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Abstract

Tabular data (or tables) are the most widely used data format in machine learn-
ing (ML). However, ML models often assume the table structure keeps fixed in
training and testing. Before ML modeling, heavy data cleaning is required to
merge disparate tables with different columns. This preprocessing often incurs
significant data waste (e.g., removing unmatched columns and samples). How to
learn ML models from multiple tables with partially overlapping columns? How to
incrementally update ML models as more columns become available over time?
Can we leverage model pretraining on multiple distinct tables? How to train an ML
model which can predict on an unseen table?

To answer all those questions, we propose to relax fixed table structures by in-
troducing a Transferable Tabular Transformer (TransTab) for tables. The goal
of TransTab is to convert each sample (a row in the table) to a generalizable
embedding vector, and then apply stacked transformers for feature encoding. One
methodology insight is combining column description and table cells as the raw
input to a gated transformer model. The other insight is to introduce supervised and
self-supervised pretraining to improve model performance. We compare TransTab
with multiple baseline methods on diverse benchmark datasets and five oncology
clinical trial datasets. Overall, TransTab ranks 1.00, 1.00, 1.78 out of 12 methods
in supervised learning, feature incremental learning, and transfer learning scenarios,
respectively; and the proposed pretraining leads to 2.3% AUC lift on average over
the supervised learning.

1 Introduction

Tabular data are ubiquitous in healthcare, engineering, advertising, and finance [1, 2, 3, 4]. They
are often stored in a relational database as tables or spreadsheets. Table rows represent the data
samples, and columns represent the feature variables of diverse data types (e.g., categorical, numerical,
binary, and textual). Recent works enhance tabular ML modeling using deep networks [5, 6, 7, 8]
or designing self-supervision [2, 9, 10, 11]. Those existing works require the same table structure
in training and testing data. However, there can be multiple tables sharing partially overlapped
columns in the real world. Hence, learning across tables is inapplicable. The traditional remedy is
to perform data cleaning by removing non-overlapping columns and mismatched samples before
training any ML models, which waste data resources [12, 13, 14]. Therefore, learning across tables
with disparate columns and transferring knowledge across tables are crucial to extending the success
of deep learning/pretraining to the tabular domain.

Tables are highly structured yet flexible. The first step to achieve learning across tables is to rethink
the basic elements in tabular data modeling. In computer vision, the basic elements are pixels [15]
or patches, [16, 17]; in natural language processing (NLP), the basic elements are words [18] or
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Figure 1: The demonstration of ML modeling on different tabular data settings. Previous tabular
methods only do vanilla supervised training or pretraining on the same table due to they only accept
fixed-column tables. By contrast, TransTab covers more new tasks (1) to (4) as it accepts variable-
column tables. Details are presented in §2.1.

tokens [19, 20]. In the tabular domain, it is natural to treat cells in each column as independent
elements. Columns are mapped to unique indexes then models take the cell values for training
and inference. The premise of this modeling formulation is to keep the same column structure in
all the tables. But tables often have divergent protocols where the nomenclatures of columns and
cells differ. By contrast, our proposed work contextualizes the columns and cells. For example,
previous methods represent a cell valued man under the column gender by 0 referring to the codebook
{man : 0, woman : 1}. Our model converts the tabular input into a sequence input (e.g., gender is
man), which can be modeled with downstream sequence models. We argue such featurizing protocol
is generalizable across tables, thus enabling models to apply to different tables.

In a nutshell, we propose Transferable Transformers for Tabular analysis (TransTab), a versatile
tabular learning framework '. TransTab applies to multiple use cases as shown in Fig. 1. The key
contributions behind TransTab are

* A systematic featurizing pipeline considering both column and cell semantics which is shared as
the fundamental protocol across tables.

* Vertical-Partition Contrastive Learning (VPCL) that enables pretraining on multiple tables and also
allows finetuning on target datasets.

As shown by Fig. 1, due to the fixed-column assumption, all existing works only handle super-
vised learning or pretraining on the same-structure tables. On the contrary, TransTab relaxes this
assumption and applies to four additional scenarios, which we will elaborate on in §2.1.

