
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

KNOWLEDGE-ENHANCED MCTS FOR LLM-BASED
MEDICAL DIAGNOSIS REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Medical diagnosis is a high-stakes, knowledge-intensive task that requires pre-
cise reasoning over complex patient information. While Large Language Models
(LLMs) have shown promise across a range of medical applications, their ability to
perform accurate and interpretable diagnostic reasoning remains limited. Existing
LLM-based approaches often rely on shallow, single-step inferences and lack mech-
anisms to systematically evaluate multiple diagnostic hypotheses. To address these
challenges, we propose Med-MCTS, a knowledge-enhanced diagnostic reasoning
framework that integrates Monte Carlo Tree Search (MCTS) with external medical
knowledge. Med-MCTS formulates diagnosis as a sequential decision-making
process and introduces domain-specific state and action representations that align
with clinical reasoning practices. During MCTS tree expansion, the model tra-
verses structured medical knowledge graphs to enrich reasoning trajectories with
relevant contextual information. To select high-quality paths, Med-MCTS employs
a multi-dimensional scoring mechanism that evaluates self-consistency, factual
accuracy, and diversity of reasoning. Experiments on multiple benchmark datasets
demonstrate that Med-MCTS significantly improves diagnostic accuracy, enabling
open-source LLMs to outperform domain-specific medical models and approach
the performance of advanced proprietary systems such as GPT-4o.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized various fields, showcasing remarkable capa-
bilities in natural language understanding and generation (Touvron et al., 2023; Yang et al., 2024).
Recent advances in test-time scaling laws have revealed that extending the reasoning chain—by
simulating the slow, deliberate thinking of human System 2 cognition—can significantly enhance
LLM performance on complex problems (DeepSeek-AI et al., 2025; Li et al., 2025). Rather than
relying on shallow, single-step inferences, recent models emphasize multi-step reasoning to explore
and refine hypotheses in a systematic manner. This paradigm has led to notable progress in domains
like mathematics, where structured reasoning aligns well with symbolic manipulation. Techniques
such as Monte Carlo Tree Search (MCTS) have been successfully employed to decompose problems
into discrete reasoning steps, build search trees, and optimize decision-making (Qi et al., 2024; Hao
et al., 2023). These developments raise an important question: Can similar tree-based reasoning
strategies be applied effectively in high-stakes, knowledge-intensive domains like medicine?

In clinical settings, robust reasoning is particularly critical during the diagnostic process. Medical
diagnosis requires careful integration of heterogeneous data—structured inputs (e.g., lab results,
demographics) and unstructured narratives (e.g., patient complaints, symptom history)—alongside
external medical knowledge. Patients often do not exhibit the full clinical picture of a disease, pre-
senting partial or atypical symptoms, further complicating the diagnostic task. Unlike mathematical
problems, the reasoning in diagnosis is less about strict deductive chains and more about iterative
hypothesis refinement informed by prior experience and domain expertise. Existing work that applies
MCTS to medical diagnosis (Tran et al., 2024) typically adapts action decomposition strategies
from mathematical reasoning. However, these methods fail to capture the nuanced, uncertain, and
knowledge-rich nature of clinical decision-making. Physicians rely heavily on prior experience,
background knowledge, and iterative testing of diagnostic hypotheses. This has strongly called for a
reasoning framework that not only supports structured search but also accommodates the ambiguity
and domain-specific subtleties inherent in medicine.
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To address these challenges, we propose Med-MCTS, a knowledge-enhanced diagnostic reasoning
framework that integrates Monte Carlo Tree Search with external medical knowledge. Med-MCTS
models diagnosis as a sequential decision-making process with the following three characteristics
tailored to the medical domain: (1) Clinically-Informed Diagnostic Actions: Unlike standard MCTS
adaptations, which struggle with medical uncertainty, we design a hierarchical action space inspired by
clinical reasoning patterns. This space consists of Key Symptom Extraction, Hypothesis Generation,
Evidence Verification, and Deductive Analysis, explicitly modeling the iterative hypothesis-evaluation
cycle of physicians. This design ensures interpretability and alignment with expert reasoning. (2)
Knowledge-Grounded Search Mechanism: We incorporate medical knowledge graphs as verified
reasoning substrates. By leveraging bidirectional symptom-disease relationships, the MCTS expan-
sion process is guided by semantically meaningful and clinically accurate associations, improving
diagnostic relevance and factual alignment. (3) Multi-Dimensional Path Evaluation: Med-MCTS
introduces a comprehensive scoring mechanism that jointly considers logical consistency, factual
accuracy, and reasoning path diversity. This evaluation approach enables the model to prioritize robust
and plausible diagnostic trajectories, better reflecting the uncertainty and hierarchy of real-world
clinical reasoning.

Our experiments on multiple benchmark datasets demonstrate that Med-MCTS significantly improves
diagnostic accuracy. In particular, Med-MCTS enables open-source LLMs to outperform domain-
specific medical models and approach the performance of advanced proprietary systems, such as
GPT-4o, in terms of diagnostic quality. These findings demonstrate the potential of structured,
knowledge-enhanced reasoning to advance trustworthy LLMs in healthcare.

2 RELATED WORK

Language Models in Clinical Diagnosis. Timely and accurate diagnosis is foundational to effective
clinical care and is the critical first step in ensuring appropriate patient outcomes (Singh et al.,
2019). The diagnostic process typically involves integrating a patient’s medical history, physical
signs, and other clinical information to identify potential diseases. With recent advances in large
language models, there is growing interest in leveraging these models to support diagnostic reasoning.
Existing medical LLMs typically follow two main approaches: (1) Prompt Engineering-Based
Approach (Saab et al., 2024; Chen et al., 2024e; Nori et al., 2023; Li et al., 2024; Kim et al., 2024;
Tang et al., 2023): This approach carefully designs prompts that incorporate patient symptoms,
medical history, and contextual cues to guide the model’s responses. It allows for flexible inference
and rapid hypothesis generation even with sparse input data. Although efficient and training-free, it
struggles to adapt to the complexity of clinical diagnostic scenarios. (2) Fine-Tuning with Medical
Data (Chen et al., 2024c; Wang et al., 2025a;c; Labrak et al., 2024; Tian et al., 2023; Christophe et al.,
2024): This approach involves domain-specific pretraining or fine-tuning on large-scale medical
corpora, enabling deeper understanding of medical concepts and clinical patterns. However, this
method is resource-intensive and struggles to keep up with the rapidly evolving landscape of medical
knowledge (Labrak et al., 2024; Zhou et al., 2023).

