
Perturbation Theory for the Information Bottleneck

Vudtiwat Ngampruetikorn,* David J. Schwab
Initiative for the Theoretical Sciences, The Graduate Center, CUNY

*vngampruetikorn@gc.cuny.edu

Abstract

Extracting relevant information from data is crucial for all forms of learning. The
information bottleneck (IB) method formalizes this, offering a mathematically pre-
cise and conceptually appealing framework for understanding learning phenomena.
However the nonlinearity of the IB problem makes it computationally expensive
and analytically intractable in general. Here we derive a perturbation theory for the
IB method and report the first complete characterization of the learning onset—the
limit of maximum relevant information per bit extracted from data. We test our
results on synthetic probability distributions, finding good agreement with the
exact numerical solution near the onset of learning. We explore the difference and
subtleties in our derivation and previous attempts at deriving a perturbation theory
for the learning onset and attribute the discrepancy to a flawed assumption. Our
work also provides a fresh perspective on the intimate relationship between the IB
method and the strong data processing inequality.

1 Information Bottleneck

Extracting relevant information from data is crucial for all forms of learning. Animals are very
adept at isolating biologically useful information from complicated real-world sensory stimuli: for
example, we instinctively ignore pixel-level noise when looking for a face in a photo. A failure
to disregard irrelevant bits could lead to suboptimal generalization performance especially when
the data contains spurious correlations. For instance, an image classifier that relies on background
texture to identify objects is likely to fail when presented with a new image showing an object in an
‘unusual’ background (see, e.g., Refs [7, 30]). Understanding the principles behind the identification
and extraction of relevant bits is therefore of fundamental and practical importance.

Formalizing this aspect of learning, the information bottleneck (IB) method provides a precise notion
of relevance with respect to a prediction target: the relevant information in a source (-) is the bits that
carry information about the target (. ) [26]. The relevant bits in - are summarized in a representation
(/) via a stochastic map defined by an encoder @(I |G), obeying the Markov constraint /↔-↔. .1
In general a trade-off exists between the amount of discarded information (compression) and the
remaining relevant information in / (prediction), thus motivating the IB cost function,2

! [@(I |G)] = � (/; -) − V� (/;. ), (1)

where V>0 denotes the trade-off parameter and � (�; �) the mutual information. The first term favors
succinct representations whereas the second encourages predictive ones. The IB loss is minimized by
the representations that are most predictive of . at fixed compression, parametrized by the Lagrange
multiplier V (see, Fig 1a).

The IB method offers a highly versatile framework with wide-ranging applications, including neural
coding [16], evolutionary population dynamics [22], statistical physics [9], clustering [25], deep

1This Markov chain implies %. |-,/ = %. |- and %/ |-,. = %/ |- (see, e.g., Ref [6]).
2The optimization problem involving Eq (1) first appeared in a different context (see, e.g., Ref [27]).
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Figure 1: Information bottleneck & Learning onset. a. The IB frontier (solid) is parametrized
by the trade-off parameter V whose inverse is the slope of this curve. The relevant information is
bounded from above by the data processing inequality (DPI) [dotted line] and its tight version, the
strong data processing inequality (SDPI) [Eq (3), dashed line] which touches the IB curve at the
origin. The slope at the origin is equal to the inverse critical trade-off parameter V−1

2 which marks
the learning onset (circles in (b-d)). b-d. Our controlled expansions (dashed) vs the exact solution
(solid) for the joint distribution %-,. shown in (e). The red curves in (e) depict the the perturbative IB
encoder defined in Eq (14). We obtain the SDPI from Eqs (16) & (17) and the perturbative expansions
in (b-d) from Eqs (26) & (27), see Appendix for relevant algorithms. Information is in bits.

learning [1–3] and reinforcement learning [10]. However the nonlinearity of the IB problem makes it
computationally expensive and difficult to analyze, barring a few special cases [5]. This necessitates an
investigation of tractable methods for solving the IB problem. The use of variational approximations
to reduce the computational cost has paved the way for a massive scale-up of the IB method [3].
Complementing this approach, we report a new analytical result for the IB problem in the tractable
limiting case of learning onset.

