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ABSTRACT

Quantum kernel methods have been widely recognized as one of promising quan-
tum machine learning algorithms that have potential to achieve quantum advan-
tages. In this paper, we theoretically characterize the power of noisy quantum
kernels and demonstrate that under global depolarization noise, for different in-
put data the predictions of the optimal hypothesis inferred by the noisy quantum
kernel approximately concentrate towards some fixed value. In particular, we de-
pict the convergence rate in terms of the strength of quantum noise, the size of
training samples, the number of qubits, the number of layers affected by quantum
noises, as well as the number of measurement shots. Our results show that noises
may make quantum kernel methods to only have poor prediction capability, even
when the generalization error is small. Thus, we provide a crucial warning to
employ noisy quantum kernel methods for quantum computation and the theoreti-
cal results can also serve as guidelines when developing practical quantum kernel
algorithms for achieving quantum advantages.

1 INTRODUCTION

1.1 BACKGROUND

A main objective of machine learning is to design efficient and robust computation methods to make
accurate predictions for unseen data by using experiences, even for large-scale problems (Zhang
et al., 2022; Ergun et al., 2022; Lyle et al., 2022; Mohri et al., 2018; Wright & Ma, 2022). Quantum
machine learning (QML) aims to explore the representational and computational power of quantum
models to offer advantages beyond what is possible using classical models (Dunjko & Briegel, 2018;
Anschuetz, 2022; Kübler et al., 2021; Landman et al., 2023; Huang et al., 2021a; Wang et al., 2023a;
Jerbi et al., 2021; Liu et al., 2021; Huang et al., 2021b). Among different types of QML modes
(Wittek, 2014; Schuld et al., 2015; Biamonte et al., 2017; Zhang & Ni, 2020; Li & Deng, 2022; Guan
et al., 2021), quantum kernel methods have attracted increasing attention and shown great potential
for developing powerful new applications (Havlı́ček et al., 2019; Schuld & Killoran, 2019).

In machine learning, the prediction error can be decomposed into the sum of the training error
and the generalization error, where the so-called generalization depicts the difference between the
prediction error on new data and the training error. To make accurate predictions on unseen data,
both of the training and generalization errors should be small (Zhang et al., 2017). In classical
machine learning, it is often much easier to achieve small training errors than to guarantee good
generalization. However, in QML the main obstacle is training and it is often challenging to achieve
good trainability. For QML models based on quantum neural networks (QNNs), their landscapes
often suffer from vanishing gradients known as barren plateaus (McClean et al., 2018; Haug et al.,
2021; Ortiz Marrero et al., 2021) and/or the existence of exponentially many local minima (You &
Wu, 2021; Anschuetz & Kiani, 2022), which make the training of QNNs extremely difficult. Under
noiseless scenarios, quantum kernel methods do not suffer from these trainability issues and thus can
naturally achieve smaller training errors as compared to QNNs. This is because for quantum kernel
methods, due to the fundamental representation theorem (Schölkopf et al., 2002; Mohri et al., 2018),
the optimal parameters minimizing the training error can always be found when the landscape of the
cost function is convex (Havlı́ček et al., 2019; Schuld & Killoran, 2019; 2022; Jerbi et al., 2023).
Quantum kernel methods are widely believed to be representative for achieving practical quantum
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advantages. The prediction advantages over some classical models by employing quantum kernel
methods have been demonstrated in Huang et al. (2021a); Liu et al. (2021).

Although quantum kernel methods have shown great potential for achieving quantum advantages,
most of the existing results focus on ideal quantum settings without noise. Since noise may severely
degrade the performance of quantum kernels, with the current noisy intermediate-scale quantum
(NISQ) devices, a natural and crucial question is: What is the power of noisy quantum kernel meth-
ods? In this paper, we theoretically characterize the power of noisy quantum kernels and prove that
for a given number of training samples, once the number of layers affected by noise exceeds some
threshold, the prediction capability of noisy kernels is very poor. These limitations are quantitatively
demonstrated by an upper bound on the expected distance between the predictions of the worst hy-
pothesis without prediction capability and the optimal hypothesis for noisy quantum kernels. The
results provide insights for understanding power and limitations of quantum kernels in the NISQ era
and guidelines for developing competitive quantum kernel algorithms.

1.2 RELATED WORK

Limitations of optimization and variational quantum algorithms on noisy quantum devices were
investigated in Stilck França & Garcia-Patron (2021); De Palma et al. (2023). Exponentially tighter
bounds on limitations of quantum error mitigation has been given in Quek et al. (2022). Their
adopted noise model is either local depolarizing noise or some non-unital noise, applied on each
qubit. However, theirN -fold layerwise noise channel is stronger than the global depolarizing model
adopted for power characterization in this work. Here, N denotes the number of qubits. This is
because with the same noise rate, the probability of the quantum state remaining unchanged under
our noise is exponentially larger than that in their models. In this work we focus on investigating the
limitations of noisy quantum kernel methods.

It was demonstrated in Thanasilp et al. (2022) that values of quantum kernels over different input
data can be exponentially concentrated towards some fixed value under the Pauli noise. Similar to
the above local depolarizing noise applied to each qubit, the Pauli noise assumption is also stronger
than our global depolarizing model. In addition, their noise-induced concentration bound does not
take into account of the size of training samples. Thus, for a given size of training samples, their
result cannot tell how many noisy layers will cause poor prediction capability for quantum kernel
methods.

The power of noisy quantum kernel methods under global depolarizing noise and sampling error
was investigated in Wang et al. (2021). Their main result is informative only for shallow quantum
circuits. In addition, their main result is based on the key assumption of zero training error. Such an
assumption places a strong constraint and may limit the applicability of their main results in dealing
with noisy kernels. As we will demonstrate in this work, in the presence of noise, the training error
may be large and dominate the prediction error, making noisy quantum kernel methods fail.

1.3 OUR CONTRIBUTIONS

In this work, we propose a new figure of merit to depict the power and limitations of quantum kernel
methods, especially the impact of quantum depolarization noise on their prediction capability.

Our main contribution is providing a theoretical characterization of prediction concentration for
different input data of the optimal hypothesis inferred by noisy quantum kernels. The concentration
speed is clearly depicted in terms of the strength of depolarization noise p̃, the size of training
samples, the number of qubits N , the number of layers affected by quantum noises, and the number
of measurement shots. The results are summarized in Fig. 1, where the red regions represent the
situations in which noisy quantum kernel methods fail, namely, the prediction capability is very
poor. Especially, even with exponentially many training samples like qN (q > 1), noisy quantum
kernels fail once the number of layers affected by noise exceeds N log(1−p̃)−2 q.

We remark that our results hold for a wide range of quantum embedding schemes as we assume little
on the form of quantum encoding circuits. Moreover, our upper bounds can be applied to quantum
circuits with a large number of qubits and deep depth, not only limited to the current available
shallow circuits. Thus, our results not only serve as a warning for shallow NISQ circuits, but also
provide guidelines for future quantum computation. In addition, our results complement the research
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Figure 1: Summary of our main results. The red regions indicate the situations where noisy quantum
kernel methods fail in prediction. Here,N and p̃ denote the number of qubits and the strength of lay-
erwise global depolarization noise, respectively. For logarithmically small training samples, noisy
quantum kernel methods always fail. For training samples of polynomial size like N b, noisy quan-
tum kernel methods fail as long as the number of layers affected by noise exceeds b log(1−p̃)−2 N .
For training samples of exponential size like qN for some q > 1, noisy quantum kernel methods fail
when the number of noisy layers exceeds N log(1−p̃)−2 q.

on generalization of QML and indicate that a QML method having good generalization alone does
not necessarily guarantee good prediction since the training error may be large, especially in the
noisy cases. To achieve good prediction, both the training and generalization errors should be small.

