NaViL: Rethinking Scaling Properties of Native
Multimodal Large Language Models under Data
Constraints

Changyao Tian>'*" Hao Li'*’ Gen Luo'* Xizhou Zhu®'* Weijie Su’
Hanming Deng” Jinguo Zhu' Jie Shao®>!! Ziran Zhu* Yunpeng Liu*

Lewei Lu* Wenhai Wang?! Hongsheng Li> Jifeng Dai® '™

! Shanghai Al Laboratory 2 The Chinese University of Hong Kong
3 Tsinghua University * Sensetime Research ° Nanjing University
Code: https://github.com/0OpenGVLab/NaViL

Abstract

Compositional training has been the de-facto paradigm in existing Multimodal
Large Language Models (MLLMs), where pre-trained visual encoders are con-
nected with pre-trained LLMs through continuous multimodal pre-training. How-
ever, the multimodal scaling property of this paradigm remains difficult to explore
due to the separated training. In this paper, we focus on the native training of
MLLMs in an end-to-end manner and systematically study its design space and
scaling property under a practical setting, i.e., data constraint. Through careful
study of various choices in MLLM, we obtain the optimal meta-architecture that
best balances performance and training cost. After that, we further explore the
scaling properties of the native MLLM and indicate the positively correlated scal-
ing relationship between visual encoders and LLMs. Based on these findings, we
propose a native MLLM called NaViL, combined with a simple and cost-effective
recipe. Experimental results on 14 multimodal benchmarks confirm the competitive
performance of NaViL against existing MLLMs. Besides that, our findings and
results provide in-depth insights for the future study of native MLLMs. |

1 Introduction

Multimodal Large Language Models (MLLMs) have demonstrated remarkable progress in computer
vision [[12} 4311631150, 154]], continuously breaking through the upper limits of various multimodal
tasks [47, 168 38l 145]]. The great success of MLLM is inseparable from its compositional training
paradigm, which independently pre-trains visual encoders [28]] and LLMs [61], and then integrates
them through additional multimodal training. Due to the engineering simplicity and effectiveness,
this paradigm has dominated MLLM area over the past few years. However, the shortcomings of
compositional training have been gradually recognized by the community recently, e.g., unclear
multimodal scaling property [[19,56].

Therefore, increasing attention has been directed toward the development of more native MLLM:s.
As illustrated in Fig. [I] native MLLMs aim to jointly optimize both visual and language spaces in an
end-to-end manner, thereby maximizing vision-language alignment. Compared to the compositional
paradigm, existing native MLLM methods demonstrate a promising scaling law and a significantly
simplified training process [9, 56]. Despite these advancements, the primary benefits of native
MLLMs are often evaluated under the assumption of infinite training resources, overlooking the
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Figure 1: Comparison of design choices, scaling properties, and performance of our native
MLLMs. We systematically investigate the designs and the scaling properties of native MLLMs
under data constraints and yield valuable findings for building native MLLMs. After adopting these
findings, our native MLLMs achieve competitive performance with top-tier MLLMs. V (+) denotes
the visual encoder with optimal parameter size.

substantial challenges posed by limited data and large-scale training. Consequently, a critical
practical question remains: whether and how native MLLMs can feasibly achieve or even surpass the
performance upper bound of top-tier MLLMs at an acceptable cost.

To answer this question, in this paper, we aim to systematically investigate the designs and the scaling
properties of native MLLMs under data constraint. Specifically, we first explore the choices of key
components in the native architecture including the mixture-of-experts, the visual encoder and the
initialization of the LLM. Our findings can be summarized in two folds. Firstly, an appropriate
pre-training initialization (e.g., the base LLM) of the LLM greatly benefits the training convergence
on multimodal data. Secondly, combining visual encoder architectures and MoEs results in obvious
gains against the vanilla decoder-only LLM. Following these findings, we build a meta architecture
that optimally balances performance and training cost.

Based on the optimal meta architecture, we further explore the scaling properties of the visual encoder,
the LLM and the entire native MLLM. Specifically, we first scale up the LLM and the visual encoder
independently and observe different scaling properties: while scaling LLM exhibits similar patterns
as the conventional language scaling laws, scaling visual encoder shows an upper bound in return due
to the limitation of the LLM’s capacity, suggesting that the optimal encoder size varies with the LLM
size. Further analysis reveals that the optimal encoder size increases approximately proportionally
with the LLM size in log scale. This observation yields a different guidance against compositional
paradigm, which employs a visual encoder of one size across all LLM scales.

Based on above principles, we propose a native MLLM called NaViL, combined with a simple and
cost-effective recipe. To validate our approach, we conduct extensive experiments across diverse
benchmarks to evaluate its multimodal capabilities including image captioning [10} 167, 2], optical
character recognition (OCR) [57, [17, [39], etc. Experimental results reveal that with ~600M pre-
training image-text pairs, NaViL achieves competitive performance compared to current top-tier
compositional MLLMs, highlighting the great practicality and capabilities of NaViL. In summary,
our contributions are as follows:

* We systematically explore the design space and the optimal choice in native MLLMs under
data constraint, including the LLM initialization, the visual encoder and the MoEs, and draw
three critical findings that greatly benefit the training of native MLLMs.

* Based on above findings, we construct a novel native MLLM called NaViL. In NaViL, we
explore the scaling properties of the visual encoder and the LLM and indicate their positively
correlated scaling relationship.

* We conduct large-scale pre-training and fine-tuning experiments on NaViL. Experimental
results show that NaViL can achieve top-tier performance with nearly 600M pre-training data.
Our findings and results will encourage future work for native MLLMs in the community.



2 Related Work

Multimodal Large Language Models. Recent years have witnessed the significant progresses of
Multimodal Large Language Models (MLLMs) [44] 136,135,163\ [12], which have dominated various
downstream tasks [24} 26| 57, 30]. Starting from LLaVA [36], most existing MLLMs adopt the
compositional paradigm, which connects the pre-trained visual encoder [53]] and LLM [3]] through a
projector and finetune them on for alignment. Then, the whole structure will be further fine-tuned
on multimodal data for alignment. Based on this paradigm, existing works mainly focus on the
improvement of visual encoders [63, [64] |44] and the design of connectors [33] 36]. Despite the
progress, such paradigm struggles to explore the joint scaling properties of vision and language. Their
potential limitations in training pipeline [56] and vision-language alignment [19] are also gradually
recognized by the community.

