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ABSTRACT

In this paper, we use the Fire Dynamics Simulator (FDS) combined with the
supercomputer support to create a Combustion Kinetics (CK) dataset for ma-
chine learning and scientific research. This dataset captures the development of
fires in industrial parks with high-precision Computational Fluid Dynamics (CFD)
simulations. It includes various physical fields such as temperature and pressure,
and covers multiple environmental combinations for exploring multi-physics field
coupling phenomena. Additionally, we evaluate several advanced machine learn-
ing architectures across our Open-CK benchmark using a substantial computa-
tional setup of 64 NVIDIA A100 GPUs: ❶ vision backbone; ❷ spatio-temporal
predictive models; ❸ operator learning frameworks. These architectures uniquely
excel at handling complex physical field data. We also introduce three bench-
marks to demonstrate their potential in enhancing the exploration of downstream
tasks: (a) capturing continuous changes in combustion kinetics; (b) a neural par-
tial differential equation solver for learning temperature fields and turbulence; (c)
reconstruction of sparse physical observations. The Open-CK dataset and bench-
marks aim to advance research in combustion kinetics driven by machine learning,
providing a reliable baseline for developing and comparing cutting-edge technolo-
gies and models. We hope to further promote the application of deep learning in
earth sciences.

1 INTRODUCTION

Modern deep learning (DL) approaches have demonstrated promising outcomes in various dynami-
cal systems in natural and social science fields like weather forecasting Schultz et al. (2021); Pathak
et al. (2022); Bi et al. (2022), rapid fire progression Tam et al. (2022), and intelligent transportation
Kaffash et al. (2021); Jin et al. (2023). Such astonishing achievements primarily stem from two
crucial factors. First, with the development of computer science, a vast amount of data from Earth
systems is continuously being acquired Chen et al. (2022); Liu et al. (2023). These ever-growing,
massive datasets, with diverse sources, provide the impetus for data-hungry deep models, making
learning from data possible. Second, continual breakthroughs in DL algorithms and models enable
us to effectively adapt to diverse specific scenarios, resulting in state-of-the-art performances Wu
et al. (2024a); Wang et al. (2024); Wu et al. (2023b; 2024c); Hao et al. (2024).

Fluids, an essential data type within the realm of earth sciences Ferziger et al. (2019); Temam (2001),
are characterized by a molecular structure that lacks resistance to external shear forces. This inherent
property allows fluids to deform readily, even under minimal forces, often resulting in dynamics
that are highly complex both spatially and temporally Ma et al. (2024); Yu et al. (2018); Wang
et al. (2021; 2022a). To date, an ever-increasing focus on data-driven deep methods, while paving
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Figure 1: The figure shows the changes in different physical fields during an industrial park fire simulation,
including the pressure field, temperature field, velocity field, and a colored streamplot of the velocity field. The
simulation conditions are a single fire source and wind direction (10 mW combustion power, 1 m/s wind speed,
180 seconds simulation time)

a potential path for large-scale fluid dynamics studies, unfortunately poses a daunting obstacle in
collecting high-quality fluid data Chen et al. (2022); Veillette et al. (2020).

A quick review of existing literature reveals that numerous benchmarks involving sensor collection
and numerical simulations related to fluid dynamics have been proposed. In the field of meteorology,
datasets such as RainNet Ayzel et al. (2020), ERA5 Muñoz-Sabater et al. (2021), and WeatherBench
Rasp et al. (2020) have collected high-quality meteorological data. These resources offer detailed
measurements of rainfall, hurricanes, temperature, climatic variables related to land and oceans,
which provide invaluable resources for subsequent meteorological model development like Pangu-
Weather Bi et al. (2022). In the ocean domain, HYCOM Chassignet et al. (2007), ECCO Forget
et al. (2015), and CMEMS provide detailed measurements of ocean temperature, salinity, currents,
and sea surface height, offering valuable data for ocean model development. Going beyond this
process, Many fluid benchmarks across terrestrial environments Justice et al. (2002;?); Rodell et al.
(2004) and spring systems Otness et al. (2021) provide foundational research platforms for this field
Wu et al. (2023b).

Though promising, combustion safety, which is crucial for human life, lacks high-quality standard-
ized datasets and evaluation protocols. Existing combustion dynamics datasets like WildfireDB Ger-
ard et al. (2024), FireSpread Gerard et al. (2024), and Prometheus Wu et al. (2024b) have limitations.
WildfireDB and FireSpread mainly rely on actual image data, which limits diversity and coverage
and lacks physical significance. These datasets also face data imbalance and noise issues, affecting
model training. While Prometheus provides high-quality data, its low spatial and temporal resolution
fails to capture complex fire dynamics. Additionally, these datasets lack multi-physics coupling data,
limiting model generalization across scenarios. Therefore, we develop the Open-CK Benchmark.
Open-CK (\) is the first open-source benchmark dedicated to the study of combustion fluid dynam-
ics, created through over 360 hours of numerical simulations supported by supercomputers.
This dataset captures the ST variations of multiple physical fields (as shown in Figure 1), encom-
passing 300 scenarios with varying parameters such as heat release rates (HRR) of Standards &
Technology (2023), temperature, source location, etc, contributing to the development of a standard
evaluation protocol in fire safety research.

Open-CK involves several PDEs, including the Navier-Stokes Li et al.; Takamoto et al. (2022),
mass conservation Jain & Kennedy (2014), energy conservation McGrattan et al. (2010), the Heat
Conduction Tieszen (2001), and the Transport Equation for Smoke and Chemical Species Drys-
dale (2011). The Fire Dynamics Simulator (FDS) Hietaniemi et al. (2004), a computational fluid
dynamics (CFD) Hirsch (2007) software, leverages these PDEs to simulate the complex dynamics
of combustion McGrattan et al. (2006), including flame propagation, smoke flow, heat conduction,
and radiation. By solving these equations, FDS provides detailed simulations and analyses of fire
scenarios. Using FDS, we generated ∼480GB of raw data in CSV format, organized in a two-
dimensional (time-sensor) structure. To facilitate research using \, we preprocessed this data into
a four-dimensional (D1 ∼ D4) format: D1 represents sampling time, D2 the type of physical field
(velocity, temperature, pressure), and D3 and D4 represent the two-dimensional spatial distribution
of sensors. This preprocessing compresses the raw data into a more manageable size (∼2.2T) and
formats it into npy files Harris et al. (2020) suitable for DL applications.