This paper is organized as follows. In Section 2, we first introduce several preliminaries and then
formulate the learning task with noisy quantum kernels. The main results are presented in Section 3.
Numerical verifications are shown in Section 4. Section 5 concludes the paper.

2 PRELIMINARIES AND FRAMEWORK

2.1 KERNEL METHODS

Kernel methods are widely used in machine learning (Hofmann et al., 2008; Cho & Saul, 2009;
Evgeniou et al., 2005; Shawe-Taylor & Cristianini, 2004). They are based on kernels or kernel
functions, which implicitly define an inner product in a high-dimensional Hilbert space.

Assume that both training and test data are independent and identically distributed (i.i.d.) according
to some fixed but unknown distribution D defined over X × Y . Denote the training sample by
S = {(xi, yi)}ni=1 ⊂ X × Y . The kernel function K (·, ·) is defined such that for x,x′ ∈ X ,

K (x,x′) = 〈Φ (x) ,Φ (x′)〉, (1)
where Φ (·) denotes a feature mapping that maps x ∈ X to a high-dimensional Hilbert space called
feature space with the inner product 〈·, ·〉. A crucial benefit of kernel methods is that there is no
need to explicitly define or compute the feature mapping Φ. Instead, the performance of kernel-
based learning depends on the kernel function K (·, ·).

In kernel methods, the hypothesis function is typically chosen as
h (x;ω) = 〈ω,Φ (x)〉, (2)

where ω is a vector in the feature space. Since the ultimate goal is to make accurate predictions
for unseen data, the prediction error of a hypothesis h (x;ω) with parameter ω is taken to be the
expected loss

R (ω) = E
(x,y)∼D

([h (x;ω)− y]
2
). (3)
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As both the labels of unseen data and the distribution D are unknown, the prediction error is un-
available. The training error on the labeled sample S is often taken as a proxy defined as

R̂S (ω) =
1

n

n∑
i=1

[h (xi;ω)− yi]2. (4)

Notice that the prediction error can be decomposed as

R (ω) = R̂S (ω) + gen (ω) , (5)

where gen (ω) is referred to as the generalization error. It is clear that to make accurate prediction,
both of the training and generalization errors should be small.

To this end, we consider the following regularized optimization problem:

min
ω

n∑
i=1

[h (xi;ω)− yi]2 + λ〈ω,ω〉, (6)

where λ>0 is a hyperparameter. This convex minimization problem can be solved analytically, and
the optimal parameter reads

ω? =

n∑
i,j=1

Φ (xi)
[
(K + λI)

−1
]
ij
yj , (7)

where the matrix K ∈ Rn×n, whose element Kij = K (xi,xj) = 〈Φ (xi) ,Φ (xj)〉.

2.2 QUANTUM KERNEL METHODS

In quantum computation, the carrier of information is qubits. For an N -qubit system, the quantum
state can be mathematically represented as a positive semi-definite Hermitian matrix ρ ∈ C2N×2N

with Tr (ρ) = 1. Note that ρ is called a pure state if rank (ρ) = 1, which can be represented in terms
of a unit state vector |ϕ〉 as ρ = |ϕ〉〈ϕ|, where 〈ϕ| = |ϕ〉†; otherwise, it is called a mixed state and
can be decomposed as a convex combination of pure states.

For quantum computing, classical data x ∈ X may be first embedded through an encoding quantum
circuit (Havlı́ček et al., 2019; Schuld & Killoran, 2019; Lloyd et al., 2020; Schuld et al., 2021; Goto
et al., 2021; Hubregtsen et al., 2022) denoted by UE (·) as illustrated in Fig. 2(a). The encoded
quantum state vector is

|ϕ (x)〉 = UE (x) |0〉⊗N (8)

with the quantum state ρ (x) = |ϕ (x)〉〈ϕ (x) | corresponding to a vector in the feature space with
the inner product 〈A,B〉 = Tr [AB]. The label y of x can be generated through a quantum concept:

y = c (x) = Tr
[
OUQNNρ (x)U†QNN

]
, (9)

where O and UQNN represent the measurement operator and a specified quantum neural network,
respectively. Without loss of generality, we assume that ‖O‖2 ≤ 1. Here, ‖ · ‖2 denotes the spectral
norm, which is equal to the maximal singular value of the corresponding matrix.

In quantum kernel methods, we only need to employ a quantum circuit as illustrated in Fig. 2(b) to
compute the quantum kernel functions as

K (x,x′) = Tr [ρ (x) ρ (x′)] = |〈ϕ (x) |ϕ (x′)〉|2

=Tr
[
P0U

†
E (x′)UE (x) (|0〉〈0|)⊗N U†E (x)UE (x′)

]
(10)

with the projector P0 = (|0〉〈0|)⊗N . To demonstrate quantum advantages, the key is to construct a
quantum encoding circuit UE (·) such that patterns which are classically intractable can be recog-
nized in the feature space (Liu et al., 2021).
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Figure 2: Quantum circuits employed in quantum kernel methods. (a) A general L-layer encoding
circuit encodes the classical data x into the quantum state |ϕ (x)〉 through the quantum feature
mapping UE (·). (b) Quantum circuit utilized to compute quantum kernels in the ideal/noiseless
case. The measurement operator is P0 = (|0〉〈0|)⊗N . (c) After each layer of the encoding circuit, a
global depolarizing channel with rate p̃ is applied. (d) The equivalent circuit of the noisy quantum
circuit in (c). The total effect of all the quantum noise channels Np̃ can be effectively described by
a global depolarizing channel Np with p = 1− (1− p̃)2L.

Once the kernel matrix K is obtained through Eq. (10), the remaining optimization is classical. For
a given training sample S = {(xi, yi)}ni=1, from Eqs. (2) and (7), the optimal hypothesis reads

h (x) , h (x;ω?) = min
{

1,max
{
− 1,Tr [ρ (x)ω?]

}}
= min

{
1,max

{
− 1,

n∑
i,j=1

K (x,xi)
[
(K + λI)

−1
]
ij
yj

}}
. (11)

Here, the kernel function K (x,xi) is also obtained via Eq. (10).

2.3 NOISY QUANTUM KERNELS

Up to now, we only consider the ideal setting, that is, the quantum circuits used to compute quantum
kernels are unitary. However, in practice, particularly in the NISQ era, quantum circuits are suscep-
tible to various quantum noises. In this work, we focus on the depolarization noise and consider its
destructive impact on the prediction capability of quantum kernel methods. Our techniques may be
generalized to other types of noise.

