
The Loss Landscape of XRD-Based Structure
Optimization Is Too Rough for Gradient Descent

Abstract

Solving crystal structures from powder X-ray diffraction (XRD) is a central
challenge in materials characterization. One machine learning approach to
inverting XRD involves optimizing a loss function that compares a ground-truth
XRD spectrum against an XRD from a generated candidate crystal. We investigate
the roughness of this optimization landscape by comparing reference structures
with physically motivated distortions. We show that XRD similarity metrics result
in a highly non-convex landscape, complicating direct optimization by gradient
descent. Constraining the optimization symmetrically within the ground-truth
crystal family improves recovery; nevertheless, the landscape can remain
non-convex along symmetry axes. While energy-based relaxation excels at locating
low-energy configurations, it cannot directly target the specific minima implied by
spectra. We therefore advocate incorporating symmetry inductive biases directly
into XRD-conditioned generative models, followed by energy relaxation, to enable
more reliable reconstruction of phases from diffraction patterns.

1 Introduction

Determining the atomic structure of a crystal from its powder X-ray diffraction (XRD) pattern is
a longstanding and central challenge in materials characterization [1, 2]. The inverse problem of
recovering the full three-dimensional crystal structure solely from an XRD pattern is fundamentally
inaccessible due to the loss of phase information in the scattered waves [3][4, Chapter 9.3, 13.2].
Nevertheless, powder diffraction is widely used for identifying and characterizing crystalline solids.
In practice, this is typically achieved by comparing the observed XRD spectrum to a reference
database and performing least-squares refinement, known as Rietveld analysis [5–7]. However, this
process is highly sensitive to initial parameters [8], and more importantly, it relies on the presence of
the correct structure in the database and cannot be used to reconstruct novel or unreported phases.

Experimental phenomena such as preferred orientation, peak overlap, crystal twinning, and instrumen-
tal noise further complicate structural determination from powder XRD patterns [9–11]. Moreover,
many minerals and metallic alloys exhibit solid solution ranges with very slight lattice shifts, which
result in ranges of stoichiometries with nearly the same diffraction pattern [4, Chapter 10.3.2][12–
14], making XRD-to-structure mapping a one-to-many problem. Consequently, accurate structure
reconstruction typically requires refinement model fitting and domain-specific prior knowledge.

From a computational perspective, structural ambiguity remains even under idealized conditions.
Two structures with different compositions can exhibit highly correlated XRD patterns if they share
similar symmetry [15–17]. Moreover, even when stoichiometry is fixed, structures with close though
distinct space groups can yield highly similar XRD patterns [2]. Notably, small distortions in lattice
parameters or atomic coordinates can cause discontinuous changes in the diffraction pattern, such
as the appearance or disappearance of peaks due to shifting Bragg conditions [4, Chapter 9]. This
introduces a highly non-smooth relationship between structure and XRD signal.
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(a) Lattice noise. (b) Coordinate noise.

Figure 1: Results of XRD-based optimization under two types of structural noise. Crystal
structures were optimized with respect to XRD similarity metrics using the snap method [19], which
struggles to recover the correct structure under both lattice and coordinate perturbations. The plots
show match rates computed with StructureMatcher (ltol = 0.1, stol = 0.2, angle_tol = 5◦)
under random lattice (a) and coordinate (b) perturbations. Error bars represent 95% Jeffreys binomial
credible intervals [37]. For lattice distortions, incorporating symmetry constraints significantly
improves robustness, even at high noise levels.

Recently, there has been a surge of interest in crystal structure determination from XRD patterns
using generative modeling [18–23]. A growing body of work applies gradient-based optimization
approaches that leverage differentiable physics to refine generated or otherwise-obtained crystal
structures by minimizing the difference between simulated and target XRD patterns. For example,
Riesel et al. [19] use a differentiable XRD simulator to update both lattice parameters and atomic
positions via gradient descent (GD). Parackal et al. [24] assume the lattice parameters are known
and restrict the optimization to atomic positions along Wyckoff degrees of freedom. Bayesian
optimization has also been used to morph candidate structures by maximizing the cosine similarity
between the XRD patterns [25]. GD has further been applied to determine lattice parameters through
indexing single-crystal diffraction patterns [26].