Boarder Impact. \ has the following features and advantages: Firstly, we use FDS simu-
lations to generate various industrial park fire scenarios. Unlike machine learning benchmark
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PDEBENCH’s Takamoto et al. (2022) single physical field, Open-CK covers multiple physical
fields, including temperature, pressure, and velocity, with high spatial and temporal resolution. Sec-
ondly, compared to large CFD-based fire set EAGLE Janny et al. (2023) and Prometheus’s Wu et al.
(2024b) single grid environments, \, supported by supercomputers, simulates grids of differ-
ent sizes, ensuring data complexity and high physical consistency. Lastly, we validate the dataset’s
effectiveness through multiple SOTA models. By comparing various advanced machine learning
models, we demonstrated the dataset’s potential in combustion kinetics research. Our study not only
provides a scientific basis for fire prediction and management but also opens new avenues for the
application of deep learning in Earth sciences.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

This study explores the ST evolution of fire dynamics, where the input data is represented as a
four-dimensional array [T,C,H,W ]. T denotes the time steps, C represents channels for different
physical values (e.g., temperature R and pressure V), and H and W correspond to the vertical and
horizontal spatial resolutions, respectively. To predict future combustion dynamics behavior, we can
utilize a model based on historical data, employing Maximum Likelihood Estimation (MLE) for
parameter estimation. Let the model output Yt represent the state of combustion at time t, and Xt

contains all prior time step data, i.e., Xt = [x1, x2, . . . , xt]. Our goal is to estimate Yt+1, the state at
the next time step, through the predictive model f(·). The mathematical representation is as follows:

Yt+1 = f(Xt,Θ), L(Θ;Xt, Yt+1) =

T∏
i=1

P (yit+1|xi
t; Θ) (1)

where Θ is the model parameter. Using MLE, we aim to find the parameters Θ that maxi-
mize the likelihood P (Yt+1|Xt; Θ) given Xt. By maximizing the log-likelihood function L,
an estimate of the parameters Θ can be obtained as θ̂ = argmaxθ logL(θ;Xt, Yt+1) =

argmaxθ
∑T

i=1 logP (yit+1|xi
t; Θ). Scrutinizing above optimization, the model can not only ef-

fectively utilize Xt to predict future combustion dynamics Yt+1 but also perform predictions over
multiple time steps, providing a scientific basis for fire management and control.

2.2 TECHNICAL BACKGROUND

Scientific Machine Learning Datasets. Multiple efforts aim to develop benchmark datasets for
scientific machine learning. WeatherBench Rasp et al. (2020; 2023) offers global high-resolution
weather forecasting data, covering meteorological variables like temperature, pressure, and wind
speed. The ERA5 dataset Muñoz-Sabater et al. (2021), organized by the European Centre for
Medium-Range Weather Forecasts (ECMWF), has provided hourly estimates of atmospheric, land,
and oceanic climate variables since 1940, becoming a popular resource for weather prediction. It has
supported the development of neural weather models like FourCastNet Pathak et al. (2022), Pangu-
Weather Bi et al. (2023), and Graphcast Lam et al. (2022). PDEBENCH Takamoto et al. (2022) suite
for scientific machine learning models dealing with systems governed by PDEs, which provides di-
verse initial and boundary conditions and introduces new metrics to assess scientific performance.
Primarily focused on time-dependent flow problems, PDEBENCH does not include complex sce-
narios like multi-phase flows or non-rectangular domains. Large benchmark EAGLE Janny et al.
(2023) contains ∼ 1.1 million 2D grids simulated based on Computational Fluid Dynamics (CFD)
techniques, generated by simulations of non-constant hydrodynamics induced by the interaction of
a moving flow source with a nonlinear scene structure; however, all snapshots are too low-resolution
for the analysis of complex phenomena. WildfireSpreadTS Gerard et al. (2024) is a multi-temporal
and multi-modal dataset with 13,607 images from 607 U.S. wildfires from 2018 to 2021. It supports
high-resolution predictions of wildfire spread using its time series structure and multi-modal inputs.
However, the dataset faces challenges due to complex inputs, imbalanced labels, and noisy data.

Dynamic System Modeling (DSM). Various advanced architectures that each offer unique features
for addressing complex problems in DSM realm. ❶ Vision backbone architectures like U-Net and its
variants Ronneberger et al. (2015); Huang et al. (2020); Li et al. (2018); Weng et al. (2019), with their
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symmetrical encoder-decoder structure, optimize feature extraction from high-resolution images,
making them ideal for super-resolution tasks in meteorological data. ResNet He et al. (2016) in-
troduces residual connections to combat gradient vanishing, enhancing learning capabilities. Vision
Transformer (ViT) Dosovitskiy et al. (2021) effectively captures global image dependencies through
its self-attention mechanism, suited for large-scale, complex physical field data Pathak et al. (2022).
❷ In spatio-temporal prediction realm, ConvLSTM Shi et al. (2015) merges the strengths of convolu-
tional networks and long short-term memory networks to handle spatial correlations and time series
data efficiently. Earthformer Gao et al. (2022b) leverages the Transformer’s encoding power for
large-scale earth science data processing. SimVP Tan et al. (2022) efficiently predicts future states
of dynamic systems with a simplified architecture. ❸ In operator learning field, architectures like
Fourier Neural Operator (FNO) Li et al. (2020), U-shaped Neural Operators (UNO) Ashiqur Rah-
man et al. (2022), and Convolutional Neural Operator (CNO) Raonic et al. (2024) innovate in Fourier
space, multi-scale representations, and convolutional structures, respectively, offering precise and
universal solutions for solving partial differential equations. These architectures advance dynamic
system modeling and expand opportunities for scientific research and industrial applications.

