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Molecular Identification and Peak Assignment: Leveraging Multi-Level
Multimodal Alignment on NMR

Anonymous Authors1

Abstract
Nuclear magnetic resonance (NMR) spec-
troscopy plays an essential role in decipher-
ing molecular structure and dynamic behav-
iors. While AI-enhanced NMR prediction
models hold promise, challenges still persist
in tasks such as molecular retrieval, isomer
recognition, and peak assignment. In re-
sponse, this paper introduces a novel solu-
tion, Multi-Level Multimodal Alignment with
Knowledge-Guided Instance-Wise Discrimina-
tion (K-M3AID), which establishes correspon-
dences between two heterogeneous modalities:
molecular graphs and NMR spectra. K-M3AID
employs a dual-coordinated contrastive learn-
ing architecture with three key modules: a
graph-level alignment module, a node-level
alignment module, and a communication chan-
nel. Notably, K-M3AID introduces knowledge-
guided instance-wise discrimination into con-
trastive learning within the node-level alignment
module. In addition, K-M3AID demonstrates
that skills acquired during node-level alignment
have a positive impact on graph-level align-
ment, acknowledging meta-learning as an inher-
ent property. Empirical validation underscores
the effectiveness of K-M3AID in multiple zero-
shot tasks.

1. Introduction
Nuclear magnetic resonance (NMR) spectroscopy has
found broad applications in various scientific domains,
such as chemistry, environmental science, food science,
material science, and pharmaceuticals, by providing in-
sights into molecular dynamics and structures (Gunther &
Gunther, 1994; Claridge, 2016; Yu et al., 2021). The de-

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
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tails of NMR spectra can be influenced by through-bond
and through-space interactions, serving as ”fingerprints” to
deduce atomic connectivity, relative stereochemistry, and
conformations. The conventional approach for elucidat-
ing molecular structures and attributing peaks has long re-
lied on manual determination by organic chemists (Guan
et al., 2021). However, the interpretation of NMR spectra is
not straightforward, particularly when dealing with isomers
and complex molecules consisting of multiple stereogenic
(chiral) centers (Wu et al., 2023; Chhetri et al., 2018). Even
an expert chemist may encounter significant difficulties in
accurately assigning isomeric compounds with extremely
similar NMR spectra due to this complexity (Nicolaou &
Snyder, 2005).

While recent AI-enhanced NMR spectrum prediction mod-
els show promise in generating spectra from candidate
structures (Chen et al., 2020; Jonas et al., 2022; Kuhn,
2022), these models still face challenges in peak assign-
ment due to their high error tolerance and a lack of pre-
cise point-to-point guidance. Since peak assignment is a
determining step in isomer recognition, these models fall
short in achieving accurate isomer recognition. Another
contributing factor is the absence of quantitative ranking
for candidate isomers in their implementation. In addi-
tion, the success of these models requires a good level of
prior knowledge of molecular structures to construct can-
didates. However, real-world practice often demands spec-
tral interpretation before detailed structural information is
available. For instance, when identifying an unknown com-
pound from a plant, there is limited or no knowledge of this
compound. Thus, the interpretation of spectra should tran-
sition from spectral data to structural elucidation. There-
fore, it is imperative to utilize advanced AI methodolo-
gies to simplify NMR spectral interpretation, particularly
in tasks such as molecular retrieval, candidate ranking, and
peak assignment (see Figure 1.a).

In the realm of data representations for NMR interpretation,
two heterogeneous modalities come into play: NMR spec-
trum and molecular graph. A NMR spectrum is a sequence-
based chemical modality that captures molecular structural
and electronic details through an NMR spectrometer, trans-
lating such information into NMR peaks. A molecular
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Figure 1: a. Demands for interpreting NMR spectra in real-world scenarios: molecular retrieval, candidate ranking, and
peak assignment; b. Zero-shot applications of the K-M3AID model: molecular retrieval, isomer recognition, and peak
assignment; c. The framework of K-M3AID model: the molecular alignment module is responsible for optimizing the
the correspondence between modalities at the molecular level, the atomic alignment module focus on the fine-tuning of
atomic positioning on the spectrum, and the communication channel dynamically adjusts the flow of gradients between
node encoder and graph encoder during the training process. S for spectrum embedding, G for graph embedding, P for
peak embedding and N for node embedding.

graph encapsulates molecular structural and electronic in-
formation through the arrangement of nodes and edges,
along with their respective attributes. The analysis of
molecular structure and peak assignment requires clear cor-
respondence across these two heterogeneous modalities,
which can be formulated as a multimodal alignment prob-
lem.

Molecules are distinguished by the distinctive configura-
tion of atoms coupled with bonding patterns, giving rise

to distinct spectra. As molecular diversity is extensive, it
is impractical to include all molecules and their spectra in
a training dataset. However, the corresponding atomic di-
versity is comparatively constrained. In the context of the
multi-view nature of molecules, it is a sound approach to
analyze molecular structures by interpreting spectra at the
atomic level. Thus, this task can be formulated as a meta-
learning problem, which is a branch of metacognition con-
cerned with understanding one’s own learning and learning
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processes.

In light of these challenges and opportunities, we propose
a novel framework, K-M3AID (Multi-Level Multimodal
Alignment with Knowledge-Guided Instance-Wise Dis-
crimination), aiming to achieve reliable analog retrieval,
candidate ranking, and peak assignment in the interpreta-
tion of NMR spectra (see Figure 1.b). The overview of
our K-M3AID framework features a dual-coordinated con-
trastive learning architecture, comprising three key compo-
nents: a graph-level alignment module, a node-level align-
ment module, and a communication channel. The graph-
level alignment module establishes correspondences be-
tween molecules and their individual 13C NMR spectra.
Given that each unique molecule produces a distinct spec-
tral signature, this module employs a straightforward cross-
entropy loss for effective contrastive learning. The node-
level alignment module aligns each Carbon atom within the
molecules with their signal peaks on the spectrum. Un-
like the diverse and distinctive molecular spectral signa-
tures, many atoms exhibit chemical symmetry and mag-
netic equivalence within the same molecule, corresponding
to the same peaks. However, atoms with different local
surroundings can still present significant similarity on the
spectrum, introducing a heightened level of complexity. To
address these complex scenarios, we introduce knowledge-
guided instance-wise discrimination based on contrastive
learning in the node-level alignment module (see Figure
2). The communication channel dynamically adjusts the
flow of gradients between the node encoder and the graph
encoder from two modules during the training process.

