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Abstract

Few shot entity tagging is important because001
different applications of natural language pro-002
cessing typically have different semantics, ne-003
cessitating custom models. Here, we study few004
shot entity tagging in a real world scenario in-005
sofar that the training data consists of small006
number of examples per entity type, every en-007
tity type has the same number of examples,008
and there is not any development set. We per-009
form paraphrase generation for many different010
domains using a T5 model trained on generic011
paraphrase data. We find that this method pro-012
duces gains in tagging accuracy across many013
different domains, and gains are accentuated014
with an ensemble voting approach.015

1 Introduction016

Entity tagging is the task of extracting entity men-017

tion spans of specific predefined types from un-018

structured text. Recent methods for entity tagging019

are typically fine-tuned on neural language models020

such as ELMo (Peters et al., 2018), BERT (Kenton021

and Toutanova, 2019), RoBERTa (Liu et al., 2019),022

and T5 (Raffel et al., 2020) that are pre-trained on023

large amounts of raw text.024

Because fine-tuning usually requires manually025

annotated training data, and training data tagged026

with different entity types is often required when027

switching to a new domain, it is of interest to dis-028

cover techniques to reduce the amount of manual029

annotation required for fine-tuning.030

In this paper, we investigate using paraphrase031

generation for data augmentation for fine-tuning032

entity tagging models across different domains. We033

do this specifically for the scenario in which we034

are training an entity tagging model for a brand035

new domain. Also in this work, we try to form the036

training conditions in such a way to be as close to a037

real world few-shot scenario as possible, which to038

our knowledge has not been done in such a way in039

previous work. This involves forming our training040

data so that each entity type has only a few sam- 041

ples, and the same number of samples per entity 042

type, thereby making no assumption of knowledge 043

of the distribution of entity types. Furthermore, 044

we also assume that there is no separate, labeled 045

development set with which to perform modeling. 046

The paraphrase generation model is trained using 047

PAWS (Zhang et al., 2019), a large general corpus 048

of paraphrase data. We find that up to a certain 049

point, the paraphrases are useful to add to the train- 050

ing data set, but past that point, noisiness in the 051

paraphrases limits their usefulness. In order to bet- 052

ter handle the noise, we also experiment with learn- 053

ing an ensemble voting model from the same para- 054

phrase data, which we find to consistently boost 055

model accuracy. 056

2 Related Work 057

There have been various methods that have been 058

tried to increase the accuracy of natural language 059

processing models trained with little training data. 060

One avenue of investigation is to rearrange the 061

little training data that there is, for example by 062

swapping words or phrases. Examples of these in- 063

clude (Wei and Zou, 2019) which demonstrates the 064

effectiveness of this approach on various natural 065

language classification tasks, and (Andreas, 2020) 066

which introduces a data augmentation rule that sub- 067

stitutes a phrase with other phrases in every context 068

if they co-occur at least once in some context, and 069

shows its viability for classification and semantic 070

parsing datasets. Another approach is to use back- 071

translation, which has been found to be useful for 072

data augmentation for neural machine translation 073

(Sennrich et al., 2016; Edunov et al., 2018), reading 074

comprehension (Yu et al., 2018), and dialogue sum- 075

marization (Liu et al., 2022). Back-translation has 076

been found to be helpful for named entity recog- 077

nition in biomedical domains (Yaseen and Langer, 078

2021), but so far not for utterances in the dialogue 079

domain (Basu et al., 2022). (Dai and Adel, 2020) 080
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experiment with data augmentation by modifying081