3 OPEN-CK: THE NON-LINEAR CHAOTIC COMBUSTION KINETICS
BENCHMARK

In this section, we formally introduce the Open-CK benchmark, designed to comprehensively assess
the accuracy, efficiency, and fidelity of existing and future vision backbones, ST predictive models,
and neural operator frameworks. Initially, we provide a detailed explanation of the collection and
organization of Open-CK in Section 3.1. In Section 3.2, we introduce the dataset management
and workflow, followed by an in-depth explanation of further preprocessing steps to enhance our
understanding of Open-CK. Subsequently, in Section 3.3, we analyze the data distribution of Open-
CK and present the characteristics of the dataset. Finally, in Section 3.4, we outline the licensing of
the resources.

3.1 DATA COLLECTION AND ORGANIZATION

To effectively train deep learning models for modeling and predicting fire scenarios in industrial
parks, we collect a large set of simulated data. We generate this data using version 6.9.1 of the
FDS developed by the National Institute of Standards and Technology (NIST), based on CFD simu-
lations. The simulations occur in a typical industrial park with multiple oil storage areas, modeling
various fire development scenarios. The simulated scenario appears as part (I) in Figure 2(a). We
create 300 different fire scenarios, each with specific settings for fuel type, heat release rate (HRR),
fire growth factor, wind speed, wind direction, and ignition location. We run all simulations on a
supercomputer, with each scenario taking approximately seven to ten hours. To accurately cap-
ture the dynamic changes in the physical field during fires, we place a dense sensor grid at a height
of five meters within the simulation area, with sensors spaced every 0.5 meters. The sensor arrange-
ment appears as part (II) in Figure 2(a). These sensors collect data every second, covering multiple
physical parameters such as velocity, temperature, and pressure, as detailed in Table 1. We organize
the collected data into time series, with each data point containing the full physical parameters of the
scene at each moment, ensuring data integrity and continuity. We then format these data into a struc-
ture suitable for deep learning model input, providing a high-quality, dense numerical database for
algorithm training and validation. This approach not only allows us to study the physical behaviors
in various fire scenarios in detail but also to optimize and adjust the deep learning models based on
these simulation results, improving their application in real-world fire prediction and management.

AutoCAD1 is a widely used computer-aided design (CAD) software for precise creation of both 2D
and 3D drawings and models. We used AutoCAD software to create a 3D model of an industrial park
in a real-world scenario (as shown in Figure 9). The resulting DWG files2 were then imported into
PyroSim software3 for the preliminary design work required for numerical simulation (as shown
in Figure 12). PyroSim is a software tool commonly used for fire and evacuation simulation in

1https://www.autodesk.com/products/autocad/overview
2DWG (short for ”drawing”) is a proprietary binary file format used for storing two- and three-dimensional

design data and metadata. https://www.autodesk.com/solutions/dwg
3https://www.thunderheadeng.com/pyrosim/
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Figure 2: a describes the overall layout of a simulated industrial park experiment. b shows visualizations of
different physical fields changing over time.

complex environments. This design work includes setting parameters such as mesh size and density,
fire source location and type, ventilation conditions, HRR, and fire growth coefficient. This process
generates the FDS files4 corresponding to the various scenarios.
Python5 is a widely used programming language. Due to the large number and variety of sensors
needed, we wrote a Python script (as shown in Figure 14) to directly edit the FDS files and create
the required sensor arrays. After running the FDS files for numerical simulation, we obtained the
data collected by all the sensors. This data is saved in CSV format, where the columns represent all
sensors and the rows represent all recorded time points. For illustration, in a particular scenario, we
set up three types of sensors, each with 90,000 units. This scenario simulated the fire development
process over 400 seconds, with a data collection frequency of 1 Hz. Thus, the resulting CSV file
has dimensions of (400, 270000). Additionally, each numerical simulation generates an SMV file6,

4FDS files are input files for the Fire Dynamics Simulator, a CFD model of fire-driven fluid flow. These
files contain data on the geometry, material properties, and initial conditions needed to simulate fire scenarios.
More information can be found at https://pages.nist.gov/fds-smv/

5https://www.python.org/
6An SMV file is a visualization file format used by Smokeview, a companion software to the FDS.
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Table 1: Summary of Open-CK. NIS: Number of Ignition Sources; SIS: Single Ignition Source; TIS: Three
Ignition Sources; Tem: Temperature; Vel: Velocity; Pres: Pressure.

NIS Physical Field Domain Spatial Resolution ∆t Timesteps

SIS Tem&Vel&Pres 300m x 300m 300 x 300 1 350
SIS Vel 110m x 70m 220 x 140 1 300
SIS Tem 20m x 20m 40 x 40 0.5 250
SIS Pres 20m x 20m 20 x 20 2 350
TIS Tem&Vel&Pres 300m x 300m 600 x 600 1 350
TIS Tem 110m x 70m 220 x 140 1 300
TIS Vel 50m x 50m 50 x 50 0.5 300
TIS Pres 20m x 20m 40 x 40 2 350

Open-CK.npy

Data 
preprocessing

1. Vision Backbone
2. ST models

3. Neural Operator🔥
Checkpoint

Github
Load
&

inference

Dataset Curation and Workflow 

Figure 3: Dataset Curation and Workflow. This figure shows the process from data preprocessing to model
training, saving, and application. Data is preprocessed using Python, analyzed and features extracted via a
vision backbone, ST models, and a neural operator in PyTorch. The trained model is saved as a checkpoint,
uploaded to GitHub for storage and version control, and used for inference.

which can be visualized using PyroSim’s PyroSim Results application, a feature within the PyroSim
software designed for viewing, analyzing, and interpreting simulation results (Figure 13).

To preprocess the data for use in deep learning models, we used Python scripts (see Figure 15) to
filter and clean the data in the CSV files. The data was then reshaped to dimensions (T, Dt, R, C),
where T represents the time steps, Dt represents sensor types, R represents the sensor rows, and C
represents the sensor columns. Thus, we obtained the preliminary preprocessed data in NPY format.
Further data processing, such as applying a sliding window, is detailed in Section 3.2.