In summary, our contribution encompasses three significant
aspects: Conceptually: We integrate cross-modal align-
ment at two architectural levels, namely graph and node
levels, within the K-M3AID framework. This integra-
tion facilitates rapid adaptation, significantly boosting the
efficiency of learning for zero-shot tasks. Methodologi-
cally: We introduce knowledge-guided instance-wise dis-
crimination for cross-modal contrastive learning, leverag-
ing continuous and domain-specific features with inher-
ent natural ordering. To the best of our knowledge, this
is the first demonstration of knowledge-guided instance-
wise discrimination-based cross-modal contrastive learn-
ing, transforming discrete comparisons into a continuous
paradigm. Empirically: We substantiate the effectiveness
of K-M3AID through its successful application to vari-
ous zero-shot tasks, including molecular retrieval, isomer
recognition, and peak assignment.

2. Preliminaries
Multimodal Alignment: Multimodal alignment, as de-
fined in the literature (Baltrusaitis et al., 2017), involves
establishing relationships and correspondences among sub-

components of instances from two or more modalities. A
typical example is identifying specific regions in an im-
age that correspond to words or phrases in a given cap-
tion (Karpathy & Fei-Fei, 2015). This approach offers
numerous benefits, including enhanced data interpretation,
heightened accuracy and robustness, overcoming limita-
tions of single-modal systems, and better addressing real-
world complexity (Baltrusaitis et al., 2017), (Summaira
et al., 2021), (Akkus et al., 2023). CLIP (Contrastive
Language-Image Pretraining) (Radford et al., 2021; Li
et al., 2021) is one of the most widely adopted frameworks
for multimodal alignment. As highlighted in the introduc-
tion, molecular information originates from diverse sources
such as molecule graphs and NMR spectroscopy. To lever-
age effective alignments of this multifaceted information
across different modalities, we adopt the CLIP framework
with graph neural networks (GNN) (Xu et al., 2018), (Wu
et al., 2022) to encode molecular information and neural
network encoders (Serra et al., 2018) to encapsulate NMR
information.

Meta-Learning: Meta-learning is defined as the process of
learning how to learn across tasks (Vilalta & Drissi, 2002).
More specifically, it leverages skills previously acquired
from related tasks to the current one (Lake et al., 2017).
With more skills learned, acquiring new ones becomes eas-
ier, requiring fewer examples and less trial-and-error (Van-
schoren, 2018; Finn et al., 2017). A meta-learner is trained
on a diverse set of object recognition tasks. During this
training, it learns common features, patterns, and strategies
for recognizing objects. Once trained, when presented with
a new, previously unseen object category, the meta-learner
can rapidly adapt and achieve high recognition accuracy,
leveraging the knowledge acquired from the diverse train-
ing tasks to perform in this novel recognition task (Finn
et al., 2017). A profound understanding of atom proper-
ties allows us to extend our vision to previously unseen
molecules, aligning with the principles of meta-learning in
artificial intelligence.

Contrastive Learning: Contrastive learning focuses on
discerning similarities and differences between items (Le-
Khac et al., 2020b; Jaiswal et al., 2021; Liu et al., 2021).
A fundamental aspect of this process involves instance-
wise discrimination (Wu et al., 2018). Models incorpo-
rating instance-wise discrimination not only foster an un-
derstanding of the inherent data structure but also enhance
generalization capabilities. This is attributed to the con-
trastive learning approach, which prioritizes distinguishing
between instances rather than memorizing specific labeled
examples. In chemistry, each molecule/atom is treated as
a distinct instance, and the learning algorithm focuses on
distinguishing each molecule/atom based on its context.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission to ICML 2024

3. Our Method
In this section, we firstly introduce Knowledge-Guided
Instance-Wise Discrimination. Then, we present the archi-
tecture of the K-M3AID framework, an end-to-end system
designed for multi-level multimodal alignment, along with
its loss function.

3.1. Knowledge-Guided Instance-Wise Discrimination
Contrastive Learning

Knowledge Span, which we define as a continuous and
domain-specific feature, exhibits natural ordering and is
able to offer guidance for contrastive learning. As such,
we introduce a novel approach into contrastive learn-
ing, termed Knowledge-Guided Instance-Wise Discrimi-
nation (see Figure 2). This approach expands the scope
of contrastive learning from confined comparisons (pre-
determined negative and positive pairs) to unrestricted
comparisons (no need for pre-determination). This exten-
sion removes the necessity of explicitly defining such pairs,
thus mitigating the potential introduction of human bias.

Suppose M is the set of instances. A ⊂ Rd1 is the set
of tunable instances’ embeddings in modality A, B ⊂ Rd1

is the set of tunable instances’ embeddings in modality B,
and K ⊂ Rd2 is the corresponding fixed knowledge span
label that can guide the relative distance learning between
components in A and B. Thus, the size of A, B, K are |M|,
respectively.

