vector
feature representations. This excludes models such as LIV [26] and SUGAR [27], which operate on
different data modalities, and Segment-Anything [28], which produces 3-dimensional feature maps
and not compressed representations. Separate from the question of pre-training visual representa-
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Figure 2: Evaluation Scheme. We begin our evaluation procedure by training a policy with behavior cloning
on top of frozen features. In every experimental setting, we ablate the image observation encoder. The learned
policy is then evaluated in each of the shift environments to attain a zero-shot success value.

tions is the question of how to best train policies on top of pixel observations [29, 30]. Majumdar
et al. [31] benchmarks the performance of pre-trained visual representations on a handful of ma-
nipulation environments, but they focus on in-domain performance and also investigate navigation
environments. Hu et al. [32] shows that model performance is highly sensitive to evaluation. We
use imitation learning for our evaluation protocol, which they find to be a more stable measure of
performance. Concurrently with our work, [33] demonstrates that the importance of proper data
balancing supersedes the content of any one pre-training dataset. We focus on benchmarking visual
generalization specifically and focus on advancing metrics that are predictive of generalization.

Robustness in computer vision. There is extensive work studying the impact of design choices,
such as architecture, loss, and data, on the performance of visual models under distribution shift.
See Geirhos et al. [10] for a comprehensive comparison. Most relevant to our paper are studies of
shape-bias and architecture. While shape-biased models tend to be more robust than texture-biased
ones [13], the impact of architecture on robustness is less straightforward. For example, vision trans-
formers exhibit better robustness to universal adversarial attacks [34], but they are more susceptible
to patch-level attacks [35]. When compared on natural distribution shifts [36, 37, 38], vision trans-
formers and convolutional networks achieve comparable performance when provided with enough
data [39]. But for occlusions specifically, vision transformers appear to have an edge [40]. Miller
et al. [12] studies the predictive power of in-domain performance for out-of-distribution generaliza-
tion. Unlike all of these prior works, we focus on how pre-trained representations affect robustness
in downstream robotics tasks, instead of downstream vision tasks.

Learning robust policies. Unlike work that focuses on changes in dynamics or initial state distri-
bution [41, 42, 43, 44, 45, 46], we focus exclusively on the setting of visual distribution shifts. Kirk
et al. [47] and Zhao et al. [48] provide a comprehensive survey on non-visual distribution shifts in
decision making problems. Policy adaptation approaches enable visual robustness specifically by
leveraging insights from domain adaptation during policy training [49, 50, 51] or during deploy-
ment [52]. In the special case of closing the sim-to-real domain gap, a popular approach is to add
randomized textures while training in simulation [53, 54, 55, 56]. By contrast, our work is inter-
ested in explaining properties of a robust visual model for control. Consequently, our insights can
be leveraged with or without any task specific data.

3 Environments, Evaluation Protocol, and Pre-Trained Models

Our goal is to understand how robust existing representations for manipulation are to visual distri-
bution shifts that are realistic in robotic applications. To that end, we learn policies parameterized
by multi-layer perceptrons (MLPs) on top of frozen, pre-trained encoders and then evaluate these
policies zero-shot under changes in lighting, object and scene texture, and the presence of distrac-
tors. We opt for MLP-based policy evaluations on frozen backbones because they the standard for
probing visual representations [1, 11, 57], have strong theoretical underpinnings [58], and are the
de facto benchmark for benchmarking representations for control [9, 8, 17]. The shifts tested are
visualized in Appendix Figure 7 and a high level summary of our evaluation procedure is visualized
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Figure 3: Visual Generalization Performance. Models trained with supervision on ImageNet are shades of
blue. Models trained with self-supervision on ImageNet are in red. Models trained explicitly for control tasks
are orange. Dotted bars denote ResNets and slashed bars denote ViTs. Surprisingly, the best performing models
are not necessarily designed for manipulation. Each bar is an average over 30 experimental conditions.

in Figure 2. In this section, we describe the specifics of the manipulation environments, distribution
shifts, and policy training setups.