2 Method

In this section, we present the details of TransTab. Fig. 2 illustrates its workflow including the
following key components: 1) The input processor featurizes and embeds arbitrary tabular inputs
to token-level embeddings; 2) The stacked gated transformer layers further encode the token-level
embeddings; 3) Finally, the learning module includes a classifier trained on labeled data and a
projector for contrastive learning. Next we will present the details of each component.

'Our package is available at https://github.com/RyanWangZf/transtab with documentation at
https://transtab.readthedocs.io/en/latest/.
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Figure 2: The demonstration of TransTab framework. the input processor encodes the sample into
the token-level embedding E; the [c1s] embedding z!*! in the representation Z” after L gated
transformer layers is used for prediction and learning. In supervised learning, z!°**! is leveraged by a
classifier to make predictions of target y; in contrastive learning, the projected z[°**! is is used for self
or supervised contrastive loss.

2.1 Application scenarios of TransTab

Before presenting our method in details, we first introduce four novel applications scenarios which
are tractable by TransTab, as shown in Fig. 1. Suppose we aim to predict the treatment efficacy for
breast cancer trials using multiple clinical trial tables, here are several scenarios we often encounter.

S(1) Transfer learning. We collect data tables from multiple cancer trials for testing the efficacy
of the same drug on different patients. These tables were designed independently with overlapping
columns. How do we learn ML models for one trial by leveraging tables from all trials?

S(2) Incremental learning. Additional columns might be added over time. For example, additional
features are collected across different trial phases. How do we update the ML models using tables
from all trial phases?

S(3) Pretraining+Finetuning. The trial outcome label (e.g., mortality) might not be always available
from all table sources. Can we benefit pretraining on those tables without labels? How do we finetune
the model on the target table with labels?

S(4) Zero-shot inference. We model the drug efficacy based on our trial records. The next step is to
conduct inference with the model to find patients that can benefit from the drug. However, patient
tables do not share the same columns as trial tables so direct inference is not possible.

Overall, we witness that the assumption of fixed table structure is the obstacle to use ML for various
applications. Next we will present TransTab and demonstrate how it addresses these scenarios.

2.2 Input processor for columns and cells

We build the input processor (1) to accept variable-column tables (2) to retain knowledge across
tabular datasets. The idea is to convert tabular data (cells in columns) into a sequence of semantically
encoded tokens. We utilize the following observation to create the sequence: the column description
(e.g., column name) decides the meaning of cells in that column. For example, if a cell in column
smoking history has value 1, it indicates the individual has a smoking history. Similarly, cell value 60
in column weight indicates 60 kg in weight instead of 60 years old. Motivated by the discussion, we



propose to include column names into the tabular modeling. As a result, TransTab treats any tabular
data as the composition of three elements: text (for categorical & textual cells and column names),
continuous values (for numerical cells), and boolean values (for binary cells) . Fig. 2 illustrates
a visual example of how these elements are leveraged to process the four basic types of features:
categorical/textual cat, binary bin, and numerical num.

Categorical/Textual feature. A category or textual feature contains a sequence of text tokens. For
the categorical feature cat, we concatenate the column name with the feature value x., which forms
as a sequence of tokens. This sentence is then tokenized and matched to the token embedding matrix
to generate the feature embedding E. € R"<*? where d is the embedding dimension and n,. is the
number of tokens.

Binary feature. The binary feature bin is usually an assertive description and its value z;, € {0, 1}.
If z;, = 1, then bin is tokenized and encoded to the embeddings E; € R™® xd. if not, it will not be
processed to the subsequent steps. This design significantly reduces the computational and memory
cost when the inputs have high-dimensional and sparse one-hot features.

Numerical feature. We do not concatenate column names and values for numerical feature because
the tokenization-embedding paradigm was notoriously known to be bad at discriminating numbers
[21]. Instead, we process them separately. num is encoded as same as cat and bin to get E,, ., €
R™: >4 We then multiply the numerical features with the column embedding to yield the numerical
embedding as E,, = x,, X Eu,colz, which we identify gets an edge on more complicated numerical
embedding techniques empirically.