seed utterances using rules many of which involve082

replacing tokens in utterances with tokens having083

the same label in other utterances or with tokens084

from WordNet. Evaluation is performed on biomed-085

ical datasets. (Huang et al., 2021), (Ding et al.,086

2021), and (Das et al., 2021) look at prototype087

methods for few-shot entity tagging, where each088

entity type has its own “prototype” representation089

in embedding space.090

Besides these, there have been various other091

methods for data augmentation that specifically use092

paraphrase generation. (Jolly et al., 2020) experi-093

ment with data augmentation through paraphrase094

generation for entity tagging, where the paraphrase095

generation model is trained from data in the target096

domain. (Okur et al., 2022) experiment with a sim-097

ilar approach, but only apply it for intent classifica-098

tion. For entity tagging, they use a synonym-based099

approach to automatically label utterances using100

a generic noun phrase chunker and ConceptNet,101

which is shown to produce good performance on102

an in-house dataset.103

It can be seen that there have been many ap-104

proaches that have been studied for data augmen-105

tation of entity tagging models. When compared106

with this literature, we believe in the uniqueness of107

the scenario in which we apply and evaluate data108

augmentation, one in which there is a brand new109

domain, in which there is only few-shot labeled110

data in the domain, there is no development set, but111

we can evaluate over a large test set in order to ver-112

ify the ability of the trained models. For example,113

(Jolly et al., 2020) experiment with data augmen-114

tation but do so for the scenario of adding training115

data for a new intent type to an established large116

training data set for a particular domain. Because117

they do have access to a large training data set, they118

can and do use it to train a paraphrase generation119

model in the target domain for data augmentation,120

which we cannot do in our scenario which is start-121

ing with only a small seed training data set. (Basu122

et al., 2022), (Huang et al., 2021), (Ding et al.,123

2021), and (Das et al., 2021) evaluate their data124

augmentation in the episodic learning scenario for125

which models are trained on sampled few-shot data126

and tested on a small randomly sampled subset of127

a test set, rather than the whole large test set. We128

argue that this does not provide a clear picture of129

how effective those models would be in actual prac-130

tice. In contrast, (Dai and Adel, 2020) and (Yaseen131

and Langer, 2021) do evaluate their entity tagging 132

models on a whole large test set. On the other hand, 133

their few-shot training data consists of random sam- 134

ples from a large training data set, which enables 135

the resulting model to gain knowledge of the under- 136

lying distribution of entity label. For example, their 137

few shot models would likely model better those 138

entity types that occur more often because there 139

would be more examples of those entity types in 140

their randomly sampled training data. In addition, 141

they both tune their models on a separate develop- 142

ment set, which we believe would be hard to obtain 143

in a real world scenario. 144

3 Datasets 145

There are five datasets on which we perform ex- 146

periments, three that are in-house and two that are 147

public. They are all English datasets. The in-house 148

datasets consist of user utterances from three dif- 149

ferent customer service applications. Two of them, 150

SDA and SDB, are from spoken dialogue systems, 151

where the utterances have been hand transcribed 152

from audio, and the utterances are responding to 153

a “How may I help you” prompt. The third, SM, 154

is from written social media posts where the users 155

are asking for support for their products. Details 156

of the annotation of these datasets can be found 157

in Appendix B. The public datasets are SNIPS 158

(Coucke et al., 2018) and the English ATIS-2 cor- 159

pus (Hemphill et al., 1990). A summary of the 160

datasets can be found in Table 1. 161

The training data and validation data are set up 162

as follows. The training data is set up as 10-shot 163

data, meaning in each training dataset there are 10 164

examples per entity type. SDA and SDB are 10- 165

way 10-shot data. SM is 4-way 10-shot data. We 166

formulate SNIPS and ATIS-2 training as 8-way 10- 167

shot data. The validation data is set up as a subset 168

of the training data, one quarter of its size, in order 169

to better simulate the condition where there is a 170

lack of labeled data. 171

We extract a few-shot version of the SNIPS 172

dataset as follows. From the original SNIPS dataset 173

which has 39 label types, we select these eight la- 174

bel types: city, country, movie_name, object_name, 175

playlist, service, year. For each label type, we ex- 176

tract 10 utterances having that type from the SNIPS 177

training data, ending up with a training set with 80 178

utterances. For our test set, we select a subset of ut- 179

terances from the SNIPS test set having at least one 180

mention of one of our eight target label types until 181
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there are 50 instances of each label type, ending up182