Let Ai be the ith instance embedding of A, and Bj be the
jth instance embedding of B. We define the distance func-
tion between Ai and Bj as dE(Ai,Bj) = Ai · Bj → R+,
and calibration function d(Ki,Kj) → R+ with a mono-
tonic property and constraint

∑|M|
j=1 d(Ki,Kj) = 1, in

which Ki and Kj serve as the designated Knowledge Span
Label. We introduce the Knowledge Span Guided Loss
(KSGL) as follows:

KSGL(i) = −
∑

1≤j≤|M|

d(Ki,Kj) log
edE(Ai,Bj)∑

1≤k≤|M|

edE(Ai,Bk)

(1)

= −
∑

1≤j≤|M|

d(Ki,Kj) log(softmax(dE(Ai,Bj)))

(2)

In particular, when it reaches ideal optimum, d(Ki,Kj) and
dE(Ai,Bj) reaches the following relation:

d(Ki,Kj) = softmax(dE(Ai,Bj)) (3)

For detail proof, please refer to Appendix A. As a result,

the corresponding CLinstance is expressed as following:

CLinstance =
1

|M|
∑

1≤i≤|M|

KSGL(i) (4)

3.2. Architecture & Contrastive Learning Loss

The K-M3AID framework is a dual-CLIP architecture (see
Figure 1), comprising three critical components: a graph-
level alignment module, a node-level alignment module,
and a communication channel. The graph-level alignment
module adopts a gradient-asymmetric CLIP mechanism.
While two unimodal encoders work in conjunction, only
the from-scratch graph encoder (GIN, (Xu et al., 2018)) un-
dergoes dynamic training throughout the process; the pre-
trained spectrum encoder (Yang et al., 2021) remains fixed.
Both encoders are complemented by dedicated projection
layers, facilitating the mapping of embeddings into a joint
space. The node-level alignment module adopts a gradient-
symmetric CLIP mechanism. It is equipped with two from-
scratch unimodal encoders, the node encoder and the peak
encoder, as well as their dedicated projection layers. The
graph encoder in the graph-level alignment module shares
part of the weights with the node encoder in the node-level
alignment module, serving as the communication channel.

The synergy between these two modules is pivotal, collec-
tively contributing to the loss function, expressed as

L = CLgraph + CLnode, (5)

where CLgraph represents the contrastive learning loss
in the graph-level alignment module by Equation 7, and
CLnode represents the contrastive learning loss in the node-
level alignment module by Equation 11.

Let i denote the ith instance, and j denote the jth instance.
Then xi denotes the raw input in modality A for the ith in-
stance and yj denotes the raw input in modality B for the
jth instance. Suppose fx (·) represent the encoding func-
tion for modality A, and fy (·) denote the encoding function
for modality B. In graph-level alignment module, these two
encoding functions, should map xi and yj to a proximate
location in the joint embedding (inter-modality) if i = j.

CLgraph(i) = − log
eδ(xi,yi)∑

1≤j≤N

eδ(xi,yj)
(6)

= −log(softmax(δ(xi, yi)) (7)

Where δ(xi, yj) =
(
fx(xi)

T · fy(yj)
)
, N is the total num-

ber of instances from the current batch.

Thus, the total CLgraph is expressed as following:

CLgraph =
1

N

∑
1≤i≤N

CLgraph(i) (8)
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Figure 2: Knowledge-Guided Instance-Wise Discrimination Mechanism. Ki and Kj represent the corresponding knowl-
edge span labels for ith and jth items.

This design for the loss aims to match the same instance
cross different modalities.

4. Experiments
To thoroughly evaluate the performance of K-M3AID, we
compare it with other baselines across various zero-shot
downstream tasks, including molecular retrieval, isomer
recognition, and peak assignment. Please refer to the de-
tailed settings of pre-training and downstream tasks in Ap-
pendix B.

4.1. Chosen Knowledge Span-ppm
13C NMR uncovers molecular structures by providing the
chemical environments of carbon atoms and their mag-
netic responses to external fields, quantifying these fea-
tures in parts per million (ppm) relative to a reference com-
pound like tetramethylsilane (TMS), simplifying compar-
isons across experiments. Thus, continuous peak positions,
measured in ppm, can serve as a robust knowledge span to
facilitate instance-wise discrimination for this contrastive
learning task.

For the node-level alignment module, A is the set of
node embeddings for Carbon atoms in the molecular graph
modality, and B is the set of peak embeddings for respec-
tive Carbon atoms in the NMR modality. K is the set of
ppm values for each corresponding Carbon atom in A and
B. Suppose ppmi is the ppm for the ith Carbon Atom, and
ppmj is the corresponding ppm for the jth peak. d(·, ·) is
then defined as follows:

d(Ki,Kj) = d(ppmi, ppmj) (9)

= softmax(
τ2

|ppmi − ppmj |+ τ1
) (10)

where τ1 and τ2 are temperature hyper-parameter. For fur-

ther discussion of selection about τ1 and τ2, please refer to
Appendix C.2. Then, the final form of contrastive loss for
node-level alignment according to Equation 2 and Equation
4 is as following:

CLnode = − 1

|M|

|M|∑
j=1

d(Ki,Kj) · log
edE(Ai,Bj)∑|M|
k=1 e

dE(Ai,Bk)

(11)

Here, i and j are indices of atoms. Ai ∈ A represents the
embedding of i − th atom in modality A while Bi ∈ B
represents the embedding of i − th atom in modality B,
Kj ∈ K represents peaks, and th is the abbreviation for the
threshold.

4.2. Baselines

No Communication: In contrast to the communicative
mechanism of K-M3AID, one of the baselines is estab-
lished without the utilization of a communication channel
(denoted as No Comm.).

Strong-Pair-based Instance-Wise Discrimination: We
explore an alternative baseline where the knowledge-
guided instance-wise discrimination in the node-level
alignment module is replaced with strong-pair-based
instance-wise discrimination (denoted as SP-ID). SP-ID
enforces a precise match in node-level (atom-peak) align-
ment, ensuring that only correct pairs established during
the training process are considered. The mathematical def-
inition of a strong pair is as follows:

Strong Pair: |ppmi − ppmj | = 0, (12)

where i, j represent the indices of nodes (atoms).

Weak-Pair-based Instance-Wise Discrimination: We re-
place the knowledge-guided instance-wise discrimination

5
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with weak-pair-based instance-wise discrimination (de-
noted as WP-ID) in the node-level alignment module. WP-
ID broadens the matching criteria of SP-ID, allowing for
multiple matches within a specified threshold set for the
distance of their corresponding parts per million (ppm, ref-
erenced in Section 4.1). The mathematical definition of a
weak pair is as follows:

Weak Pair: |ppmi − ppmj | ≤ th, (13)

where i, j represent the indices of nodes (atoms).