Atlast, E., E,,, E; all pass the layer normalization [22] and the same linegr laye~r to be~ aligned to the
same space, then are concatenated with [c1s] embeddingtoyield E=E. Q E,  E;, ® elets],

As a result, all cell values are contextualized regarding the corresponding column properties thus the
semantic meaning of one element can vary depending on the context composition. This formulation
benefits the knowledge transfer across tables a lot. For example, previously smoked depicts the same
thing as smoking history. Previous methods never capture this connection while it is possible for
TransTab to learn to recognize that 1 under both columns are equivalent.

2.3 Gated transformers

The gated tabular transformer is an adaption of the classical transformer in NLP [23]. It consists
of two main components: multi-head self-attention layer and gated feedforward layers. The input
representation Z' at the I-th layer is first adopted for exploring interactions between features:

Z., = MultiHeadAttn(Z') = [head;, heads, ..., head;,|W©, (1)
head; = Attention(Z'W¥ Z'WK Z!'W)), 2)
where Z° = E at the first layer; WO € R4 {W? WK WV} are weight matrices (in R ) of

K2

query, key, value of the i-th head self-attention module.

The multi-head attention output Z!,, is further transformed by a token-wise gating layer as g! =

o(Z,w®), where o(-) is a sigmoid function; g! € [0, 1]" controls the magnitude of each token
embedding before Z, goes to the linear projection. This gates then filters the linear layer output
Z*! = Linear ((gl ® Zt,) @ Linear(Zl,)) 3)

to obtain the transformer output Z!*! € R"*9. This mechanism is learnt to focus on important
features by redistributing the attention on tokens. The final [c1s] embedding z[**] at the L-th layer
is used by the classifier for prediction.

2.4 Self-supervised and supervised pretraining of TransTab
The input processor accepts variable-column tables, which opens the door for tabular pretraining on
heterogeneous tables. In detail, TransTab is feasible for self-supervised and supervised pretraining.

Self-supervised VPCL. Most SSL tabular methods work on the whole fixed set of columns [2, 24, 11],
which take high computational costs and are prone to overfitting. Instead, we take tabular vertical

21, is standardized or normalized in preprocessing.



partitions to build positive and negative samples for CL under the hypothesis that the powerful
representation should model view-invariant factors. In detail, we subset columns as illustrated by
Fig. 3 where Self-VPCL is on the top right. Suppose a sample x; = {v}, ... ,vf} with K partitions
vF. Neighbouring partitions can have overlapping regions which are justified by the percentage of
columns of the partition. Self-VPCL takes partitions from the same sample as the positive and others
as the negative:

B K K k k'
) D D L\ — @

i=1 k=1k'#k Zj:l > ki—1 EXPY(V; Vi)

where B is the batch size; ¢ (-, -) is the cosine similarity function. v applies to zl°'s] which is the
linear projection of partition v’s embedding z[***!. Compared with vanilla CL like SCARF [11],
Self-VPCL significantly expand the positive and negative sampling for learning more robust and rich
embeddings. What is more, this vertical partition sampling is extremely friendly to column-oriented
databases [25] which support the fast querying a subset of columns from giant data warehouses. For
the sake of computational efficiency, when K > 2, we randomly sample two partitions.

Supervised VPCL. When we own labeled tabu-
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coder biased to the major tasks and classes. L ——_________________ ;
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Figure 3: The demonstration of contrastive learn-
ing methods (different pieces can either be distinct
or be overlapped partially). Self-VPCL: Positive
pairs are partitions of the same sample; VPCL: Pos-
itive pairs are partitions of the sample belonging to
the same class.

In this paper, we propose VPCL for pretraining inspired by supervised CL [26] which was proved
robust to noise and hyperparameters. As illustrated by Fig. 3, we build positive pairs considering
views from the same class except for only from the same sample:

B B K K expz/;( k k’)

ZZZ > 1{y; = yi}log (5)

1h=1k/—1 ij—1 Soro Myt # yitexpu(vh )

= {y;}2 are labels; 1{-} is indicator function. VPCL relieves multiple pretraining predictors
required to adjust to different datasets. Moreover, VPCL exposes more feature embeddings to the
supervision by partitioning hence providing more discriminative and generalizable representations.