Test-Time Scaling Law. The Test-Time Scaling Law refers to enhancing LLM’s performance
during the inference stage by increasing computational resources or inference time (Snell et al.,
2024). The simplest implementation involves increasing the number of generations, such as sampling
multiple candidate responses using Chain of Thought (Wei et al., 2023) and then selecting the best
answer (Best-of-N) using a predefined discrimination strategy (Lightman et al., 2023; Uesato et al.,
2022; Wang et al., 2023; Madaan et al., 2023; Shinn et al., 2023). However, simple multi-sampling
approaches are constrained by limited search diversity and heavily rely on the reliability of scoring
functions. To address this, recent methods explore richer reasoning trajectories via tree-based search
over decomposed thought steps (Qi et al., 2024; Hao et al., 2023; Yao et al., 2023; Markowitz et al.,
2024; Xie et al., 2023; Chen et al., 2024a). Traditional tree-based search methods, such as beam
search (Xie et al., 2023) and depth-/breadth-first search (Yao et al., 2023), can explore non-linear
reasoning structures but are limited in path optimization. To address this, Monte Carlo Tree Search
(MCTS) (Qi et al., 2024; Hao et al., 2023; Chen et al., 2024a) evaluates the potential value of
different paths through random sampling, enabling more efficient exploration of the search space and
improving the accuracy and efficiency of reasoning.
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3 TASK FORMULATION AND PRELIMINARIES

3.1 FORMULATION OF MEDICAL DIAGNOSIS

Medical diagnosis is the process of identifying and determining the nature of a disorder or illness
through comprehensive evaluations of a patient’s symptoms, medical history, and physical exami-
nation findings. It can be formalized as a function f that maps a patient’s feature set to a specific
disease d: d = f(P, C). P = {p0, p1, . . . pnp

} represents the patient’s general features (e.g., age,
gender, and past medical history), where np is the number of such features. C = {c0, c1, . . . , cnc

}
denotes the clinical features (e.g., symptoms and test results), where nc is the size of the set. These
features serves as critical evidence for the doctor’s diagnosis. The output d ∈ D corresponds to the
diagnostic conclusion where D denotes the set of all diseases.

We aim to reconstruct the clinical diagnostic reasoning using language models, with the dual objec-
tives of (1) achieving accurate medical diagnosis and (2) generating interpretable reasoning chains
to enhance the transparency and credibility of diagnostic outputs. To achieve this objective, we
systematically analyze the cognitive reasoning mechanisms employed by physicians during clinical
diagnosis (Garibaldi & Olson, 2018)(Wolf, 1985). A standard diagnostic process typically comprises
the following key steps:

A. Medical History Taking. In real-world scenarios, the input to the medical diagnosis problem
is typically a patient’s verbal description x. A pre-processing function fsum : x → (P, C)
summarizes the general features and clinical characteristics of the patient.

B. Hypothesis Generation. A hypothesis generator fhypo : (P, C)→ Dhypo produces an initial set
of possible disease hypotheses Dhypo ⊆ D based on the observed patient features.

C. Hypothesis Characterization. For each hypothesis disease dh ∈ Dhypo, an inference process
fret : dh → (Ph, Ch) retrieves the features Ph and Ch associated with dh. This provides expected
manifestations of each hypothesis and determines if further testing is needed to support diagnosis.

D. Priority Assessment and Decision-Making. An evaluation function feval : (Ph, Ch)× (P, C)→
ρh computes the degree of similarity between the features of patient and the expected features
under hypothesis dh. The result is a rating score ρh ∈ [0, 1] for each hypothesis. The final
diagnostic conclusion is the hypothesis with the highest rank: d = argmaxdh∈Dhypo ρh.

3.2 MONTE CARLO TREE SEARCH

Medical diagnosis can be decomposed into a multi-step reasoning problem, modeled as a search
tree constructed by MCTS. Specifically, given an initial state s0, which in this context represents the
patient’s description x, the construction of search tree T can be formulated as an iterative expansion
process. As shown in Figure 2, each node of T represents a state s ∈ S and each edge represents an
action a ∈ A. During each decision step t, the model must select an optimal action at = πLLM(st)
and transition from st the subsequent state st+1. A path from the root node to the leaf node is
a candidate reasoning trajectory t = x ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sleaf. Ultimately, we sample multiple
trajectories as a set T = {t0, t1, . . . , tnt

} from the tree T and derive the final answer through a
specific strategy, where nt represents the total number of sampled trajectories.

Monte Carlo Tree Search is a search algorithm that combines the precision of tree search with the
generality of random sampling (Browne et al., 2012). The algorithm constructs and expands the search
tree through four key steps: Selection—using a heuristic strategy to traverse the reasoning tree and
select a leaf node; Expansion—adding child nodes to increase the search space; Simulation—starting
from the newly expanded node, performing a random simulation (a rollout) until reaching a terminal
state; Backpropagation—propagating the simulation results backward from the leaf to the root node,
updating the statistical information of all nodes along the path to guide future searches.

While MCTS works well in math by treating each step as a clear state or action (Qi et al., 2024;
Hao et al., 2023), applying it to medicine is more difficult. Medical diagnosis involves complex and
unclear situations that are hard to formalize. The reasoning process depends heavily on physicians’
knowledge and experience, making it hard to break down into simple steps. As a result, methods used
to decompose math problems (Tran et al., 2024) often do not fit medical tasks, leading to reasoning
that is hard to interpret in clinical practice.
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Figure 1: The Med-MCTS framework implements four actions: (A1) Key Symptom Extraction
identifies critical symptoms from patient complaints; (A2) Hypothesis Generation retrieves potential
diseases from medical knowledge graphs using extracted symptoms; (A3) Evidence Verification
performs reverse knowledge graph queries to obtain disease-specific symptoms; and (A4) Deductive
Analysis evaluates evidence to validate diagnostic hypotheses, with automatic backtracking to A2/A3
for implausible cases.