4.3. Results

4.3.1. VALIDATION PERFORMANCE

The K-M3AID model showcases an impressive valida-
tion accuracy of 95.5% in aligning molecules with spectra
within the graph-level alignment module. In direct com-
parison, K-M3AID outperforms alternative models such as
SP-ID, WP-ID, and the model without a communication
mechanism (No Comm.), demonstrating superior perfor-
mance with a margin ranging from approximately 1% to
6% in the graph-level alignment module (refer to Table 1).
Notably, SP-ID significantly outperforms WP-ID, and as
the matching criteria threshold widens, the performance of
the latter deteriorates.

In the context of peak-atom alignment within the node-
level alignment module, K-M3AID and the model with-
out a communication mechanism exhibit comparable ac-
curacies (refer to Table 1). However, K-M3AID show-
cases slightly better stability across 5-fold cross-validation.
Moreover, K-M3AID demonstrates superiority in peak-
atom alignment when compared to SP-ID and WP-ID. This
superiority may arise from the inherent limitations of both
strong and weak pair definitions, which fail to precisely cal-
ibrate the diverse relationships among the elements. This
finding is further supported by the significant decreases in
the accuracy of peak-atom alignment as the threshold of
weak pair increases.

4.3.2. PERFORMANCE ON ZERO-SHOT MOLECULAR
RETRIEVAL

We conduct a systematic evaluation of the effectiveness of
our K-M3AID model, comparing it with baseline models
in the zero-shot molecular retrieval task across datasets of
varying magnitudes. Detailed results are presented in Ta-
ble 2. The K-M3AID model consistently attains an impres-
sive top-1 accuracy of approximately 95.8% in molecular
retrieval when the molecular reference library comprises
100 entries. This performance surpasses that of alternative
mechanisms such as SP-ID (95.3%), WP-ID (92.9%), and
No Comm. (94.8%). As the molecular reference library
expands to 1000 entries, the K-M3AID model exhibits
notable superiority, achieving accuracy levels of 80.4%,

1.8%, 8.7%, and 2.8% higher than SP-ID, WP-ID, and No
Comm. mechanisms, respectively. The advantage of K-
M3AID becomes even more pronounced when the library
size reaches 10,000 entries. In this scenario, K-M3AID
yields 46.3% at top-1 accuracy, showcasing advancements
of 10.5%, 13.6%, and 6.2% over SP-ID, WP-ID, and No
Comm. mechanisms, respectively. Even with larger molec-
ular reference libraries, such as 100,000 and 1,000,000 en-
tries, K-M3AID consistently outshines SP-ID, WP-ID, and
No Comm. mechanisms. These compelling results dis-
tinguish the K-M3AID model as an exceptional choice in
scenarios demanding robust performance in molecular re-
trieval tasks.

4.3.3. PERFORMANCE ON ZERO-SHOT ISOMER
RECOGNITION

K-M3AID stands out prominently when compared to SP-
ID, WP-ID, and no communication approaches in the task
of zero-shot isomer recognition, achieving an exceptional
100% accuracy across given groups of isomers (refer to
Table 3). These empirical observations underscore the ad-
vantages of K-M3AID in the context of isomer recogni-
tion. The superiority of K-M3AID over the no communi-
cation baseline demonstrates the positive impact of node-
level alignment on graph-level alignment, emphasizing the
potency of meta-learning.

4.3.4. PERFORMANCE ON ZERO-SHOT PEAK
ASSIGNMENT

The K-M3AID model demonstrates a validation accuracy
surpassing 90% for peak assignment (peak-atom align-
ment) within the node-level alignment module after 200
epochs (see Figure 3.A). Notably, the model achieves a
100% accuracy rate in 74.1% of molecules containing
fewer than 10 carbon atoms (see Figure 3.B). For molecules
with carbon atom counts ranging from 10 to 20, the model
attains 100% accuracy in 37.2% of cases (see Figure 3.C).
Furthermore, it achieves an accuracy exceeding 80% in
more than 50% of cases pertaining to molecules containing
more than 20 carbon atoms (see Figure 3.D). Additionally,
to further illustrate the power of K-M3AID on peak assign-
ment, we present two complex natural product molecules
featuring multiple rings (4 and 4, respectively) and stere-
ogenic (chiral) centers (6 and 8, respectively) in Figure F.1.

K-M3AID demonstrates superior performance in peak as-
signment compared to SP-ID and WP-ID. Our case stud-
ies reveal that the limitations of SP-ID and WP-ID become
particularly pronounced in two scenarios: 1) When local
contexts of specific atoms exhibit a high degree of simi-
larity. 2) When certain atoms display symmetric mapping
within the same molecule.

In the former scenario, exemplified by molecular A in Fig-
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Table 1: Batch-wise validation accuracy (%) of K-M3AID and baselines with epochs = 200. For WP-ID, the threshold is
configured at 1, 5, and 10 ppm.

Alignment SP-ID WP-ID(th=1) WP-ID(th=5) WP-ID(th=10) No Comm. K-M3AID
Graph-Level 93.5±0.6 91.3±0.8 90.3±0.6 88.4±1.4 94.6±0.4 95.5±0.4
Node-Level 89.3±0.4 83.7±0.6 79.8±0.5 66.1±2.5 90.4±0.2 90.3±0.1

(A) All Molecules (B) <= 10 Carbons (C) 10 to 20 Carbons (D) >= 20 Carbons

55.0%

20.5%
17.1%

7.4%
< 80%

100%

80-90%
90-100%

74.1%

15.3%
10.6%

37.2%

23.3%

23.7%

15.9%

9.8%

13.4%

28.3%
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Figure 3: The statistics of zero-shot peak assignment.

Table 2: Zero-shot molecular retrieval at top 1 accuracy
across datasets of varying sizes. (For more statistics, such
as top 5, top 10 and top 25, please refer to Appendix Table
D.1. For similarity comparison between the molecules and
the Top 1 neighbor by different retrieval methods, please
consult Appendix Table D.2.)