As illustrated in Fig. 2(c), when computing quantum kernels, as the noise model adopted in Wang
et al. (2021), we assume that a global depolarizing channel with rate p̃ is applied after each layer of
the ideal quantum circuit (illustrated in Fig. 2(b)), which reads

Np̃ (ρ) = (1− p̃) ρ+ p̃
1

D
I. (12)

At first glance, our global depolarizing model is stronger than the so-called local noise models
considered in Stilck França & Garcia-Patron (2021); De Palma et al. (2023); Thanasilp et al. (2022);
Quek et al. (2022), which are in the form of N ′p̃(ρ) = ⊗Nj=1N ′j(ρ) with N ′j denoting either the
single-qubit depolarizing noise, single-qubit Pauli noise, or single-qubit non-unital noise. In fact,
our global model is weaker than these so-called local noise models for the problem in this paper. This
is because at the same depolarizing rate p̃, the probability that the quantum state remains unchanged
under our global noise is (1 − p̃), which is exponentially larger than that under the so-called local
noise which is (1 − p̃)N . In addition, when presenting negative results concerning noisy quantum
kernels, it is better to assume a relatively weaker noise model. Once the kernel methods fail under
weaker noises, they fail under stronger ones in general. Note that the noise rate p̃ > 0 in Eq. (12)
can be arbitrarily small. Thus, it can depict the case where the noise influence is very weak, namely,
after the noise the quantum state is left untouched with a very high probability 1− p̃.
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It can be verified that the total effect of all the 2L quantum noise channels Np̃ can be effectively
described by a global depolarizing channel

Np [ρ (x;x′)] = (1− p) ρ (x;x′) + p
1

D
I (13)

applied after the whole ideal unitary channels. Here, p = 1 − (1− p̃)2L with L denoting the
depth of the quantum encoding circuit UE (·), D = 2N , and the ideal quantum output state
ρ (x;x′) = |ϕ (x;x′)〉〈ϕ (x;x′) |, where |ϕ (x;x′)〉 = U†E (x′)UE (x) |0〉⊗N . The equivalent
circuit is illustrated in Fig. 2(d) and the proof of the equivalence is given in Lemma A.5 in the Ap-
pendix. In fact, we can see that the exponent L in the depolarization rate p actually indicates the
total number of layers affected by the depolarization noise Np̃ when implementing UE(·).

Under the quantum depolarization noise, the noisy quantum kernel K̃ (x,x′) reads

K̃ (x,x′) = Tr
{
P0Np [ρ (x;x′)]

}
= (1− p)K (x,x′) + p

1

D
. (14)

The corresponding noisy kernel matrix is K̃ = (1− p)K + p K̄, with K̄ = 1
DJ , where J denotes

the matrix that has all entries 1. Accordingly, the optimal hypothesis in the presence of noise reads

h̃ (x) , h̃ (x; ω̃?) = min

{
1,max

{
− 1,

n∑
i,j=1

K̃ (x,xi)

[(
K̃ + λI

)−1
]
ij

yj

}}
. (15)

Note that in the worst scenario where p = 1, we have the noisy kernel denoted by K̄ with the
property that for all x,x′ ∈ X ,

K̄ (x,x′) =
1

D
. (16)

From Eq. (15), for new data x, the corresponding optimal hypothesis returns the same value as

h̄ (x) , h̄ (x; ω̄?) =
1

Dλ+ n

n∑
i=1

yi, (17)

which depends only on the training sample, not on the new data. Thus, it is completely uninformative
for new data, and does not have any prediction capability at all.

In addition, when computing quantum kernels via quantum circuits, only a finite number of mea-
surements are implemented in practice. Assume that m measurements are implemented to compute
each K̃ (x,x′). Then the estimated noisy quantum kernels can be described as

K̂ (x,x′) =
1

m

m∑
k=1

Vk (x,x′), (18)

where each Vk (x,x′) is a Bernoulli random variable with the expectation being K̃ (x,x′).

It can be verified that the random matrix K̂ + λI is positive definite with probability of at least
1− ne−λ2m/4n (see Lemma E.1). With the positive definiteness of K̂ + λI , the optimal hypothesis
under the estimated noisy kernels reads

ĥ (x) , ĥ (x; ω̂?) = min

{
1,max

{
− 1,

n∑
i,j=1

K̂ (x,xi)

[(
K̂ + λI

)−1
]
ij

yj

}}
. (19)

3 MAIN RESULTS

In this section, we explicitly characterize the prediction capability of quantum kernel methods under
quantum depolarization noise and measurement noise owing to finite shots. To this end, we consider
a new figure of merit E

(x,y)∼D

∣∣∣h̃ (x)− h̄ (x)
∣∣∣. It describes the expected difference of the predictions
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between the optimal hypothesis under the depolarization noise h̃ (x) and the worst hypothesis h̄ (x),
which essentially has no prediction capability at all.

In most of existing results, the performance of QML is usually evaluated by the upper bound of either
the generalization error or the training error. The implicit assumption is that the learning algorithm
can achieve small training error or generalization error, respectively, which does not always hold
yet especially for NISQ settings. Now we present a result about the negative impact of noise on the
power of quantum kernel methods.
Theorem 3.1. For any 0<δ<1, with probability of at least 1 − δ over the draw of an i.i.d. sample
S = {(xi, yi)}ni=1 of size n, we have

E
(x,y)∼D

∣∣∣h̃ (x)− h̄ (x)
∣∣∣ ≤ f (n

λ
(1− p)

(
1 +

1

D

))
+

8
√
Dn

Dλ+ n
+ 6

√
log 4

δ

2n
, (20)

where f (z) =
z+8
√

z
λ

1−z with λ being the hyperparameter in Eq. (6), p = 1 − (1− p̃)2L is the
depolarization rate with L denoting the depth of UE (·) in Eq. (8), and D = 2N is the dimension of
the N -qubit state space.

Theorem 3.1 holds for quantum circuits with arbitrary depth and width. Moreover, since we do not
place strong constraints on the form of quantum encoding circuits UE , our result holds for a wide
class of encoding strategies. From Theorem 3.1, if the upper bound in Eq. (20) is small, then noisy
quantum kernel methods fail in prediction for new data. Note that for the upper bound in Eq. (20),
the first term f(·) converges to 0 if and only if its argument converges to 0, and the second term
approaches to 0 as the increase of D and n (as long as n is not in the order of D = 2N ).

To better characterize the limitations of noisy quantum kernel methods, we quantify the circuit
depth L and the size of training samples n in terms of the number of qubits N . As illustrated by
the vertical axis in Fig. 1, we consider three typical orders of the training size n. The red regions
in Fig. 1 describe the ranges of the circuit depth L such that the upper bound approaches to 0 as N
increases, making noisy quantum kernel methods fail. For example, noisy quantum kernel methods
always fail for logarithmically small training samples, and even for training samples of exponential
(polynomial) size qN with q > 1 (N b with b > 1), noisy quantum kernel methods fail as long as the
number of noisy layers exceeds N log(1−p̃)−2 q (b log(1−p̃)−2 N ). In the yellow regions, our upper
bound in Eq. (20) is uninformative, and needs to be further investigated. The demarcation lines of
red and yellow regions are clearly depicted in Fig. 1.

To address practical and meaningful tasks, the scale of quantum circuits should be relatively large
to generate a sufficient amount of expressibility. Thus, it is reasonable to utilize quantum circuits
of polynomial depth. In this case, however, as illustrated in Fig. 1, even with exponentially large
training samples, quantum kernel methods under noise may not predict well for unseen data. There-
fore, our result provides a caveat for employing quantum kernel methods to demonstrate quantum
advantages in the NISQ era.