3.2 DATASET CURATION AND WORKFLOW

Figure 3 shows a comprehensive data processing and workflow for a combustion dynamics physi-
cal field dataset. Initially, we use Python tool to handle the data preprocessing, including cleaning
and formatting to enhance data quality and adaptability. Subsequently, the process employs foun-
dational visual models, spatio-temporal models, and neural operators for in-depth data processing
and feature extraction. These models train within the PyTorch framework and save as checkpoints
for storage and further use. Finally, the workflow uploads these model checkpoints to GitHub for
sharing and version control, enabling model loading for further inference and applications. During
the data pre-processing phase, as shown in Appendix (see Figure 8), the process uses the Numpy
library in PyTorch for numerical computations. It loads data from multiple files and concate-
nates it along a specified axis. The process defines a sliding window view function using
the numpy.lib.stride tricks.as strided method to generate a sliding window view of
the data. This method alters the array’s strides to view different parts of the array without copying
the original data, ideal for time series analysis. It captures time-dependent characteristics effectively
and facilitates further analysis and model training, particularly when considering the data’s temporal
continuity and local features.

3.3 DATA ANALYSIS & CHARACTERISTICS

Figure 4(a) shows the distribution of temperature, velocity, and pressure and their changes. The
temperature distribution shows most values are low with a big right skew. Over time, the temperature
goes up, peaks, and then stays stable. The velocity distribution shows most values are low, and the
time series shows a slow rise, leveling off later. The pressure distribution shows most values are in
the middle with some extremes, and the time series shows a quick drop at first, then stability. Overall,
these variables show clear phases over time, reflecting the system’s initial changes and final stable
state. This highlights the advantages of our Open-CK dataset, which encompasses multiple
physical variables. Figure 4(b) shows the t-SNE clustering results for temperature, velocity, and
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Figure 4: (a) Distribution and time series of temperature, velocity, and pressure. (b) t-SNE clustering results
for temperature, velocity, and pressure.
Table 2: Baseline results across the Open-CK dataset. We make the best performance baseline by using ❶. ,

and denote spatio-temporal, vision and neural operator backbones, respectively.

Method Params (M) FLOPs (G) FPS MSE ↓ MAE ↓ SSIM ↑ PSNR ↑
ConvLSTM Shi et al. (2015) 17.2301 60.4823 109.8573 0.0307 92.1234 0.9271 21.8497
PredRNN Wang et al. (2017) 25.3652 119.9854 53.2781 0.0243 73.9876 0.9445 23.0932

PhyDNet Guen & Thome (2020) 35.9784 169.9863 40.1256 0.0224 ❶ 70.0154 ❶ 0.9502 23.7154 ❶

MIM Wang et al. (2019) 39.0347 179.9743 36.2458 0.0232 70.4567 0.9478 23.4789
PredRNNv2 Wang et al. (2022b) 50.0789 299.9823 16.9832 0.0364 80.0234 0.9296 21.0032

PastNet Wu et al. (2023c) 4.0023 15.9874 179.8764 0.0282 79.0145 0.9363 22.4876
SimVP Gao et al. (2022a) 4.9873 17.9856 200.2345 0.0271 78.4967 0.9375 22.6045
SimVPv2 Tan et al. (2022) 23.9765 117.9823 50.7896 0.0246 73.9872 0.9448 23.2012

Earthfarseer Wu et al. (2024a) 24.0123 118.1234 51.0987 0.0245 73.9234 0.9446 23.1987

ResNet He et al. (2016) 60.0987 19.9876 209.8765 0.0321 89.9987 0.9248 21.7967
U-Net Ronneberger et al. (2015) 45.0987 17.2345 279.9876 0.0252 ❶ 72.0034 ❶ 0.9463 ❶ 23.1984 ❶

ViT Dosovitskiy et al. (2020) 47.0012 17.0987 280.1234 0.0273 77.9823 0.9401 22.7989
Swin Transformer Liu et al. (2021) 46.9876 16.9874 290.2345 0.0362 96.1456 0.9137 21.5987
MLP-Mixer Tolstikhin et al. (2021) 47.0543 16.9845 289.9876 0.0359 96.0765 0.9143 21.5984

FNO Li et al. (2020) 51.0987 19.2345 189.8765 0.0298 79.5432 0.9364 22.2834
LSM Wu et al. (2023a) 59.0012 19.9987 209.8765 0.0323 89.5432 0.9249 21.7965

CNO Raonic et al. (2024) 45.0001 17.0032 280.7654 0.0251 ❶ 72.0123 ❶ 0.9458 ❶ 23.2087 ❶

UNO Ashiqur Rahman et al. (2022) 47.9765 18.0012 280.6543 0.0274 78.0876 0.9402 22.7896
NMO Wu et al. (2024d) 46.9876 17.1098 290.7654 0.0361 95.9345 0.9142 21.6012

pressure. Temperature data points cluster closely in several distinct groups. Velocity and pressure
data points display more complex and dispersed patterns, indicating more diverse variations in these
variables over space or time.

3.4 OPEN-CK LICENSE

The LargeST benchmark dataset is released under a CC BY-NC 4.0 International License: https:
//creativecommons.org/licenses/by-nc/4.0. Our code implementation is released
under the MIT License: https://opensource.org/licenses/MIT. The license of any
specific baseline methods used in our codebase should be verified on their official repositories.

4 EXPERIMENT AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

Dataset. We select partial data for our main experiment. Specifically, with a heat release rate of
5MW, a single fire source, and one wind direction, we simulate wind speeds of 1m/s, 2m/s, 3m/s,
4m/s, and 5m/s. Using the t2 fire growth model with a growth coefficient of 0.178, we calculate
the time to reach steady-state fire as 167.6 seconds. Thus, we choose a simulation duration of 300
seconds for these conditions. Through numerical simulation, we obtain temperature data during the
fire evolution, which we use as the original training and testing dataset.

Baselines & Implementation Details. We select representative models from three domains as
baselines. ▷ Spatio-temporal Predictive Models. We feature ConvLSTM Shi et al. (2015),
PredRNN Wang et al. (2017), PhyDnet Guen & Thome (2020), MIM Wang et al. (2019), Pre-
dRNNv2 Wang et al. (2022b), PastNet Wu et al. (2023c), SimVP Gao et al. (2022a), SimVPv2 Tan
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Figure 5: Comparison of predicted and true values of temperature, velocity, and pressure fields at different
time steps (1s, 100s, 200s, 300s).

et al. (2022), Earthfarseer Wu et al. (2024a). ▷ Vision Backbone. We include ResNet He et al.
(2016), U-Net Ronneberger et al. (2015), Vision Transformer(ViT) Dosovitskiy et al. (2021), Swin
Transformer(SWINT) Liu et al. (2021) and MLP-Mixer Tolstikhin et al. (2021). ▷ Operator Learn-
ing Frameworks. We cover FNO Li et al. (2020), LSM Wu et al. (2023a), UNO Ashiqur Rahman
et al. (2022), CNO Raonic et al. (2024), and NMO Wu et al. (2024d). Baseline details can be found
in Appendix B. All backbones in this paper train with MSE loss, use the ADAM optimizer Kingma
& Ba (2014), and set the learning rate to 10−3. The batch size is 50, and training early stops within
500 epochs. We train on 64 NVIDIA 40G-A100 GPUs. More details settings are left in Appendix
C.