4 METHOD

This section presents the Med-MCTS framework, with actions defined in Subsection 4.1, knowledge-
enhanced search in Subsection 4.2 and path evaluation in Subsection 4.3. The overall Med-MCTS
algorithm is presented in Figure 1 and Algorithm 1.

4.1 CLINICALLY-INFORMED DIAGNOSTIC ACTIONS

As discussed before, the action and state space employed in mathematics-MCTS cannot be directly
transferred to medical diagnostic tasks. To address this, we introduce a hierarchical action space that
more closely mimics real-world medical scenarios. The proposed action space is defined as follows:

⋄ A1: Key Symptom Extraction. To address the inherent variability of real-world clinical presenta-
tions—often accompanied by substantial irrelevant or misleading information—A1 is designed to
extract key symptoms from complex and unstructured patient descriptions. By filtering out noise at
the first level of the reasoning tree, this action distills core clinical signals, enabling MCTS to perform
a systematic and targeted exploration of diagnostic hypotheses based on critical evidence.

⋄ A2: Hypothesis Generation. Building upon the symptoms extracted in A1 and incorporating the
patient’s medical history and general information, this action generates a potential disease hypothesis
for the second level nodes of the reasoning tree, augmented by external knowledge.

⋄ A3: Evidence Verification. This action retrieves disease-specific symptom profiles from external
knowledge sources based on the initial diagnostic hypothesis and identifies the most clinically
significant indicators requiring validation. Operating at the third level of the reasoning tree, this
action emulates physicians’ reasoning processes in differential diagnosis.
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⋄ A4: Deductive Analysis. This action analyzes the results of evidence verification to assess whether
the patient’s presentation supports the current hypothesis, whether further testing is needed, or
whether the hypothesis should be refuted. This includes:

• Exist and Confident: The clinical indicator requiring validation exists and support the current
hypothesis, leading to a final diagnosis.

• Exist but Doubt: The indicator requiring validation exists but uncertainty remains. Further
diagnostic tests are required to confirm the hypothesis, i.e., return to A3.

• Non-exist and Confident: The indicator requiring validation does not exists, thus refuting the
current hypothesis. The model should consider other possible diseases, i.e., return to A2.

• Non-exist but Doubt: Although the indicator requiring validation does not exist, other clinical
findings or auxiliary information may still support the current hypothesis. The model should
perform deeper pathological analysis to explain this divergence and trigger additional diagnostic
verification, i.e., return to A3.

By introducing this hierarchical and more realistic medical scenario-based action space, Med-MCTS
can simulate a semi-interactive diagnostic process. Starting from the root node s0, we perform
selection, expansion, simulation, and backpropagation to construct a complete medical reasoning tree.
During the selection phase, we employ the Upper Confidence Bound apply to Tree (UCT) (Kocsis &
Szepesvári, 2006) to balance exploration and exploitation. The formula for UCT is:

UCT (s, a) = Q̄(s, a) + c

√
lnNparent(s)

N(s, a)
, (1)

where Q̄(s, a) = Q(s,a)
N(s,a) denotes the average reward obtained of action a in state s, with Q(s, a) as

the estimated reward value. N(s, a) is the number of times node s has been visited, and Nparent(s)
indicates the visit count of the parent node of s.

4.2 KNOWLEDGE-GROUNDED SEARCH MECHANISM

Medical diagnosis depends heavily on domain-specific knowledge. However, MCTS-based diagnostic
methods (Qi et al., 2024; Tran et al., 2024) exhibit significant limitations in integrating external
knowledge: these approaches either overly rely on the model’s internal parametric knowledge
or merely employ retrieval-augmented generation (RAG) mechanisms based solely on document
similarity. Such simplistic text-matching methods demonstrate notable shortcomings in complex
medical diagnostic scenarios. First, medical texts are highly specialized and complex, making surface-
level similarity-based retrieval inadequate for accurately identifying subtle distinctions between
medical terminologies. Second, the diagnostic process requires establishing logical relationships
among symptoms, test results, and diseases, whereas traditional RAG methods depend on text
fragment matching, failing to capture such deep-level logical connections. In contrast, knowledge
graphs offer clear advantages by representing medical knowledge in a structured form, including
relationships between diseases, symptoms, test results, and treatments. Additionally, models can
leverage paths within the graph for causal reasoning, enabling step-by-step derivation of diagnostic
results. This provides more transparent diagnostic evidence, enhancing both the accuracy and
interpretability of diagnostic systems.

Based on the above analysis, we propose a knowledge-enhanced approach that integrates medical
knowledge graphs into MCTS. Specifically, given a medical knowledge graph G = {V,E}, we
first encode all nodes v ∈ V using a text embedding model fθ, constructing an entity vector space
{vi = fθ(vi)|vi ∈ V }. During inference, for a given query text q and target relation type R, we
employ a large language model to parse q into a set of medical entities Eq = {e0, e1, . . . , enq

} and
embed these entities into corresponding query vectors {ei = fθ(ei)}

nq

i=0 using the same model, where
nq denotes the total number of extracted medical entities. Next, we compute the cosine similarity
between each query entity and all nodes in G, and selecte the top-k matching entities with cosine
similarity scores,

Vi = arg top-k
vj∈V,|S|=k

cosine(ei, vj). (2)
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Question: A 26-year-old woman who has given birth before is now 37 weeks pregnant. This morning, she noticed 
bleeding from the vagina, but she didn’t feel any severe abdominal pain. Upon examination, it was found that she 
had contractions. The doctor noted that her uterus is larger than expected for her gestational age, but the fetal 
heartbeat was normal...... What is the most likely diagnosis?

The important symptom from the patient's 
description is “Vaginal Bleeding”. Any vaginal 
bleeding in the third trimester is concerning 
and can indicate serious conditions.

The important … is “Uterus 
Larger Than Expected for 
Gestational Age”…affecting 
placental or fetal health

The important … “Contractions 
Present”, which indicates that 
labor may be imminent or that 
there could be uterine activity.

Placenta previa: It occurs 
completely covers the 
cervix…especially in the late 
stages of pregnancy.