Environments and tasks. We study ten tasks across two simulated manipulation environments,
which are selected based on their popularity in studying learning-based approaches to manipulation.
Within FrankaKitchen [59] we evaluate performance on opening a microwave, sliding a cabinet door
open, pulling a cabinet open, turning a knob, and turning on a light. Within Meta-World [60] we
study assembling a ring onto a peg, placing an object between two bins, pushing a button, opening
a drawer, and hammering a nail.

Distribution shifts. We develop a benchmark for out-of-distribution generalization within FrankaK-
itchen and Meta-World. Within FrankaKitchen, we reimplement the texture and lighting changes
from KitchenShift [14]. Within Meta-World we use texture changes from Xie* et al. [15] and reim-
plement the same lighting changes as in FrankaKitchen. In both environments we include three
levels of distractors: one, three, and nine YCB objects [61]. More details about the implementation
and parameterization of the distribution shifts are provided in Section A.3.

Policy training. Policy training is done in the same manner as R3M [8]. A summary of the eval-
uation scheme is provided in Figure 2. We train an MLP on top of the pre-trained embedding with
imitation learning (IL), which, given actions sampled from expert trajectories, a ∼ Dtrain, mini-
mizes the mean squared error objective, ||a− â||22. Here â denotes the action predicted from a given
policy. Details of the training procedure are provided in Section A.4. The embedding weights are
frozen during policy learning, so the pre-trained models receive no task data. We train 3 different
seeds within each task for each of two different camera angles. In total, we learn 60 policies for each
model and perform 11 evaluations per policy, including on the train distribution.

Formally, for a pre-trained representation ϕ we learn policies, πϕ, each trained with a different seed,
camera angle, and task. We average the performance of πϕ along each experimental condition and
compute the mean performance and error across seeds.

Pre-trained Visual Representations. We categorize pre-trained models by loss type and data
source: supervised ImageNet models, self-supervised ImageNet models, and models trained for
manipulation and control tasks. Model specifics are provided in Appendix Section A.1.

4 Generalization of Models Pre-Trained for Manipulation

One factor motivating work in learning-based robotics is the hypothesis of scale: if we collect more
high-quality manipulation data, we should see improvements in policy generalization. However,
our understanding of what high-quality data looks like for manipulation and control tasks is still
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imprecise. Past work on pre-training visual representations for manipulation and control tasks has
focused on collecting large object interaction datasets and developing manipulation-relevant losses.
But the generalization ability of such models in comparison to standard pre-training methods is still
unknown. The goal of this section is to ask: which models generalize?

Figure 4: Average success rates for training and test
distribution across both environments for every model
in our evaluation suite. The best-performing model that
was designed for manipulation ranks seventh out of all
models evaluated.

To focus our analysis, we compare models pre-
trained for manipulation to two self-supervised
ImageNet models and two supervised Ima-
geNet models. Our main result is presented in
Figure 3 where we plot the average success rate
of the learned policies in the training environ-
ment distribution, within each class of visual
shift, and across all types of visual shifts.

Models pre-trained for manipulation. Past
work has trained visual representations for
manipulation in two ways: by training with
manipulation-specific losses or on data of
human-object interactions. We focus on three
recently introduced pre-trained models for ma-
nipulation that use different combinations of
these approaches: Masked Visual Pretrain-
ing (MVP) [9], Reusable Representations for
Robot Manipulation (R3M) [8], and Value-
Implicit Pre-Training (VIP) [17]. We include
important characteristics of these models, in-
cluding dataset sizes, architecture sizes, and
augmentations in Section A.1 and Table 1.

These models perform strongly within the train-
ing distribution: R3M and VIP in particular
comfortably beat standard pre-training base-
lines. This is expected, especially for R3M
which was evaluated on the same training environment. However, under subtle distribution shifts,
models designed for manipulation struggle to generalize as well as supervised or self-supervised
training with ImageNet. This is surprising for a few reasons. First, each manipulation model is
trained on a larger dataset than the pre-trained baselines. Ego4D alone is 4.5M frames while Im-
ageNet is only 1.2M. By parameter count, MVP is also larger than the ViT-S baselines. Finally,
we expect human-object interaction datasets such as Ego4D to be more similar to the distribution
of images observed when training a manipulation policy. The viewpoints are more varied and the
scenes are less curated than ImageNet. Although we expect this to improve the generalization of the
learned policy, these results show that other factors may supersede the impact of data relevance or
scale alone.