Complementary efforts have focused on developing metrics for evaluating the similarity of diffraction
patterns. Otero-de-la Roza [27] introduced a cross-correlation-based metric that captures equiv-
alence between diffraction patterns while remaining invariant to lattice distortions. Building on
this work, Racioppi et al. [28] applied the metric to crystal structure prediction from XRD data,
jointly optimizing the structure by minimizing both this similarity metric and the structure’s enthalpy.
Hernández-Rivera et al. [29] systematically analyzed the sensitivity of different families of similarity
metrics under isotropic lattice strain. Li et al. [30] proposed an entropy-based similarity measure for
spectra and demonstrated its utility for molecular database retrieval from mass spectrometry data.

In this work, we explore the powder XRD-to-structure mapping through the lens of GD optimization.
The goal is to recover correct structures based solely on XRD similarity. While the ground truth
structure is available for evaluation, in practice, it is unknown, reflecting the challenge of reconstruct-
ing novel materials solely from diffraction data. We introduce two types of physically motivated
distortions, random lattice distortions and uncorrelated atomic displacements, to emulate experi-
mentally relevant effects such as thermal expansion from lattice vibrations and thermal fluctuations
[8, 31–33]. These distorted structures also resemble outputs from generative models for crystal
structure prediction, which often produce nearly correct geometries but with imperfect symmetry
[34–36].

We find that mapping XRD patterns to crystal structures is challenging because high diffraction
agreement, as currently measured in literature, does not ensure structural accuracy. We show that
commonly used XRD similarity measures, such as cosine similarity, Mean Squared Error (MSE),
and Entropy similarity, are sensitive to both lattice and coordinate noise distortions, and optimization
between distorted structures and ground-truth XRD diffraction can become trapped in local minima.
We explore an alternative strategy that enforces symmetry constraints, highlighting the role of
symmetry in connecting XRD to the crystal structure.
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2 Method

We selected 10 structures from the MP20 dataset [38], a collection of small, inorganic, thermo-
dynamically (meta)stable structures from the Materials Project [39]. We selected according to
the most common space groups (see appendix 4), which span a range of crystal symmetries:
P6/mmm, Pn3̄m, I 4̄, Cm, I4/mmm, Fm3̄m, C2/m, P63/mmc, Pm3̄m, Pm. For each
structure, we generated 50 distorted versions using two noise models:

Lattice noise. Random lattice distortions were applied via strain tensors [11]. These modifications
alter the cell while keeping fractional atomic coordinates fixed. Each distorted structure was generated
by randomly sampling the entries of a strain tensor and applying it to the ground-truth lattice matrix.
Let L ∈ R3×3 be the ground-truth lattice matrix (columns are the lattice vectors). We noise the lattice
by a random deformation matrix S ∈ R3×3,

L̃ = SL, S =

(
s11 s12 s13
s21 s22 s23
s31 s32 s33

)
,

while keeping atomic fractional coordinates fixed. For a noise level σl > 0, the entries of S are
sampled as

sii ∼ Unif
(
1− σl, 1 + σl

)
, i ∈ {1, 2, 3},

sij ∼ Unif
(
− σl, σl

)
, i ̸= j.

Thus, diagonal entries produce uniaxial expansion/compression, whereas off-diagonal entries induce
shear. By construction, these distortions do not preserve crystal symmetry and can introduce diverse
deformation modes. If f denotes a fractional coordinate, then the Cartesian position changes from
x = Lf to x̃ = L̃f with f unchanged.