Native Multimodal Large Language Models. To overcome the limitations of compositional
paradigm, native MLLMs have emerged as another candidate solution [20} 19, 43| [32| (62 156! [9]].
Compared to compositional paradigm, native MLLMs aim to pre-train both vision and language
parameters in an end-to-end manner, thus achieving better alignment. The most representative
methodology [56,19] is to directly pre-train the LLM from scratch on large-scale multimodal corpora,
which typically requires expensive training costs. To address this issue, recent attempt initialize
the LLM with a pre-trained checkpoint to facilitate training convergence [20, |19, 43| [32| [62].
Nevertheless, current research still lacks systematic investigation into the architectural design and
scaling characteristics of native MLLMs, limiting their performance.

3 Visual Design Principles for native-MLLM

3.1 Problem Setup

We define native MLLMs as models that jointly optimize vision and language capabilities in an
end-to-end manner. Dispite recent progress that shows promising scaling law and potential better
performance compard with their compositional counterparts, how to build competitive native MLLMs
compare to the state-of-the-art MLLMs with a practical data scale remains underexplored. In
particular, there are two problems requiring to be investigated:

* (Sec.[3.2) How to choose the optimal architectures of the visual and linguistic components?
* (Sec.[3.3) How to optimally scale up the visual and linguistic components?

Meta Architecture. To study these two questions, we first define a general meta architecture of
native MLLMs consisting of a visual encoder, an LLM, and a mixture-of-expert architecture injected
to the LLM. The visual encoder V consists of a series of transformer layers and can be defined as

Vaul)=COFy o 0F oFoPI)=Cc () FoPd), )
i=1...d

where F;* denotes the i-th transformer layer (out of d layers) with hidden dimension w, P denotes
the Patch Embedding Layer, I € R7*Wx3 denotes the input image. Note that the visual encoder
degenerate to a simple patch embedding layer when d = 0. For simplicity, we use the same
architectures as the LLM for the visual encoder layers F but with bi-directional attention and vary
the hyperparameters d and w. Here C is the connector which downsamples the encoded image
embeddings through pixel shuffle [15] and projects them to the LLM’s feature space by a MLP.

Experiment Settings. All the models are trained on web-scale, noisy image-caption pair data [55]]
with Next-Token-Prediction (NTP) and an image captioning task. We use a held-out subset of the
multimodal dataset to calculate the validation teacher-forcing loss for measuring and comparing
different design choices. Models with LLM initializations are initialize from InternLM2-Base [8]].

3.2 Exploring the Optimal Design of Architecture Components

In this section, we explore the design choices of three key components: 1) the initialization of the
LLM; 2) the effectiveness of MoEs; 3) the optimal architecture of the visual encoder.

3.2.1 Initialization of LLM

A straightforward way to construct native MLLMs is to train all modalities from scratch with mixed
corpora, as shown in prior work [56]. While this approach theoretically offers the highest performance



ceiling given ample data and computational resources, practical limitations such as data scarcity and
large-scale optimization challenges hinder its feasibility. Alternatively, initializing the model from a
pre-trained LLM effectively leverages linguistic prior knowledge, significantly reducing data and
computational demands.

To evaluate the effectiveness of LLM o i

e 1. . Validation Loss COCO Caption
initialization, we compare model per- .~ T i
formance in terms of loss and im- €0

age captioning. As shown in Fig. ]
(left), the model trained from scratch
performs significantly worse than the
initialized model, requiring over 10x
more data to reach comparable loss.

N
n

50

N
o

15 40

a

O 30
20
10

Validation Loss
-
0

g
=}

107 108 10° 107 108 10°
Training Data Size Training Data Size

Further analysis of zero-shot image
captioning (Fig. 2] (right)) reveals a —— w/LLM init w/o LLM init

substantial performance gap favor-

ing the initialized model, even with Figure 2: Effectiveness of LLM initialization. Lefi: The
significantly more data for the non- validation loss. The LLM initialized one converges much
initialized model. This is likely due to ~ faster. Right: The zero-shot caption performance. Due to the
the lower textual quality and diversity lack of textual knowledge, the uninitialized model continues
of multimodal training data compared to lag behind.

to the LLM pre-training corpus, lim-

iting the textual capability of models trained from scratch. These findings highlight the practical
advantage of using LLM initialization in multimodal pre-training.

Observation 1: Initializing from pre-trained LLM greatly benefits the convergence on mul-
timodal data, and in most cases delivers better performance even with a large amount of
multimodal data.

3.2.2 Effectiveness of MoEs

Mixture-of-Experts (MoEs) are effective for handling het-
erogeneous data and are widely used in native MLLMs.
We evaluate the MoE architecture within our meta architec-
ture by comparing two configurations: one with a visual
encoder and a vanilla LLM, and another with a visual
encoder and an MoE-extended LLM. We follow Mono-
InternVL [43] to adopt the modality-specific MoEs and Trali?]:ng oo size 0
training settings. However, we empirically found that us-

ing only the feed-forward network (FFN) expert would
lead to a significant difference in feature scale between
visual and language modalities. To mitigate this issue,
we further introduced modality-specific attention experts,
that is, using different projection layers (i.e. gkvo) in the self-attention layer to process visual and
text features respectively, and then perform unified global attention calculation. Specifically, the
output zt . € R? of the i-th token with modality m € {visual, linguistic} at the [-th layer of the
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Figure 3: The validation loss of adding
MOoE or not. Using MoE extension will
cause the loss to decrease more quickly.
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where RMSNorm(-) is the layer normalization operation, and MHA-MMOoE(-) and FFN-MMOoE(-)
are the modality-specific attention and FFN expert, respectively, formulated by
QKT
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Here W', W, W', W' and Wi, Wi, Widl,, are all modality-specific projection matrices, and
SiLU(-) denotes the activation function, ® denotes the element-wise product operation. The number

of activated experts is set to one to maintain consistent inference costs.

As shown in Fig. [3] the MoE architecture significantly accelerates model convergence compared to
the vanilla LLM, achieving the same validation loss with only 1/10 of the data without increasing
training or inference cost. This demonstrates that MoE enhances model capacity and effectively
handles heterogeneous data, making it suitable for native MLLM:s.

Observation 2: MOoEs significantly improve model performance without increasing the num-
ber of activated parameters.

3.2.3 Optimizing the Visual Encoder Architecture
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Figure 4: The validation loss and zero-shot caption performance of different visual encoders.
The loss and performance only differ when the visual encoder is extremely wide or shallow.

The visual encoder precedes the LLM to perform preliminary extraction of visual information,
converting raw pixels into semantic visual features aligned with the textual embedding space. Due to
its bidirectional attention mechanism and the increased capacity introduced by additional parameters,
the visual encoder has the potential to enhance the model’s ability to represent visual information.

In this section, we investigate the optimal architecture of the visual encoder under a given parameter
budget. The total parameter count C can be approximately calculated [29] as ' = 12 x d x w?.
Given a fixed V, the structure of the visual encoder is mainly determined by its width w and depth d.