Method 102 103 104 105 106

K-M3AID 95.8±1.0 80.4±3.9 46.3±1.2 18.0±0.8 5.8±1.7
SP-ID 95.3±0.8 78.6±2.7 35.8±3.8 12.9±1.6 3.4±0.9

WP-ID (th = 1) 92.9±0.6 71.7±1.0 32.7±1.3 10.7±0.5 3.6±0.7
No Comm. 94.8±1.2 77.6±1.4 40.1±1.2 14.4±0.9 4.1±1.1

Table 3: Zero-shot isomer recognition accuracy (%) of K-
M3AID and baselines.

Formula #Isomers SP-ID WP-ID (th=1) No Comm. K-M3AID
C4H6O 15 86.7 86.7 86.7 100.0
C9H9N 15 86.7 80.0 100.0 100.0

C7H11NO3 14 78.6 85.7 85.7 100.0
C6H13NO 23 91.3 91.3 100.0 100.0
C8H7NO4 13 92.3 84.6 92.3 100.0
C15H24O 16 93.8 93.8 100.0 100.0
C11H14 10 90.0 80.0 70.0 100.0

C7H15NO 14 85.7 85.7 100.0 100.0
C10H16O2 26 92.3 84.6 100.0 100.0
C8H15N 11 81.8 90.9 100.0 100.0

ure 4, atom 0 and atom 4 are secondary carbons (attaching
to 2 carbons and 2 hydrogens), nearly symmetric on the
same 5-member ring, corresponding to the peak position
measured in ppm of 27.0 and 29.8, respectively (for the
definition of ppm, please refer to Section 4.1). The similar
local content of these two atoms fools SP-ID and WP-ID.
Meanwhile, atom 1 and atom 3 are tertiary carbons (attach-
ing to 3 carbons and 1 hydrogen), nearly symmetric on the

same 5-member ring, corresponding to the peak position
measured in ppm of 54.5 and 44.1, respectively. Only WP-
ID fails to distinguish and align them.

In the latter scenario, exemplified by molecular B in Fig-
ure 4, there exist instances one-to-one and one-to-many
for atomic-level alignment within the molecular configu-
ration. Both SP-ID and WP-ID methods misalign certain
atoms with other atoms with small ppm differences (less
than 3 ppm in this case), rather than aligning them with
themselves or their symmetric counterparts. In contrast,
the K-M3AID approach excels in both scenarios by dis-
cerning each one of the atoms, which is attributed to the
full utilization of ppm difference distance learning. (For
additional cases, please refer to Appendix Figure F.2)

5. Related Work
Multimodal Instance-Wise Discrimination: As men-
tioned in the preliminaries, instance discrimination (Le-
Khac et al., 2020a; Zolfaghari et al., 2021; Morgado et al.,
2021; Liu et al., 2023), an important part of contrastive
learning, distinguishes individual instances without explicit
class labels. Transitioning into multimodal contrastive
learning, it can be categorized into two general approaches:
strong-pair-based (van den Oord et al., 2019; Jaiswal et al.,
2021; Liu et al., 2023) and weak-pair-based (Salakhutdi-
nov & Hinton, 2007; Frosst et al., 2019; Liang et al., 2021)
instance-wise discrimination. The strong-pair-based ap-
proach, such as the Noise Contrastive Estimation (NCE)
method, enforces a precise one-to-one correspondence for
real samples with artificially generated noise samples. An
example of a positive pair can be a noise-added picture
of a zebra with the text description of a zebra. Instead
of one-to-one correspondences, the weak-pair-based ap-
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Figure 4: Case study of peak assignment. Yellow cells in PPM difference represent the ground truth alignment, and red
cross represents the wrong alignment. For the definition of ppm, please refer to 4.1. For additional cases, please refer to
Appendix Figure F.2

proach relaxes the positive pairs to broader semantic corre-
spondences. An example of a positive pair can be a picture
of a zebra with the text description of a horse but not with
the text description of a tiger.

Multimodal Meta-Alignment: Within the realm of mul-
timodal alignment, multimodal meta-alignment is a novel
method for aligning representation spaces using paired
cross-modal data with different similarity levels while en-
suring quick generalization to new tasks across differ-
ent modalities (Liang et al., 2021). This approach can
be observed at different levels, including the intermedi-
ate and fundamental (irreducible) element level. Exam-
ples of this method at the intermediate level can be found
in research on Cross-Modal Generalization (Chen et al.,
2017; Li et al., 2020; Liang et al., 2021; Zhang et al.,
2021) and Livestreaming Product Recognition (Yang et al.,
2023). While these studies showcase how multimodal
meta-alignment operates at a broad objective level, the ap-
plication of multimodal meta-alignment at the most fun-
damental element level remains underexplored in current
research.

6. Conclusion and Future Work
In this paper, we introduced the K-M3AID (Knowledge-
Guided Multi-Level Multimodal Alignment with Instance-
Wise Discrimination) framework, incorporating both
graph-level and node-level alignment. Its effectiveness
was demonstrated through multiple zero-shot tasks, includ-
ing molecular retrieval, isomer recognition, and peak as-
signment. The significance of knowledge-guided instance-
wise discrimination is underscored through various metrics
and case studies. Moreover, the findings from molecu-
lar retrieval and isomer recognition highlight the favorable

influence of node-level alignment on graph-level align-
ment. This emphasizes the successful integration of meta-
learning within our hierarchical alignment framework.
While our framework achieves an atomic-level alignment
overall accuracy of 100% for 55% of cases, it drops signifi-
cantly to 9.8% when handling molecules with more than 20
carbon atoms. Currently, our graph encoder operates on 2D
molecular graphs with basic node and edge features. This
implementation potentially constrains its ability to gener-
ate precise node embeddings for distinguishing atoms in
highly complex scenarios. Future developments could ben-
efit from incorporating a 3D-based graph, holding substan-
tial potential to enhance performance in such complex sit-
uations.