Premature rupture of membranes: 
It can lead to contractions and 
may trigger labor…

Placenta Previa: When placenta is 
located low in the uterus, covering the 
cervix… due to the potential size of 
the placenta. 

Placental abruption: This occurs when 
the placenta detaches prematurely from 
the uterine wall, …... 

The typical symptoms of placental abruption 
include abdominal pain. Patients may suddenly 
experience severe abdominal pain…described as 
sharp or spasmodic.

The typical symptoms include 
uterine contractions…. Frequent 
or strong contractions may occur...

The most prominent symptom of 
PROM is the leaking of amniotic fluid. 
This fluid can be a noticeable gush 
or a slow trickle from the vagina.

Exclude Disease: Patient‘s description 
does not include severe abdominal pain… 
the preliminary diagnosis of placental 
abruption appears questionable.

Exclude but Maintain Hypothesis: If 
the abruption is mild or detaches 
from the uterine wall but …might 
result in less noticeable pain. 

Support and Certain: Uterine 
contractions are indeed a common 
symptom… support the possibility 
of this diagnosis. 

The hallmark symptom of 
placenta previa is painless 
vaginal bleeding that usually 
occurs in the third trimester... 

A1:  Key Symptom Extraction

A2: Hypothesis Generation

A3: Evidence Verification 

A4: Deductive Analysis 

Correct reasoning path
Wrong reasoning path

Figure 2: A case of Med-MCTS workflow for answering the question sampled from MedQA.

To ensure the reliability of retrieved knowledge, we establish a similarity threshold τ ∈ [0, 1]. If
maxj cosine(ei, vj) < τ , the system automatically disables knowledge augmentation for this query,
using only its internal parametric knowledge. This threshold mechanism serves as a quality control
that prevents the integration of potentially irrelevant or low-confidence knowledge from the external
knowledge graph G. The subgraph Gsub ⊆ G under the relation type R is retrieved as external
knowledge augmentation,

Gsub =
n⋃

i=1

{(vh, rel, vt) ∈ E|vh ∈ Vi, rel ∈ R}. (3)

Our framework employs two complementary retrieval methods from the medical knowledge graph to
support differential diagnosis:

⋄ R1: Symptom-to-Disease Retrieval. Given a patient’s clinical symptom set C = {c1, . . . , cnc},
we query the knowledge graph G to retrieve potential disease candidates Dcands = {d | ∃c ∈
C, (c, causes, d) ∈ G} ranked by clinical association strength. This forward-chaining reasoning is
primarily applied during the initial tree expansion phase to generate plausible diagnostic hypotheses
for further evaluation.

⋄ R2: Disease-to-Symptom Retrieval. For each disease hypothesis di ∈ Dhypo, we perform inverse
retrieval to obtain its characteristic clinical manifestations Cdi = {c | ∃d ∈ Dhypo, (d,manifests, c) ∈
G}, including typical symptoms, pathological mechanisms, and potential complications. This
backward-chaining verification serves to assess the congruence between observed symptoms
and disease profiles, and guide the selection of subsequent diagnostic tests through the relation
(d,manifests, c) ∈ G.

The bidirectional retrieval mechanism ensures comprehensive differential diagnosis while maintaining
clinical interpretability.

4.3 MULTI-DIMENSIONAL PATH EVALUATION

At the termination of the exploration phase in MCTS, we designed a comprehensive evaluation
method to select the optimal diagnostic result from the multiple candidate trajectories. Inspired by
evaluation mechanisms used in (Qi et al., 2024; Lifshitz et al., 2025), this method integrates multi-
dimensional evaluators to assess answer consistency, reasoning path diversity, and factual accuracy.
Specifically, we first sample all complete reasoning trajectories T = {t0, t1, . . . , tnp

} from the tree,
then classify these paths into corresponding trajectory sets {A0, A1, . . . , Anα} based on their final
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Table 1: Answer accuary (%) of our Med-MCTS and other baseline methods on four medical
diagnostic benchmarks. SC is self-consistency. @maj uses majority voting for answer verfication.

Model Method Datasets

MedBullets-4op MedBullets-5op MedQA JMED

Qwen2.5-7B-instruct

CoT 42.97 35.71 64.31 53.34
RAG 48.70 38.64 69.13 54.34
SC@maj8 46.43 37.34 64.95 55.00
RAP 48.38 40.26 65.92 56.67
rStar 49.03 41.56 69.45 57.33
Med-MCTS 52.27 43.18 72.67 58.67

Qwen2.5-72B-instruct

CoT 63.31 54.55 76.53 64.00
RAG 67.86 55.52 80.71 64.33
SC@maj8 65.91 55.84 78.78 64.67
RAP 66.56 57.14 81.99 66.33
rStar 68.18 58.77 82.96 67.00
Med-MCTS 71.10 62.66 84.57 68.00

diagnostic results {α0, α1, . . . , αnα
} , where nα represents the total number of distinct diagnostic

results. For each answer category αk, its evaluation score consists of the following components:

Score(αk) = λ1
|Ak|
m︸ ︷︷ ︸

Consistency

−λ2

∑
ti∈Ak

∑
tj∈Ak,tj ̸=ti

Sim(ti, tj)

|Ak|(|Ak| − 1)︸ ︷︷ ︸
Diversity

+λ3

∑
ti∈Ak

MAE(ti)
|Ak|︸ ︷︷ ︸

Agent Evaluation

. (4)

(1) Consistency measures the frequency of the answer appearing across all reasoning paths. High
consistency indicates that the answer is supported by the majority of reasoning paths, reflecting its
stability and reliability. (2) Diversity evaluates the variability among all reasoning paths leading
to the answer. High diversity indicates that the answer can be supported through multiple distinct
reasoning paths, reflecting the comprehensiveness and flexibility of the diagnostic process. (3) Agent
Evaluation assesses the factual accuracy of the answer by simulating the evaluation in a multi-agent
system. λ1, λ2 and λ3 are tunable hyperparameters that control the weight for each component.
Together, these components provide a robust and multi-dimensional evaluation for selecting the
optimal diagnostic result.