with a test set with 347 utterances.183

We extract a few-shot version of the ATIS-184

2 dataset in a similar fashion. We select185

these eight label types from the original ATIS-186

2 dataset which has 79 label types: air-187

line_code, airport_code, airport_name, city_name,188

fare_basis_code, fromloc.airport_name, from-189

loc.city_name, restriction_code. From these, we190

obtain a 10-shot ATIS-2 training set of 80 utter-191

ances and a 50-shot ATIS-2 test set of 331 utter-192

ances, as subsets of the original ATIS-2 training193

and test sets, respectively.194

4 Models195

We train a paraphrase model by fine-tuning a T5196

transformer (Raffel et al., 2020) on the PAWS En-197

glish training set (Zhang et al., 2019). It is a text to198

text model having a standard encoder decoder archi-199

tecture. We employed Huggingface’s Transformers200

library (Wolf et al., 2020) for its implementation.201

We run the paraphrase model over each utter-202

ance in the training set so that 100 paraphrases are203

generated. Subsequently, we filter out paraphrases204

that are duplicates of those generated previously.205

On average there are 36 to 40 unique paraphrases206

generated per original utterance.207

Because the paraphrase model is fine-tuned on208

text data only, our input to the model is utterance209

text only, with no tag information. For the same210

reason, the paraphrases that the model outputs con-211

tains text only. In order to use the paraphrases to212

train an entity tagger, we perform an extra step213

of gazetteer tagging the paraphrases where the214

gazetteers are prepared using the seed training data.215

Our entity tagging models are based on fine-216

tuning BERT (Kenton and Toutanova, 2019). The217

standard architecture consists of the encoder part218

of BERT followed by a classification layer with219

no subsequent CRF layer. Its input consists of220

WordPiece tokenized text.221

Hyperparameter settings for these models can be222

found in Appendix A.223

5 Experiments224

We train different entity tagging models for differ-225

ent domains. Baselines are established on training226

models on the few shot training data alone. Other227

models are trained on a concatenation of this data228

along with different amounts of paraphrase training229

data. Training sets are notated as follows. FS repre-230

sents few-shot hand-annotated training data. FSx1 231

represents a training data set containing few-shot 232

training data concatenated with paraphrase training 233

data of the same size. This paraphrase data is gen- 234

erated in the following manner. For each few-shot 235

training data example, a paraphrase is chosen at ran- 236

dom from the output of the paraphrase generation 237

model when the few-shot example is input. FSx2 238

represents a training data set containing few-shot 239

training data concatenated with paraphrase training 240

data that is twice its size. It is generated in a simi- 241

lar fashion as the paraphrase data for FSx1, except 242

tthat wo non-duplicate paraphrases are taken from 243

the output of the paraphrase generation model 244

Results are shown in Table 2, where rows gener- 245

ally represent different domains and columns rep- 246

resent different training data sets. Each cell in the 247

table shows the labeled bracketed F-measure score 248

of a model trained on a particular training data set 249

in a particular domain, where the score is averaged 250

over 50 train/test runs. 251

We see that adding some paraphrase data (FSx1) 252

always leads to an increase in performance. Adding 253

even more paraphrase data (FSx2) generally leads 254

to increases or decreases in performance. By exam- 255

ining the paraphrase data, one reason why adding 256

more paraphrase data does not always increase the 257

accuracy of the model appears to be because the 258

paraphrase data is not always of the highest quality. 259

For instance, there are some examples of duplica- 260

tion that are not uncommon in text to text models, 261

such as the output being “John Smith John Smith 262

John Smith” when the input is ”John Smith.” 263

Comparing results of different domains, we see 264

that certain domains such as SNIPS and ATIS- 265

2 in general achieve lower accuracies than other 266

domains such as SDA and SDB. This may be at- 267

tributed to differences in breadth of entity types in 268

different domains, with broader types being harder 269

to entity tag. Here, by breadth we mean the number 270

of surface phrases that may receive a particular en- 271

tity tag. For example, the entity type movie_name 272

in SNIPS is broad because there are hundreds of 273

new movie names introduced every year while the 274

entity type phone in SDA is not as broad because 275

there are comparatively fewer surface phrases corre- 276

sponding to different commercially available phone 277

products. 278

One way to mitigate the effect of noise is to per- 279

form ensemble voting across different models. We 280

perform a simple voting procedure where in each 281
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Name of Number of n-shot Number of Utterances
Dataset Entity Types Training in Test Set
In-house Spoken Dialogue (SDA) 10 10 1000
In-house Spoken Dialogue (SDB) 10 10 1000
In-house Social Media (SM) 4 10 1036
SNIPS 8 10 347
ATIS-2 8 10 331

Table 1: Characteristics of few-shot datasets.

Domain FS FSx1 FSx2
SDA 0.8176 0.8270 0.8467
SDB 0.8390 0.8470 0.8295
SM 0.1760 0.1980 0.1802
SNIPS 0.1780 0.2046 0.2071
ATIS-2 0.3060 0.3340 0.3533
Average 0.4633 0.4821 0.4834

Table 2: Doubling the few-shot training data (FS) with
paraphrases (FSx1) leads to an increase in performance
(labeled bracketed F measure score of the model on the
test set) across domains. Tripling it with even more para-
phrases (FSx2) leads to more uneven results in terms of
performance.