Depth (d): Typically, deeper models can capture richer and more complex features, while also being
more prone to gradient vanishing problems [58]]. When it comes to MLLM, a visual encoder that is
too shallow may not be able to extract enough high-level semantics, while a visual encoder that is too
deep may cause low-level features to be lost, thus limiting the capture of fine-grained details.

Width (w): Compared to depth, width has relatively little impact on visual transformer perfor-
mance [21], as long as it does not cause additional information bottlenecks. That is, it cannot be
lower than the total number of channels within a single image patch. Under this premise, the width of
the visual encoder does not have to be the same as the hidden size of the LLM.

We train various MLLMs with different Vy ,, configurations (combinations of depth and width)
while keeping the pre-trained LLM and visual encoder parameter count fixed at 600M. The depth
d ranges from {3, 6,12, 24,48}, and the width w is adjusted as {4096, 2880, 2048, 1472, 1024} to
maintain a consistent parameter count. Fig. 4] shows the validation loss for different depth and width
combinations as training data size varies. Models with extremely high or low depths perform worse
than those with moderate configurations. Among reasonably configured models, shallower ones
converge faster in the early phase (less than 30M data), but this advantage diminishes with more data.
In zero-shot image captioning benchmarks, deeper visual encoders show slightly better performance,
consistent with prior research on compute-optimal LLM architectures [29], which suggests a wide
range of optimal width and depth combinations.

Observation 3: Visual encoders achieve near-optimal performance across a wide range of
depth and width configurations. Shallower encoders converge faster in early training, while
deeper encoders perform slightly better with larger datasets.




3.3 Scaling Up Native MLLMs

In this section, we consider the scaling properties of our meta architecture. Specifically, we investigate:
1) the impact of scaling up the visual encoder and the LLM independently; 2) the optimal way of
scaling the visual encoder and the LLM simultaneously. All models follow the optimal architecture
discovered in Sec. @], i.e., with LLM initialization, MoEs, and optimal depth-to-width ratios of the
visual encoders.

3.3.1 Scaling up Visual Encoder and LLM Independently

We first investigate the scaling properties of the visual encoder and the LLM independently,
i.e., scaling up one component while keeping the other fixed. Specifically, we evaluate
a series of LLMs with parameter sizes {0.5B,1.8B,7B} and visual encoders with sizes

{75M, 150 M, 300M, 600M, 1.2B, 2.4B}.

Scaling up LLMs. The results are shown in Fig.[5] Scal-
ing up the LLM parameters in native MLLMs exhibits
a pattern consistent with the conventional LLM scaling
law, where the loss decreases linearly as the parameter
size increases exponentially.

Scaling up Visual Encoder. The results are shown in
Fig.[6] In contrast to the LLM scaling law, increasing
the visual encoder size does not consistently enhance
multimodal performance. Instead, with a fixed LLM,
the performance gains achieved by enlarging the visual
encoder diminish progressively. Beyond a certain en-
coder size, further scaling results in only marginal loss
reduction, indicating that the performance upper limit
of the MLLM is constrained by the LLM’s capacity.

LLM-0.5B LLM-1.8B

g
=}

1.4
15M
30M
60M

—=— 120M

-\'\l\n

I
ES

1.0

—s— 120M

.\.\I%I

Validation Loss vs LLM Size

—=— Visual Encoder Size: 600M

by =
o [N]
S o

Validation Loss
o
©
o

o
o
<)

0.5 7

LLM Siie (B)
Figure 5: The validation loss when scal-
ing up LLMs. With the same visual en-
coder (i.e. 600M), the validation loss de-
creases log-linearly with the LLM size.

LLM-7B

1.0 30M

60M

—=— 120M
15M

30M
60M

0.7

-\.\.*.

Validation Loss (log scale)

75 150 300 600
Visual Encoder Size

150 300 600

Visual Encoder Size

1200 300 600 1200 2400

Visual Encoder Size

Figure 6: The validation loss curves of different LLMs with different training data sizes. As the
training data size increases, the loss gap narrows to near zero when the visual encoder size reaches a

certain threshold.

Observation 4:  Scaling the LLM consistently improves multimodal performance, following
the typical LLM scaling law. However, increasing the visual encoder size shows diminishing
returns, suggesting that the MLLM’s performance is limited by the LLM’s capacity.

3.3.2 Scaling up Visual Encoder and LLM Together

The diminishing returns from increasing the visual en-
coder size suggest the existence of an optimal encoder
size for a given LLM. We define this optimal size as the
smallest encoder whose loss difference compared to an
encoder twice its size is less than A = 1% of the loss
with the 75M encoder (the smallest used in our exper-
iments). Fig.[7| shows the relationship between visual
encoder size and LLM size.

The logarithm of the optimal visual encoder size scales
linearly with the logarithm of the LLM size, indicating
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Figure 7: Relationship of visual encoder
size and LLM size. The optimal visual
encoder size increases log-linearly with
the LLM size.



that both components should be scaled jointly for balanced performance. This highlights the subop-
timality of compositional MLLMs, which typically use a fixed visual encoder size across varying
LLM scales.
Observation 5: The optimal size of the visual encoder scales proportionally with the LLM
size in log scale, indicating that both components should be scaled jointly. This further implies
that the pre-trained visual encoders using a single pre-trained visual encoder across a wide
range of LLM scales like existing compositional MLLMs is suboptimal.

4 NaViL: A Novel Native MLLM with Strong Capabilities

4.1 Architecture
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Architecture of NaViL. As a native MoE-extended MLLM, NaViL can be trained

Figure 8:
end-to-end and supports input images of any resolution.

Based on above studies, we construct NaViL with the optimal settings in Sec. The architecture is
shown in Fig.[8] NaViL inherently supports input images of any resolution. These images are first
encoded into visual tokens by the visual encoder and the MLP projector, and then concatenated with
the textual tokens to formulate the multimodal token sequence and fed into the LLM. Special tokens
<begin_of_image> and <end_of_image> are inserted before and after each image token subse-
quence to indicate the beginning and end of the image, respectively. Special token <end_of_line>
is inserted at the end of each row of image tokens to indicate the corresponding spatial position

information.
Visual Multi-scale Packing is further introduced to improve the model performance during inference.

Specifically, given an input image Iy € RH0*Wox3 and downsampling rate 7, a multi-scale image
sequence {/; € RHixWix3}n_ ig obtained by continuously downsampling the original image (i.e.
H; = " Hy,W; = 7'W)y) until its area is smaller than a given threshold. These images in the
sequence are processed separately by the visual encoder. The obtained visual token embeddings
{z; v}, are then concatenated and fed to the LLM. Special token <end_of_scale> is inserted

after each scale image to indicate the end of different scales.