5 EXPERIMENTS

5.1 SETUP

We evaluate our proposed method, Med-MCTS, on four medical diagnosis benchmarks—MedQA,
Medbullets-4options, Medbullets-5options, and JMED—using two open-source LLMs: Qwen2.5-7B-
Instruct and Qwen2.5-72B-Instruct (Yang et al., 2024).

Baselines. Med-MCTS is a slow-thinking framework for various LLMs. We consider the following
baselines: Chain-of-Thought (CoT) (Wei et al., 2023) Prompting guides the model to generate a
series of intermediate reasoning steps by providing a few demonstrations. Retrieval-Augmented
Generation (RAG) (Lewis et al., 2021) enhances model’s knowledgeability and accuracy by re-
trieving relevant information from an external knowledge base and integrating it into the generation
process. Self-Consistency (SC) (Wang et al., 2023) leverages the intuition that a complex reasoning
problem typically admits multiple different ways of thinking leading to its unique correct answer.
RAP (Hao et al., 2023) adopts a self-exploration solution to iteratively improve LLM’s reasoning
performance through self-rewarded feedback. rStar (Qi et al., 2024) advocates a richer set of rea-
soning actions and augements the MCTS process with a mutual consistency discrimination process.
In addition, we conducted comparative evaluations with frontier general-purpose LLMs, including
GPT-4o (OpenAI, 2024a), o1-preview (OpenAI, 2024b), DeepSeek-v3 (DeepSeek-AI, 2025) and
DeepSeek-R1 (Guo et al., 2025), as well as domain-specific models specifically trained on the medical
data, including HuatuoGPT-o1 (Chen et al., 2024d) and Citrus1.0-Qwen (Wang et al., 2025b).
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5.2 MAIN RESULTS

As shown in Table 1, this study first systematically compares Med-MCTS with other methods based
on reasoning cost expansion, including CoT, SC, RAP, and rStar. As Med-MCTS is a model-agnostic,
plug-and-play reasoning enhancement framework, we evaluate its performance across backbone
models of varying scales to validate its generalizability. The experimental results demonstrate that,
when using the same backbone model, Med-MCTS achieves state-of-the-art performance across
all four benchmark datasets. This advantage primarily stems from its innovative integration of
reasoning actions with knowledge graph retrieval augmentation. Specifically, on the Qwen2.5-7B
model, Med-MCTS achieves performance improvements of 3.24%, 1.62%, 3.22%, and 1.34% on
MedBullets-4op, MedBullets-5op, MedQA, and JMED datasets compared to rStar. Similarly, for the
Qwen2.5-72B model, Med-MCTS exhibits substantial performance gains, surpassing rStar by 2.92%
on MedBullets-4op, 3.89% on MedBullets-5op, 1.61% on MedQA, and 1.00% on JMED. These
consistent improvements highlight the effectiveness of the Med-MCTS approach across different
model scales. Med-MCTS demonstrates stable performance improvements independent of model
scale. Moreover, on certain datasets, its reasoning capability improves more substantially as the
model size increases (from 7B to 72B), indicating better adaptability to larger models. Notably,
even when compared against RAG baselines that also employ external knowledge augmentation,
Med-MCTS exhibits significant performance improvements, which strongly validates the unique
value of knowledge graphs in medical diagnostic tasks.

Table 2 compares the performance of current SOTA general-purpose commercial models and spe-
cialized medical models. The results show that, despite Med-MCTS’s inherent limitations as a
training-free prompt-based method, its version equipped with a 72B general-purpose open-source
model still surpasses all specialized medical models and approaches the performance level of GPT-4o.
Due to the constraints in both model size and training scale of our base model, there remains a
performance gap compared to the SOTA results achieved by GPT-o1-preview. Combined with the
model-scale correlation observed in Table 1, we can reasonably hypothesize that Med-MCTS could
achieve even better performance if integrated with larger-scale, domain-specialized backbone models
possessing stronger reasoning capabilities.

Table 2: Answer accuracy (%) of frontier LLMs methods on
four medical diagnostic benchmarks.

Model Datasets

MedBullets
(4op)

MedBullets
(5op) MedQA JMED Overall

Frontier-level General LLMs
DeepSeek-v3 61.69 56.82 78.14 64.60 65.31
DeepSeek-R1 81.82 68.51 90.68 68.70 77.43
GPT-4o 75.00 71.10 82.32 62.70 72.78
GPT-o1-preview 87.62 83.77 94.21 71.60 84.30

Medical-specific LLMs
HuatuoGPT-o1-7B 51.62 40.48 69.77 54.50 54.09
HuatuoGPT-o1-72B 74.03 61.34 83.60 65.80 71.19
Citrus1.0-Qwen-72B 66.23 55.52 88.75 68.90 69.85

Med-MCTS (Ours) 71.10 62.66 84.57 68.00 71.58

Table 3: Ablation study on Med-
MCTS components

Settings Accuray(%)

Analysis of knowledge-enhanced Modules
Disable R1 71.7
Disable R2 70.0
Disable R1&R2 66.7

Analysis of deductive analysis Modules
Disable A4 68.3

Analysis of discriminator effectiveness
Majority vote 64.2
Mult-Agent evalution 67.5

Enable All 72.5

5.3 ABLATION STUDY AND ANALYSIS

Effectiveness of the Med-MCTS Generator. To systematically evaluate the efficacy of each
module in the Med-MCTS generator, we conducted ablation experiments on 120 samples from the
MedQA dataset using the Qwen2.5-7B model. Table 3 presents the accuracy results under different
configurations. As shown in the upper section of Table 3, the experimental results demonstrate that
removing the knowledge graph retrieval augmentation module (R1/R2) leads to a significant accuracy
drop of 5.8 % (from 72.5% to 66.7%). This strongly validates the critical role of external medical
knowledge enhancement in clinical diagnostic reasoning. Furthermore, introducing the deductive
analysis action (A4) improves accuracy by 4.2%. This enhancement confirms that relying solely on
symptom presence/absence for diagnosis is insufficient in complex clinical scenarios. The A4 module
effectively improves the model’s judgment capability for challenging cases by simulating physicians’
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reflective reasoning processes. The complete Med-MCTS framework—integrating knowledge graph
retrieval augmentation, deductive analysis, and the multi-dimensional discriminator—achieves the
best performance 72.5%. This result robustly demonstrates the synergistic effects of these modules.