Supervised ImageNet models. Supervised training on ImageNet has long been a baseline for vi-
sual pre-training. Past work has found that features learned with supervised learning on ImageNet
are also a strong baseline for control: even frozen features are competitive with ground-truth state
information on a variety of simulated control tasks [20]. However, Parisi et al. [20] also find that
self-supervised learning outperforms supervised learning. Our results contradict this finding. Fig-
ure 4 shows that supervised training on Stylized ImageNet achieves a higher success rate in the
training distribution than self-supervised training on ImageNet with a masked auto-encoding loss.
These models maintain the same rank out-of-domain as well. Even without stylization, in-domain
performance of supervised ImageNet models are competitive with models trained with MAE on
FrankaKitchen. From these results, we conclude that the presence of supervision is not as predictive
of in-domain or out-of-domain performance as other factors. We also find that supervised ImageNet
training is still a strong baseline for model generalization: ViT-INSUP outperforms R3M and MVP.
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Figure 5: We plot the relationship between different metrics and out-of-distribution (OOD) generalization.
There is a promising correlation between shape-bias and OOD performance for ResNets, but not ViTs. Instead,
OOD performance for ViTs is strongly correlated with Jaccard index.

Self-Supervised ImageNet Models. In Figure 3 we include two self-supervised ViT-S models. Un-
der visual distribution shifts, the model trained with the DINO objective outperforms all three mod-
els that are designed for manipulation. Moreover, this trend holds for every distribution shift except
Meta-World with distractors. The distractors evaluation suite averages over different levels of dis-
tractions and therefore favors models with a high performance in training. In Appendix Section A.9
we plot model performance across different levels of distractors and find that several self-supervised
ViTs experience a smaller drop in performance as more distractors are added compared to ResNet
based pre-trained manipulation models like R3M and VIP.

Training with masked autoencoding performs well under distribution shifts in Meta-World, but is
less strong under distribution shifts within FrankaKitchen. In Figure 4, we see that MoCo. v3, ViT-B
also performs strongly out-of-distribution. When we compare MoCo and DINO against MAE-style
training we see that MoCo and DINO use a more extensive set of augmentations. Taking this into
account alongside the observation that a ViT trained with supervision on Stylized ImageNet per-
forms well out-of-distribution we conclude that choice of augmentations outweighs the importance
of supervision. This extends the findings of Geirhos et al. [10] to the setting of robust manipulation.

ViTs vs ResNets. One important design choice when selecting a pre-trained model is the choice
of architecture. In all of our experiments, we use ResNet-50 [62] to be consistent with past work
on visual pre-training [20, 8, 17]. Vision transformers (ViTs) [63] have seen widespread adoption
within computer vision [64], but have only recently been used for learning representations for control
[9]. We find that, on average, ViTs have a slight edge on out-of-distribution generalization compared
to equivalently trained ResNets. In Figure 6, out of the seven pre-trained models that perform
best out-of-distribution six are ViTs. Ablating architecture alone while holding dataset, training
augmentations, and parameter count constant, we can compare the model pairs “MoCo. v3, RN”
and “MoCo. v3, ViT”, “RN-DINO” and “ViT-DINO”, and “RN-INSUP” and “ViT-INSUP.” In the
latter two pairs, the ViT variant is much stronger out-of-distribution than the ResNet variant. For
MoCo, the two variants achieve similar performance out-of-distribution.

5 Properties of Robust Visual Representations for Manipulation

Summary. This section identified which pre-trained models generalize, with several interesting
findings. First, models designed for manipulaiton do not necessarily perform well under subtle
distribution shifts in comparison to more standard pre-training methods. Second, the presence or
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absence of supervision does not matter as much as other factors on both in- and out-of-distribution
generalization. Finally, ViTs have a slight edge over ResNets in out-of-distribution generalization.