Coordinate noise. Independent, uncorrelated positional perturbations were applied to each atom
by adding Gaussian-distributed noise to its fractional coordinates. Let x(n)

i ∈ [0, 1)3 be the fractional
coordinates of atom n. For a noise scale σc > 0, we draw i.i.d. perturbations

εn ∼ N
(
0, σ2

cI3
)
, n = 1, . . . , N,

and set the noisy fractional coordinates to

x
(n)
f = w

(
x
(n)
i + εn

)
, w(u) = u− ⌊u⌋ ∈ [0, 1)3,

where ⌊u⌋ applies the floor function componentwise. Equivalently, x(n)
f ≡ x

(n)
i + εn (mod 1)

(elementwise), i.e., on the 3-torus T3 = R3/Z3.

After applying noise, we attempted to recover the ground-truth structure via gradient-based optimiza-
tion using StructSnap, a differentiable XRD simulator [19]. We compute diffraction patterns from the
structure factor contributions of each atomic site, following Bragg’s law and the kinematic scattering
model. The resulting pattern is a 2D tensor of 2θ angles and intensities.

Optimization. We refine either the lattice parameters or atomic coordinates in accordance with the
noise applied. The structure is passed through this differentiable diffraction pipeline to produce a
simulated pattern, which is then compared to the ground-truth pattern using a chosen loss function.
Given distorted-state XRD x̂ and ground-truth XRD x (see A.2), we minimize the negative cosine
similarity, MSE loss, or negative entropy similarity, which are defined respectively:

Lcos =
1

N

N∑
i=1

(
− x(i) · x̂(i)

∥x(i)∥2 ∥x̂(i)∥2

)
, LMSE =

1

N

N∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2
2
,

Lentropy = − 1

N

N∑
i=1

(
1− 2Sx̂x − Sx − Sx̂

log4

)
.

where S denotes the Shannon entropy. Gradients of the loss are backpropagated to update structural
parameters using PyTorch’s autograd.
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Symmetry Constraints. We examine the effect of symmetry-based constraints in the lattice-noise
case by enforcing the ground-truth crystal family during optimization. Although this information may
not be available in practice, recent work has shown it can be classified from XRD data [40–42]. Using
projected optimization, each gradient step is followed by projection onto the constrained values.

Let θ = (a, b, c, α, β, γ) be the lattice parameters. Simple constrained gradient descent on a proposed
crystal X̂ using user-selected loss L ∈ {Lcos,LMSE,Lentropy} and symmetry projection operator P
would be:

θ0 = P(θinit), θk+1 = P
(
θk −∇θkL

(
xrd

(
X̂ (θk)

)
, xrd0

))
,

with the iterations repeating until some convergence criterion is satisfied. Note that θinit are initial
lattice parameters from our prediction, model, or, in this case, distorted ground-truth; X̂ (θk) is the
representation of our proposed crystal structure, which depends on current lattice parameters θk; xrd
is a map from crystal to computed powder x-ray diffraction pattern; xrd0 is the xrd pattern of the
reference we aim to recover. The projection operator P is defined by relevant crystal family, e.g.,

Pcubic(a, b, c, α, β, γ) =
(
ā, ā, ā, 90◦, 90◦, 90◦

)
, ā = a+b+c

3 .

Thus, a, b, and c are first updated independently according to their gradients, then set to the mean
value ā, while angles are fixed to 90◦. Similar projectors are defined for the remaining crystal families
(see A.3).

Recovery performance is assessed primarily using Match Rate, the fraction of optimized structures that
are identified as structurally equivalent to the ground-truth by StructureMatcher [43], considering
lattice, atomic positions, and symmetry. The tolerances used are 0.1 for lattice, 0.2 for atomic site
positions, and 5 degrees for angles.

3 Results

We performed optimization on distorted crystal structures across a range of noise types and levels. For
each condition, 50 distorted versions were generated for each of 10 ground truth structures, yielding
500 distorted inputs per noise setting. The 50 variations per structure enable a statistical view. We
report the match rate of the optimized structures to the ground truth in Figure 1.