Effectiveness of the Med-MCTS Discriminator. To verify the efficacy of the proposed discrimina-
tor, we compared it with two baseline methods: majority voting and multi-agent verification (Lifshitz
et al., 2025). As illustrated in the lower section of Table 3, when validating answers based on the same
reasoning trajectories from the generator, our multi-dimensional discriminator exhibits significant
advantages in reasoning accuracy. This performance improvement primarily stems from our novel
hybrid discrimination strategy, which innovatively combines objective assessment (based on statisti-
cal analysis) and subjective verification (based on model self-reflection). Compared to traditional
single-mechanism approaches, this dual-track verification framework more comprehensively captures
critical information in the reasoning process, effectively reducing misjudgment risks.

Expert Evaluation and Broader Implications The multiple-choice format datasets provide unam-
biguous ground-truth answers, thereby avoiding the noise inherent in automated metrics—such as
variations due to entity linking (e.g., synonyms for drugs or diseases) or differences in phrasing—and
enables a more precise evaluation of diagnostic reasoning capabilities. While we recognize that
automatic evaluation alone may not fully reflect a model’s clinical utility, we conducted an expert
evaluation to complement the automatic results. Three medical graduate students independently
scored 50 randomly sampled diagnostic paths generated by Med-MCTS on a 5-point scale across
two criteria: diagnostic correctness and interpretability. The mean scores were 4.12 and 4.23, respec-
tively. These results provide additional evidence of the potential of Med-MCTS in handling realistic
clinical scenarios with unstructured inputs. Beyond outputting a final answer, the reasoning tree
exposes the entire decision path—key symptom → candidate disease → evidence supplementation
→ diagnosis refinement. This transparency provides multifaceted value that a single accuracy metric
cannot capture. For clinicians, it offers a verifiable “show-your-work” pathway, building trust and
allowing for rapid identification of potential flaws. For system improvement, the tree’s branches
naturally yield high-quality preference data for future alignment. For long-term maintainability, the
knowledge-grounded approach allows the system to evolve with medical knowledge. Consequently,
the expert-evaluated interpretability confirms that the primary benefit of Med-MCTS lies in delivering
actionable and auditable reasoning, which is paramount for high-stakes clinical decision support.

6 CONCLUSION

In this work, we present Med-MCTS, a knowledge-enhanced reasoning framework specifically de-
signed for medical diagnostic tasks. As a plug-and-play reasoning enhancement, Med-MCTS can be
seamlessly integrated with various large language models without requiring additional fine-tuning or
training. By designing clinically-informed diagnostic actions, incorporating external medical knowl-
edge graphs, and developing a multi-dimensional evaluation mechanism, our framework significantly
improves both the accuracy and interpretability of medical diagnostic reasoning. Experimental results
demonstrate that Med-MCTS achieves outstanding performance across multiple medical reasoning
tasks, outperforming existing baseline methods and reaching performance levels comparable to
GPT-4o, providing a novel solution for AI-assisted medical diagnosis.

LIMITATIONS

A primary limitation of Med-MCTS lies in its computational overhead relative to standard reasoning
methods. The tree-search process inherently requires multiple LLM calls, leading to increased infer-
ence latency and resource consumption compared to a single-pass generation. This cost-effectiveness
trade-off may currently limit its applicability in scenarios demanding real-time, low-cost interactions.
However, we argue that in high-stakes domains like medical diagnosis, this cost is justifiable. The
critical imperative is diagnostic accuracy and the provision of a verifiable reasoning trace, both of
which are enhanced by the systematic exploration of Med-MCTS. The potential human and financial
costs of a misdiagnosis far outweigh the incremental computational expense incurred by our method.
Therefore, while future work will focus on optimizing efficiency, we believe the Med-MCTS approach
represents a critical trade-off in favor of safety and reliability for healthcare applications.
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A ALGORITHM OF MED-MCTS

Algorithm 1 Workflow of Med-MCTS
1: Input: Patient’s verbal description x, LLM , Knowledge Graph G, rollout number k.
2: (P, C)← MedExtractor LLM(x)
3: Initialize Tree T using (P, C)
4: for i = 1 to k do
5: node s← select(T )
6: Schild ← expand(T , s)
7: Randomly sample a node ssample from Schild
8: ssol ← SIMULATE(ssample,P, C)
9: Backpropagate(T , ssol)

10: end for
11: Sample all trajectories {t0, t1, . . . , tnt

} and group them by final answer {α0, α1, . . . , αnα
}

12: return αbest = argmax(Score(α))

13: function SIMULATE(s, P , C) ▷ Taking simulation starting from root node as example
14: (A1) c← Extractor of key symptoms LLM(P, C)
15: (R1) Retrieve candidate diseases Dcands ← (c,G)
16: (A2) dh ← Generator of hypotheses LLM(c,Dcands,P)
17: (R2) Retrieve clinical manifests Chypo ← (dh,G)
18: (A3) ĉ← Selector of related symptoms LLM(c, Chypo,P)
19: (A4) ssol ← Generator of diagnosis LLM(ĉ, dh,P, C)
20: if ssol confirms dh then ▷ Exist and confident
21: return ssol
22: else if ssol excludes dh then ▷ Non-exist and confident
23: Backtrack to A2
24: else if ssol cannot diagnose dh then ▷ Exist but doubt, or Non-exist but doubt
25: Backtrack to A3
26: end if
27: end function

B IMPLEMENTATION DETAILS

Evaluation Datasets. We evaluated Med-MCTS on four medical diagnosis datasets: MedQA,
Medbullets-4options, Medbullets-5options, and JMED. MedQA (Jin et al., 2020) is derived from
multiple-choice questions of the United States Medical Licensing Examination (USMLE). We
select disease diagnosis questions that evaluate a model’s understanding and reasoning ability.
MedBullets (Chen et al., 2024b) is a free learning and collaboration community that offers a large
collection of USMLE style questions and study resources. The question type is primarily USMLE Step
1-style multiple-choice questions, available in both four-option and five-option versions. JMED (Wang
et al., 2025b) is a novel dataset comes from JD Health’s online internet hospital and is designed to
simulate real clinical data. Each question includes 21 response options with a "None of the above"
choice.