Our findings in the last section are both surprising and somewhat unsatisfying because they contra-
dict many of our intuitions about scale and generalization. In our evaluation suite, we saw that better
generalization is not cleanly explained by more data, bigger models, or more relevant data. The
goal of this section is to identify the properties of pre-trained models that are predictive of general-
ization. To that end, we correlate out-of-distribution performance with three metrics that have been
previously connected to generalization in the machine learning and computer vision literature—
in-domain performance, accuracy of a linear probe trained on ImageNet, and shape-bias. We also
include a fourth metric, which is specific to ViTs: the emergent segmentation accuracy of the output
attention heads. We describe each metric in detail in Section 5.1, discuss our setup for correlating
performance in Section 5.2, and analyze our results in Section 5.3.

5.1 Metrics

ID vs OOD. One of the goals of this paper is to understand how well the findings from existing
evaluations of pre-trained models hold under the inevitable environment changes that we expect to
see in real-world settings. If in-distribution performance is reasonably predictive of generalization,
it is sufficient for researchers to continue developing pre-trained models with existing methods of
evaluation. Past work has also shown that the in-distribution performance of a pre-trained model
is positively correlated with out-of-distribution performance for a variety of computer vision tasks
[12]. Concretely, we measure in-distribution performance as the success rate of the policy within
the training distribution.

Figure 6: What happens to models with
a high Jaccard index under an object-level
distribution shift? Surprisingly, the models
with the highest Jaccard index maintain the
highest performance as the number of dis-
tractors increases.

Imagenet vs OOD. Training linear probes on Imagenet is
a common protocol for evaluating the quality of learned
representations [65, 11]. Hu et al. [32] make the related
finding that the ImageNet k-NN accuracy of a pre-trained
model is predictive of performance on imitation learning
with a visual reward function. We evaluate ImageNet val-
idation accuracy for all models with linear probes.

Shape-Bias vs OOD. Shape bias is the extent to which
a model makes prediction decisions based on shape. We
calculate shape bias as the percent of shape (as opposed to
texture) classification decisions on the Stylized-ImageNet
validation set [13] using the same probes described above.

Jaccard vs OOD. Finally, for all of the ViT models, we
look at the emergent segmentation performance. We eval-
uate the Jaccard index of an interpolated attention map
averaged across heads in the last attention block at the
[CLS] token.

5.2 Setup

We measure the coefficient of determination (R2) and Spearman’s rank correlation (ρ) for the corre-
lation between the out-of-distribution success rate and each metric described above. Our goal is to
find a metric that will result in high correlation between the metric and the OOD success, i.e. both
coefficients being close to 1.0. We fit separate trend lines to ViTs and ResNets. Because of the lack
of available probes, we exclude MVP, MVP ViT-S HOI, R3M, VIP, and MAE-IN ViT-S from the
shape bias and ImageNet probe correlations. Each point represents one of the 15 pre-trained models
we evaluated and represents the average of 6,000 evaluation runs.

5.3 Results

We visualize the correlation between each metric and the average out-of-distribution success rate in
Figure 5. Although we see a positive relationship between in- and out-of distribution generalization,
there are pre-trained models that notably deviate from this trend. Among ViT models one example is
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MVP, ViT-S (HOI): the average success rate of this model drops to 6.63 from 39.86. By contrast, we
find that ImageNet accuracy of a linear probe poorly predicts generalization performance for ViTs.

We also see little correlation between shape-bias and OOD performance for ViT models, but a
promisingly strong correlation on the subset of ResNets evaluted. This is surprising because humans
make highly shape-biased decisions and increasing shape-bias increases the robustness of imagenet
trained CNNs [13, 10]. One explanation of this finding is that the ViT architecture obviates the need
for shape-biased features. For example, a ResNet-50 trained with the DINO training scheme has a
strong shape-bias, but not the equivalent ViT model.

Finally, we visualize the relationship between the Jaccard index and OOD performance on all ViT
models in Figure 5. There is a strong positive correlation between Jaccard index and OOD perfor-
mance both in terms of rank correlation and the coefficient of determination. These results suggest
that while shape-bias may not be predictive of the OOD generalization ability of a pre-trained ViT,
the segmentation ability is a predictive alternative.