2 Learning Onset

Although the IB loss in Eq (1) favors a representation that encodes every relevant bit in - when
V → ∞,3 the optimal representation needs not contain any relevant information at finite V. To see
this, we note that the loss vanishes for any uninformative representation � (/; -) = � (/;. ) = 0, and
thus an informative representation yields a lower loss only when the relevant information in / is
adequately large: a negative IB loss requires � (/;. ) > V−1� (/; -). But the relevant information is
also bounded from above by the data processing inequality (DPI), � (/ ;. ) ≤ � (/ ; -), resulting from
the the Markov constraint /↔-↔. [6] (see, Fig 1a). Combining these inequalities yields

V−1� (/; -) < � (/;. ) ≤ � (/; -), (2)

which cannot be met when V−1 > 1. Hence the existence of an informative IB minimizer requires
V−1 ≤ 1. Indeed for any %-,. with � (-;. ) > 0, there exists a critical trade-off parameter V2 (- →
. ) ≥ 1 that marks the learning onset, separating two qualitatively distinct regimes: uninformative
regime at V < V2 and informative regime at V > V2 . The learning onset is the first in a series of
transitions that emerges from the hierarchy of relevant information in the data [26].

Galvanized in part by the recent applications of the IB principle in deep learning, several works
have attempted to characterized the IB transitions [8, 17, 28, 29]. However the IB problem remains
intractable even in limiting cases and a complete characterization of the IB transitions remains elusive.
In fact the only exception is the special case of Gaussian variables for which an exact solution
exists [5]. In this work we derive a perturbation theory for the IB problem and offer the first complete
description of the learning onset. We elaborate on the subtle differences between our theory and the
previous works in Sec 6.

The learning onset is not only a special limit in the IB problem but also physically and practically
relevant. It corresponds to the region where the relevant information per encoded bit is greatest and

3The compression term, while infinitesimally small in this limit, still penalizes irrelevant information and
prefers a representation / that is the minimal sufficient statistics of - for . .
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thus places a tight bound on the thermodynamic efficiency of predictive systems [23, 24]. An analysis
the IB learning onset has recently found applications in statistical physics [9]. The (inverse) critical
trade-off parameter is also a useful measure of correlation between two random variables [13]; indeed
its square root satisfies all but the symmetry property of Rényi’s axioms for statistical dependence
measures [21]. Finally estimating the upper bound of V2 might help weed out non-viable values of
hyperparameters in deep learning techniques such as the variational information bottleneck [28, 29].

2.1 Strong data processing inequality

We can improve the bound on V2 with the tight version of the DPI, the strong data processing
inequality (SDPI) [4, 18, 20] (see, Fig 1a)

� (/;. ) ≤ [KL (- → . )� (/; -) (3)
where [KL (-→. ) denotes the contraction coefficient for the Kullback-Leibler divergence, defined
via

[KL (- → . ) ≡ sup
'-≠%-

DKL ('. ‖%. )
DKL ('- ‖%- ) . (4)

Here %- and %. denote the probability distributions of - and . . The supremum is over all allowed
distributions given the space of - , and '. is related to '- via the channel %. |- . Replacing the DPI
with the SDPI in Eq (2), we obtain

V2 (- → . ) ≥ [KL (- → . )−1. (5)
In the following section we show that the equality holds, as expected (since the SDPI is tight). Note
that [KL (-→. ) and V2 (-→. ) are generally asymmetric under -↔. .

3 Perturbation Theory

We investigate the learning onset through the lens of perturbation theory. This method constructs the
solution for a problem as a power series in a small parameter Y, when the solution for the limiting
case Y=0, the unperturbed solution, is accessible. For small Y, the higher order terms in this series
represent ever smaller corrections to the unperturbed solution. To obtain these corrections, we insert
the series solution into the initial problem and expand the resulting expressions as power series in
Y, truncated at appropriate order. For example, the first-order theory drops all quadratic and higher
terms (those proportional to Y2, Y3, . . . ), resulting in a consistency condition for the linear correction
(i.e., the term proportional to Y). Requiring consistency up to Y= leads to the nth-order perturbation
theory. In practice the first few corrections suffice for a characterization of the problem in the vicinity
of Y=0.