Accessibility
The code and dataset will be made available upon the date
of publication.
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Appendix

A. Revisiting Knowledge Span Guided Loss
Theorem 1 (Knowledge Span Guided Loss). Suppose M is the set of instances. A ⊂ Rd1 is the set of tunable instances’
embeddings in modality A, B ⊂ Rd1 is the set of tuable instances’ embeddings in modality B, and K ⊂ Rd2 is the
corresponding fixed knowledge span label that can guide the relative distance learning between components in A and B.
Thus, the size of A, B, K are |M|, respectively.

Let Ai be the ith instance embedding of A, and Bj be the jth instance embedding of B. We define the distance function
between Ai and Bj as dE(Ai,Bj) = Ai · Bj → R+, and calibration function d(Ki,Kj) → R+ with a monotonic property
and constraint

∑|M|
j=1 d(Ki,Kj) = 1, in which Ki and Kj serve as the designated Knowledge Span Label. We introduce

the Knowledge Span Guided Loss (KSGL) as follows:

KSGL(i) = −
∑

1≤j≤|M|

d(Ki,Kj) log
edE(Ai,Bj)∑

1≤k≤|M|

edE(Ai,Bk)
(A.1)

= −
∑

1≤j≤|M|

d(Ki,Kj) log(softmax(dE(Ai,Bj))) (A.2)

Proof. In order to optimize the loss KSGL(i), we need to set the following partial derivative to be 0 for each dE(Ai,Bj)
with 1 ≤ j ≤ |M|. Here are the detail process:

∂KSGL(i)

∂dE(Ai,Bj)
=

∂

∂dE(Ai,Bj)

(
−d(Ki,Kj) log

edE(Ai,Bj)

edE(Ai,Bj) +
∑

k ̸=j e
dE(Ai,Bk)

)
︸ ︷︷ ︸

When the numerator includes edE(Ai,Bj)

+
∂

∂dE(Ai,Bj)

∑
k ̸=j

−d(Ki,Kk) log
edE(Ai,Bk)

edE(Ai,Bj) +
∑

k ̸=j e
dE(Ai,Bk)


︸ ︷︷ ︸

When the numerator does not include edE(Ai,Bj)

= −(d(Ki,Kj)− d(Ki,Kj) · softmax(dE(Ai,Bj))

−
∑
k ̸=j

d(Ki,Kk) · softmax(dE(Ai,Bj))

= −

d(Ki,Kj)− (d(Ki,Kj) +
∑
k ̸=j

d(Ki,Kk)) · softmax(dE(Ai,Bj))


Since

∑|M|
l=1 d(Ki,Kl) = 1, we can further simplify it as

∂KSGL(i)

∂dE(Ai,Bj)
= −(d(Ki,Kj)− softmax(dE(Ai,Bj))

In order to optimize, we need to set the respective partial derivative to be 0:

∂KSGL(i)

∂dE(Ai,Bj)
= −(d(Ki,Kj)− softmax(dE(Ai,Bj)) = 0

In addition, the corresponding second partial derivative denoted as ∂KSGL(i)
∂d2

E(Ai,Bj)
manifests as follows:

∂KSGL(i)

∂d2E(Ai,Bj)
= softmax(dE(Ai,Bj))(1− softmax(dE(Ai,Bj)))
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As softmax(dE(Ai,Bj)) takes values within the open interval (0,1), it follows that ∂KSGL(i)
∂d2

E(Ai,Bj)
is always positive. Conse-

quently, the pinnacle of optimization emerges as a global minimum.
Furthermore, when it comes to optimum:

d(Ki,Kj) = softmax(dE(Ai,Bj))

dE(Ai,Bj) = log(d(Ki,Kj)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


It is easy to show that when it reaches optimum, dE(Ai, Bj) is consistent with Knowledge Span Guidance d(Ki,Kj).
Without loss of generosity, suppose d(Ki,Kj) > d(Ki,Kj′) :

dE(Ai,Bj)− dE(Ai,Bj′) = log(d(Ki,Kj)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


−

log(d(Ki,Kj′)) + log

 ∑
1≤l≤|M|

edE(Ai,Bl)


= log(d(Ki,Kj))− log(d(Ki,Kj′))

= log

(
d(Ki,Kj)

d(Ki,Kj′)

)
> 0

B. Experimental Setting
B.1. Pre-training

Dataset: We use 13C NMR spectra of about 20,000 molecules sourced from nmrshiftdb2 (Steinbeck et al., 2003)), a public
access database that contains NMR spectra of organic molecules. In the collected dataset, molecule are aligned with their
respective 13C NMR spectra, and atomic alignments with peaks are also included. Notably, the dataset contains 12,771
molecules with fewer than 10 carbon atoms, 7,043 molecules featuring carbon atom counts ranging from 10 to 20, and
1,138 molecules incorporating more than 20 carbon atoms. The quality of the dataset was further validated by experienced
organic chemists. We randomly sample 80% of the molecules for training and the rest for evaluation.

Training: We concurrently leverage both graph- and node-level alignment tasks in the pre-training of K-M3AID. Graph-
level alignment focuses on aligning molecules with their spectra, accompanied by the utilization of cross-entropy loss for
contrastive purposes. On the other hand, node-level alignment entails aligning atoms with their corresponding peaks, im-
plemented through knowledge-guided instance-wise discrimination to achieve contrastive loss. A diverse set of molecular
features is employed for training, including atomic number (node feature), chiral tags (node feature), hybridization (node
feature), bond types (edge feature), and bond direction (edge feature). The spectral features are derived from peak intensity,
peak position (chemical shift measured in ppm), and peak type.

B.2. Zero-Shot Molecular Retrieval

Dataset: We randomly collected 1 million molecules from PubChem (Kim et al., 2023) to form a molecular reference
library. Subsequently, we carefully selected 1000 spectra, ensuring that they had not appeared in the training dataset, from
an external dataset to serve as query spectra. Following this, the corresponding molecules associated with these 1000
spectra were added into the existing reference library.