Metrics Details. We comprehensively evaluate the performance of supported models in the above
tasks using different metrics based on task characteristics: Error Metrics: We use Mean Squared
Error (MSE) and Mean Absolute Error (MAE) to measure the difference between predicted results
and true targets. For weather forecasting, we typically use Root Mean Squared Error (RMSE). Simi-
larity Metrics: We use Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR)
to assess the similarity between predicted results and true targets. These metrics are widely used
in image processing and computer vision. Perceptual Metrics: We use Learned Perceptual Image
Patch Similarity (LPIPS) to evaluate the perceptual difference between predicted results and true
targets in the visual system. LPIPS aligns with human visual perception and is suitable for fire
video prediction tasks. Physical Metrics: We use Energy Spectrum Error to evaluate the physical
consistency of deep learning models by calculating the energy spectrum error of the velocity field,
assessing the model’s performance in capturing fluid dynamics features. Computational Metrics:
We assess the computational complexity of the model through the number of parameters and Float-
ing Point Operations (FLOPs). Additionally, we report the frames per second (FPS) on a single
NVIDIA A100 GPU to evaluate inference speed.

4.2 MAIN RESULTS

As shown in Table 2, the baseline results on the Open-CK dataset show various models perform-
ing differently across evaluation metrics. In spatio-temporal prediction models, PhyDNet excels
with the lowest MSE of 0.0224 and MAE of 70.0154, indicating high accuracy in fire dynamics
prediction. It also achieves the best SSIM of 0.9502 and PSNR of 23.7154, showing significant
advantages in capturing complex spatio-temporal dynamics. PredRNN and SimVP have better FPS
at 53.2781 and 200.2345, respectively, but their error metrics are not as strong. In vision back-
bones, U-Net performs best with MSE of 0.0252, MAE of 72.0034, SSIM of 0.9463, and PSNR
of 23.1984, demonstrating excellent capability in high-resolution image processing. ResNet and
ViT show high FPS at 209.8765 and 280.1234 but do not match U-Net in error metrics. In neural
operator frameworks, CNO stands out with MSE of 0.0251, MAE of 72.0123, SSIM of 0.9458,
and PSNR of 23.2087, proving its effectiveness in solving PDE problems. FNO and UNO also
perform well in computational efficiency and some error metrics but are slightly inferior to CNO
overall. These results indicate different models have unique strengths in handling combustion dy-
namics data. Spatio-temporal models like PhyDNet excel in accuracy and dynamic changes. Vision
backbones like U-Net are outstanding in image processing. Neural operators like CNO show signifi-
cant effectiveness in PDE solutions. This analysis provides a solid basis for optimizing and selecting
backbones for specific tasks.
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Additionally, the qualitative analysis results are shown in the Figure 5, comparing the predicted and
true values of temperature, velocity, and pressure fields at different time steps (1s, 100s, 200s, 300s).
The temperature field predictions are accurate at the initial time (1s) for all models, but Earthfarseer
and SimVPv2 show significant deviations at 200s and 300s, especially at the boundaries of high-
temperature regions. Velocity field predictions are good in the early stages (1s and 100s) but show
large errors in the later stages (200s and 300s), with poor handling of high-velocity details. Pressure
field predictions are accurate initially but have significant errors in high-pressure regions at 200s and
300s. Overall, Earthfarseer and SimVPv2 need improvement in long-term predictions and complex
scenarios.

4.3 PHYSICAL CONSISTENCY ANALYSIS

U-Net PredictionGround-Truth

(a)

Time series

(b)

Figure 6: Visualization of U-Net and Earthfarseer model performance in predicting velocity fields. (a)
The first row shows ground-truth and U-Net predictions, indicating high accuracy. The second row shows
energy spectra, with U-Net closely matching the true spectrum but differing in high-frequency regions. (b)
Time series plots of normalized velocity at arbitrary coordinates for all time steps show Earthfarseer and U-Net
predictions align well with the ground truth. U-Net demonstrates slightly better consistency and accuracy in
maintaining velocity trends.

Because the Open-CK benchmark has physical properties, we analyze its physical consistency Wu
et al. (2024d); Wang et al. (2020) across different backbones in this section. The Figure 6 shows the
performance of U-Net and Earthfarseer models in predicting velocity fields. In the first row of sub-
figure (a), we see the ground-truth and U-Net prediction results. U-Net’s output closely matches the
ground-truth, indicating high accuracy. The second row shows the energy spectra. While U-Net’s
predicted energy spectrum is close to the true spectrum, there are some differences in the high-
frequency region, indicating U-Net’s slight deficiency in capturing fine structural changes. Subfig-
ure (b) shows normalized velocity time series at arbitrary coordinates for all time steps. Earthfarseer
and U-Net predictions align well with the ground truth. U-Net shows slightly better consistency
and accuracy in maintaining velocity trends over time. This analysis highlights U-Net’s effective-
ness in high-fidelity spatio-temporal predictions for dynamic systems while also indicating room for
improvement in high-frequency detail prediction.