Our theory is based on a controlled expansion around the critical trade-off parameter V2 and some
uninformative encoder @0 (I |G) = @0 (I),

@(I |G) = @0 (I |G) + Y@1 (I |G) + Y2@2 (I |G) + . . . (6)

� (/; -) = Y� (1)/ ;- [@1] + Y2� (2)/ ;- [@1, @2] + . . . , (7)

where Y ≡ V − V2 → 0+ and
∑

I @= (I |G) = 0 for = ≥ 1 to ensure normalization. Note that � (0)/ ;-
vanishes for uninformative @0. The first and second-order informations capture the first and second-
order growths of information as V rises above V2 and are given by (see Appendix for derivation)

� (1)/ ;- [@1] =
∑
G

?(G)
∑
I∈Z1

@1 (I |G) ln @1 (I |G)
@1 (I) (8)

� (2)/ ;- [@1, @2] =
∑
G

?(G)
( ∑
I∈Z0

@1 (I |G)2 − @1 (I)2
2@0 (I) +

∑
I∈Z1

@2 (I |G) ln @1 (I |G)
@1 (I)

+
∑
I∈Z2

@2 (I |G) ln @2 (I |G)
@2 (I)

)
, (9)

where Z0 = supp(@0) and Z= = supp(@=) \ ⋃=−1
8=0 Z8 (i.e., Z= contains representation classes or

space that first appear in the support of the =th-order encoder).4 The expansions for @(I) and @(I |H)
4Our theory generalizes the expansions in Refs [28, 29] which considered the caseZ1=Z2=∅.
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take the same form as Eq (6), and the expressions for � (/;. ) are identical to Eqs (7)-(9) but with .
replacing - everywhere. Finally we write down the loss function as a power series in Y,

! [@(I |G)] = Y! (1) [@1] + Y2! (2) [@1, @2] + . . . , (10)

where

! (1) [@1] = � (1)/ ;- [@1] − V2 � (1)/ ;. [@1] (11)

! (2) [@1, @2] = � (2)/ ;- [@1, @2] − V2 � (2)/ ;. [@1, @2] − � (1)/ ;. [@1] . (12)

3.1 First-order theory

Minimizing the first-order loss yields5

min ! (1) = ! (1) [@∗1] = 0 with
@∗1 (I |G)
@∗1 (I)

= exp

(
V2

∑
H

?(H |G) ln @
∗
1 (I |H)
@∗1 (I)

)
for I ∈ Z1. (13)

As the ratio @1 (I |G)/@1 (I) does not depend on I, we eliminate the superfluous dependence on I by
defining

A (G) ≡ @
∗
1 (I |G)?(G)
@∗1 (I)

for I ∈ Z1, and A (H) ≡
∑
G

?(H |G)A (G). (14)

Note that both A (G) and A (H) are non-negative and normalized:
∑

G A (G) = ∑
H A (H) = 1. Substituting

Eqs (14) in (8) & (13), we obtain

� (1)/ ;- = DKL [A (G)‖?(G)]
∑
I∈Z1

@∗1 (I)

� (1)/ ;. = DKL [A (H)‖?(H)]
∑
I∈Z1

@∗1 (I),
(15)

where
A (G) = ?(G)4−V2 (DKL [? (H |G) ‖A (H) ]−DKL [? (H |G) ‖? (H) ]) . (16)

Since the first-order loss vanishes [see, Eq (13)], we have � (1)/ ;- [@∗1] − V2 �
(1)
/ ;. [@∗1] = 0 and thus

V2 =
� (1)/ ;- [@∗1]
� (1)/ ;. [@∗1]

=
DKL [A (G)‖?(G)]
DKL [A (H)‖?(H)] . (17)

Note that an uninformative solution A (G) = ?(G) always satisfies Eq (16) and we must seek a
nontrivial solution A (G) ≠ ?(G).
We now show that the critical trade-off parameter is equivalent to the inverse contraction coefficient.
First we note that A (G) in Eq (16) is a solution to a different optimization, described by a loss function
L[ 5 ] = DKL [ 5 (G)‖?(G)] − V2 DKL [ 5 (H)‖?(H)]. That is, XL/X 5 | 5 →A = 0 and minL = L[A] = 0.

It follows immediately that X
(

DKL [ 5 (H) ‖? (H) ]
DKL [ 5 (G) ‖? (G) ]

)
/X 5 | 5 →A = 0 for DKL [A (G)‖?(G)] > 0, therefore

V−1
2 =

DKL [A (H)‖?(H)]
DKL [A (G)‖?(G)] = sup

5 ≠?

DKL [ 5 (H)‖?(H)]
DKL [ 5 (G)‖?(G)] = [KL (- → . ), (18)

where the first and last equalities come from Eqs (17) & (4), respectively. The above analysis provides
an alternative derivation of the equivalence between the contraction coefficients of mutual information
and KL divergence [4, 18].