The proof of Theorem 3.1 is mainly based on the following lemma.
Lemma 3.2. Under the same setting as in Theorem 3.1, we have

E
(x,y)∼D

∣∣∣h̃ (x)− h̄ (x)
∣∣∣ ≤ λ‖MK̃,K̄‖2 +8

√(
1 + λ‖MK̃,K̄‖2

)
‖MK̃,K̄‖2 +

8
√
Dn

Dλ+ n
+6

√
log 4

δ

2n
,

(21)

where ‖MK̃,K̄‖2 =
∥∥∥(K̃ + λI

)−1

−
(
K̄ + λI

)−1
∥∥∥

2
.

To prove Theorem 3.1, we can further bound ‖MK̃,K̄‖2 as

‖MK̃,K̄‖2 ≤
n
λ2 (1− p)

(
1 + 1

D

)
1− n

λ (1− p)
(
1 + 1

D

) . (22)

The detailed proof is given in Appendix C. We point out that it can be verified λ‖MK̃,K̄‖2 bounds
1
n

∑n
i=1

∣∣∣h̃ (xi)− h̄ (xi)
∣∣∣, which is the empirical difference between h̃ and h̄.

7



Under review as a conference paper at ICLR 2024

In Theorem 3.1, we do not assume any prior information on the unknown distributionD. In practice,
to guarantee accurate predictions, learners prefer balanced training samples (Lindström et al., 2011;
Wang et al., 2023b), where the amount of data belonging to different categories is the same.
Definition 3.3. (Balanced labels) In binary or multi-class classification tasks, assume that data are
drawn from X × Y with respect to a discrete or continuous distribution D. The labels ys gener-
ated from D are called balanced and normalized, if the labels for different categories are evenly
distributed, and E

(x,y)∼D
y = 0.

With this additional prior information on the distribution D, we can tighten the upper bound in
Theorem 3.1 by reducing the second term as stated in the following corollary.
Corollary 3.4. In addition to the setting stated in Theorem 3.1, assume that the labels ys generated
from D are balanced. For any 0<δ<1, with probability of at least 1− δ, we have

E
(x,y)∼D

∣∣∣h̃ (x)− h̄ (x)
∣∣∣ ≤ f (n

λ
(1− p)

(
1 +

1

D

))
+

8
√

2D log 4
δ

Dλ+ n
+ 6

√
log 8

δ

2n
. (23)

The corresponding statements concerning the red and yellow regions and their boundaries in Fig. 1
still hold for the upper bound (23). Moreover, in this case, the worst hypothesis h̄ behaves like a
random-guess classifier and the hypothesis inferred by the noisy quantum kernel h̃ tends to perform
no better than random guess in cases represented by the red regions.

We now consider the impact of the statistical measurement noise on the prediction capability of
quantum kernel methods.
Theorem 3.5. In addition to the setting stated in Theorem 3.1, assume that we perform m mea-
surements to compute the value of each kernel. For any 0<δ<1, with probability of at least
1− δ − ne−λ2m/4n, we have,

E
(x,y)∼D

∣∣∣ĥ (x)− h̄ (x)
∣∣∣ ≤ f

n
λ

(1− p)
(

1 +
1

D

)
+
n

λ

√
log 4n2

δ

2m

+
8
√
Dn

Dλ+ n
+ 6

√
log 8

δ

2n
,

(24)

where f (z) =
z+8
√

z
λ

1−z .

From Theorem 3.5, it is clear that once the number of measurement shots, m = Ω
(
n2+ε

)
with ε>0,

the upper bound Eq. (24) can be reduced to Eq. (20), which corresponds to the ideal case where
an infinite number of measurement shots is implicitly assumed. This implies that when evaluating
quantum kernels, the number of mesurement shots should be set at least n2+ε to alleviate the negative
impact of the measurement statistical noise on the prediction error.

4 NUMERICAL EXPERIMENTS

In this section, we validate the theoretical limitation of noisy quantum kernel methods via classifica-
tion tasks. Following the results in Huang et al. (2021a) and Havlı́ček et al. (2019), which describe
the power of quantum data and quantum kernel methods, respectively, we conduct experiments on
the fashion-MNIST dataset (Xiao et al., 2017), which is more challenging for classification than on
the MNIST data. For binary classification, we identify images as shirts or dresses.

As in Huang et al. (2021a), we first transform each original 28 × 28 grayscale image into a 10-
dimensional vector using principal component analysis (Jolliffe, 2002). Then we use the IQP-type
embedding circuit composed of single-qubit and 2-qubit unitary gates (Havlı́ček et al., 2019) to
embed the 10-dimensional vector into the Hilbert space of N = 10 qubits. Specifically, the encoded
quantum state vector reads

|ϕ (x)〉 = UE (x) |0〉⊗N = UZ (x)H⊗NUZ (x)H⊗N |0〉⊗N , (25)
where H⊗N denotes the Hadamard gate acting on all qubits in parallel, and

UZ (x) = exp

 N∑
i=1

xiZi +

N∑
i=1

N∑
j=1

xixjZiZj

 , (26)
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with xi denoting the i-th element of the vector x and Zi denotes the Pauli-Z operator acting on
the i-th qubit. Havlı́ček et al. (2019) stated that the embedding circuit UE (x) provides a quantum
advantage as it is hard to simulate the circuit classically.

For binary classification, we employ the sign of the optimal hypothesis h̃ to predict labels of test
samples, and take the frequency of misclassification over the training sample (test sample) as the
proxy for the training error (prediction error). In the numerical experiments, we utilize both training
and test samples of size n = 500, which is exponentially large with N = 10 (n = qN with q =
1.86). We set the strength of depolarization noise p̃ = 0.1, and the regularization hyperparameter
λ = 0.5.

(a) (b)

𝐿 𝐿

Maximum

Mean

Minimum

Figure 3: Prediction capability of quantum kernel methods under depolarization noise of different
numbers of layers. Here, training sample size: n = 500, test sample size: n = 500, depolarization
noise rate: p̃ = 0.1, hyperparameter: λ = 0.5, and number of noisy layers: L. (a) Concentration
of the noisy optimal hypothesis h̃ towards the worst hypothesis h̄ as L increases. The red dashed
baseline denotes the value of h̄, and the shaded areas denote the relative frequency of each hypothesis
value over the 500 test samples, with the parma dotted, blue line, and dark orange dash represent
the maximum, mean, and minimum values of h̃, respectively. (b) The training error (red square) and
test error (blue circle) versus L. There is a phase transition for the training error at L = 24.

From Fig. 3(a), as the number of noisy layers increases, the values of h̃ on the test samples do
converge to an uninformative value returned by the worst hypothesis h̄. The convergency behavior
coincides with the demarcation line as illustrated in Fig. 1, namely, when L > log(1−p̃)−2 500 ≈ 30,

E
∣∣∣h̃ (x)− h̄ (x)

∣∣∣ ≈ 0. When L = 40, all the values of h̃ is positive, and all test samples will

be labeled in the same class as that returned by h̄, which is completely uninformative. Fig. 3(b)
depicts the practical performances of the training error and test error as L increases. For the training
error, there is a phase transition at L = 24, which is owing to the accumulated noise in the circuit.
The training error converges to the error of h̄, and the test error tends to be independent of the test
samples, and the prediction is no better than the random guess.