4.4 CASE STUDY

In this section, we use temperature data from a three-source fire scenario for training and show
relevant learning cases. Figure 7 shows the comparison of prediction results from Earthfarseer,
U-Net, and FNO models with the ground truth. U-Net’s predictions are very close to the ground
truth, showing high accuracy. Earthfarseer and FNO capture the overall structure but have larger
deviations in high-intensity areas. Table 3 lists the quantitative evaluation metrics for each model,
including SSIM, LPIPS, and MSE. U-Net achieves the highest SSIM (0.9332), indicating the best
structural similarity. It also records the lowest LPIPS (9.8632) and MSE (0.0259), reflecting better
perceptual quality and lower prediction error. Earthfarseer also performs well, with an SSIM of
0.9217, LPIPS of 10.022, and MSE of 0.0267. FNO captures the general trend but performs slightly
worse in SSIM (0.8977), LPIPS (11.2837), and MSE (0.0357). This analysis highlights U-Net’s
superior performance in both visual and quantitative evaluations.
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Ground-Truth Earthfarseer U-Net FNO

Figure 7: Comparison of prediction results from Earthfarseer, U-
Net, and FNO models with the ground truth.

Model SSIM LPIPS MSE

Earthfarseer 0.9217 10.022 0.0267
U-Net 0.9332 9.8632 0.0259
FNO 0.8977 11.2887 0.0357

Table 3: Quantitative evaluation metrics for
Earthfarseer, U-Net, and FNO models, in-
cluding SSIM, LPIPS, and MSE.

5 FUTURE INSIGHT & LIMITATION

To advance the field of fire dynamics research, we introduce the Open-CK as a new benchmark.
This dataset integrates a total of 300 different fire scenarios simulated using high-resolution Com-
putational Fluid Dynamics. It includes data from various physical parameters such as temperature,
pressure, and velocity, providing a robust platform for comprehensive data analysis and modeling.

Enhanced Model Generalization through Multi-Physics Coupling. Our analysis suggests that
combining data from multiple physical phenomena can significantly improve the prediction accuracy
and robustness of fire dynamics models. Future research could leverage this multi-physics dataset
to develop models that provide deeper insights into the complex interactions within fire dynamics,
enhancing both predictive power and real-world applicability.
A Testbed for Non-linear and Chaotic Combustion Dynamics. Open-CK captures a wide range
of non-linear and chaotic behaviors in fire scenarios, making it an excellent resource for testing
new theories and models that address rapid changes in environmental conditions. This is especially
valuable for developing strategies to predict and mitigate sudden fire escalations.
Development of Real-Time Predictive Models. Open-CK’s extensive range and diversity provide
an excellent foundation for developing real-time predictive models. This could potentially forecast
the progression of fire and other dynamic phenomena as they happen, allowing for timely interven-
tions.

While Open-CK is a powerful benchmark for fire dynamics research, it is not without its limitations.
Firstly, Open-CK mainly uses simulated data that might not capture all the unpredictable changes
seen in real-world fire events. Additionally, the accuracy of the simulations depends heavily on
the fidelity of the input parameters and the resolution of the data, which can be compromised by
computational limitations and sensor inaccuracies.
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A INTRODUCTION TO PSEUDO ALGORITHMS

1 i m p o r t numpy as np
2 from numpy . l i b . s t r i d e t r i c k s i m p o r t a s s t r i d e d
3

4 f i l e n a m e s = [ ’ 400 x300x300 −1 . npy ’ , ’ 400 x300x300 −2 . npy ’ ,
5 ’ 400 x300x300 −3 . npy ’ , ’ 400 x300x300 −4 . npy ’ ,
6 ’ 400 x300x300 −5 . npy ’ ]
7

8 d a t a = np . l o a d ( f i l e n a m e s [ 0 ] )
9

10 f o r f i l e n a m e i n f i l e n a m e s [ 1 : ] :
11 n e x t d a t a = np . l o a d ( f i l e n a m e )
12 d a t a = np . c o n c a t e n a t e ( ( da t a , n e x t d a t a ) , a x i s =0)
13

14 d e f s l i d i n g w i n d o w v i e w ( a r r , window size , s t e p =1) :
15 n = a r r . shape [ 0 ]
16 r e t u r n a s s t r i d e d ( a r r ,
17 shape =( n − window s ize + 1 , window s ize ) + a r r . shape [ 1 : ] ,
18 s t r i d e s =( a r r . s t r i d e s [ 0 ] * s t e p , ) + a r r . s t r i d e s )
19

20 window s ize = 80
21 s t e p = 1
22

23 s l i d i n g d a t a = s l i d i n g w i n d o w v i e w ( da t a , window size , s t e p )

Figure 8: Example of Python code for processing multiple Numpy files and creating a sliding window view of
the data.
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Figure 9: top-view

Figure 10: side-view

Figure 11: back-view
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Figure 12: The figure shows the design interface of Pyrosim software, displaying the factory scenario used in
this study.

Figure 13: This figure demonstrates the use of the PyrosimSimResult feature in the Pyrosim software to
visualize the results of numerical simulations.

17



Published as a conference paper at ICLR 2025

1 d e f m e r g e f d s f i l e s ( o r i g i n a l f i l e , o u t p u t f i l e ) :
2 # Read t h e o r i g i n a l f i l e c o n t e n t
3 wi th open ( o r i g i n a l f i l e , ’ r ’ ) a s f :
4 o r i g i n a l c o n t e n t = f . r e a d l i n e s ( )
5

6 # Find t h e i n d e x of t h e l i n e c o n t a i n i n g &SURF ID= ’ f i r e ’
7 s u r f i n d e x = None
8 f o r i , l i n e i n enumera t e ( o r i g i n a l c o n t e n t ) :
9 i f ”&SURF ID= ’ f i r e ’ , ” i n l i n e :

10 s u r f i n d e x = i
11 b r e a k
12

13 i f s u r f i n d e x i s None :
14 p r i n t ( ” Line c o n t a i n i n g &SURF ID= ’ f i r e ’ n o t found ” )
15 r e t u r n
16

17 # Save t h e new p a r a m e t e r s
18 n e w c o n t e n t = [ ]
19 # S en so r s p a c i n g
20 d i s t = 1
21 s t a r t x = 0 . 0
22 s t a r t y = 0 . 0
23 # S e n s o r s f i x e d a t a h e i g h t o f 5m p l a n e
24 z = 5
25

26 # Add t e m p e r a t u r e f i e l d s e n s o r s
27 sum = 0
28 f o r i i n r a n g e ( 3 0 0 ) :
29 f o r j i n r a n g e ( 3 0 0 ) :
30 x = round ( s t a r t x + j * d i s t , 1 )
31 y = round ( s t a r t y + i * d i s t , 1 )
32 sum += 1
33 n e w c o n t e n t . append ( ”&DEVC ID=” + f ” ’ t e m p e r a t u r e {sum} ’ , ” + ”