While our first-order theory provides a method for identifying the critical trade-off parameter by
solving Eqs (16) & (17), it is incomplete. The optimal encoder in Eq (13) is determined only up to
a multiplicative factor. Consequently the informations in Eq (15) still depend on @1 (I) which can
take any positive value (for I ∈ Z1). This unphysical scale invariance is broken in the second-order
theory.

5Unlike in the original IB problem, here the optimization is unconstrained since the normalization∑
I @1 (I |G) = 0 sums over bothZ0 andZ1, and only the latter enters our first-order theory.
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3.2 Second-order theory

From Eqs (9) & (12), we write down the second-order loss

! (2) [@1, @2] =
∑
I∈Z0

∑
G,G′ @1 (I |G) (G, G ′)@1 (I |G ′)

2@0 (I) − � (1)/ ;. [@1] (19a)

+
∑
G

?(G)
∑
I∈Z1

@2 (I |G)
(
ln
@1 (I |G)
@1 (I) − V2

∑
H

?(H |G) ln @1 (I |H)
@1 (I)

)
(19b)

+
∑
G

?(G)
∑
I∈Z2

@2 (I |G)
(
ln
@2 (I |G)
@2 (I) − V2

∑
H

?(H |G) ln @2 (I |H)
@2 (I)

)
, (19c)

where we define

 (G, G ′) ≡ X(G, G ′)?(G) + (V2 − 1)?(G)?(G ′) − V2
∑

H
?(H)?(G |H)?(G ′ |H). (20)

Optimizing ! (2) with respect to @2 (forZ1 andZ2 separately) results in stationary conditions, which
equate the terms in the parentheses of Eqs (19b) & (19c) to zero.6 Eliminating � (1)/ ;. in Eq (19a) with
Eq (15), we have

! (2) [@1] = −DKL [A (H)‖?(H)]
∑
I∈Z1

@∗1 (I) +
∑
I∈Z0

∑
G,G′ @1 (I |G) (G, G ′)@1 (I |G ′)

2@0 (I) . (21)

Minimizing this loss function with respect to @1 and subject to the normalization
∑

I @1 (I |G) = 0
gives ∑

G′
 (G, G ′) @

∗
1 (I |G ′)
@0 (I) = −

( ∑
I′∈Z1

@∗1 (I′)
) ∑

G′
 (G, G ′) A (G

′)
?(G ′) for I ∈ Z0. (22)

Substituting the above in Eq (21) leads to

! (2) [@∗1] = −DKL [A (H)‖?(H)]
∑
I∈Z1

@∗1 (I) +
^

2

( ∑
I∈Z1

@∗1 (I)
)2

, (23)

where we define
^ ≡

∑
G,G′

A (G) (G, G ′)A (G ′)
?(G)?(G ′) . (24)

Assuming ^ > 0,7 the final minimization with respect to
∑

I∈Z1 @1 (I) yields∑
I∈Z1

@∗1 (I) =
1
^

DKL [A (H)‖?(H)], (25)

! (2) [@∗] = − 1
2^

DKL [A (H)‖?(H)]2. (26)

Finally we eliminate the remaining dependence on @1 in Eq (15) and write down the first-order
information

� (1)/ ;- =
1
^

DKL [A (G)‖?(G)] DKL [A (H)‖?(H)]

� (1)/ ;. =
1
^

DKL [A (H)‖?(H)]2.
(27)

We see that the second-order perturbation theory fixes the scales of the leading corrections to mutual
information, thus completing our analysis of the learning onset. Furthermore these leading corrections
are related via � (1)/ ;- = V2 �

(1)
/ ;. and ! (2) = −� (1)/ ;. /2.

6This optimization is unconstrained since the second-order loss does not depend on @2 with I ∈ Z0 (see,
footnote 5). The resulting stationary conditions are identical to Eq (13) for @1 with I ∈ Z1 and @2 with I ∈ Z2.