5 CONCLUSION

In this work, we investigate the power and limitations of quantum kernel methods under quantum
global depolarization noise. We theoretically depict the concentration speed of predictions of the
optimal hypothesis inferred by noisy quantum kernels. Our techniques can be generalized to in-
vestigate the impact of other typical quantum noises. Our results hold for a wide class of quantum
encoding strategies, and are applicable not only on shallow NISQ circuits, but also on future large-
scale quantum devices. Therefore, our results on the one hand make a clear warning against utilizing
quantum kernel methods to demonstrate quantum advantages in the NISQ era, and on the other hand
provide crucial guidelines in developing practical machine learning approaches for future quantum
computation.

9
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A TECHNICAL LEMMAS

For self-consistency, we firstly present two widely used concentration inequalities for independent
random variables and matrices, respectively.
Lemma A.1. (Hoeffding’s inequality) (Lemma D.1, Mohri et al. (2018)) Let X1, · · · , Xn be in-
dependent random variables with Xi taking values in [ai, bi] for all i ∈ [n]. Then, for any ε>0 and
Sn =

∑n
i=1Xi,

P [Sn − ESn ≥ ε] ≤ e−2ε2/
∑n
i=1 (bi−ai)2 ,

P [Sn − ESn ≤ −ε] ≤ e−2ε2/
∑n
i=1 (bi−ai)2 .

Lemma A.2. (Matrix Hoeffding) (Corollary 4.2, Mackey et al. (2014)) Let Y (1), · · · , Y (m) be
independent random Hermitian n × n matrices and A(1), · · · , A(m) be deterministic Hermitian
n× n matrices. Assume that for each k ∈ [m],

E
[
Y (k)

]
= 0 and

[
Y (k)

]2
�
[
A(k)

]2
.

Here, X � Y means that the matrix Y −X is positive semi-definite. Then, for all t ≥ 0,

P

[
λmax

(
m∑
k=1

Y (k)

)
≥ t

]
≤ ne−t

2/2σ2

, (27)

P

[
λmin

(
m∑
k=1

Y (k)

)
≤ −t

]
≤ ne−t

2/2σ2

, (28)
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where σ2 = 1
2

∥∥∥∑m
k=1

{[
A(k)

]2
+ E

[
Y (k)

]2}∥∥∥
2
, λmax (A) and λmin (A) denote the maximal

eigenvalue and the minimal eigenvalue of matrix A, respectively.

We can directly obtain the following equivalent form of Eq. (28):

P

[
λmin

(
m∑
k=1

Y (k) + tI

)
≥ 0

]
≥ 1− ne−t

2/2σ2

. (29)

That is, under the same assumptions as in Lemma A.2, for all t ≥ 0, with probability of at least
1− ne−t2/2σ2

, the random matrix
∑m
k=1 Y

(k) + tI is positive semi-definite.

Secondly, we present a basic result in machine learning, which provides an upper bound on the
generalization error.

Lemma A.3. (Theorem 3.3, Mohri et al. (2018)) Let G be a family of functions mapping from Z
to [0, 1]. Then, for any 0<δ<1, with probability of at least 1 − δ over the draw of an i.i.d. sample
S = (z1, . . . , zn) of size n with elements in Z , the following inequality holds for all g ∈ G:

E
z

[g (z)] ≤ 1

n

n∑
i=1

g (zi) +
2

n
E
σ

[
sup
g∈G

n∑
i=1

σig (zi)

]
+ 3

√
log 2

δ

2n
,

where σ = (σ1, · · · , σn)
T with σis independent uniform random variables taking value in

{−1,+1}.

Here, R̂S(G) = E
σ

[
supg∈G

1
n

∑n
i=1 σig (zi)

]
is referred to as the empirical Rademacher complexity

of the set G with respect to the sample S.

Thirdly, we present a lemma that relates the empirical Rademacher complexity of a new set of
composite functions of a hypothesis in H and a Lipschitz function to the empirical Rademacher
complexity of the hypothesis setH.

Lemma A.4. (Talagrand’s lemma) (Lemma 5.7, Mohri et al. (2018)) Let Φ1, · · · ,Φn be l-Lipschitz
functions from R to R and σ = (σ1, · · · , σn)

T whose elements are independent uniform random
variables taking value in {−1,+1}. Then, for any hypothesis set H of real-valued functions, the
following inequality holds:

1

n
E
σ

[
sup
h∈H

n∑
i=1

σi (Φi ◦ h) (xi)

]
≤ l

n
E
σ

[
sup
h∈H

n∑
i=1

σih (xi)

]
.

At last, we present the lemma concerning the total effect of all the quantum depolarizing channels
Np̃.

Lemma A.5. (Lemma 2, Wang et al. (2021)) For an L-layer quantum circuit U =
∏L
l=1 Ul or

channel E = EL ◦ · · · ◦ E1, the noise model where a global depolarizing channel Np̃ acts after
each (unitary or completely positive trace preserving) layer is equivalent to a global depolarizing
channel Np following the entire quantum circuit or channel, where p = 1− (1− p̃)L. That is,

Np̃
{
UL · · · Np̃

[
U2Np̃

(
U1ρU

†
1

)
U†2

]
· · ·U†L

}
= Np

(
UρU†

)
,

Np̃ ◦ EL {· · ·Np̃ ◦ E2 [Np̃ ◦ E1 (ρ)]} = Np ◦ E (ρ) .

B PROOF OF LEMMA 3.2

Firstly, we introduce the following lemma.

Lemma B.1. Consider an optimal hypothesis function h (x;ω?) in the form of Eq. (11) associated
with a specific kernel matrix Kh. For any 0<δ<1, with probability of at least 1 − δ over the draw
of an i.i.d. sample S = {(xi, yi)}ni=1 of size n, the expected difference of the predictions between
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h (x;ω?) and h̄ (x) is upper bounded as

E
(x,y)∼D

∣∣h (x;ω?)− h̄ (x)
∣∣ ≤ 1

n

∥∥∥Kh(Kh + λI)
−1
Y − 1

Dλ+ n
JY
∥∥∥

1

+
8√
n

⌈√
Y T(Kh + λI)

−1
Kh(Kh + λI)

−1
Y

⌉
+ 6

√
log 4

δ

2n
,

(30)

where Y = (y1, · · · , yn)
T, the vector norm ‖·‖p denotes the lp-norm, and d·e represents the roundup

function. Here, the first term in the right-hand side of Eq. (30) bounds the empirical difference
1
n

∑n
i=1

∣∣h (xi;ω
?)− h̄ (xi)

∣∣.
Proof. The expected difference can be decomposed into the sum of the empirical difference and the
so-called generalization as

E
(x,y)∼D

∣∣h (x;ω?)− h̄ (x)
∣∣ =

1

n

n∑
k=1

∣∣h (xk;ω?)− h̄ (xk)
∣∣

+ E
(x,y)∼D

∣∣h (x;ω?)− h̄ (x)
∣∣− 1

n

n∑
k=1

∣∣h (xk;ω?)− h̄ (xk)
∣∣.
(31)

Firstly, we bound the empirical difference. According to the optimal hypothesis given in Eq. (11),
for each data xk in S,

h (xk;ω?) = min

{
1,max

{
− 1,

n∑
i,j=1

(Kh)ki

[
(Kh + λI)

−1
]
ij
yj

}}

= min

{
1,max

{
− 1,

[
Kh (Kh + λI)

−1
Y
]
k

}}
.