One counter-argument to the use of Jaccard index as a metric for for OOD performance is that
it would be less predictive for object-level distribution shift, which would occur any time a large
distractor is placed in the background of the image. In Figure 6, we plot the success rates of each
ViT model as the number of objects increases and verify that the models with the higher Jaccard
index actually maintain the highest performance as the number of distractors increases.

5.4 Validating in the real world

In this section, we validate our finding on a real-world generalization scenario by comparing a ViT-B
model designed for control (MVP) against a model not designed for control but with a high emergent
segmentation score (MoCo-v3).

Setup. We learn policies for picking up a screwdriver on the ALOHA setup using the ACT train-
ing framework [18]. We follow the standard ACT training paradigm with further details listed in
Appendix Table 3. From the training data to the test runs there is a distribution shift in both the
placement of the target object (the screwdriver) and in the direction of the lighting. We calculate
success on screw pick ups averaged over 10 rollouts in the test environment.

Results. We find that MoCo-v3, with a success rate of 40% is able to outperform MVP, with a
success rate of 0%, even though it is not explicitly designed for manipulation. Qualitatively, the
MVP model fails in localizing the object when attempting the grasp, whereas MoCo-v3 model
reliably localizes the object, but experiences more failure in finding the right grasp point.

6 Conclusion

In this paper, we uncover a recipe for generalization: ViT models with a high emergent segmen-
tation accuracy generalize well under visual distribution shifts. Emergent segmentation accuracy
is not only a stronger predictor of generalization than many other metrics for robustness, but also
requires no additional training to evaluate. This insight can guide the development of pre-trained vi-
sion models in future work: preferring architecture training algorithms that lead to strong emergent
segmentation as opposed to only training on more manipulation-relevant data.

Limitations and future work. One limitation of this work is that our metric for predicting the ro-
bustness of visual representations is specific to ViT architectures. We believe that this is an artifact of
the fundamental differences in the way representations are learned in ViT and ResNet architectures.
One direction for future work is better understanding the conceptual connection between “shape-
bias” in convolutional networks and the “segmenting features” in ViT models. The majority of our
evaluation is in the theoretically well-understood, but still limited setting of training small multi-
layer perceptrons on top of frozen encoders. An important direction for future work is to expand
these findings with more complex decoders and with fine-tuning.
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J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin,
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A Appendix

A.1 Pre-Trained Model Details

RN-INSUP [62] is a ResNet model trained on the ImageNet classificaiton task. We use the default
weights and model provided by the Pytorch [66] library.

ViT-INSUP is a Vision Transformer [63] that has been distilled [67] from a larger network that
was trained on the ImageNet classification task. In our experiments, we use the model weights and
architecture provided in Naseer et al. [40] with a patch size of 16.

SIN-SUP [40] trains a vision transformer on Stylized Image-Net (SIN) [13]. The SIN dataset was
constructed to increase the degree to which a model makes predictions on shape instead of texture.
Our model weights come from Naseer et al. [40] and we use the non-distilled DeiT [67] training
variant.

ViT-DINO [68] is trained with extensive augmentations and a self-supervised, contrastive loss that
together lead to emergent segmentation within the self-attention heads of the ViT model. We use the
model and weights provided by Caron et al. [68]. Interestingly, we don’t find the DINO objective
to lead to a high shape-bias. This suggests that there are other metrics that measure the degree to
which a model is object-centric other than shape-bias.

ResNet50-DINO is learned with the same recipe as ViT-DINO. We use the model and weights from
Caron et al. [68].

MoCo. v3, RN [1] leverages a contrastive loss with momentum encoding [65] of positive targets. It
is trained with the same recipe as MoCo. v3, ViT-B.

MoCo. v3, ViT-B [1] are trained in a similar manner as the original MoCo [65], but with changes
to improve the stability of training, which are specific to the ViT archiecture. We use the checkpoint
after 300 epochs.

MoCo. v3, ViT-S [1] is trained in a similar manner as MoCo. v3, ViT-B. Even though the smaller
model benefits from a longer training horizon, we use the checkpoint at 300 epochs for consistency.

MAE-IN, ViT-S follows the same training recipe as MVP, but on top of the ImageNet dataset. We
use the weights provided by Radosavovic et al. [16].