Figure 1 illustrates that XRD-based optimization degrades significantly as noise increases. In
particular, for lattice distortions, the largest drop occurs between noise levels of 0.05 and 0.1.
While 0.1 is the lattice tolerance threshold for matching (see Section 2), the noise level defines the
maximum possible strain sampled, so lattice lengths remain within the tolerable range. Using either
cosine similarity, MSE loss or entropy similarity as the objective makes only small differences in
performance.

3.1 Symmetry Constraints: Strengths and Limitations

Incorporating symmetry-based constraints during XRD-based optimization notably improves robust-
ness to lattice noise for many structures in this study, as shown in Figure 1a by the higher match
rates achieved when constraints are applied. Our constraints (see subsection 2) project updates
back into the correct crystal family at each optimization step, thereby guiding the search along a
reduced-dimensionality symmetry-consistent path and helping the optimizer avoid local minima
unrelated to the desired symmetry.

Figures 2, 3 and 5 illustrate the non-convex nature of the XRD-based loss landscape with respect to
lattice parameters, through simplified 2D cross-sections of the optimization landscape. In Figure 2,
we distort the lattice parameters a and c of U2Ti, a hexagonal structure of space group P6/mmm (No.
191), and compute the cosine similarity loss between distorted structures’ spectra and the ground truth.
The resulting contour map reveals multiple deep local minima, indicating the optimizer’s potential to
get trapped in suboptimal solutions. The three most prominent local minima are highlighted, and
their corresponding XRD patterns are shown in the right panel. Despite their structural deviation
from the true lattice parameters, the patterns show high cosine similarity to the ground truth due to
subtle shifts and peak splittings that preserve the overall spectral profile.

Figure 3 illustrates how symmetry constraints facilitate accurate structure reconstruction. For clarity,
only a two-dimensional slice of the optimization landscape is shown, although the full optimization
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Figure 2: 2D landscape of XRD cosine similarity (CS) loss as a function of lattice parameters
a and c of U2Ti structure, illustrating the presence of multiple local minima. (left) Cosine
similarity loss topographic map showing non-convex behavior with several local minima. (right)
XRD patterns for the structures corresponding to the marked local minima: all exhibit reasonably
high cosine similarity to the ground truth pattern despite having different lattice parameters.

occurs in a six-dimensional space for distorted lattices. Simulated GD trajectories are visualized
for two representative structures under three settings: (i) unconstrained GD, (ii) unconstrained GD
initialized at a constrained point, and (iii) fully constrained GD.

In Figure 3a, the lattice parameters a and α of Au2S (cubic, space group Pn3̄m, No. 224) are perturbed.
The unconstrained GD converges to a distant local minimum, while constrained initialization improves
convergence but remains suboptimal. The fully constrained trajectory successfully recovers the
ground truth. In Figure 3b, we distort a and γ of Na3MnCoNiO6, (monoclinic, space group Cm,
No. 8). ere, unconstrained GD, even from a constrained initialization (γ = 90◦), fails to reach the
ground truth, whereas fully constrained GD converges correctly. Although initialization points were
selected for illustration, similar behavior holds across broader regions. These examples highlight how
symmetry-constrained XRD optimization improves convergence and yields higher match rates than
unconstrained methods (Figure 1).

Notably, in Figure 5, we observe fluctuations that pose challenges for symmetry-constrained GD
along symmetry axes such as a = b and α = 90◦. While fluctuations along a = b are pronounced,
those along α = 90◦ are comparatively shallow and may be mitigated through techniques such
as momentum [44] or regularization, which were not studied in this work. Although symmetry
constraints generally improve refinement performance, the landscape visualized here highlights that
XRD-based GD may remain sensitive to initialization and prone to local minima in some cases.