Particularly, if Kh = K̄ = 1
DJ which corresponds to the noisy kernel (16) in the worst scenario,

then the optimal hypothesis h̄ returns the same value for each xk as

h̄ (xk) =
1

Dλ+ n

n∑
i=1

yi =
[
K̄
(
K̄ + λI

)−1
Y
]
k

=

(
1

Dλ+ n
JY

)
k

.

Thus, the empirical difference can be upper bounded as

1

n

n∑
k=1

∣∣h (xk;ω?)− h̄ (xk)
∣∣ ≤ 1

n

n∑
k=1

∣∣∣∣[Kh (Kh + λI)
−1
Y
]
k
−
(

1

Dλ+ n
JY

)
k

∣∣∣∣
=

1

n

∥∥∥Kh(Kh + λI)
−1
Y − 1

Dλ+ n
JY
∥∥∥

1
. (32)

Next, we derive the upper bound of the generalization. Denote dω (x) =
∣∣h (x;ω)− h̄ (x)

∣∣. Since
dω (x) ∈ [0, 2], to utilize Lemma A.3, let Gγ =

{
dω
2 : ‖ω‖ ≤ γ

}
, for γ = 1, 2, 3, · · · , where

‖ · ‖ denotes the Frobenius norm unless otherwise stated, and the subscript F has been omitted for
brevity. Then from Lemma A.3, for any δ>0 and γ, with probability of at least 1 − δ

2γ2 over the
draw of an i.i.d. sample S = {(xi, yi)}ni=1 of size n, the following inequality holds for any ω with
‖ω‖ ≤ γ:

E
(x,y)∼D

[dω (x)]− 1

n

n∑
k=1

dω (xk) ≤ 2

n
E
σ

[
sup
‖v‖≤γ

n∑
k=1

σkdv (xk)

]
+ 6

√
1

2n
log

4γ2

δ
. (33)
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Thus, with probability of at least 1−
∑∞
γ=1

δ
2γ2 ≥ 1− δ, the inequality (33) holds for all γ . Then

for any ω ∈ H, with probability of at least 1− δ, we have

E
(x,y)∼D

[dω (x)]− 1

n

n∑
k=1

dω (xk) ≤ 2

n
E
σ

[
sup

‖v‖≤d‖ω‖e

n∑
k=1

σkdv (xk)

]
+ 6

√
1

2n
log

4d‖ω‖e2

δ
.

(34)

Note that

dv (x) =
∣∣h (x;v)− h̄ (x)

∣∣ =

∣∣∣∣∣min
{

1,max
{
− 1,Tr [ρ (x)v]

}}
− 1

Dλ+ n

n∑
i=1

yi

∣∣∣∣∣ ,
and the function Γ(·) =

∣∣∣min
{

1,max {−1, ·}
}
− 1

Dλ+n

∑n
i=1 yi

∣∣∣ is 1-Lipschitz. According to
Lemma A.4, we have

E
σ

[
sup

‖v‖≤d‖ω‖e

n∑
k=1

σkdv (xk)

]
≤E
σ

[
sup

‖v‖≤d‖ω‖e

n∑
k=1

σkTr [ρ (xk)v]

]

≤E
σ

[
sup

‖v‖≤d‖ω‖e
‖v‖

∥∥∥∥∥
n∑
k=1

σkρ (xk)

∥∥∥∥∥
]

(35)

≤d‖ω‖eE
σ

[∥∥∥∥∥
n∑
k=1

σkρ (xk)

∥∥∥∥∥
]

≤d‖ω‖e

√√√√E
σ

[
n∑
i=1

n∑
k=1

σiσkTr [ρ (xi) ρ (xk)]

]
(36)

≤d‖ω‖e
√

Tr (Kh) (37)

≤d‖ω‖e
√
n, (38)

where Cauchy-Schwartz inequality and Jensen’s inequality are applied to yield Eq. (35) and Eq. (36),
respectively. To derive Eq. (37), we use the fact that σ1, · · · , σn are independent uniform random
variables taking value in {−1,+1}.
Combining Eqs. (34) and (38) with the following inequality√

log
4d‖ω‖e2

δ
=

√
log d‖ω‖e2 + log

4

δ
≤
√

log d‖ω‖e2 +

√
log

4

δ
≤ d‖ω‖e+

√
log

4

δ
,

it yields

E
(x,y)∼D

[dω (x)]− 1

n

n∑
k=1

dω (xk) ≤ 8√
n
d‖ω‖e+ 6

√
1

2n
log

4

δ
. (39)

This holds for ω = ω? which is in the form of Eq. (7) and satisfies

‖ω?‖ =

√
Y T(Kh + λI)

−1
Kh(Kh + λI)

−1
Y . (40)

Thus, by plugging Eqs. (32), (39), and (40) into Eq. (31), we prove Lemma B.1.

Secondly, we introduce the L2-geometric difference ‖MKh,K̄‖2 between a specific kernel matrix
Kh and the kernel matrix K̄ as

‖MKh,K̄‖2 =
∥∥∥(Kh + λI)

−1 −
(
K̄ + λI

)−1
∥∥∥

2
, (41)

and further bounds the right-hand side of Eq. (30).
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Lemma B.2. Under the same setting as in Lemma B.1, we have

E
(x,y)∼D

∣∣h (x;ω?)− h̄ (x)
∣∣

≤λ‖MKh,K̄‖2 + 8
√(

1 + λ‖MKh,K̄‖2
)
‖MKh,K̄‖2 + 8

√
Dn

Dλ+ n
+ 6

√
log 4

δ

2n
, (42)

where the empirical difference 1
n

∑n
i=1

∣∣h (xi;ω
?)− h̄ (xi)

∣∣ is upper bounded by λ‖MKh,K̄‖2.

Proof. Our goal is to bound the right-hand side of Eq. (30) using the L2-geometric difference
‖MKh,K̄‖2 between the two kernel matrices. First, we calculate its first term which is the upper
bound of the empirical difference 1

n

∑n
i=1

∣∣h (xi;ω
?)− h̄ (xi)

∣∣.
It is straightforward to calculate that

1

n

∥∥∥Kh(Kh + λI)
−1
Y − 1

Dλ+ n
JY
∥∥∥

1
=

1

n

∥∥∥Kh(Kh + λI)
−1
Y − K̄

(
K̄ + λI

)−1
Y
∥∥∥

1

=
λ

n

∥∥∥(Kh + λI)
−1
Y −

(
K̄ + λI

)−1
Y
∥∥∥

1
(43)

≤ λ√
n

∥∥∥(Kh + λI)
−1
Y −

(
K̄ + λI

)−1
Y
∥∥∥

2
(44)

≤ λ√
n
‖MKh,K̄‖2‖Y ‖2 (45)

≤ λ‖MKh,K̄‖2, (46)

where Eq. (43) uses K(K + λI)−1 = I − λ(K + λI)−1, Eq. (44) comes from the fact that for an
n-dimensional vector x, ‖x‖1 ≤

√
n‖x‖2, Eq. (45) employs ‖AY ‖2 ≤ ‖A‖2‖Y ‖2, and Eq. (46)

utilizes the fact that ‖Y ‖2 ≤
√
n owing to ‖O‖2 ≤ 1.