R3M [8] trains a ResNet model with a combination of manipulation-specific losses–including a
time-contrastive loss [69], video-language alignemnt loss, and L1-regularization–on the Ego4D [5]
dataset.

MVP [16] trains a ViT-B for masked autoencoding (MAE) [70] on the Ego4D [5], Something-
Something [21], YouTube 100 Days of Hands [22], EpicKitchens [4], and ImageNet [6] datasets.
Unlike R3M, the model is not designed to be exclusive to manipulation.

MVP, ViT-S (HOI) [9] is a predecessor of the model described above that trains a ViT-S/16 with
an MAE objective on Something-Something [21], YouTube 100 Days of Hands [22], EpicKitchens
[4], and ImageNet [6].

VIP [17] uses an action-free dual of the Algaedice [71] objective to learn representations that are
useful for trajectory optimization or reinforcement learning of control tasks unseen during represen-
tation pre-training. They train a ResNet-50 on Ego4D with this objective.

CLIP, ViT-B/16 [57] uses contrastive language-image pre-training to learn visual representations
trained on an extensive internet datsaet. The learned models exhibit strong zero-shot performance
for multiple tasks such as image classification.

DiNo v2, ViT [72] scales Caron et al. [68] to more parameters and a larger dataset. The full model is
a 1B parameter ViT trained on LVD-142M, which is a 142M frame dataset composed of ImageNet-
1k, ImageNet-22k, Google Landmarks [73], and a collection of other datasets spanning fine-grained
classification, segmentation, depth estimation, and retrieval. The full model is distilled into smaller
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models. We select the ViT-S distilled model for our experiments. In Table 1, we list the augmen-
tations used on the teacher model. The training loop is only lightly modified during distillation.
Suprisingly, the v2 model sees worse in- and out-of-domain performance on our evaluation suite in
spite of being distilled from a ladrger model trained on a bigger dataset.

Name Loss Function Architecture Datasets Augmentations
RN-INSUP BCE-Loss ResNet-50 ImageNet Random crop,

(23M params) (1.2M frames) Horizontal flip
ViT-INSUP BCE-Loss ViT-S/16 ImageNet Random crop,

(22M params) (1.2M frames) Horizontal flip
SIN-SUP BCE-Loss ViT-S/16 Stylized-ImageNet Random crop,

(22M params) (1.2M frames) Horizontal flip
ResNet50-DINO Distillation ResNet-50 ImageNet Multi-crop,

(23M params) (1.2M frames) Color-jittering,
Gaussian blur,
Solarization

ViT-DINO Distillation ViT-S/16 ImageNet Multi-crop,
(22M params) (1.2M frames) Color-jittering,

Gaussian blur,
Solarization

MoCo. v3, RN Contrastive ResNet50 ImageNet Resize,
(23M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MoCo. v3, ViT-S Contrastive ViT-S/16 ImageNet Resize,
(22M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MoCo. v3, ViT-B Contrastive ViT-B/16 ImageNet Resize,
(88M params) (1.2M frames) Color-jittering,

Horizontal flip,
Grayscale,

Gaussian blur,
Solarization

MAE-IN, ViT-S Masked auto-encoding ViT-S ImageNet Random resize,
(22M params) (1.2M frames) Random crop

R3M Time-contrastive, ResNet-50 Ego4D Random crop
L1-regularization, (23M params) (4.3M frames)

Video-lang alignment
MVP, ViT-S (HOI) Masked auto-encoding ViT-S EpicKitchens None

(22M params) 100 Days of Hands,
Something-Something

(700k frames)
MVP Masked auto-encoding ViT-B Ego4D, ImageNet None

(88M params) EpicKitchens,
100 Days of Hands,

Something-Something
(4.5M frames)

VIP Algaedice Dual ResNet-50 Ego4D Random crop
(23M params) (4.3M frames)

CLIP, ViT-B/16 Contrastive ViT-B/16 Internet data Random crop
(88M params) (400M pairs)

DiNo v2, ViT Distillation ViT-S/14 LVD Multi-crop,
(21M params) (142M frames) Color-jittering,

Grayscale,
Gaussian blur,
Solarization

Table 1: List of pre-trained models with corresponding loss function, augmentations, and datasets used for pre-
training. We color code by the data and loss type: ImageNet supervised, self-supervised, trained specifically
for manipulation or control tasks, and other.