7For ^ ≤ 0, the loss function in Eq (23) is unbounded from below and a higher order perturbation theory is
required to fix the scale of @1.
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Figure 2: Learning onset in binary classification. We illustrate the results of our theory for the
case of a binary target variable with equal probability assigned to each class, i.e., . ∈ {H1, H2} and
?(.= H1) = ?(.= H2) = 1/2, for three different sets of conditional distributions ?(G |H) (a-c, top row).
a. The source data - are drawn from a Gaussian distribution whose mean and variance depend on .
(top panel). We set the mean to zero and variance to one for . = H1 and solve the IB learning onset
for various values of mean ` and variance f for . = H2. The middle panel depict the critical trade-off
parameter, predicted by our theory in Sec 3 (filled circles) and the methods from previous works
described in Sec 6 (empty circles). The bottom panel shows the information response to a small
perturbation in trade-off parameter [for definition see, Eq (7)]. The theory predictions are plotted
against the data mutual information, parametrized by the mean ` of ?(G |H2) for four different values
of standard deviations (see legend). The dotted lines display the power dependence and serves only
as a guide to the eye to aid comparisons. b. Same as (a) but for exponential distributions and the
curves are parametrized by the rate parameter _ of the exponential distributions (see, top panel). c.
Same as (a) but for Poisson distributions and the curves are parametrized by _2 [mean of ?(G |H2)] for
four values of _1 [mean of ?(G |H1)] (see legend). Information is in bits.

4 Numerical Results

We now turn to comparing our theory to numerical results. In Fig 1, we compare the results from our
perturbation theory [Eqs (16), (17), (26) & (27)] to the numerically exact solution of the IB problem
for a synthetic joint distribution (shown in Fig 1e). Our theory correctly identifies the critical trade-off
parameter and captures the leading corrections to the mutual information and IB loss in the vicinity
of the learning onset (see, Fig 1b-d). The inverse critical trade-off parameter V−1

2 coincides with the
slope of the strong data processing inequality (SDPI) which provides a tight upper bound for the IB
frontier (Fig 1a). Note that the SDPI is tight at the origin [� (/; -) = � (/;. ) = 0] and is therefore
fully characterized by our analysis of the learning onset.

Binary classification In Fig 2, we consider the onset of learning for binary classification in which
the target. is a binary random variable with equal probability for each class and the source variable -
is drawn from a distribution that depends on the realization of . . In other words, provided with some
data G, we ask whether it was drawn from blue or red distributions in the top panel of Fig 2. In all cases
we see a general trend that the inverse critical trade-off parameter V−1

2 and the relevant information
response � (1)/ ;. increase with available information � (-;. ). Indeed for the Gaussian case (Fig 2a),
the information response diverges in the high information limit (equivalent to a large difference in
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Figure 3: Learning onset for noisy functional relationships. a. Functions used in data generation:
- ∼ Unif (−1, 1) and . ∼ 5 (-) +(0, f2). b. The inverse critical trade-off parameter V−1

2 vs noise
level parametrized by the noise standard deviation f (left) and by available information � (-;. )
(right). c. The first-order growth of information vs noise level parametrized by f (left) and by � (-;. )
(right). Both the maximum relevant information per extract bit V−1

2 and the first-order relevant
information � (1)/ ;. decrease with noise level as it becomes increasingly difficult to extract relevant
information. The dashed lines display the power dependence and serves only as a guide to the eye to
aid comparisons. Information is in bits.

the means of the Gaussian distributions) which is also the limit where binary classification becomes
deterministic, � (-;. ) → 1 bit.

Noise dependence In Fig 3, we depict the critical trade-off parameter and information response for
joint distributions generated from - ∼ Unif (−1, 1) and . ∼ 5 (-) +(0, f2) for various functional
associations (Panel a). We see that the critical trade-off tends to one in the low noise limit, as expected
for a deterministic functional relationship [14]. At higher noise level, V2 increases with f as it
becomes harder to extract relevant bits from the data. This fact is also reflected in the first-order
information � (1)/ ;. which measures the change in relevant information as the trade-off parameter V
exceeds the critical value. For all functions considered, � (1)/ ;. decreases with increasing noise standard
deviation. Interestingly we see that the information response diverges in the deterministic limit similar
to the binary classification example shown in Fig 2a. Note that � (1)/ ;- = V2 �

(1)
/ ;. and ! (2) = −� (1)/ ;. /2

[see Eqs (26) & (27)].

5 Learning Onset for Gaussian Variables

At first sight it seems that our theory, which is agnostic about the discrete or continuous nature
of the representation, is at odd with the exact solution for Gaussian variables which is based on a
continuous representation [5]. In this section we show that our theory captures the learning onset for
joint Gaussian variables. Importantly we demonstrate that a discrete representation of continuous
variables can describe the learning onset just as well as continuous ones.