Domain FSx1 FSx1 FSx2 FSx2
Name +Ens +Ens
SDA 0.8270 0.8496 0.8467 0.8588
SDB 0.8470 0.8620 0.8295 0.8346
SM 0.1980 0.2315 0.1802 0.1986
SNIPS 0.2046 0.2262 0.2071 0.2444
ATIS-2 0.3340 0.3532 0.3533 0.3767
Average 0.4821 0.5045 0.4834 0.5026

Table 3: Ensemble voting over 50 models trained with
few shot and paraphrase data of certain sizes (FSx1+Ens
and FSx2+Ens) consistently improves the accuracy over
single models trained on few shot and paraphrase data
of the same size (FSx1 and FSx2, respectively).

training data condition, FSx1 or FSx2, we train 50282

models and test them on the same test set examples.283

Each word in each example is then tagged with the284

label that most of the models assigned to that word.285

The results are shown in Table 3. They show that286

ensemble voting always increases the accuracy of287

the corresponding non-ensembled model.288

6 Conclusions289

We performed experiments in order to evaluate the290

effectiveness of using a general purpose paraphrase291

generation model for data augmentation in a few-292

shot scenario for entity tagging. We have attempted 293

to fashion these experiments to mirror a real world 294

situation, where there are few examples in the few- 295

shot data, the examples that do exist probably do 296

not reflect accurately the distribution of target entity 297

types, and where there is no development set data. 298

We have performed these experiments in different 299

domains to evaluate the generality of our findings. 300

We have found that a general purpose paraphrase 301

generation model is generally useful for data aug- 302

mentation in a few-shot scenario for entity tagging. 303

However, because of noise in paraphrase genera- 304

tion, if more and more paraphrases are being added 305

to the training set, it appears that the performance 306

of the resulting model can level off and eventu- 307

ally decrease. In order to help reduce the effect of 308

this noise, we have experimented with the idea of 309

ensemble voting across models trained on differ- 310

ent paraphrases. In our experiments, this strategy 311

always had a positive effect on model performance. 312

In future work, we would like to experiment 313

with ways to increase the quality of the paraphrase 314

generation model, perhaps by employing few-shot 315

learning methods to it. We are also interested in 316

ways to make the ensemble voting approach more 317

lightweight, such as through the use of distillation. 318

7 Limitations 319

We have not tried to compare these methods to 320

other methods, such as back translation or edit- 321

ing of texts. Also, have not tried to combine this 322

method with the other methods to produce more 323

accuracy. Another limitation is that it is hard to use 324

an ensemble model in a production environment 325

because of its high overhead. The approach in the 326

paper generally increases the accuracies of models 327

over baseline, but if the baseline score is very low, 328

the approach in the paper is not powerful enough 329

to increase the accuracy of the model high enough 330

that it would be of use in applications. 331
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A Hyperparameter Settings471

The hyperparameter settings for training the472

T5 paraphrase generation model are as follows:473

model_name: t5-base, max_seq_length: 512, learn-474

ing_rate: 3e-4, weight_decay: 0.1, adam_epsilon:475

1e-8, warmup_steps: 0, train_batch_size: 6,476

eval_batch_size: 2, num_train_epochs: 2, gradi-477

ent_accumulation_steps: 16, seed: 42.478

The hyperparameter settings for training the en-479

tity tagging models are as follows: learning_rate:480

5e-5 num_train_epochs: 50, train_batch_size: 32.481

B Human Annotation Details482

The annotation for SPA and SPB proceeded as fol-483

lows. For each of SPA and SPB, a large list of en-484

tity types was prepared by an application designer.485

From that list, one of the authors prepared a subset486

of 10 entity types corresponding to the entity types487

that most frequently occurred in that application.488

That person also prepared a list of raw utterances489

for that domain, and an initial annotation guide.490

One subset of 40 utterances was sent to a human491

annotator A along with the annotation guide for492

annotation. That subset was subsequently doubly493

annotated by human annotatior A and the author.494

Based on evaluation of similarities and differences495

in the doubly annotated data, the annotation guide496

was revised and a final annotation version of that 497

subset was prepared. This process was repeated 498

another time, after which human annotator A and 499

human annotators B and C annotated the rest of the 500

data for that domain. The author would occasion- 501

ally spot check the annotations and direct them to 502

be corrected if necessary. 503

For the annotation for SM, a complete list of 504

entity types was prepared by another application 505

designer. This entire list, four entity types, was 506

chosen for annotation. One of the authors pre- 507

pared utterances for the SM domain from social 508

media extracted by a running production system. 509

That author also prepared an annotation guide, af- 510

ter which that author alone annotated all of the 511

utterances. While annotating, occasionally the an- 512

notation guide would be need to be modified if cer- 513

tain examples were found that did not fit situations 514

handled by the guide. The author annotated twice 515

certain groups of the same utterances, at different 516

times, and compared results which were harmo- 517

nized if necessary, as one form of quality control. 518

For other groups of utterances, the author visually 519

checked the annotation, but the author did not do 520

this checking for all of the utterances in the corpus. 521
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