Evaluation: We perform molecular retrieval using each of the selected spectra to determine if the correct corresponding
molecular entity can be retrieved from the reference library. The model’s performance is assessed at top-1 accuracy, as
well as at accuracy of top 5, top 10, and top 25.
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B.3. Zero-Shot Isomer Recognition

Dataset: We categorize isomers from the validation dataset to guarantee their absence from the training dataset. To
assess effectiveness, we perform isomer recognition on each isomer group containing at least 10 molecules. Within the
same group, isomers may be structural or spatial isomers of each other. Structural isomers refer to molecules with the
same molecular formula but different structural arrangements of atoms, resulting in distinct chemical structures. On the
other hand, spatial isomers, also known as stereoisomers, have the same molecular formula and arrangement of atoms but
differ in the spatial orientation of their atoms in three-dimensional space, leading to different stereoisomeric forms. (For
an elucidation of an isomer group and in-depth insights into isomers with NMR, please refer to the details provided in
Appendix E.)

Evaluation: We conduct isomer recognition for each isomer group, aiming to assess the correct alignment of each spectrum
with its respective molecule within each isomer group.

B.4. Zero-Shot Peak Assignment

Dataset: The dataset utilized for evaluating the overall performance of K-M3AID on zero-shot peak assignment is the
validation dataset from the pre-training phase. In order to highlight the capabilities of K-M3AID in zero-shot peak assign-
ment, the case studies include complex natural products featuring multiple fused rings, stereogenic (chiral) centers, and
symmetric structures.

Evaluation: We conduct peak assignment within each molecule, aiming to assess the accurate alignment of each atom with
its corresponding peak on the spectrum. It’s important to note that this alignment process is confined to each individual
molecule and not across different molecules.

C. Further ablation study about parameter choices
C.1. Ablation study about the choice of GIN structure and projection.

We choose GIN(Xu et al., 2018) as our graph encoder. By Table C.1, ”GIN Depth” signifies the number of layers in the
GIN, ”GIN Embedding Dim” denotes the dimensionality of the embeddings generated by the GIN model, and ”Projection
Dim” indicates the resulting dimensionality after transforming the GIN-produced embeddings. In particular, the best
performance is observed when the GIN model has 5 layers, GIN Embedding Dim is 128, and projection Dim is 512.

Table C.1: GIN structure and projection ablation study

GIN Depth GIN Embedding Dim Projection Dim Validation accuracy (%)
3 128 128 86.6
3 256 128 86.8
3 512 128 86.3
5 128 128 89.4
5 256 128 89.6
5 512 128 89.3
3 128 256 86.6
3 256 256 86.8
3 512 256 86.3
5 128 256 89.4
5 256 256 89.6
5 512 256 89.3
3 128 512 86.6
3 256 512 86.5
3 512 512 86.2
5 32 512 84.0
5 64 512 87.5
5 128 512 90.0
5 256 512 89.4
5 512 512 88.9
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C.2. Ablation Study on the Choice of τ1 and τ2

We also conducted a further ablation study exploring different combinations of τ1 and τ2 as shown in Table C.2. For this
analysis, we fixed the GIN depth at 5, set the GIN embedding dimensionality to 128, and maintained a projection dimension
of 512. We observe that the best performance is achieved when τ1 = 10−5 and τ2 = 101.

Table C.2: Ablation study about tau1 and tau2. We have 5 layers and 128 dimension as the final representation.

τ1 τ2 Molecular Alignment Accuracy (%) Atom Alignment Accuracy (%)
10−1 101 94.9 89.6
10−1 102 95.2 89.8
10−1 103 95.6 89.6
10−1 104 95.1 88.9
10−1 105 95.0 89.3
10−2 101 95.5 89.8
10−2 102 94.8 89.8
10−2 103 95.4 88.8
10−2 104 94.8 87.2
10−2 105 95.1 89.4
10−3 101 95.0 89.2
10−3 102 95.1 89.1
10−3 103 95.2 89.0
10−3 104 95.3 89.7
10−3 105 95.0 89.4
10−4 101 95.0 89.8
10−4 102 95.1 89.7
10−4 103 95.0 89.8
10−4 104 95.3 89.5
10−4 105 95.1 88.4
10−5 101 95.4 90.0
10−5 102 95.0 89.5
10−5 103 95.8 89.6
10−5 104 95.2 89.7
10−5 105 95.0 89.7

D. Additional Results on Molecular Retrieval

Table D.1: Zero-shot molecular retrieval top 5, 10, 25 accuracy (%) with K-M3AID and baselines

Method Accuracy 102 103 104 105 106

Knowledge Guide

Top 1(%) 95.8±1.0 80.4±3.9 46.3±1.2 18.0±0.8 5.8±1.7
Top 5(%) 99.8±0.2 96.8±0.5 77.8±1.1 41.6±1.6 16.6±2.3
Top 10(%) 100.0±0.0 98.8±0.3 87.7±1.0 53.9±1.8 25.2±3.2
Top 25(%) 100.0±0.0 99.6±0.2 94.8±0.6 71.6±0.6 37.8±4.1

SP-ID

Top 1(%) 95.3±0.8 78.6±2.7 35.8±3.8 12.9±1.6 3.4±0.9
Top 5(%) 95.4±0.1 77.3±0.7 44.7±2.3 16.2±2.4 4.4±1.5
Top 10(%) 100.0±0.0 97.3±0.7 77.5±2.3 40.2±2.4 12.3±1.5
Top 25(%) 100.0±0.0 99.1±0.2 85.9±1.0 53.1±3.0 18.5±1.8

WP-ID(th=1)

Top 1(%) 92.9±0.6 71.7±1.0 32.7±1.3 10.7±0.5 3.6±0.7
Top 5(%) 99.6±0.1 93.8±0.8 63.9±1.5 29.3±1.5 10.2±1.2
Top 10(%) 99.9±0.0 97.1±0.4 76.8±0.7 39.3±0.9 15.7±1.5
Top 25(%) 100.0±0.0 99.1±0.2 88.2±0.6 55.7±1.1 26.5±2.0

No communication

Top 1(%) 94.8±1.2 77.6±1.4 40.1±1.2 14.4±0.9 4.1±1.1
Top 5(%) 99.8±0.1 96.2±0.5 73.6±2.2 35.8±1.3 11.4±1.0
Top 10(%) 99.9±0.1 98.6±0.3 84.1±1.4 47.3±1.8 17.3±1.8
Top 25(%) 100.0±0.0 99.7±0.2 92.9±0.9 65.1±2.2 27.9±2.5
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Table D.2: Comparing sampled molecules to their Top 1 neighbors using K-M3AID, SP-ID, WP-ID (th = 1), and K-
M3AID without communication across datasets of varying sizes and employing different similarity metrics (%) including
Cosine (Salton & McGill, 1986)), Dice (Dice, 1945)), Russel (Russel, 1980), Sokal (Sokal & Sneath, 1963) and Tanimoto
(Tanimoto, 1957).