3 Experiments

In this section, we aim at answering the following questions by extensive experiments:

* Q1. How does TransTab perform compared with baselines under the vanilla supervised setting?
* Q2. How well does TransTab address incremental columns from a stream of data (S(2) in Fig. 1)?

* Q3. How is the impact of TransTab learned from multiple tables (with different columns) drawn
from the same domain on its predictive ability (S(1) in Fig. 1)?



Table 1: Statistics of the use clinical trial mortality prediction datasets. All are binary classification
tasks. Positive ratio means the ratio of data points belong the positive class. NCTxxx are trial
identifiers which can be linked to trials on ClinicalTrials.gov.

Name Datapoints Categorical Binary Numerical Positive ratio
NCTO00041119 3871 5 8 2 0.07
NCTO00174655 994 3 31 15 0.02
NCT00312208 1651 5 12 6 0.19
NCT00079274 2968 5 8 3 0.12
NCT00694382 1604 1 29 11 0.45

* Q4. Can TransTab be a zero-shot learner when pretrained on tables and infer on a new table (S(4)
in Fig. 1)?

* QS. Is the proposed vertical partition CL better than vanilla supervised pretraining and self-
supervised CL (S(3) in Fig. 1)?

Datasets. We introduce clinical trial mortality prediction datasets where each includes a distinct
group of patients and columns °. The data statistics are in Table 1. Accurately predicting the patient
mortality in clinical trials is crucial because it helps identify catastrophic treatment then save patients
from harm and improve the clinical trial design. Considering they are from a similar domain, we
can utilize them to test if TransTab can achieve transfer learning. Besides, we also include a set of
public tabular datasets, the statistics are in Table 7.

Dataset pre-processing. For all baselines, we represent categorical features by ordinal encoding if
they need to specify categorical features, otherwise one-hot encoding is used. Numerical features
are scaled to [0, 1] by min-max normalization. Exceptionally for TransTab, we map the categorical
feature index to its original description, e.g., mapping class "1" under "gender" to "female".

Model and implementation protocols. Unless specified otherwise, we keep the settings fixed across
all experiments. TransTab uses 2 layers of gated transformers where the embedding dimensions
of numbers and tokens are 128, and the hidden dimension of intermediate dense layers is 256. The
attention module has 8 heads. We choose ReLLU activations and do not activate dropout. We train
TransTab using Adam optimizer [27] with learning rate in {2e-5, 5e-5, le-4} and no weight decay;
batch size is in {16, 64,128}. We set a maximum self-supervised pretraining epochs of 50 and
supervised training epochs of 100. A patience of 10 is kept for supervised training for early stopping.
Experiments were conducted with one RTX3070 GPU, i7-10700 CPU, and 16GB RAM.

Baselines. We include the following baselines for comparison: Logistic regression (LR); XGBoost
[28]; Multilayer perceptron (MLP); SeLU MLP (SNN) [29]; TabNet [30]; DCN [1]; Autolnt [31]; Tab-
Transformer [5); FT-Transformer [32]; VIME [2]; SCARF [11]. We provide the baseline architectures
and implementations in Appendix B.

3.1 Ql. Supervised learning

Results of supervised learning on clinical trial mortality prediction datasets are summarized by
Table 2. Note that all methods including ours do not perform pre-training. We see that our method
outperforms baselines on all. From the view of method ranks, we surprisingly identify that LR wins
over half of baseline methods. Except for TransTab, FT-Transformer is the only model that shows
significant superiority over LR, which illustrates the potential of transformers for tabular modeling.
Additional results on public datasets are available in Table 8 where we witness that our method is
comparable to the state-of-the-art baseline tabular models. We also discover the baselines drawn from
the CTR prediction literature (DCN and AutolInt) turn out the be competitive in tabular modeling.