Figure 6 illustrates a case where high XRD pattern cosine similarity does not imply structural
similarity. After applying noise, the structure no longer matches the ground truth, with the diffraction
pattern exhibiting substantial peak shifts and new reflections. The unconstrained GD optimizer
converges to a local minimum where many peaks align with those of the ground truth but correspond
to different Miller indices hkl, meaning they arise from different atomic planes, indicating a distinct
underlying structure. Despite this, the XRD pattern achieves a deceptively high cosine similarity
of 0.71. When crystal-family constraints are imposed during optimization, the optimizer returns a
structure that matches the ground truth within the defined tolerance. The resulting diffraction pattern
shows slightly shifted peaks, reflecting differences in lattice parameters. As a result, the cosine
similarity drops to just 0.05. The convergence to this shallow minimum is likely driven by fluctuations
along the symmetry axis. This counterintuitive outcome highlights a key limitation of using XRD
pattern similarity as the sole reconstruction objective: similar structures can yield dissimilar patterns,
and conversely, distinct structures may appear similar, under such metrics.
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(a) (b)

Figure 3: 2D landscape of XRD cosine similarity (CS) loss as a function of lattice parameters,
with simulated optimization paths for XRD-based gradient descent (GD). Unconstrained GD,
unconstrained GD with a constrained initialization, and fully constrained GD. Unconstrained GD
converges to some local minima, even with constrained initialization, whereas constrained GD reaches
the ground truth. (a) Lattice parameters a and b of cubic Au2S are perturbed. (b) Lattice parameters
a and γ of monoclinic Na3MnCoNiO6 are perturbed.

3.2 Comparison to Energy Relaxation

Structural relaxation through potential energy minimization is often used [45–49] to refine candidate
structures. Figure 7a shows that the universal ML interatomic potential (MLIP) CHGNet [45]
accurately recovers structures matching the ground truth from the distorted state alone, except for
a high level (0.1) of coordinate noise. This suggests that the loss landscape of energy relaxation is
much smoother than XRD similarity [50]. Cross-sections of the energy optimization landscape are
shown in Figures 7b, showcasing a smooth and convex behavior.

While MLIPs accurately reconstruct structures under small and controlled distortions as in this study,
their optimization landscape is not globally smooth. In the context of inverse XRD, the goal is to
recover a specific structure from its diffraction pattern, corresponding to a particular minimum on
the potential energy surface. Large distortions can displace the system into the basin of attraction of a
different local minimum, as evident for coordinate perturbations of 10% (Figure 7b).

4 Conclusion

XRD provides a direct experimental link for generative crystal modeling, enabling the identification
of novel phases. Our results highlight symmetry’s role in bridging XRD and structure, but also reveal
that in some cases the XRD-to-structure landscape may remain non-convex even along symmetry
axes, making post-hoc optimization difficult. We illustrate this with physically motivated random
distortions, though generative models may introduce more complex biases. The observations in this
work suggest that progress in inverse XRD will require new generative architectures that condition on
XRD and embed symmetry as an inductive bias, with final refinements guided by energy relaxation.
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A Appendix

A.1 Selected Structures

Na3MnCoNiO6; Cm (8) NaS; P63/mmc (194) BPO4; I4̄ (82)

U2Ti; P6/mmm (191) Nd(Al2Cu)4; I4/mmm (139) LaNd3Cr4O12; Pm (6)

Na2BiO3; C2/m (12) Au2S; Pn3̄m (224) HfZn; Pm3̄m (221)

LiMnIr2; Fm3̄m (225)

Figure 4: Atomic structures used in this study. Each structure is labeled with its chemical formula,
space group symbol, and space group number.
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A.2 XRD Representation

We follow Riesel et al. [19] and compute diffraction patterns from the structure factor contributions
of each atomic site, following Bragg’s law and the kinematic scattering model. Lattice parameters
are converted to a real-space cell, the reciprocal lattice is derived, and all allowed Miller indices
within the maximum scattering vector are generated. For each (hkl), reciprocal distances and
diffraction angles are calculated, elemental scattering factors are retrieved and weighted by site
occupancies, and intensities are obtained by squaring the modulus of the summed structure factor
with a Lorentz–polarization correction.