Methods Similarity Metric 102 103 104 105 106

K-M3AID

Cosine 96.1±0.9 81.9±3.5 50.0±1.2 23.9±0.7 13.5±1.5
Dice 96.1±0.9 81.9±3.5 50.0±1.2 23.7±0.6 13.1±1.5

Russel 95.8±0.1 80.4±3.9 46.4±1.1 18.1±0.8 5.9±1.7
Sokal 95.9±0.9 80.8±3.8 47.2±1.2 19.5±0.7 7.7±1.7

Tanimoto 96.0±0.9 81.2±3.7 48.2±1.2 21.0±0.7 9.6±1.6

SP-ID

Cosine 95.4±0.8 78.6±2.4 42.5±3.6 20.9±1.5 12.2±0.7
Dice 95.5±0.8 78.6±2.5 42.4±3.6 20.3±1.5 11.8±0.8

Russel 95.1±0.8 76.9±2.7 38.3±3.8 14.4±1.6 4.3±0.9
Sokal 95.2±0.8 77.4±2.6 39.4±3.8 15.9±1.6 6.3±0.8

Tanimoto 95.3±0.8 77.8±2.6 40.4±3.7 17.4±1.6 8.2±0.8

WP-ID(th=1)

Cosine 93.4±0.6 73.9±0.1 37.5±1.2 17.2±0.4 11.4±0.5
Dice 93.3±0.6 73.7±0.9 37.3±1.2 16.9±0.4 11.1±0.5

Russel 92.9±0.6 71.7±1.0 32.7±1.3 10.8±0.5 3.7±0.6
Sokal 93.0±0.6 72.3±3.4 33.9±1.2 12.4±0.5 5.6±0.6

Tanimoto 93.1±0.6 72.8±1.0 35.1±1.2 14.0±0.5 7.5±0.6

No communication

Cosine 95.2±1.1 79.2±1.3 44.2±1.2 20.6±0.7 12.2±0.9
Dice 95.1±1.1 79.1±1.3 44.0±1.2 20.4±0.7 11.8±0.9

Russel 94.8±1.2 77.6±1.4 40.2±1.2 14.5±0.9 4.2±1.1
Sokal 94.9±1.1 78.0±1.4 41.2±1.2 16.0±0.8 6.2±1.1

Tanimoto 95.0±1.1 78.4±1.3 42.2±1.2 17.6±0.8 8.2±1.0

E. Additional Discussion about Isomers
E.1. Isomer Category

Isomers typically fall into two main categories: constitutional (structural) isomers, which share the same chemical formula
but display distinct atom connectivity, and stereoisomers (spatial isomers), which share the same topology graph but diverge
in their three-dimensional arrangement (see Figure E.1). Constitutional isomers are NMR-variant, meaning that different
isomers produce distinct NMR spectrum. In the sub-categories of stereoisomers, enantiomers are NMR-invariant, but
diastereomers and cis-trans isomers are NMR-variant.

Isomers

Constitutional 
(Structural) Isomers

Stereoisomers
(Spatial Isomers)

Enantiomers Diastereomers Cis-Trans Isomers

Ph OH

Ph OH

Ph
OH

Ph
OH

Ph
OH

Ph
OH

Ph OH

Ph OH

NMR-Variant

NMR-Invariant NMR-Variant NMR-Variant

Figure E.1: NMR Variability in Isomers
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E.2. Isomers Group for C7H11NO3

Here is an example for isomer groups. In this isomer group of C7H11NO3, they all share the same chemical formula in
Figure E.2. The first 10 are constitutional (structural) isomers of each other (cycled green), the last 4 are two pairs of
diastereomers (cycled brown). Each of these isomers corresponds to a distinct NMR spectrum.
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Figure E.2: Isomer demo for C7H11NO3

F. Additional Results on Peak Assignment
In complex natural product molecules, it is a common situation that the local contents of some atoms within the same
molecule exhibit a high degree of similarity. It gives rise to challenges for the atomic alignment, as some atoms correspond
to ppm values in close proximity. However, our K-M3AID model is capable of recognizing each of the atoms with effective
learnt embeddings and deciphering the correspondences among the atoms and the peaks at zero-shot. Two complex natural
product molecules with multiple rings (4 and 4, respectively) and multiple chiral centers (6 and 8, respectively) are taken
to showcase the effectiveness of atomic alignment (see Appendix Figure F.1).
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Figure F.1: Examples of Zero-shot Atomic Alignment for Complex Natural Products. Yellow cells in the PPM difference
represent the ground truth alignment.

In molecular A in Figure F.2, atom 13 and atom 14 are tertiary carbons (attaching to 3 carbons and 1 hydrogen) and on the
same 5-member ring, corresponding to the ppm of 34.3 and 35.6, respectively. The similar local content of these two atoms
fools SP-ID and WP-ID. In addition, WP-ID fails with more atomic alignments. The molecular B is chemical symmetric
regarding atom 0. Thus, atom 1 and atom 3 correspond to the same peak on the spectra. The ppm of atom 1 and atom 3
is 114.2, the ppm of atom 2 and atom 4 is 110.0. While there is 4.2 difference, SP-ID and WP-ID fails to pick up right
alignment for atom 1 and atom 3. In contrast, K-ID succeed to align the atoms with peaks in both molecules.
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Figure F.2: Extra case studies of IE-Meta-MMA.Yellow cells in the PPM differerence represent the ground truth alignment,
and red cross represents the wrong alignment.
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