3.2 Q2. Feature incremental learning

For previous tabular models, we should either drop new features or drop old data when confronting
feature incremental learning. By contrast, TransTab is able to continually learn from new data with

*https://data.projectdatasphere.org/projectdatasphere/html/access
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Table 2: Test AUROC results on clinical trial mortality datasets the under supervised learning
setting. All the remaining tables in this paper follow these setups to avoid clutter: the metric values
are averaged over 10 random seeds; the Rank column reports the average rank across all datasets;
Top results for each dataset are in bold.

Methods NO00041119 NO00174655 NO00312208 NO00079274 N00694382 ‘ Rank(Std)

LR 0.6364 0.8543 0.7382 0.7067 0.7360 5.40(1.14)
XGBoost  0.5937 0.5000 0.6911 0.6784 0.7440 9.60(3.71)
MLP 0.6340 0.6189 0.7427 0.6967 0.7063 8.00(2.83)
SNN 0.6335 0.9130 0.7469 0.6948 0.7246 5.80(2.39)
TabNet 0.5856 0.5401 0.6910 0.6031 0.7113 11.40(0.89)
DCN 0.6349 0.7577 0.7431 0.6952 0.7458 5.60(2.51)
Autolnt 0.6327 0.7502 0.7479 0.6958 0.7411 6.20(2.59)
TabTrans  0.6187 0.9035 0.7069 0.7178 0.7229 7.20(3.56)
FT-Trans  0.6372 0.9073 0.7586 0.7090 0.7231 4.20(2.28)
VIME 0.6397 0.8533 0.7227 0.6790 0.7232 7.00(3.08)
SCARF 0.6248 0.9310 0.7267 0.7176 0.7103 6.60(3.91)
TransTab 0.6408 0.9428 0.7770 0.7281 0.7648 | 1.00(0.00)

Table 3: Test AUROC results on clinical trial datasets under feature incremental learning.
Methods NO00041119  N00174655 N00312208 N00079274 N00694382 | Rank(Std)

LR 0.6213 0.8485 0.6801 0.6258 0.7236 4.6(3.21)
XGBoost  0.5735 0.7890 0.6760 0.6038 0.6463 8.8(2.59)
MLP 0.6371 0.7754 0.6871 0.6220 0.6851 6.2(2.95)
SNN 0.5765 0.7440 0.6854 0.6336 0.7035 6.4(2.30)
TabNet 0.5548 0.8419 0.5849 0.6052 0.6668 9.0(3.39)
DCN 0.5172 0.5846 0.6640 0.6535 0.6957 8.2(4.16)
Autolnt 0.5232 0.6075 0.7031 0.6394 0.6974 7.2(3.56)
TabTrans  0.5599 0.7652 0.6433 0.6365 0.6841 8.2(1.10)
FT-Trans  0.5552 0.8045 0.7148 0.6471 0.6815 5.8(3.11)
VIME 0.6101 0.8114 0.3705 0.6444 0.6436 7.4(4.22)
SCARF 0.5996 0.6261 0.7072 0.6535 0.6957 5.2(2.97)
TransTab 0.6797 0.8545 0.7617 0.6857 0.7795 | 1.0(0.00)

incremental features. We split the raw dataset into three subsets: setl, 2, and 3 which mimic the
incremental feature scenario shown by (2) in Fig. 1. Baseline methods apply to two scenarios: (a)
learning from all data that only have features of setl and (b) learning from the data of set3 only.
We report the best of the two. TransTab applies to learning from all three subsets. Table 3 shows
the results where we find our method outperforms baselines by a great margin. It demonstrates that
TransTab makes the best of incremental features to learn better. Similar observations appear in
public datasets, shown by Table 9.

3.3 Q3. Transfer learning

We further test if TransTab is able to transfer knowledge across tables. Results are in Table 4. We
split each dataset into two subsets with 50% overlaps of their columns. Baselines are trained and
tested on setl (only label-supervision) or set2 separately. For our method we pretrain it on setl then
finetune it on set2 and report its performance on set2, and vice versa. We observe that TransTab can
benefit from knowledge transfer across tables to reach superior performances. Similar observations
are made on public datasets shown by Table 10.



Table 4: Test AUROC results on clinical trial datasets under transfer learning across tables.