We calculate XRD peak profiles using the Pseudo-Voigt approximation, which models the peak shape
as a linear combination of Gaussian and Lorentzian components:

pV (x) = η G(x) + (1− η)L(x)

where G(x) is the Gaussian function, L(x) is the Lorentzian function, and η ∈ [0, 1] is the mixing
parameter controlling the relative contributions.

Gaussian and Lorentzian peak shapes. For a peak centered at 2θ0, the Gaussian and Lorentzian
components are given by:

G(x) = exp

[
−4 ln 2 (x− 2θ0)

2

H2
G

]
,

L(x) =
1

1 + 4(x−2θ0)2

H2
L

,

where HG and HL are the full widths at half maximum (FWHM) for the Gaussian and Lorentzian
profiles, respectively.

Caglioti parameters. In practice, peak broadening in XRD is described by the Caglioti relation:

H2(2θ) = U tan2 θ + V tan θ +W,

where U , V , and W are the Caglioti parameters. This equation gives the squared FWHM as a function
of diffraction angle, and is applied separately for the Gaussian and Lorentzian widths, i.e., HG(2θ)
and HL(2θ). The parameters account for instrumental and sample-dependent broadening effects.

Final pattern representation. We compute the total XRD pattern by summing pV (x) contributions
from all Bragg reflections over 2θ ∈ [0◦, 90◦], and then discretize the intensity into bins of width
0.01◦. We adopt Caglioti parameterss U = 0.1, V = 0.01,W = 0.1 and η = 0.1. This produces a
fixed-length xrd vector, x, of size 9000 for each structure.

A.3 Symmetry Projectors by Crystal Family

For each crystal family, the symmetry projector P maps the given lattice parameters (a, b, c, α, β, γ)
to the symmetrized parameters consistent with the family:

Pcubic(a, b, c, α, β, γ) =
(
ā, ā, ā, 90◦, 90◦, 90◦

)
, ā =

a+ b+ c

3

Phexagonal(a, b, c, α, β, γ) =
(
ā, ā, c, 90◦, 90◦, 120◦

)
, ā =

a+ b

2

Ptetragonal(a, b, c, α, β, γ) =
(
ā, ā, c, 90◦, 90◦, 90◦

)
, ā =

a+ b

2

Porthorhombic(a, b, c, α, β, γ) =
(
a, b, c, 90◦, 90◦, 90◦

)
Pmonoclinic(a, b, c, α, β, γ) =

(
a, b, c, 90◦, β, 90◦

)
Ptriclinic(a, b, c, α, β, γ) =

(
a, b, c, α, β, γ

)
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A.4 2D Landscape of XRD Cosine Similarity Loss

a, b a, α

a, γ c, α

c, γ

Figure 5: All 2D landscape slices of XRD cosine similarity of U2Ti. Each slice is labeled with the
distorted parameters. Due to the hexagonal symmetry of the structure, some slices are redundant and
thus obscured.

13



A.5 Lattice and XRD Agreement

Figure 6: Lattice and XRD patterns of BPO4. Each row shows the lattice parameters, corresponding
XRD pattern, and unit cell relative to the ground truth. From top to bottom: ground truth; distorted
lattice structure with 0.1 noise level; result of XRD-based GD optimization without constraints; and
result of XRD-based GD optimization with symmetry-based constraints. For each case, the cosine
similarity to the ground truth pattern and the structure match status are reported.
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A.6 Comparison to Energy Optimization

Lattice noise Coordinate noise

a, c a, α

Figure 7: Comparing XRD-based optimization with energy relaxation. (Top) Match rates
from StructureMatcher with (ltol = 0.1, stol = 0.2, angle_tol = 5◦) under random lattice
and coordinate perturbations. Snapped bars are the same as presented in Figure 1. Energy-based
optimization consistently recovers the correct phase, except for high levels of coordinate noise,
whereas XRD-based optimization struggles. (Bottom) 2D landscape of CHGNet [45] predicted
energy as a function of lattice parameters of U2Ti. Along lattice vectors, the energy landscape is
smooth and locally convex.
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