4.2 Training
Stage 1: Multi-modal Generative Pre-training. In this stage, the model is initially trained on 500
million image-text pairs to develop comprehensive multimodal representations. Of these training
samples, 300 million are directly sampled from web-scale datasets (i.e. Laion-2B [55], Coyo-
700M [[7]], Wukong [25] and SA-1B [31]) while the remaining 200 million consist of images from
these datasets paired with captions synthesized by existing MLLMs (i.e. InternVL-8B [15]]). During
this process, the textual parameters of the model remain frozen, with only the newly-added vision-
specific parameters (i.e., the visual encoder, MLP projector, and MoE visual experts) being trainable.

To enhance the alignment between visual and textual features in more complex multimodal contexts,
the model is subsequently trained on 185 million high-quality data consisting of both multimodal



Table 1: Comparison with existing MLLMs on general MLLM benchmarks. “#A-Param” denotes
the number of activated parameters. 'InternVL-2.5-2B adopts the same LLM and high-quality data
with NaViL, so we mark it as the compositional counterpart. Note that its 300M visual encoder is
distilled from another 6B large encoder. Bold and underline indicate the best and the second-best
performance among native MLLMs, respectively. * denotes our reproduced results. For MME, we
sum the perception and cognition scores. Average scores are computed by normalizing each metric to
a range between 0 and 100.

Model #A-Param ‘ Avg  MMVet MMMU MMB MME MathVista OCRBench CCB
Compositional MLLMs:

MobileVLM-V2-1.7B [16] 1.7B - - - 57.7 - - - -
MobileVLM-V2-3B [16] 3.0B - - - 63.2 - - - -
Mini-Gemini-2B [34] 3.5B — 31.1 31.7 59.8 1653 29.4 - —
MM1-3B-MoE-Chat [48] 3.5B — 422 38.6 70.8 1772 32.6 — -
DeepSeek-VL-1.3B [40] 2.0B 423 34.8 322 64.6 1532 31.1 409 37.6
PaliGemma-3B [6] 2.9B 45.6 33.1 349 71.0 1686 28.7 614 29.6
MiniCPM-V-2 [66] 2.8B 511 41.0 38.2 69.1 1809 38.7 605 453
InternVL-1.5-2B [14] 2.2B 54.7 39.3 34.6 70.9 1902 41.1 654 63.5
Qwen2VL-2B [63] 2.1B 58.6 49.5 41.1 74.9 1872 43.0 809 53.7
InternVL-2.5-2B [13] 2.2B 67.0 60.8 43.6 74.7 2138 51.3 804 81.7
Native MLLMs:

Fuyu-8B (HD) [5] 8B - 214 - 10.7 - - - -
SOLO [11] 7B - - - - 1260 34.4 - -
Chameleon-7B' [9] 7B 13.9 8.3 254 31.1 170 22.3 7 35
EVE-7B [19] 7B 33.0 25.6 323 49.5 1483 25.2 327 12.4
EVE-7B (HD) [19] 7B 37.0 25.7 32.6 523 1628 342 398 16.3
Emu3 [65] 8B - 37.2 31.6 58.5 - - 687 -
VoRA [62] 7B — 33.7 322 64.2 1674 - - -
VoRA-AnyRes [62] 7B — 33.7 32.0 61.3 1655 — - -
EVEv2 [20] 7B 532 45.0 39.3 66.3 1709 60.0* 702 30.8%*
SAIL [32] 7B 53.7 46.3 38.6* 70.1 1719 57.0 783 24.3%
Mono-InternVL [43] 1.8B 564 40.1 33.7 65.5 1875 45.7 767 66.3
NaViL-2B (ours) 2.4B 67.1 78.3 41.8 71.2 1822 50.0 796 83.9

alignment samples and pure language data. In this phase, the textual parameters within the self-
attention layers are also unfrozen, enabling more refined cross-modal integration.

Stage 2: Supervised Fine-tuning. Following common practice in developing MLLM, an additional
supervised fine-tuning stage is adopted. In this stage, all parameters are unfrozen and trained using a
relatively smaller (i.e. 68 million) but higher quality multimodal dataset.

S Experiment

5.1 Experimental Setups

Evaluation Benchmarks. We evaluate NaViL and existing MLLMs on a broad range of multimodal
benchmarks. Specifically, MLLM benchmarks encompass MM Vet [69], MMMU val [70], MMBench-
EN test [37], MME [22], MathVista MINI [41], OCRBench [39], and CCBench [37]]. Visual question
answering benchmarks include TextVQA val [57], ScienceQA-IMG test [42], GQA test dev [27],
DocVQA test [47], AI2D test [30], ChartQA test [45], and InfographicVQA test [46]. These
benchmarks cover various domains, such as optical character recognition (OCR), chart and document
understanding, multi-image understanding, real-world comprehension, etc.

Implementation Details. By default, NaViL-2B is implemented upon InternLM2-1.8B [59]], using its
weights as initialization for the text part parameters. The text tokenizer and conversation format are
also the same. The total number of parameters is 4.2B, of which the number of activation parameters
is 2.4B (including 0.6B of visual encoder). The input images are first padded to ensure its length
and width are multiples of 32. The stride of Patch Embedding layer is set to 16. The visual encoder
adopts bidirectional attention and 2D-RoPE to capture global spatial relationships, while the LLM
adopts causal attention and 1D-RoPE to better inherit its capabilities. In the pre-training phase, the
global batch size is 7000 for stage 1 and 4614 for stage 2, respectively. The downsampling rate 7 of



Table 2: Comparison with existing MLLMs on visual question answering benchmarks.
fInternVL-2.5-2B adopts the same LLM and high-quality data with NaViL, so we mark it as the
compositional counterpart. Note that its 300M visual encoder is distilled from another 6B large
encoder. * denotes our reproduced results. Bold and underline indicate the best and the second-best
performance among native MLLMs, respectively.

Model #A-Param ‘ Avg TextVQA SQA-I GQA DocVQA AI2D ChartQA InfoVQA
Compositional MLLMs:

MobileVLM-V2-3B [16] 3.0B - 57.5 70.0 66.1 — — — —
Mini-Gemini-2B [34] 3.5B - 56.2 — — 34.2 - — -
MM1-3B-MoE-Chat [48] 3.5B - 72.9 76.1 — - — — —
DeepSeek-VL-1.3B [40] 2.0B — 57.8 — — — 51.5 — —
PaliGemma-3B [6] 2.9B — 68.1 — — — 68.3 — —
MiniCPM-V-2 [66] 2.8B — 74.1 — — 71.9 62.9 — —
InternVL-1.5-2B [14] 2.2B 71.7 70.5 84.9 61.6 85.0 69.8 74.8 55.4
Qwen2VL-2B [63] 2.1B 73.1 79.7 78.2% 60.3* 90.1 74.7 73.5 65.5
TInternVL-2.5-2B [13] 2.2B 76.5 74.3 96.2 61.2 88.7 74.9 79.2 60.9
Native MLLMs:

Fuyu-8B (HD) [5] 8B — — — — — 64.5 — —
SOLO [11] 7B - — 73.3 — — 61.4 — -
Chameleon-7B' [9] 7B 17.9 4.8 47.2 — 1.5 46.0 2.9 5.0
EVE-7B [19] 7B 40.8 51.9 63.0 60.8 22.0 48.5 19.5 20.0
EVE-7B (HD) [19] 7B 54.6 56.8 64.9 62.6 53.0 61.0 59.1 25.0
Emu3 [65] 8B 67.6 64.7 89.2 60.3 76.3 70.0 68.6 43.8
VoRA [62] 7B - 56.3 759 — — 65.6 — -
VoRA-AnyRes [62] 7B — 58.7 72.0 — — 61.1 — —
EVEV2 [20] 7B 71.7 71.1 96.2 62.9 77.4% 74.8 739 45.8*
SAIL [32] 7B 71.5 771 93.3 58.0% 78.4% 76.7 69.7* 47.3%
Mono-InternVL [43] 1.8B 70.1 72.6 93.6 59.5 80.0 68.6 73.7 43.0
NaViL-2B (ours) 2.4B 75.1 76.9 95.0 59.8 854 74.6 78.0 56.0

visual multi-scale packing is set to v/2/2. To demonstrate the scaling capability of our approach, we
also trained NaViL-9B based on Qwen3-8B [60]]. More details are given in the appendix.

5.2 Main Results

In Tab. I} we compare the performance of our model with existing MLLMSs across 7 multimodal
benchmarks. Compared to native MLLMs, compositional MLLMs demonstrate superior overall
performance. For example, InternVL-2.5-2B outperforms existing native MLLMs on most MLLM
benchmarks. This indicates that current native MLLMs still have significant room for performance
improvement. In contrast, our proposed NaViL achieves overall performance exceeding all existing
native MLLMs with a relatively small paramter size. Compared to the compositional baseline model
InternVL-2.5-2B that uses the same LLM, NaViL also achieves comparable performance on most
benchmarks. It is worth noting that the 300M visual encoder used by InternVL-2.5-2B is distilled
from another pre-trained encoder InternViT-6B [[15] with a significantly larger parameter size. This
demonstrates the superiority of our visual design methods and visual parameter scaling strategies.

In Tab. 2] we further compare the performance of our model with existing MLLMs on mainstream
visual question answering tasks. NaViL’s average performance still leads previous state-of-the-art
native MLLMs and is roughly on par with compositional baselines that require pre-trained encoders.
Specifically, in tests such as DocVQA [49], ChartQA [45] and InfoVQA [46]], NaViL significantly
outperforms the previous state-of-the-art native MLLM, demonstrating the superiority of using an
optimal size visual encoder in processing high-resolution images. However, NaViL’s performance
still has some gap compared to the best compositional MLLMs. We believe that higher-quality
instruction data and more powerful LLMs will further narrow this gap.

"The performance of Chameleon-7B is from [43]].
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Figure 9: Visualization of attention maps in LLM-1.8B with different encoder sizes (i.e. 150M
and 1.2B). Text and image tokens are in and , respectively. Larger encoder allows LLMs
to attend to global patterns at shallow layers while maintaining higher attention to textual tokens.

5.3 Qualitative Experiments

To further analyze the characteristics of native MLLM, we visualized the attention maps of different
LLM layers when using encoders of 150M and 1.2B sizes, as shown in Fig.[9] Two findings can be
drawn from the figure. First, similar to previous native-MLLMs [43]], despite having an encoder, the
attention patterns in shallow layers still exhibit obvious locality, gradually shifting toward global
information as the depth increases. For example, when using a 150M encoder, image tokens in the
first layer tend to attend to spatially adjacent tokens. However, we observe that when the visual
encoder is scaled up to 1.2B, visual tokens in shallow layers already begin to attend more to global
information. This indicates that a sufficiently large visual encoder can better pre-extract high-level
semantic information from the entire image.

Secondly, from a cross-modal interaction perspective, a larger visual encoder also facilitates earlier
interaction between visual and language features. When using a 1.2B visual encoder, the attention
weights between visual tokens and text tokens in the first layer are significantly higher than those in
the 150M counterpart. Earlier interaction is more beneficial for feature alignment between modalities,
thus providing an explanatory perspective for the improved performance achieved when using larger
encoder sizes. We believe these findings will provide beneficial insights for developing native
MLLMs. More visualizations can be found in the supplementary materials.

6 Conclusion

This paper systematically investigates native end-to-end training for MLLMs, examining its design
space and scaling properties under data constraints. Our study reveals three key insights: 1) Initial-
ization with pre-trained LLMs, combined with visual encoders and MoE architecture, significantly
improves performance; 2) Visual encoder scaling is limited by the LLM’s capacity, unlike traditional
LLM scaling; 3) The optimal encoder size scales log-proportionally with the LLM size. Based on
these findings, we propose NaViL, a native MLLM that achieves competitive performance on diverse
multimodal benchmarks, outperforming existing compositional MLLMs. We hope these insights will
inspire future research on next-generation MLLMs.

Limitations and Broader Impacts. Due to limited computation resources, this paper only in-
vestigates the scaling properties of native MLLMs up to 9B parameters. Subsequent experiments
with larger scales (e.g., 30 billion, 70 billion, 100 billion, efc.) can be conducted to further validate
this scaling trend. In addition, this paper focuses only on visual and linguistic modalities. Future
research may explore broader modalities and provide more in-depth insights beyond the current
visual-linguistic paradigm.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec.[3] Sec.[d] Sec.[5|and the supplementary materials.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Due to company policy, the training data cannot be fully released. However,
we will specify all training and testing details in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so ‘No’ is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details. Please refer to Sec. [5] and the
supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Due to limited resources, we do not report error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Due to company policy, we cannot provide too many details about the compute
resources. But we will elaborate on the training details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credited and respected them in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A NaViL-9B: Scaling up to 9B parameters

To further demonstrate the scaling capability of our method, we trained NaViL-9B based on Qwen3-
8B [60]. The total number of activation parameters is 9.2B, of which 1.2B belongs to the visual
encoder. The training recipe is similar to NaViL-2B, as shown in Tab. [§] except the visual multi-
scaling packing is disabled in the first sub-stage of pre-training for acceleration.

Tab. 3] presents a comparison of the total training tokens required by our method versus two composi-
tional counterparts. Notably, our approach achieves comparable performance while using substantially
fewer training tokens, demonstrating improved training efficiency.

Table 3: Comparison between NaViL and existing MLLMs on the number of training tokens.