Methods N00041119 NO00174655 N00312208 N00079274 N00694382 Rank(Std)
setl set2 setl set2 setl set2 setl set2 setl set2

LR 0.625 0.647 0.789 0.819 0.701 0.735 0.635 0.685 0.675 0.763 | 5.33(1.73)
XGBoost  0.638 0.575 0.574 0.886 0.690 0.700 0.596 0.647 0.592 0.677 | 7.56(3.75)
MLP 0.639 0.621 0.314 0.857 0.683 0.744 0.620 0.675 0.648 0.765 | 6.56(3.32)
SNN 0.627 0.634 0215 0.754 0.687 0.732 0.631 0.683 0.651 0.759 | 7.44(2.07)
TabNet 0.564 0.558 0.856 0.592 0.671 0.657 0443 0.605 0.581 0.677 | 10.67(2.96)
DCN 0.636 0.625 0.767 0.790 0.711 0.698 0.682 0.664 0.658 0.737 | 6.33(2.45)

Autolnt 0.629 0.630 0.843 0.730 0.725 0.698 0.679 0.665 0.686 0.661 | 5.89(2.89)

TabTrans  0.616 0.647 0.866 0.822 0.675 0.677 0.618 0.702 0.652 0.718 | 6.22(3.38)
FI-Trans  0.627 0.641 0.836 0.858 0.720 0.741 0.692 0.692 0.652 0.740 | 4.22(2.28)

VIME 0.603 0.625 0312 0.726 0.601 0.642 0477 0.668 0.614 0.715 | 10.44(1.51)
SCARF 0.635 0.657 0.651 0.814 0.653 0.686 0.682 0.701 0.671 0.776 | 5.56(3.40)

TransTab 0.653 0.653 0.904 0.846 0.730 0.756 0.680 0.711 0.747 0.774 | 1.78(1.30)

Table 5: Test AUROC results on clinical trial datasets under zero-shot learning setting.
TransTab NO00041119 NO00174655 NO00312208 NO00079274 N00694382

Supervised  0.5854 0.6484 0.7536 0.7087 0.6479
Transfer 0.6130 0.6909 0.7658 0.7163 0.6752
Zero-shot ~ 0.5990 0.6752 0.7576 0.7036 0.6740

3.4 Q4. Zero-shot learning

Although there are numerous papers on zero-shot learning (ZSL) in CV and NLP [33, 34, 35], we
notice that ZSL was hardly mentioned in tabular domain. In this experiment, we refer to the ZSL
scenario mentioned by S(4) of Fig. 1 where we split the raw table into three equal-size subsets.
Three subsets have distinct columns. For the zero-shot setting, the model learns from setl+set2 and
is tested on set3 without further training. In this scenario, the model needs to leverage the learned
knowledge from setl and set2 to support the inference on a new table set3. Besides, we design two
baselines for comparison: supervised where the model learns from set3 and predicts on set3 and
transfer where the model learns from setl+set2 and continues to be finetuned on set3. Results are
in Table 5. We surprisingly find the ZSL model gets better performance than the supervised one on
average. It boils down to that (1) ZSL TransTab succeeds to retain the learned knowledge from
setl+set2 for predicting on a new table (set3) and (2) ZSL can benefit from more data (setl+set2)
than the supervised (set3 only). Meanwhile, the transfer model takes the advantage of setl+set2 and
is adapted for set3 by finetuning, hence reaches the best performance. Similarly, we witness that
TransTab is able to make zero-shot predictions on public datasets as in Table 11.

Additional sensitivity check is provided by Fig. 6 where we vary the overlap ratio of two subsets
from the same dataset. We witness that our model makes reasonable predictions even if the training
set has no column overlap with the test set.

3.5 QS. Supervised and self-supervised pretraining

We take experiments to compare the proposed VPCL with the vanilla transfer learning strategy, as
in Table 6. We observe that the vanilla strategy harms the performance on two datasets while VPCL
always brings positive effect for finetuning. Besides, we conduct experiments on varying the number
of partitions and show the average AUROC on all five datasets, shown by Fig. 4. We specify that
VPCL demonstrates an advantage over self-VPCL when we increase the partition numbers.