Hyperparameters We present the hyperparameters specific to Med-MCTS along with their descrip-
tions in Table 4, while those related to the generative LLM are reported in Table 5. Regarding the
weights in the multi-dimensional path evaluation, we determined them through a systematic tuning
procedure: specifically, we randomly sampled 50 medical diagnosis questions from the MedQA
training set to construct a small validation subset. On this subset, we performed a grid search over
various combinations of the λ parameters within the range [0.1, 1.0] (step = 0.1,

∑
λi = 1 ). The

configuration that yielded the best accuracy on this subset—λ1 = 0.3, λ2 = 0.4, λ3 = 0.3—was
adopted for all main experiments.

Medical Knowledge Graph To implement the Knowledge guided search Mechanism, we integrate
a medical knowledge graph into the MCTS process to enable timely incorporation of external
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Table 4: Med-MCTS hyperparameters.
Parameter Value
MCTS exploration weight 2.0
MCTS discount factor 1.0
number of rollouts 8
number of child nodes 4
maximum depth of the tree 6
maximum number of triplets retrieved from KG 15

Table 5: Qwen2.5 hyperparameters.
Parameter Value
max_tokens 1024
temperature 0.8
top_k 100
top_p 0.95
num_return_sequences 1

knowledge during reasoning. Specifically, we utilize an open-source knowledge graph in the medical
domain, which encompasses approximately 44,000 entities and around 300,000 semantic relationships.
These entities include diseases, symptoms, and examination items, with relationships describing
associations such as those between diseases and symptoms, and between diseases and their etiologies.
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Figure 3: Medical knowledge graph of diseases and symptoms. represents the name of disease.
refers to the symptoms or test results.

Retrieval Corpus For the information retrieval module, we employed the large-scale medical
textbook corpus released concurrently with the MedQA dataset as our retrieval knowledge base.
This design choice was motivated by several key considerations: First, medical textbooks, being
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professionally edited publications, offer superior authority and accuracy. Compared to unstructured
medical knowledge scraped from the internet, the textbook corpus ensures significantly higher
reliability of retrieved results - a critical requirement for high-precision tasks like medical diagnosis.
Second, most questions in the MedQA dataset can find direct or indirect knowledge support within the
textbook corpus. This comprehensive coverage guarantees the effectiveness of our retrieval module,
particularly for fundamental medical concepts and typical case analyses. In implementation, the
official release provides two text segmentation approaches for the original textbook corpus: sentence-
level and paragraph-level segmentation, both of which substantially enhance retrieval efficiency and
accuracy.

C ADDITIONAL RESULTS

To further validate the source of the gains, we supplemented experiments with higher sampling
budgets. We randomly selected 200 instances from the JMED dataset and generated 128 samples
each using Qwen2.5-7B-Instruct and Qwen2.5-72B-Instruct. Table 6 shows the accuracy as the
number of samples increases. To prevent artificial inflation of pass@k caused by output diversity
in multiple-choice settings, we maintain majority voting aggregation to ensure fair comparisons.
The results indicate that self-consistency slowly saturates as the number of samples grows, whereas
Med-MCTS maintains a clear lead under equal or smaller sampling budgets, confirming that its
improvement is not merely a by-product of deeper sampling.

Table 6: Budget-adjusted accuracy(%) performance comparison between Self-Consistency (SC) and
the proposed Med-MCTS on JMED datasets.

Model Metric SC (Number of Samples) Med-MCTS1 8 16 32 64 128
Qwen2.5-7B Majority Vote 52.5 55.5 54.5 54.0 54.5 54.5 58.5

Pass@k 52.5 70.5 76.5 80.8 86.0 90.0 -
Qwen2.5-72B Majority Vote 59.5 63.0 63.5 62.5 62.5 62.5 67.0

Pass@k 59.5 81.0 85.5 89.0 90.0 93.5 -

D DISSCUSSION

Inference Cost Med-MCTS enhances language models’ diagnostic capabilities through test-time
reasoning expansion, with its core computational overhead stemming from the reasoning tree con-
struction process. Specifically, within the MCTS framework, the system must perform multiple
rollouts (simulation samples) to explore different diagnostic pathways, a process that requires re-
peated calls to the underlying language model. Table 7 presents the inference costs of two model
sizes—Qwen2.5-7B and Qwen2.5-72B—on the Medbullets dataset under the default configuration
(8 rollouts). The table details the average number of model calls and the the number of tokens
generated per question during inference. For Qwen2.5-7B, Med-MCTS requires an average of 83.5
calls, generating 168.9k tokens per question. For Qwen2.5-72B, it demands an average of 77.22 calls
while producing 121.7k tokens per question. Although increasing the number of rollouts generally
improves diagnostic accuracy, the computational cost grows approximately linearly. Consequently,
practical applications must carefully balance performance gains against efficiency requirements.

Computational Resources Our current implementation utilizes four NVIDIA A100 GPUs for
deploying and running inference with the Qwen2.5-72B model. The complete experimental procedure
with 8 rollouts on the Medbullets test set requires approximately 1.5 days to complete. Computa-
tional efficiency can be significantly improved through optimized batching strategies, which would
substantially reduce the overall runtime.

E FUTURE WORK

Particularly promising is the potential to leverage search trajectory data for model self-improvement.
By sampling high-quality reasoning paths to construct paired training samples, we could establish a
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Table 7: Inference costs of Med-MCTS on Medbullets. We show the average number of inference
calls and generated tokens required to answer one question.

Qwen2.5-7B Qwen2.5-72B

Avg. calls 83.5 77.22
Avg. generated tokens 168.9k 121.7k

virtuous cycle of iterative capability enhancement. This approach, combined with smarter pruning
strategies and parallel computing solutions, may address current scalability limitations while main-
taining the framework’s diagnostic accuracy benefits. Such advancements would not only improve
model’s clinical utility but also expand its applicability to other domains requiring rigorous reasoning.