Models | Train ViT  Train MLLM | Total
Qwen2.5VL [4] unknown 41T >4.1T
InternVL2.5-8B [[12] >3.3T 140B >3.5T
NaViL-2B (ours) 0 800B 800B
NaViL-9B (ours) 0 450B! 450B

The performance results on multimodal and visual question answering benchmarks are shown in
Tab. 4l With a similar parameter size, our NaViL-9B outperforms all existing native MLLMs by a
large margin on almost all benchmarks. Besides that, compared to the compositional baseline model
InternVL-2.5-8B with a similar parameter size, NaViL-9B also achieves competitive performance.
Such results show that our proposed native MLLM can be scaled up to larger parameter sizes and
achieve consistent performance gains.

B More discussions on Compositional MLLMs and Native MLLMs

Visual Contrastive Visual / Text
Encoder Loss Encoder
{J Copy weights Randomly Initialized

Visual Visual
Encoder Encoder
. Visual .
Multimodal Large Language Models o Multimodal Large Language Models

! !
Next Token Next Token
Prediction Prediction
(a) Compositional MLLMs without MoE (b) Native MLLMs with MoE

Figure 10: Paradigm Comparison between Compositional MLLMs and Native MLLMs.
Compositional MLLMs adopt different training objectives and strategies (e.g. Contrastive Loss or
Next-Token-Prediction) to pre-train the visual encoder and LLLM separately, while native MLLMs
optimize both image and text components in an end-to-end manner using a unified training objective
(i.e. Next-Token-Prediction).

Fig. [I0] further illustrates the difference between compositional MLLMs and native MLLMs. Compo-
sitional MLLMs typically have different components initialized by separate unimodal pre-training,
where different training objectives and strategies are employed to train the LLM and visual encoder.
For example, the visual encoder can be trained using an image-text contrastive learning objective (e.g.,
CLIP [52]], SigLIP [[72]) or a self-supervised learning objective (e.g., DINOv2 [51])). The complexity

"Due to limited computational resource and time, current version of NaViL-9B in this paper is only trained
with 450B tokens.
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of such training process increases the difficulty of scalability. On the other hand, as discussed in [S6],
native MLLM optimizes both image and text modalities end-to-end using a unified training objective
(i.e., next-token prediction (NTP)). This avoids introducing additional bias and significantly simplifies
the scaling effort.

C More Related Works

Research on Neural Scaling Laws. The foundational work on Neural Scaling Laws began in
the Natural Language Processing (NLP) domain, where [29] established predictable power-law
relationships demonstrating that performance loss (L) scales reliably with model size (V) and data
size (D), and that larger, decoder-only Transformer models are more compute-efficient. Following
works [23]] further extended such research to encoder-decoder architectures, observing consistency
in scaling exponents on Neural Machine Translation (NMT) tasks. Driven by these successes, in
the vision domain, [71] confirmed the applicability of scaling laws to Vision Transformers (ViT),
systematically demonstrating continuous performance improvement by scaling both model size (up
to 2 billion parameters) and training data. Most recently, these principles have been generalized to
Large Multimodal Models, where [1] developed scaling laws that unify the contributions of text,
image, and speech modalities by explicitly modeling synergy and competition as an additive term.
Furthering this, [56] explored Native Multimodal Models (NMMs) using Mixture of Experts (MoEs),
finding an unbalanced scaling law that suggests scaling training tokens (D)) is more critical than
scaling active parameters (V) as the compute budget grows.

D Implementation Details

The hyperparameters of model architecture for NaViL-2B and NaViL-9B are listed in Tab.[6| while
the hyperparameters of training recipe for NaViL-2B and NaViL-9B are provided in Tab.[7)and Tab.[§]
respectively. The high-quality multimodal data used in Pre-training and Supervised Fine-tuning is
from InternVL-2.5 [12], which is sourced from various domains, such as image captioning, general
question answering, multi-turn dialogue, charts, OCR, documents, and knowledge, efc.; while the
pure language data is primarily from InternLM2.5 [§]].

E The NLP capability

We also evaluate the NLP capability of our model on three popular NLP tasks, as shown in Tab.[3]
Thanks to the modality-specific MoE architecture, NaViL maintains the NLP capabilities of its
initialization LLM (Qwen3-8B). Despite not using a large amount of high-quality text data, NaViL
performs well on the common NLP tasks and show much stronger NLP capabilities compared to
other native MLLMs, showing its data efficiency.

F More Qualitative Results

More visualization results of multimodal understanding are provided below.

’The performance of Chameleon-7B is from [43]].
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Table 4: Comparison between NaViL-9B and existing MLLMs on multimodal benchmarks.
“#A-Param” denotes the number of activated parameters. InternVL-2.5-8B adopts the same high-
quality data with NaViL-9B, so we mark it as the compositional counterpart. Note that its 300M
visual encoder is distilled from another 6B large encoder. * denotes our reproduced results. Bold and
underline indicate the best and the second-best performance among native MLLMs, respectively. For
MME, we sum the perception and cognition scores. Average scores are computed by normalizing
each metric to a range between 0 and 100.

Model #A—Param‘ Avg MM Vet MMMU MMB MME MathVista OCR-B TVQA DocVQA AI2D ChartQA InfoVQA
Compositional MLLMs:

MobileVLM-V2 [16] 1.7B — - - 577 — — — — — — - -
MobileVLM-V2 [16] 3.0B — - - 632 — — — 57.5 — — - -
Mini-Gemini [34] 3.5B — 311 317 598 1653 294 — 56.2 34.2 — - -
MMI1-MoE-Chat [48] 3.5B — 422 38.6 70.8 1772  32.6 — 72.9 — — —
DeepSeek-VL [40] 2.0B — 348 322 646 1532  31.1 409 578 — 51.5 — —
PaliGemma [6] 2.9B — 331 349 71.0 1686  28.7 614  68.1 — 68.3 — -
MiniCPM-V-2 [66] 2.8B — 410 382  69.1 1809  38.7 605  74.1 719 629 — -
InternVL-1.5 [14] 22B |61.3 393 346 709 1902  41.1 654  70.5 850 698 74.8 554
Qwen2VL [63] 2.1B |67.3 495 41.1 749 1872  43.0 809  79.7 90.1 747 735 65.5
InternVL-2.5 [13] 22B |69.6 60.8 43.6 747 2138 513 804 743 88.7 749 792 60.9
Qwen2VL [63] 82B |77.1 62.0 54.1 83.0 2327 582 866 843 945 83.0 83.0 76.5
Qwen2.5-VL [4] 82B (80.2 67.1 58.6 835 2347 682 864 849 957 839 873 82.6
InternVL-2.5 [13] 8.1B |77.3 62.8 56.0 84.6 2344 644 822  79.1 919 845 8438 75.7
Native MLLMs:

Fuyu-8B (HD) [5] 8B — 214 — 107 — — — — — 64.5 — —
SOLO [11] 7B — — — — 1260 344 — — — 61.4 — —
Chameleon-7B? [0] 7B 140 83 254  31.1 170 22.3 7 4.8 1.5 46.0 29 5.0
EVE-7B [19] 7B 346 25.6 323 495 1483 252 327 519 220 485 195 20.0
EVE-7B (HD) [19] 7B 452 257 32.6 523 1628 342 398  56.8 53.0 61.0 59.1 25.0
Emu3 [65] 8B - 372 31.6 585 — — 687  64.7 763 70.0 68.6 43.8
VoRA [62] 7B — 337 322 642 1674 — — 56.3 — 65.6 - —
VoRA-AnyRes [62] 7B — 337 32.0 613 1655 — — 58.7 — 61.1 - -
EVEv2 [20] 7B 62.3 45.0 393 663 1709  60.0% 702 71.1  774% 748 739 45.8*
SAIL [32] 7B 63.7 463 38.6* 70.1 1719 57.0 783  77.1  784* 76.7 69.7* 47.3*
Mono-InternVL [43] 1.8B  |60.6 40.1 337 655 1875 457 767  72.6 80.0 68.6 737 43.0
NaViL-2B (ours) 24B |68.8 783 41.8 712 1822 50.0 79 769 854 746 78.0 56.0
NaViL-9B (ours) 92B |77.0 79.6 547 76.5 2225  66.7 837 712 90.6 824 854 70.2

Table 5: Comparison of NaViL and existing native MLLLLMs on three common NLP tasks. Except
for Chameleon, models are evaluated using OpenCompass toolkit [18]].

Models #A-Param MMLU CMMLU MATH
InternLM2-Chat [59] 1.8B 47.1 46.1 13.9
Qwen3-8B (non-thinking) [60] 8B 76.5 76.8 71.1
EVE [19] 7B 439 334 0.7
Chameleon [9]] 7B 52.1 - 11.5
Mono-InternVL [43] 2B 45.1 44.0 12.3
NaViL-9B (ours) 9.2B 74.9 75.1 66.2
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Table 6: Hyper-Parameters of Model Architecture.

Component Hyper-Parameter NaViL-2B NaViL-9B

visual encoder # Params 0.6B 1.2B
depth 24 32
width 1472 1792
MLP width 5888 7168
# attention heads 23 28

LLM (w/ MoE) # experts 2 2
# A-Params 1.8B 8.0B
depth 24 36
width 2048 4096
MLP width 8192 12288
# attention heads 16 32

Table 7: Hyper-parameters for training NaViL-2B.

Configuration Multi-modal Generative Pre-training (S1) Supervised
S1.1 \ S1.2 Fine-tuning (S2)
Maximum number of image patches | 4096 12188 24576
Training steps 70k 40k 30k
Global batch size 7,000 4,614 2,234
Weight decay 0.05 0.1 0.01
Learning rate schedule constant with warm-up cosine decay
Peak learning rate 5¢=5 2e5
Visual Multi-scale Packing v
LLM max sequence length 16, 384
Warm-up steps 200
Optimizer AdamW
Optimizer hyperparameters B1 =0.9,8; =0.95 eps = le™8
Gradient accumulation 1
Numerical precision bfloatl6
Table 8: Hyper-parameters for training NaViL-9B.
Configuration Multi-modal Generative Pre-training (S1) Supervised
S1.1 \ S1.2 Fine-tuning (S2)
Maximum number of image patches | 4096 12188 24576
Training steps 50k 33k 6k
Weight decay 0.05 0.1 0.01
Global batch size 10, 300 1,792 3,520
Visual Multi-scale Packing X v v
Learning rate schedule constant with warm-up cosine decay
Peak learning rate 5¢75 2¢5
LLM max sequence length 16, 384
Warm-up steps 200
Optimizer AdamW
Optimizer hyperparameters B1=0.9,8; =0.95,eps = le~8
Gradient accumulation 1
Numerical precision bfloatl6
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Image Captioning and Visual Question Answering

Prompt: Describe this image in detail.

Response: The image shows an aerial view of a modern architectural complex situated near a coastal
area. The building has a distinctive design with a series of curved, wave-like structures on its roof,
giving it a futuristic appearance. The exterior is primarily composed of light-colored materials, possibly
concrete or stone, with large glass windows.

In front of the building, there is a wide, multi-lane road lined with palm trees, suggesting a warm,
coastal climate. The road appears to be a major thoroughfare, with designated bike lanes and pedestrian
pathways. There are also train tracks running parallel to the road, indicating the presence of a public
transportation system.

The background features a large body of water, likely a bay or ocean, with several boats and yachts
docked at a marina. The coastline is lined with more buildings, and there are hills or mountains visible
in the distance, adding to the scenic view. The overall setting suggests a bustling urban area with a focus
on modern infrastructure and a strong connection to the waterfront.

Prompt: Which city is this building most likely in?

Response: This building is most likely in San Diego, California. The architectural style and the
surrounding landscape, including the water and palm trees, are characteristic of San Diego.

Prompt: Who is the person in black in the middle?

Response: The person in black in the middle is Lionel
Messi.

Prompt: What are they celebrating about?

Response: The image shows a group of soccer players
celebrating with a trophy, wearing medals and jerseys. They
are likely celebrating a victory in a soccer tournament or
championship.

Prompt: What is the content in this image?

Response: The image appears to be a screenshot from a
video game, likely Grand Theft Auto V (GTA V), given
the visual style and interface elements. It shows a character
standing on a sidewalk in a small town or suburban area.
The environment includes a street with tram tracks, a few
buildings with signs, and some cars parked along the road.
The buildings have signs for businesses like "Wine" and "On
The Bone." The scene has a somewhat deserted look, with
no other characters or significant activity visible.
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OCR

Prompt: Extract all the text in this image.

Response: NUTRITIONAL INFORMATION
Serving size: 10 g

Servings per package: 25

Average Quantity Per Serving | Average Quantity Per 100g
Energy | 143kJ | 1430 kJ

Protein | less than 0.1g | 0.16g

Fat, total | less than 0.1g 1 0.37g

- saturated | less than 0.1g | 0.26g

Carbohydrates | 8.31g 1 83.1g

Sugars | 8.11g | 81.1¢g

Sodium | 0.41mg | 4.04mg

INGREDIENTS: 100% Pure New Zealand Honey
Keep Stored Below 20 deg°C, BPA-Free Container.
Not suitable for children under 1 year of age.