We also explore if pretraining works on public datasets. Results in Table 12 somewhat match our
expectations that pretraining on unrelated tabular data usually yields few benefits for finetuning
because these tables define totally different columns and targeted tasks. We also show the ablation
on the number of partitions by Fig. 5 where VPCL consistently outperforms the Supervised baseline.



Table 6: Test AUROC on clinical trial datasets under the across-table pretraining plus finetuning
setting. Supervised: baseline supervised model; Transfer: vanilla supervised transfer learning. Red
shows the one worse than the Supervised baseline.

TransTab NO00041119 NO00174655 N00312208 N00079274 N00694382

Supervised 0.6313 0.8348 0.7444 0.6885 0.7293
Transfer 0.6424 0.8183 0.7458 0.6928 0.7239
Self-VPCL  0.6412 0.8577 0.7486 0.7069 0.7348
VPCL 0.6405 0.8583 0.7517 0.7063 0.7392

Nevertheless, it is still worth investigating the table phenotypes to aggregate tables which are more
likely to benefit from each other by transfer learning.

4 Related Works

Tabular Prediction. To enhance tabular predictions, numerous recent works try to design new
algorithms [28, 36, 37, 30, 38, 32, 5, 10, 7, 39, 40, 41, 42, 43, 44, 45]. However, it was argued that
boosting algorithms and MLPs are still the competitive choices for tabular data modeling, especially
when the sample size is small [32, 46, 39, 47]. To alleviate label scarcity issue, SSL pretraining on
unlabeled tabular data was introduced [2, 24, 10, 9, 11]. Nonetheless, none of them is transferable
across tables then is able to extend the success of pretraining to the tabular domain. For practical
tabular predictions, the common case is that we own a lot of labeled samples collected with diverse
protocols hence heavy preprocessing is needed to align them by either dropping many samples or
many features. By contrast, TransTab accepts variable-column tables and therefore can learn from
different tables at scale and transfer to the target task. Also, it can support diverse tabular prediction
tasks as depicted in Fig. 1, which cannot be done by off-the-shelf tabular methods.

Transfer learning. Transfer learning (TL) has long been a popular research field since the proposal
of ImageNet [48], which gives rise to splendid works on utilizing supervised pretraining on a large
general database and finetune on a small downstream task [49, 50, 51, 52, 53]. TL is also fast-growing
in NLP beginning at BERT [20], which often leverages web-scale unlabeled texts for self-supervised
pretraining and then applies to specific tasks [34, 54, 55, 56, 57]. However, few work was on TL
in tabular predictions. As mentioned in §1, TransTab paves the way for effective tabular TL by
establishing a feature processing protocol that applies for most table inputs, such that it shares
knowledge across tables.

Self-supervised learning & contrastive learning. SSL uses unlabeled data with pretext tasks to learn
useful representations and most of them are in CV and NLP [20, 17, 15, 16, 58, 23, 59, 60, 61, 62, 63].
Recent SSL tabular models can be classified into reconstruction and contrastive based methods:
TabNet [30] and VIME [2] try to recover the corrupted inputs with auto-encoding loss; SCARF [11]
takes a SimCLR-like [64] contrastive loss between the sample and its corrupted version; SubTab
[9] takes a combination of both. Nevertheless, all fail to learn transferable models across tables
such that cannot benefit from pretraining with scale. Contrastive learning can also be applied to
supervised learning by leveraging class labels to build positive samples [26]. Our work extends it to
to the tabular domain, which we prove works better than vanilla supervised pretraining. The vertical
partition sampling also enjoys high query speed from large databases which are often column-oriented
[25]. Another line of research takes table pretraining table semantic parsing [65, 66, 67, 68, 69] or
table-to-text generation [70, 71]. But these methods either encode the whole table instead of each
row or do not demonstrate to benefit tabular prediction yet.

5 Conclusion

This paper proposes TransTab that accepts variable-column inputs. By the proposed vertical partition
contrastive learning, it can benefit from supervised pretraining from multiple tabular datasets with
low memory cost. We envision it to be the basis of tabular foundation models and widely used to
tabular-related applications in the future.
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