To upper bound the second term in the right-hand side of Eq. (30), we decompose it into two terms
and employ the triangle inequality to yield

8√
n

⌈√
Y T(Kh + λI)

−1
Kh(Kh + λI)

−1
Y

⌉
≤ 8√

n

⌈√
Y T(Kh + λI)

−1
Kh(Kh + λI)

−1
Y − Y T

(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
Y

⌉
+

8√
n

⌈√
Y T
(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
Y

⌉
. (47)

Since it can be verified that

(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
=

D

(Dλ+ n)
2 J,

we have

√
Y T
(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
Y =

√
Y T

D

(Dλ+ n)
2 JY =

√
D

Dλ+ n

∣∣∣∣∣
n∑
i=1

yi

∣∣∣∣∣ ≤
√
Dn

Dλ+ n
,

(48)
where Eq. (48) utilizes |

∑n
i=1 yi| ≤ n.
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Moreover, by employing K(K + λI)−1 = I − λ(K + λI)−1, it can be calculated that

(Kh + λI)
−1
Kh(Kh + λI)

−1 −
(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1

= (Kh + λI)
−1
[
Kh(Kh + λI)

−1 − K̄
(
K̄ + λI

)−1
]

+
[
(Kh + λI)

−1 −
(
K̄ + λI

)−1
]
K̄
(
K̄ + λI

)−1

=− λ(Kh + λI)
−1
[
(Kh + λI)

−1 −
(
K̄ + λI

)−1
]

+
[
(Kh + λI)

−1 −
(
K̄ + λI

)−1
] [
I − λ

(
K̄ + λI

)−1
]

=
[
(Kh + λI)

−1 −
(
K̄ + λI

)−1
]
− λ

[
(Kh + λI)

−2 −
(
K̄ + λI

)−2
]

= MKh,K̄ − λ
[
M2
Kh,K̄

+MKh,K̄

(
K̄ + λI

)−1
+
(
K̄ + λI

)−1
MKh,K̄

]
,

where MKh,K̄ = (Kh + λI)
−1 −

(
K̄ + λI

)−1
. Thus, the corresponding quadratic form reads

Y T(Kh + λI)
−1
Kh(Kh + λI)

−1
Y − Y T

(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
Y

= Y TMKh,K̄Y − λY T
[
M2
Kh,K̄

+MKh,K̄

(
K̄ + λI

)−1
+
(
K̄ + λI

)−1
MKh,K̄

]
Y

= Y T
[
I − λMKh,K̄ − 2λ

(
K̄ + λI

)−1
]
MKh,K̄Y

≤
∥∥∥ [I − λMKh,K̄ − 2λ

(
K̄ + λI

)−1
]
MKh,K̄

∥∥∥
2
‖Y ‖22 (49)

≤ n
[∥∥∥I − 2λ

(
K̄ + λI

)−1
∥∥∥

2
+ λ‖MKh,K̄‖2

]
‖MKh,K̄‖2 (50)

≤ n
(
1 + λ‖MKh,K̄‖2

)
‖MKh,K̄‖2, (51)

where Eq. (49) uses Y TAY ≤ ‖A‖2‖Y ‖22, Eq. (50) employs the triangle inequality and the sub-
multiplicative property of matrix norm as well as the inequality that ‖Y ‖2 ≤

√
n, and Eq. (51)

utilizes
∥∥I−2λ

(
K̄ + λI

)−1∥∥
2

= 1 which can be verified by checking the maximum singular value

of I − 2λ
(
K̄ + λI

)−1
.

By plugging Eqs. (51) and (48) into Eq. (47), it yields

8√
n

⌈√
Y T(Kh + λI)

−1
Kh(Kh + λI)

−1
Y

⌉
≤ 8
√(

1 + λ‖MKh,K̄‖2
)
‖MKh,K̄‖2 + 8

√
Dn

Dλ+ n
.

(52)

Thus, combining Eqs. (46), (52) with (30), we have the conclusion of Lemma B.2.

The proof of Lemma 3.2 can be completed by letting the hypothesis function h (x;ω?) be h̃ (x) and
the associated kernel matrix Kh be K̃ in Lemma B.2.

C PROOF OF THEOREM 3.1

Proof. It is straightforward to verify that by plugging Eq. (22) into Eq. (21) and further simplifying
the resultant equation, Theorem 3.1 can be proved. Now we provide the proof of Eq. (22), namely,

‖MK̃,K̄‖2 ≤
n
λ2 (1− p)

(
1 + 1

D

)
1− n

λ (1− p)
(
1 + 1

D

) .
The proof leverages the following lemma.

Lemma C.1. (Lemma 6, Wang et al. (2021)) Let ‖ · ‖ be a given matrix norm and suppose A,B ∈
Rn×n are nonsingular and satisfy ‖A−1 (A−B) ‖ ≤ 1, then

‖A−1 −B−1‖ ≤ ‖A−1‖2‖A−B‖
1− ‖A−1 (A−B) ‖

. (53)
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From Lemma C.1, we have

‖MK̃,K̄‖2 =
∥∥∥(K̄ + λI

)−1 −
(
K̃ + λI

)−1∥∥∥
2

≤
∥∥(K̄ + λI

)−1∥∥2

2
‖K̄ − K̃‖2

1−
∥∥∥(K̄ + λI

)−1
(
K̄ − K̃

)∥∥∥
2

≤
∥∥(K̄ + λI

)−1∥∥2

2
‖K̄ − K̃‖2

1−
∥∥(K̄ + λI

)−1∥∥
2
‖K̄ − K̃‖2

(54)

≤
n
λ2 (1− p)

(
1 + 1

D

)
1− n

λ (1− p)
(
1 + 1

D

) , (55)

where Eq. (54) uses the sub-multiplicative property of matrix norm, and Eq. (55) employs the facts
that ‖

(
K̄ + λI

)−1‖2 = 1
λ and

‖K̄ − K̃‖2 = (1− p) ‖K − K̄‖2
≤ (1− p)

(
‖K‖2 + ‖K̄‖2

)
≤ n (1− p)

(
1 +

1

D

)
. (56)

Here, we have utilized ‖K‖2 ≤ Tr(K) ≤ n and ‖K̄‖2 = n
D .

D PROOF OF COROLLARY 3.4

Proof. According to the assumption of balanced labels and the Hoeffding’s inequality (Lemma A.1),
for any ε>0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

yi

∣∣∣∣∣ ≥ ε
)
≤ 2e−nε

2/2. (57)

Thus, for any δ1>0, with probability of at least 1− δ1 over the draw of S, it holds that∣∣∣∣∣ 1n
n∑
i=1

yi

∣∣∣∣∣ ≤
√

2 log 2
δ1

n
, (58)

so that √
Y T
(
K̄ + λI

)−1
K̄
(
K̄ + λI

)−1
Y =

√
D

Dλ+ n

∣∣∣∣∣
n∑
i=1

yi

∣∣∣∣∣ ≤
√
Dn

Dλ+ n

√
2 log

2

δ1
. (59)

This can yield a tighter bound of the second term in the right-hand side of Eq. (47) than the bound
in Eq. (48).