Fooel = Lunch * 5 paplc

CHAPELBANK HOTEL

69 EAST HIGH STREET

FORFAR DD8 2EP

TEL NO 01307 463151

* %k Kk k Xk %k *k ¥k *k %k *k %k

3x  SoUP 3.95 11.85
Lunch Main

Lasagne (V) 6.95
MISC FOOD 6.95
2x CHIPS / ONION RINGS 1.75 3.50
-FOOD 29,25--
Prev Bal: 29.25

SUBTOTAL* 28,25

Prompt: Describe the image.

Response: The image is a receipt from Chapelbank Hotel
for a lunch order for five people. The items listed on the
receipt include 3x soup at £3.95 each, totaling £11.85; lunch
main course at £6.95; lasagne (V) at £6.95; misc food at
£6.95; and 2x chips/onion rings at £1.75 each, totaling £3.50.
The subtotal for the food is £29.25. The receipt also includes
a previous balance of £29.25, making the total amount
due £29.25. The hotel’s address is 69 East High Street,
Forfar DD8 2EP, and the telephone number is 01307 463151.

Prompt: How many people are attending this lunch?
Response: There are 5 people attending this lunch. This

is indicated at the top of the receipt where it says "Food =
Lunch x 5 people".

g chain Br Rd|

McLean

Prompt: Where is the left exit going to?

Response: The left exit is going to Reston, Herndon, and
Dulles Airport.

Prompt: Which road leads to the EXIT 46 B?

Response: The road that leads to EXIT 46 B is Chain Br
Rd North.
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Multi-lingual OCR

Response:
SURNE:
TE3C (6097

IS

X (604)

A # 2k
%, mH%EAME KiI18E, A2
H AW R
x BR % & .
A RARABE, L7 LR A
B A ZM, RERA 2R K, &
Br o, h T Rk AMAH R,

Prompt: HSEIRIUEHAICA, BEEIFNE -

TETAERE ST

L Ak B B oo

tTR3IMA, AELS
RAE32T AL, %A

AH: TEER, ZFXEm.

Essay (60 points)
Title: Focus on your goal, enjoy life.
The light of the goal is like the clear glow of moonlight; the brilliance of life is like the dazzling stars.
Without the stars, the moonlight becomes cold and desolate; without the moon, the stars will inevitably
become dull. Only by focusing on the moonlight can you find direction; only by appreciating the stars
can you enjoy life. The stars and moon shine together, making the night sky enchanting; focusing on
your goal, enjoying life, allows you to savor the quiet joy of life.

BRI, WALIERE, AaZiE, WiEAE. KL THE, AGFEESRE; AR TH
A, BEMBLERREG . AGRETAN, AL, AERERE, Ta=xta. 2
AZHE, WEHN; RIERWR, =324, T RRAREN .

Document Understanding

COPY

ORIGINAL

SEv9 61528

Prompt: What is the duration of this venue sponsorship
agreement?

Response: January 1, 2001 - December 31, 2001
Prompt: Where is Vitucci’s located (complete address)?
Response: 1832 East North Avenue, Milwaukee WI 53202

Prompt: What cigarette brand is mentioned in the
agreement for delivery and distribution?

Response: Camel cigarette brand styles purchased by
Venue Owner for resale in Venue

Prompt: Who has discretion over the distribution of flyers
for special events?

Response: KBA Marketing Group ("KBA") has discretion
over the distribution of flyers for special events.
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LaTeX and Math

Jareo(0) =E[q ~ P(Q), {0}% | ~ m4,,(0l9)]

G loi]

1 1 | moloilg 0i<t) ~ . mo(0ilq 0i<t) ) . } 3)
— — min a 4 Aj ¢, cli A - ,1—¢,1+¢|Ai:| - PDxkyr |mg||m 5
G; |0i|;{ T00a (04612, 04,<) % TG0 (03,19, 0i,<c) ir] = PO [7ollmres]

Prompt: Convert the formula in the figure to latex format.

Response:

¢¢flatex

\begin{equation*}

\begin{split}

\mathcal{J}_{\text{GRP0}}(\theta) &= \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}"G

\sim \pi_{\theta_{old}}(0Ig)] \\

& \frac{1}{G} \sum_{i=1}"G \frac{i}{lo_il} \sum_{t=1}"{lo_il} \left\{ \min

\left[ \frac{\pi_{\theta}(o_{i,t}lq, o_{i,<t}P)}I{\pi_{\theta_{old}}(o_{i,t}lq, o_{i,<t}H}
\hat{A}_{i,t}, \text{clip}

\left( \frac{\pi_{\theta}(o_{i,t}lq, o_{i,<t})I{\pi_{\theta_{old}}(o_{i,t}lq, o_{i,<t}H},
1 - \varepsilon, 1 + \varepsilon \right) \hat{A}_{i,t} \right] -

\beta \mathcal{D}_{KL} \left[ \pi_{\theta} || \pi_{ref} \right] \right\},

\end{split}
\end{equationx}
Prompt: Find z. A = 148 m?. Please think step by step.
Response: To find the value of z in the parallelogram, we
can use the formula for the area of a parallelogram:
! A = base x height
1 Given: - Area A = 148 m? - Base = 8 m - Height = 2 m
: xm Substitute the given values into the formula:
_0 148 =8 x
8m Solve for a:
Lo 118
-8
z=18.5m
So, z = 18.5m.

Prompt: A dog show enthusiast recorded the weight of the
winning dog at recent dog shows. According to the table,
what was the rate of change between 2016 and 2017? (Unit:
kilograms per year)

Weight of winning dog at a dog show Response: To determine the rate of change between 2016
201 he f la fi f ch :
Weight (kg) and 2017, we use the formula for rate of change

2013 27 ight i — Weight i
Rate of Change = Welggt a ;gi; iVelgl212)11n62016
2014 28 car cu/— Year
From the table: - Weight in 2016 = 29 kg - Weight in 2017

2015 34 =40 kg
2016 29 Substitute these values into the formula:

40kg — 29k 11k
2017 40 Rate of Change = Okg Oke _ £

2017 — 2016 ~ 1year

Rate of Change = 11 kg/year
Thus, the rate of change between 2016 and 2017 is

e

29



	Introduction
	Related Work
	Visual Design Principles for native-MLLM
	Problem Setup
	Exploring the Optimal Design of Architecture Components
	Initialization of LLM
	Effectiveness of MoEs
	Optimizing the Visual Encoder Architecture

	Scaling Up Native MLLMs
	Scaling up Visual Encoder and LLM Independently
	Scaling up Visual Encoder and LLM Together


	NaViL: A Novel Native MLLM with Strong Capabilities
	Architecture
	Training

	Experiment
	Experimental Setups
	Main Results
	Qualitative Experiments

	Conclusion
	NaViL-9B: Scaling up to 9B parameters
	More discussions on Compositional MLLMs and Native MLLMs
	More Related Works
	Implementation Details
	The NLP capability
	More Qualitative Results