Consider joint Gaussian variables[
-
.

]
∼

( [
0
0

]
,

[
Σ- Σ-.

Σ.- Σ.

] )
. (28)

A convenient ansatz for A (G) and A (H) [for definitions, see, Eq (14)] is a Gaussian distribution,

'- =(a- ,Λ- ) and '. =(a. ,Λ. ). (29)
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where (a- ,Λ- ) denotes the mean vector and covariance matrix for '- and (a. ,Λ. ) for '. . Using
this ansatz, we write down the KL divergences in the exponent of Eq (16),

DKL [?(H |G)‖A (H)] = 1
2

(
(`. |G − a. )TΛ−1

. (`. |G − a. ) + tr[Λ−1
. Σ. |- ] − 3. + ln

|Λ. |
|Σ. |- |

)
(30)

DKL [?(H |G)‖?(H)] = 1
2

(
`T
. |GΣ

−1
. `. |G + tr[Σ−1

. Σ. |- ] − 3. + ln
|Σ. |
|Σ. |- |

)
, (31)

where Σ. |- = Σ. −Σ.-Σ−1
- Σ-. , 3. denotes the dimensionality of. and we define `. |G ≡ Σ.-Σ−1

- G.
The ratio between A (G) and ?(G) is given by

ln
A (G)
?(G) =

1
2

(
−(G − a- )TΛ−1

- (G − a- ) + GTΣ−1
- G + ln

|Σ- |
|Λ- |

)
. (32)

Since Eqs (30)-(32) are related via Eq (16) which holds for all values of G, we take the logarithm of
Eq (16) and equate the terms quadratic in G, linear in G and constants separately, yielding

Λ−1
- − Σ−1

- = V2Σ
−1
- Σ-. (Λ−1

. − Σ−1
. )Σ.-Σ

−1
- (33)

Λ−1
- a- = V2Σ

−1
- Σ-.Λ

−1
. a. (34)

aT
-Λ
−1
- a- = ln

|Σ- |
|Λ- | + V2

(
aT
.Λ
−1
. a. + tr[(Λ−1

. − Σ−1
. )Σ. |- ] − ln

|Σ. |
|Λ. |

)
. (35)

We can find a solution to this set of equations by letting Λ- = Σ- (which also leads to Λ. = Σ. ).
For this choice of covariance matrix, both sides of Eq (33) vanish and Eqs (34) & (35) reduce to8(

1 − V2 (1 − Σ- |.Σ−1
- )

)
a- = 0. (36)

Solving the above eigenproblem for the smallest possible critical trade-off parameter, we find
V2 = (1 − _min)−1 and a- ∝ qmin where _min denotes the smallest eigenvalue of Σ- |.Σ−1

- and qmin
the corresponding eigenvector. While both [5] and our work identify the same critical trade-off
parameter and reveal the importance of the spectrum of Σ- |.Σ−1

- , the analyses are distinct in that the
representation is continuous in [5] but can be discrete in our theory.9

6 Comparisons to Previous Works

The recent applications of the IB principle in machine learning [1–3, 7] have sparked much interest
in characterizing the structure of the IB problem [28, 29]. Several works underscore the learning
onset and IB transitions as important limiting cases, not least because they are a direct manifestation
of the hierarchical structure of the relevant information in the data [5, 8, 17, 28, 29]. However the
attempts to derive a perturbation theory for the learning onset are plagued by a flawed assumption
that the representation space does not expand beyond the support of the unperturbed, uninformative
encoder [8, 28, 29]. Equivalent to settingZ1 = Z2 = ∅ in Eqs (8) & (9) in our theory, this assumption
significantly simplifies the analysis but the resulting theory generally fails to identify the critical
trade-off parameter.10 This raises serious questions about the insights gleaned from such expansions
around a seemingly arbitrary point. In the following we explore the differences between our full
treatment and the perturbation theory derived in previous works. In particular we argue that the
theory in previous work describes the learning onset of a non-standard IB problem, defined with
j2–information (instead of Shannon information).

8Equation (35) becomes the same as Eq (34) but with aT-Σ
−1
- multiplied from the left.

9We can always choose the unperturbed encoder to be an all-to-one map (@0 (I0 |G) = 1) and let the linear
correction have access to one additional alphabet (@1 (I1 |G) > 0).