QUANTITY= ’TEMPERATURE ’ , XYZ=” + s t r ( x ) + ” , ” + s t r ( y ) + ” , ” + s t r ( z )
+ ” / ” + ”\n ” )

34 n e w c o n t e n t . append ( ”\n ” )
35

36 # Add v e l o c i t y f i e l d s e n s o r s
37 . . . . . .
38

39 # Add p r e s s u r e s e n s o r s
40 . . . . . .
41

42 # I n s e r t t h e new c o n t e n t a t t h e s p e c i f i e d p o s i t i o n i n t h e o r i g i n a l
c o n t e n t

43 m e r g e d c o n t e n t = o r i g i n a l c o n t e n t [ : s u r f i n d e x ] + n e w c o n t e n t +
o r i g i n a l c o n t e n t [ s u r f i n d e x : ]

44

45 # Wr i t e t h e merged c o n t e n t t o a new f i l e
46 wi th open ( o u t p u t f i l e , ’w’ ) a s f :
47 f . w r i t e l i n e s ( m e r g e d c o n t e n t )
48

49 p r i n t ( ” Merge comple ted , r e s u l t s aved t o ” , o u t p u t f i l e )

Figure 14: Pseudocode for processing an fds file and adding sensor data in Python.
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1 i m p o r t numpy as np
2 i m p o r t pandas as pd
3

4 # CSV f i l e p a t h s
5 c s v f i l e p a t h = [ ’ 10MW−3 f −2 wdir −1 de vc . csv ’ , ’ 10MW−3 f −2 wdir −2 de vc . csv ’ , ’

10MW−3 f −2 wdir −3 de vc . csv ’ , ’ 10MW−3 f −2 wdir −4 de vc . csv ’ , ’ 10MW−3 f −2 wdir −5
de vc . csv ’ ]

6 # P a t h s t o save t h e npy f i l e s
7 n p y f i l e p a t h = [ ’ 10MW−3 f −2d −400 x3x300x300 −1 . npy ’ , ’ 10MW−3 f −2d −400

x3x300x300 −2 . npy ’ , ’ 10MW−3 f −2d −400 x3x300x300 −3 . npy ’ , ’ 10MW−3 f −2d −400
x3x300x300 −4 . npy ’ , ’ 10MW−3 f −2d −400 x3x300x300 −5 . npy ’ ]

8

9 # Clean and f i l t e r each CSV f i l e
10 f o r i i n r a n g e ( l e n ( c s v f i l e p a t h ) ) :
11 # Read t h e CSV f i l e
12 df = pd . r e a d c s v ( c s v f i l e p a t h [ i ] )
13

14 # Drop t h e f i r s t column
15 df = df . d rop ( d f . columns [ 0 ] , a x i s =1)
16

17 # Drop t h e f i r s t two rows
18 df = df . i l o c [ 2 : ] # i l o c i s used f o r row− based s l i c i n g
19

20 # Conve r t a l l d a t a t o f l o a t t y p e
21 df = df . a s t y p e ( f l o a t )
22

23 # Conve r t t h e DataFrame t o a NumPy a r r a y
24 d a t a = df . v a l u e s
25

26 # De f i ne t h e l e n g t h o f each sub −column
27 s u b c o l u m n l e n g t h = 300
28

29 # C u r r e n t d i m e n s i o n s a r e 400 x27000 ( T*dnum )
30 # T a r g e t d i m e n s i o n s a r e ( T , d type , row , c o l )
31 # Reshape d a t a t o ( 4 0 0 , 3 , 300 , 300)
32 r e s h a p e d d a t a = d a t a . r e s h a p e ( 4 0 0 , 3 , s u b c o l u m n l e n g t h , −1)
33

34 p r i n t ( r e s h a p e d d a t a . shape )
35

36 # Save as . npy f i l e
37 np . s ave ( n p y f i l e p a t h [ i ] , r e s h a p e d d a t a )

Figure 15: Pseudocode for filtering and cleaning a CSV file, transforming its dimensions, and finally saving it
as a .npy file in Python.
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Figure 16: The figure illustrates the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and a single wind direction with a wind speed of 1 m/s. The fire growth coefficient is set
to 0.178. Each frame in the sequence is separated by an interval of 50 seconds.

Figure 17: The figure illustrates the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and a single wind direction with a wind speed of 2 m/s. The fire growth coefficient is set
to 0.178. Each frame in the sequence is separated by an interval of 50 seconds.
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Figure 18: The figure illustrates the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and a single wind direction with a wind speed of 3 m/s. The fire growth coefficient is set
to 0.178. Each frame in the sequence is separated by an interval of 50 seconds.

Figure 19: The figure illustrates the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and a single wind direction with a wind speed of 4 m/s. The fire growth coefficient is set
to 0.178. Each frame in the sequence is separated by an interval of 50 seconds.
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Figure 20: The figure illustrates the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and a single wind direction with a wind speed of 5 m/s. The fire growth coefficient is set
to 0.178. Each frame in the sequence is separated by an interval of 50 seconds.

Figure 21: This figure shows the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and two wind directions with a wind speed of 1 m/s. The fire growth coefficient is set to
0.178. Each frame in the sequence is separated by an interval of 30 seconds.
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Figure 22: This figure shows the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and two wind directions with a wind speed of 2 m/s. The fire growth coefficient is set to
0.178. Each frame in the sequence is separated by an interval of 30 seconds.

Figure 23: 1This figure shows the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and two wind directions with a wind speed of 3 m/s. The fire growth coefficient is set to
0.178. Each frame in the sequence is separated by an interval of 30 seconds.
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Figure 24: This figure shows the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and two wind directions with a wind speed of 4 m/s. The fire growth coefficient is set to
0.178. Each frame in the sequence is separated by an interval of 30 seconds.