In fact, by replacing Eq. (48) with Eq. (59) in Eq. (20) and employing the sub-additivity of prob-
ability, we derive that for any δ1, δ2>0, with probability of at least 1 − δ1 − δ2 over the draw of
S,

E
(x,y)∼D

∣∣∣h̃ (x)− h̄ (x)
∣∣∣ ≤ f (n

λ
(1− p)

(
1 +

1

D

))
+

8
√
D

Dλ+ n

√
2 log

2

δ1
+ 6

√
log 4

δ2

2n
. (60)

Finally, letting δ1 = δ2 = δ
2 , we prove Corollary 3.4.

E PROOF OF THEOREM 3.5

Before giving the proof of Theorem 3.5, we first provide a necessary lemma to guarantee the exis-
tence of ĥ (x), the optimal hypothesis inferred by the estimated noisy kernel.
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Lemma E.1. With probability of at least 1 − ne−λ
2m/4n, the estimated noisy kernel matrix K̂

satisfies

K̂ +
λ

2
I � K̃ � 0, (61)

where K̃ is the noisy kernel matrix.

Proof. According to our settings, for any i, j ∈ [n], we have

K̂ (xi,xj) =
1

m

m∑
k=1

Vk (xi,xj), (62)

where each Vk (xi,xj) , Vk;ij is a Bernoulli random variable with expectation K̃ (xi,xj) = K̃ij .

For any i, j ∈ [n] , k ∈ [m], let

Y (k;ij) =
1

m

(
Vk;ij − K̃ij

)
E(ij), (63)

where E(ij) = |i〉〈j|+ |j〉〈i|, and particularly, E(ii) = 2|i〉〈i|. It is clear that the expectation of the
random Hermitian n× n matrix Y (k;ij) is zero and(

Y (k;ij)
)2

=
1

m2

(
Vk;ij − K̃ij

)2(
E(ij)

)2

=
1

2m2

(
Vk;ij − K̃ij

)2 (
E(ii) + E(jj)

)
� 1

2m2

(
E(ii) + E(jj)

)
, (64)

where Eq. (64) is derived from the inequality of
(
Vk;ij − K̃ij

)2

≤ 1.

According to Lemma A.2, for all t ≥ 0,

P

 n∑
i,j=1

m∑
k=1

Y (k;ij) + tI � 0

 ≥ 1− ne−t
2/2σ2

, (65)

with

σ2 =
1

2

∥∥∥∥∥
n∑

i,j=1

m∑
k=1

[
1

2m2

(
E(ii) + E(jj)

)
+ E

(
Y (k;ij)

)2
]∥∥∥∥∥

2

=
1

2

∥∥∥∥∥
n∑

i,j=1

[
1

2m

(
E(ii) + E(jj)

)
+

1

2m2

m∑
k=1

E
(
Vk;ij − K̃ij

)2 (
E(ii) + E(jj)

)]∥∥∥∥∥
2

≤ 1

2m

∥∥∥∥ n∑
i,j=1

(
E(ii) + E(jj)

)∥∥∥∥
2

(66)

=
1

2m
‖4nI‖2 =

2n

m
.

Here, Eq. (66) is derived from the inequality of
(
Vk;ij − K̃ij

)2

≤ 1.

Thus, by letting t = λ and noting that
n∑

i,j=1

m∑
k=1

Y (k;ij) =

n∑
i,j=1

(
K̂ij − K̃ij

)
E(ij) = 2

(
K̂ − K̃

)
, (67)

we have

P
[
K̂ +

λ

2
I � K̃

]
≥ 1− ne−λ

2m/4n, (68)

which completes the proof.
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From Lemma E.1, the positive definiteness of K̂ + λI guarantees that ĥ (x) exists and can be
described in the form of Eq. (19). Now we present the proof of Theorem 3.5.

Proof. According to Lemma C.1, we have

‖MK̂,K̄‖2 =
∥∥∥(K̄ + λI

)−1 −
(
K̂ + λI

)−1∥∥∥
2

≤
∥∥(K̄ + λI

)−1∥∥2

2
‖K̄ − K̂‖2

1−
∥∥∥(K̄ + λI

)−1
(
K̄ − K̂

)∥∥∥
2

≤
1
λ2 ‖K̄ − K̂‖2

1− 1
λ‖K̄ − K̂‖2

, (69)

where Eq. (69) employs the sub-multiplicative property of matrix norm and ‖
(
K̄ + λI

)−1‖2 = 1
λ .

Moreover,

‖K̄ − K̂‖2 ≤ ‖K̄ − K̃‖2 + ‖K̃ − K̂‖2

≤ n (1− p)
(

1 +
1

D

)
+ ‖K̃ − K̂‖2, (70)

where Eq. (70) is derived from Eq. (56).

According to the definition of K̂ (x,x′) in Eq. (18) and the Hoeffding’s inequality (Lemma A.1),
for any ε ≥ 0 and arbitrary x,x′ ∈ X , we have

P
(∣∣∣K̂ (x,x′)− K̃ (x,x′)

∣∣∣ ≥ ε) ≤ 2e−2ε2m. (71)

Note that the estimated noisy kernel matrix K̂ is a random matrix with its expectation being the
noisy kernel matrix K̃. Then for any ε ≥ 0,

P
(∥∥K̃ − K̂∥∥

2
≥ ε
)
≤ P

(∥∥K̃ − K̂∥∥ ≥ ε) (72)

= P

 n∑
i=1

n∑
j=1

∣∣∣K̃ij − K̂ij

∣∣∣2 ≥ ε2


≤ P

 n⋃
i=1

n⋃
j=1

{∣∣∣K̃ij − K̂ij

∣∣∣2 ≥ ε2

n2

}
≤

n∑
i=1

n∑
j=1

P
(∣∣∣K̃ij − K̂ij

∣∣∣2 ≥ ε2

n2

)
≤ 2n2e−2mε2/n2

, (73)

where Eq. (72) employs the relationship between the spectral norm and the Frobenius norm, namely,
‖A‖2 ≤ ‖A‖, and Eq. (73) is obtained from Eq. (71).

Combining Eqs. (69), (70) and (73), it yields that for any δ1>0, with probability of at least 1− δ1,

‖MK̂,K̄‖2 ≤
1
λ2

[
n (1− p)

(
1 + 1

D

)
+
√

n2

2m log 2n2

δ1

]
1− 1

λ

[
n (1− p)

(
1 + 1

D

)
+
√

n2

2m log 2n2

δ1

] . (74)

Thus, from Lemma E.1, Lemma 3.2, and Eq. (74), by employing the sub-additivity of probability,
we have the conclusion that for any δ1, δ2>0, with probability of at least 1− δ1 − δ2 − ne−λ

2m/4n,

E
(x,y)∼D

∣∣∣ĥ (x)− h̄ (x)
∣∣∣ ≤ f

n
λ

(1− p)
(

1 +
1

D

)
+
n

λ

√
log 2n2

δ1

2m

+
8
√
Dn

Dλ+ n
+ 6

√
log 4

δ2

2n
,
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where f (z) =
z+8
√

z
λ

1−z .

Finally, by letting δ1 = δ2 = δ
2 , we reach the conclusion of Theorem 3.5.
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