10Our set-up differs slightly from Refs [28, 29] in that we ask how optimal encoders respond to a small change
in V as opposed to how the loss function changes in response to a small perturbation to an encoder. However
this difference is not the reason why our theory produces a tight bound on the learning onset. Allowing the
representation to take values outside the support of the unperturbed encoder is key to capturing the learning
onset regardless of how a perturbation theory is constructed.
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SettingZ1 = Z2 = ∅, the leading correction to the IB loss is of second order and is given by the first
term of Eq (19a),11

! (2) [@1] =
∑
I∈Z0

∑
G,G′ @1 (I |G) (G, G ′)@1 (I |G ′)

2@0 (I) , (37)

where the dependence on V2 is implicit [see, Eq (20), for the definition of  (G, G ′)]. We see that
 (G, G ′) is the Hessian of the loss function and its eigenvalues determine the curvatures of the loss
landscape in the vicinity of the unperturbed encoder. In this theory the learning onset corresponds to
the emergence of a direction along which the loss decreases quadratically—i.e., when the smallest
eigenvalue first becomes negative. Note that  (G, G ′) always has a vanishing eigenvalue, resulting
from the fact that all uninformative perturbations @1 (I |G) = @1 (I) lead to the same loss.12 In practice
we may identify the learning onset with the point where the second smallest eigenvalue becomes
zero but a more efficient method exists, see below. Similarly to our first-order theory (Sec 3.1), this
eigenvalue problem yields only the direction of the first-order encoder and a higher order theory is
required to fix the scale.

It is worth pointing out that if we define the IB problem [Eq (1)] with j2–information instead of the
standard Shannon information,13 Eq (37) is identical (up to a multiplicative factor) to the first-order
loss in our full treatment (i.e., withZ1 ≠ ∅). Indeed the resulting learning onset coincides with the
SDPI for j2–information. The contraction coefficient for j2–information, [j2 , is exactly the squared
maximal correlation (for a review, see, e.g., Ref [15]) and is therefore symmetric under - ↔ . and
equal to the square of the second largest singular value of the divergence transition matrix [12, 21],

�(G, H) ≡ ?(G, H)√
?(G)?(H)

for ?(G)?(H) > 0, and �(G, H) ≡ 0 otherwise. (38)

Finally we note that [j2 ≤ [KL [19, 20], hence the perturbation theory based on fixed representation
space gives an upper bound to the critical trade-off parameter of the standard IB problem.

Figure 2 demonstrates that even for simple binary classification, the theory with fixed representation
space, which predicts V̂2 = [−1

j2 (empty circles), does not correctly identify the learning onset
(filled circles). For the set of examples shown, we see that the discrepancy between V2 and V̂2 is
greatest for the Gaussian case and at lower available information. Note that in the deterministic limit
[� (-;. ) = 1 bit for binary classification] all contraction coefficients tend to one and we do not expect
any discrepancy there.

7 Discussion & Outlook

We derive a perturbation theory for the IB problem and offer a glimpse of the intimate connections
between the learning onset and the strong data processing inequality. In future works we aim to
build on our results to develop an algorithm for estimating the contraction coefficient from samples
and explore novel methods for solving the IB problem in this limit. It would be interesting to
further leverage the wealth of rigorous results from the literature on hypercontractivity and strong
data processing inequalities to better understand the learning onset in the IB problem. In addition,
various numerical techniques developed for the IB problem could significantly extend the range of
applicability of contraction coefficients.

In Sec 5, we show that a discrete representation can also capture the learning onset for Gaussian vari-
ables. Our approach contrasts with the exact solution of Ref [5] which uses continuous representation.
This highlights the degeneracy of the global minimum in the IB problem and implies that discrete
representations of continuous variables needs not be suboptimal.

While the IB problem formulated with Shannon information is somewhat unique [11], our work
reveals that the analyses of the learning onset would be much simplified if one were to define the
IB loss with j2–information instead of Shannon information. The IB principle based on other
5 –information could provide a more tractable formulation for certain problems and offer an insight
not readily available otherwise.

11Note that this loss depends only on the first-order encoder @1. The second-order encoder @2 appears in
higher order theories.

12It is easy to verify that
∑

G′  (G, G′) = 0.
13The j2–information is defined as follows, �j2 (-;. ) ≡ ∑

G,H ?(G)?(H)
(

? (G,H)
? (G) ? (H) − 1

)2
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