A.2 Details of the Environments

FrankaKitchen [74] is a simulated kitchen environment with a 9-DoF Franka robot. There a mul-
tiple household objects available for interaction. The environment is designed to compose tasks
together hierarchically, but we focus on learning policies to successfully complete a single task. The
episode length is 50 and we inherit the randomization scheme used in R3M, which randomizes the
position of the kitchen at the start of each episode.
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Easy HardMediumWood Tile, WoodMetal, BlueCast Left DarkCast Right Bright

Figure 7: We visualize each distribution shift from the left camera angle on the FrankaKitchen (top) and Meta-
World (bottom) environments.

Meta-World [60] is a simulated manipulation environment that consists of various table-top ma-
nipulation interactions. Unlike FrankaKitchen, the scene objects vary between different tasks. The
positions of the objects are randomized at the start of each episode. The maximum episode length is
500.

A.3 Details of the Disribution Shifts

Each distribution shift is visualized from the left camera angle in Figure 7. We don’t use the MuJoCo
scanned object dataset that is used in [15] because of imperfections in the coloring of the textures.

A.4 Policy Training Details

Hyperparameter Value

Loss type MSE
Learning rate 0.001

Batch size 32
Train steps 20,000
Optimizer Adam

Table 2: Hyperparameters for IL Policy Training

We learn a 2-layer MLP on top of the pre-trained, frozen features with 10 demonstrations. We use
the same expert demonstrations as in R3M. We train policies independently over the ‘left cap2‘ and
‘right cap2‘ camera angles and show results averaged over both camera angles. We also provide
proprioception to the policy. The final performance is averaged over the task settings for each seed.
The hyperparamters for policy training are summarized in Table 2. Error bars are 95% confidence
interval over seeds.

A.5 OOD Perf Details

To provide a more granular understanding of how the complete set of models performs on our
evaluation suite, we break down performance by distribution shift type and environment in Figures 8
and 9.

A.6 ImageNet vs OOD Details

To evaluate ImageNet accuracy, we use all publicly available probes that have been trained on top
of the frozen model features and evaluate them on the ImageNet validation set. The models with
available probes are RN-INSUP, RN-DINO, MoCo. v3 RN, ViT-INSUP, ViT-DINO, MoCo. v3 ViT,
Dino v2 ViT, MoCo. v3 ViT, SIN-SUP, and CLIP ViT-B/16 and we use the probes that are provided
in the implementations cited in Section A.1.

A.7 Shape-Bias Details

We evaluate shape-bias using the ‘model-vs-human‘ evaluation framework from Geirhos et al. [10]
and use the same probes from Section A.6 to get classification results on the SIN validation dataset
(Dcue−conflict).
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Figure 8: Detailed OOD Performance on FrankaKitchen.

Figure 9: Detailed OOD Performance on Meta-World.

Notably, Naseer et al. [40] find that vision transformers are more shape-biased when making classi-
fication decisions than equivalently trained convolutional networks. In our results, we don’t find vi-
sion transformers to be more strongly shape biased. Vision transformers and convolutional networks
vary in how they handle spatial resolution: spatial resolution decreases in each layer of ResNet-50
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but remains constant within a ViT. This could explain why we see the ViT architecture somewhat
obviating the need for shape-bias in our results.

A.8 Jaccard Index Metric Details

We denote this nonlinear, deterministic transform as M . Formally, we compute the Jaccard index
by calculating the mIoU on the PASCAL VOC validation set, DPascal:

J(xi, xj) = EDPascal

[
A ∩B

A ∪B

]
Where A is a shorthand for positive classification for the target class by M(ϕ(·)) and B is a short-
hand for positive label for the target class. J is evaluated pixel-wise over image indices xi and
xj .

A.9 Different Levels of Distractors

Figure 10: Different levels of distractors.