F BROADER IMPACT

While Med-MCTS enhances model’s reasoning capabilities and improves both accuracy and inter-
pretability in medical diagnostic tasks, its practical application still faces significant limitations. Due
to the inherent hallucination issues and potential biases, the diagnostic results and reasoning paths
generated by the model cannot yet be considered fully reliable. In the high-stakes medical domain,
erroneous diagnoses could lead to serious consequences, necessitating strict regulatory oversight for
any Med-MCTS-based decision support system.

G PROMPT TEMPLATES

MedExtractor

You are a professional medical expert skilled in extracting key medical information
from unstructured patient oral descriptions. Please carefully analyze the patient’s de-
scription below and extract structured information, including general features (including
age, gender, medical history, etc.) and clinical features (including symptoms, test results, etc.).

The final output is in JSON format, including the following fields:
{
"General features": ["Feature 1"," Feature 2",...],
"Clinical features": ["Symptom 1"," Symptom 2",...]
"Reasoning": "Reasoning logic based on patient description (medical background analysis)"
}

### Requirement:
1. If certain information is not mentioned, the corresponding field is set to an empty list ’[]’.
2. Maintain standardization of medical terminology (such as using "hypertension" instead of
"high blood pressure").
3. Explain the extraction criteria in ’reasoning’ (such as the patient saying ’frequently dizzy’
→ inferring possible ’dizziness’).
4. Do not output irrelevant characters

### Patient description:
{{Patient’s Verbal Description}}
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Action 1. Key Symptom Extraction.

You are a skilled medical diagnostician adept at identifying the most critical and representative
symptoms from patient information to prioritize potential disease hypotheses. Please
carefully review the provided patient details and symptom presentation, and select the most
important, urgent, and characteristic symptom(s) to focus on for formulating a plausible
disease hypothesis.

The final output is in JSON format, including the following fields:
{
"Key features": ["Feature 1"," Feature 2",...],
"Reasoning": "Reasoning logic based on patient description (medical background analysis)"
}

### Requirement:
1. If certain information is not mentioned, the corresponding field is set to an empty list ’[]’.
2. Maintain standardization of medical terminology (such as using "hypertension" instead of
"high blood pressure").
3. Explain the criteria in ’reasoning’.
4. Do not output irrelevant characters

### Patient description:
Patient’s General Features: {{Patient’s General Features}}
Patient’s Clinical Features: {{Patient’s Clinical Features}}

Action 2. Hypothesis Generation.

You are a proficient medical expert skilled in developing potential disease hypotheses using
patient information, symptoms, and symptom-disease relationships derived from a medical
knowledge graph. Please utilize the provided details about the patient, their symptoms, and
the retrieved symptom-disease associations to formulate a plausible disease hypothesis.

The final output is in JSON format, including the following fields:
{
"Hypothesis": "Disease name",
"Reasoning": "Reasoning logic based on patient description (medical background analysis)"
}

### Requirement: 1. If certain information is not mentioned, the corresponding field is set to
an empty list ’[]’.
2. Maintain standardization of medical terminology (such as using "hypertension" instead of
"high blood pressure").
3. Explain the criteria in ’reasoning’.
4. Do not output irrelevant characters

### Patient description:
Patient’s General Features: {{Patient’s General Features}}
Patient’s Key Features: {{Patient’s Key Features}}

### Triples retrieved from the knowledge graph
{{Retrieved Symptom-Disease Triples from Knowledge Graph}}
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Action 3. Evidence Verification.

You are a proficient medical expert skilled in identifying additional relevant symptoms to
investigate further based on patient information, symptoms, existing disease hypotheses, and
symptom-disease relationships derived from a medical knowledge graph. Please utilize
the provided details about the patient, their symptoms, the current disease hypothesis, and
the retrieved disease-symptom associations to formulate a plausible next step for further
symptom inquiry.

The final output is in JSON format, including the following fields:
{
"Relevant symptom": "symptom name",
"Reasoning": "Reasoning logic based on patient description (medical background analysis)"
}

### Requirement:
1. If certain information is not mentioned, the corresponding field is set to an empty list ’[]’.
2. Maintain standardization of medical terminology (such as using "hypertension" instead of
"high blood pressure").
3. Explain the criteria in ’reasoning’.
4. Do not output irrelevant characters

### Patient description:
Patient’s General Features: {{Patient’s General Features}}
Patient’s Key Features: {{Patient’s Key Features}}
Current disease hypothesis: {{Current Hypothesis}}

### Triples retrieved from the knowledge graph
{{Retrieved Disease-Symptom Triples from Knowledge Graph}}

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Action 4. Deductive Analysis.

You are a proficient medical expert skilled in evaluating patient symptoms and clinical
indicators to validate or refute potential disease hypotheses. Please utilize the provided
patient’s oral description, the disease hypothesis, and the relevant clinical indicator to be
verified to determine the presence of the symptom and its impact on confirming or refuting
the disease hypothesis.

The final output is in JSON format, including the following fields:
{
"Existence": "Exist/Non-exist",
"Certainty": "Confident/Doubt",
"Reasoning": "Reasoning logic based on patient description (medical background analysis)"
}

The final result should fall into one of the following categories:
Exist and Confident: The clinical indicator exists and supports the current hypothesis, leading
to a definitive diagnosis.
Exist but Doubt: The clinical indicator exists, but uncertainty remains. Further diagnostic
tests are needed to confirm the hypothesis.
Non-exist and Confident: The clinical indicator does not exist, refuting the current hypothesis.
Other potential diseases should be considered.
Non-exist but Doubt: Although the clinical indicator does not exist, other clinical findings or
ancillary information may still support the current hypothesis. Further pathological analysis
is needed to explain the discrepancy.

### Requirement:
1. If certain information is not mentioned, the corresponding field is set to an empty list ’[]’.
2. Maintain standardization of medical terminology (such as using "hypertension" instead of
"high blood pressure").
3. Explain the criteria in ’reasoning’.
4. Do not output irrelevant characters

### Patient description:
Patient’s Verbal Description: {{Patient’s Verbal Description}}
Current Disease Hypothesis: {{Current Hypothesis}}
Clinical Indicator to be Verified: {{Clinical Indicator to be Verified}}

H GENERATIVE AI STATEMENT

We acknowledge the use of generative AI in this work. Specifically, we employed LLMs to provide
editorial support during the preparation of the manuscript.
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