Figure 25: This figure shows the evolution of the fire under the conditions of a heat release rate of 10 MW,
three ignition sources, and two wind directions with a wind speed of 5 m/s. The fire growth coefficient is set to
0.178. Each frame in the sequence is separated by an interval of 30 seconds.
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Table 4: Baseline Model Configurations. This table summarizes the configurations of various baseline models,
including their hidden dimension, number of layers, learning rate, and dropout rate. These models are used
to handle spatiotemporal sequence data efficiently, with different configurations affecting their complexity,
convergence speed, and overfitting prevention.

Model Hidden Dim Layers Learning Rate Dropout Rate
ConvLSTM 128 3 0.001 0.2
PredRNN 256 4 0.001 0.3
PhyDNet 128 5 0.0005 0.2
MIM 256 4 0.001 0.2
PredRNNv2 256 6 0.0005 0.3
PastNet 128 3 0.001 0.2
SimVP 128 3 0.001 0.2
SimVPv2 128 4 0.0005 0.2
Earthfarseer 256 5 0.0005 0.3
ResNet 256 6 0.0001 0.2
U-Net 128 5 0.001 0.3
ViT 256 6 0.0001 0.2
Swin Transformer 256 6 0.0001 0.2
MLP-Mixer 256 4 0.0005 0.2
FNO 128 3 0.001 0.2
LSM 128 3 0.001 0.2
CNO 128 4 0.001 0.2
UNO 256 5 0.0005 0.2
NMO 256 5 0.0005 0.2

B BASELINE DESCRIPTIONS

• ConvLSTM Shi et al. (2015): Combines convolutional neural networks and LSTM for spatiotem-
poral sequence prediction, suitable for handling spatiotemporal data.

• PredRNN Wang et al. (2017): Uses a recurrent neural network with a multi-level recurrent struc-
ture and cross-memory cells to improve spatiotemporal feature modeling.

• PhyDNet Guen & Thome (2020): Combines explicit physical constraints with implicit neural
network models for video prediction, enhancing prediction accuracy.

• MIM Wang et al. (2019): Utilizes a memory-in-memory mechanism for video prediction, captur-
ing complex spatiotemporal patterns.

• PredRNNv2 Wang et al. (2022b): An improved version of PredRNN with a deeper recurrent
structure and more complex memory units for better spatiotemporal prediction performance.

• PastNet Wu et al. (2023c): Uses past time step data for prediction, with an efficient spatiotemporal
prediction architecture achieving good performance with fewer parameters.

• SimVP Gao et al. (2022a): A spatiotemporal prediction model based on simple visual transforma-
tions, featuring high computational efficiency.

• SimVPv2 Tan et al. (2022): An improved version of SimVP with optimized visual modules and
additional feature transformation layers, enhancing prediction performance.

• Earthfarseer Wu et al. (2024a): Designed for earth system prediction, combining various spa-
tiotemporal feature extraction methods to improve accuracy in earth science predictions.

• ResNet He et al. (2016): A deep residual network that addresses the vanishing gradient problem in
deep networks, widely used in image recognition and classification tasks.

• U-Net Ronneberger et al. (2015): A convolutional neural network-based image segmentation
model with an encoder-decoder structure, widely used in medical image processing and spatiotem-
poral prediction tasks.

• ViT Dosovitskiy et al. (2020): A Vision Transformer model that captures long-range dependencies
in images through the self-attention mechanism.
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• Swin Transformer Liu et al. (2021): An improved Transformer model with a hierarchical window
attention mechanism for processing high-resolution images.

• MLP-Mixer Tolstikhin et al. (2021): A fully connected neural network that performs image clas-
sification by mixing features and positional encodings, simplifying the design of traditional convo-
lutional networks.

• FNO Li et al. (2020): A Fourier Neural Operator model for solving partial differential equations
using Fourier transforms to improve computational efficiency.

• LSM Wu et al. (2023a): Uses state-space models for spatiotemporal prediction, learning state
transition and observation equations for high-precision forecasting.

• CNO Raonic et al. (2024): Combines convolutional neural networks and neural operator models
to capture local spatiotemporal features for efficient PDE solving.

• UNO Ashiqur Rahman et al. (2022): A U-shaped memory enhanced architecture that allows for
deeper neural operators.

• NMO Wu et al. (2024d): An operator learning paradigm for learning the intrinsic dimension rep-
resentation of the underlying operator.

C BASELINE MODEL CONFIGURATIONS

This section describes the baseline models and their configurations, including model name, hidden
dimension, number of layers, learning rate, and dropout rate. Table 4 summarizes the configurations
for each model.

The models include traditional convolutional neural networks, recurrent neural networks, and recent
Transformer models. These models handle spatiotemporal sequence data efficiently. The hidden
dimension and number of layers determine model complexity, the learning rate affects convergence
speed, and the dropout rate helps prevent overfitting. Comparing these baseline models’ perfor-
mance provides insights into their effectiveness for specific tasks and guides further research.

D LIMITATIONS AND FUTURE WORK

D.1 LIMITATIONS

• Scenario Limitation: Although the dataset considers various fire scenarios and environ-
mental variables, real-world fires are often more complex, with greater diversity and un-
predictable variations. For example, differences in structural features, building materials,
and crowd density may not be fully represented in the dataset.

• Model Generalization: Since the dataset is generated under controlled conditions, the
model may struggle to handle the complex and dynamic fire scenarios encountered in the
real world. Actual fires may involve different fire sources, combustible materials, and
changing building structures, which could fall outside the scope of the current dataset.

• Environmental Factors: Real-world fire development is influenced by many uncontrol-
lable factors, such as climate conditions, weather changes, and evacuation situations. These
factors might not have been fully considered in the simulation, leading to reduced predic-
tion accuracy when the model is applied to actual fire scenarios.

D.2 FUTURE WORK

To adapt a model pre-trained on the Open-CK dataset for real-world fire dynamics modeling, the
following measures can be taken:

• Data Augmentation: Introduce more real-world fire scenario data to enhance the model’s
generalization ability. For example, by incorporating actual fire records and incident data,
the deficiencies of the Open-CK dataset can be addressed, adding diversity to the scenarios.

• Transfer Learning: Pre-train the model on the Open-CK dataset and then fine-tune it
on a fire dataset that more closely resembles real-world conditions. This approach allows

26



Published as a conference paper at ICLR 2025

the model to retain the fundamental fire dynamics features learned from Open-CK while
adapting to new environments and scenarios.
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