We extend Figure 6 by including results for ResNets in Figure 10. Models are color coded using the
original color scheme in the paper.

A.10 Finetuning

Figure 11: Finetuning in FrankaKitchen.

Because the goal of this paper is to probe the quality of learned representations, we follow the
tradition of performing evaluation on top of frozen model features. This evaluation is also consistent
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with the increasing view of pre-trained visual representations as “foundation models” [75, 72] that
can be deployed without any gradient updates. Nonetheless, even in the fine-tuning regime, in
Figure 11 we still see stronger performance from models that are not designed for manipulation. In
this setting, we increased the number of demonstrations to 25 to allow for more data diversity when
training the encoders.

A.11 Real-World Experiment Details

Our demonstration data contains two subtasks: an initial screwdriver pick-up and then a handover
that happen in sequence. We only evaluate success on the subtask of picking up the screwdriver. The
training dataset is comprised of 50 episodes collected by an expert human demonstrator. Images are
collected from 4 camera view points (one on each wrist, one top camera, and one front camera). We
replace the standard encoder with a ViT-B and change the initialization of the encoder based on the
experimental condition (i.e., we select for a different pre-trained model).

Hyperparameter Value

Chunk Size 100
KL Weight 10
Batch size 8

Epochs 10,000
Optimizer Adam

Learning Rate 1e-5
Table 3: Hyperparameters for Policy Training

A.12 Additional Real-World Experiments

We also compare MVP and MoCo-v3 on an additional three real-world tasks and evaluate ten roll-
outs across three different visual distribution shifts. For each task, we collect 30 demonstrations.
Our training protocol is identical to Appendix Section A.11. However because these tasks are more
challenging than the screw pick-pu task, we train for 20,000 total epochs with a batch size of 16.
The real-world tasks are:

• Corn on Plate. In this task, one arm must pick up a plastic corn and stack it on top of a
plate on the table.

• Carrot on Plate. In this task, one arm must pick up a plastic carrot and stack it on top of
a plate on the table. This is slightly more difficult than the corn on plate task because the
plastic carrot comes to a narrow point that is difficult to grasp.

• Fork Hand-Over. This is a long horizon task in which the right arm of the ALOHA robot
must pick up a fork, hand it to the left arm, and the left arm must place the fork in a cup on
the table.

We simulate the three classes of distribution shift as follows:

• Lighting We evaluate at a different time of day (evening) than the data was collected (day-
time). This setting is the closest to the training setting.

• Texture. We cover the table with blue construction paper to simulate a change in table
texture.

• Distractors. We place a single plastic piece of fruit to serve as a distracteor object in the
center of the table.

To compute success, we assign a reward value of one to each of three subtasks—localizing the target
object, completing a successful grasp or handover (depending on the task), and placing the target
object in the correct location—and report the percent of reward achieved averaged over 10 trials.

Our results are reported in Table 4. We find that the high-segmentation scoring model (MoCo-v3)
performs more robustly than the low-segmentation scoring model (MVP) on average. On easy tasks
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Task/Distribution Shift MVP MoCo-v3
Corn on Plate (Lighting) 100% 100%
Corn on Plate (Distractor) 100% 100%
Corn on Plate (Blue Table) 96% 100%

Corn on Plate (Average) 99% 100%

Carrot on Plate (Lighting) 93% 90%
Carrot on Plate (Distractor) 100% 97%
Carrot on Plate (Blue Table) 33% 50%

Carrot on Plate (Average) 75% 80%

Fork Hand-Over (Lighting) 20% 100%
Fork Hand-Over (Distractor) 0% 96%
Fork Hand-Over (Blue Table) 0% 100%

Fork Hand-Over (Average) 7% 99%

All Tasks (Average) 60% 93%
Table 4: Performance under real-world distribution shifts

and with small distribution shifts, the difference between the two models is slight. However, on the
long-horizon task, MVP struggles to maintain good performance. Interestingly, MoCo experiences
a larger drop on the short-horizon Carrot on Plate task than on the Fork Hand-Over task. We believe
this is because slight displacements in the gripper position can cause the plastic carrot to slip out
from the grasp whereas the fork is more robust to grasp position.
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