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ABSTRACT

In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium
Model (DEQ) with ReLLU activation. They proved that the gradient descent con-
verges to a globally optimal solution at a linear convergence rate for the quadratic
loss function. This paper shows that this fact still holds for DEQs with any general
activation that has bounded first and second derivatives. Since the new activation
function is generally non-linear, bounding the least eigenvalue of the Gram matrix
of the equilibrium point is particularly challenging. To accomplish this task, we
need to create a novel population Gram matrix and develop a new form of dual
activation with Hermite polynomial expansion.

1 INTRODUCTION

Deep learning is a class of machine learning algorithms that uses multiple layers to progressively
extract higher-level features from the raw input. For example, in image processing, lower layers
may identify edges, while higher layers may identify the concepts relevant to a human such as
digits or letters or faces. Deep neural networks have underpinned state of the art empirical results in
numerous applied machine learning tasks (Krizhevsky et al.l 2012)). Understanding neural network
learning, particularly its recent successes, commonly decomposes into the two main themes: (i)
studying generalization capacity of the deep neural networks and (ii) understanding why efficient
algorithms, such as stochastic gradient, find good weights. Though still far from being complete,
previous work provides some understanding on generalization capability of deep neural networks.
However, question (ii) is rather poorly understood. While learning algorithms succeed in practice,
theoretical analysis is overly pessimistic. Direct interpretation of theoretical results suggests that
when going slightly deeper beyond single layer networks, e.g. to depth-two networks with very few
hidden units, it is hard to predict even marginally better than random (Daniely et al.| [2013 |Kearns &
'Valiant] [1994).

The standard approach to develop generalization bounds on deep learning (and machine learning) was
developed in seminal papers by (Vapnik, |1998)), and it is based on bounding the difference between
the generalization error and the training error. These bounds are expressed in terms of the so called
VC-dimension of the class. However, these bounds are very loose when the VC-dimension of the class
can be very large, or even infinite. In 1998, several authors (Bartlett & Shawe-Taylor, 1999} |Bartlett
et al.,|1998)) suggested another class of upper bounds on generalization error that are expressed in
terms of the empirical distribution of the margin of the predictor (the classifier). Later, Koltchinskii
and Panchenko proposed new probabilistic upper bounds on generalization error of the combination
of many complex classifiers such as deep neural networks (Koltchinskii & Panchenkol 2002). These
bounds were developed based on the general results of the theory of Gaussian, Rademacher, and
empirical processes in terms of general functions of the margins, satisfying a Lipschitz condition.
They improved previously known bounds on generalization error of convex combination of classifiers.
(Truong} 2022a)) and [Truong| (2022b)) have recently provided generalization bounds for learning with
Markov dataset based on Rademacher and Gaussian complexity functions. The development of new
symmetrization inequalities and contraction lemmas in high-dimensional probability for Markov
chains is a key element in these works. Several recent works have focused on gradient descent
based PAC-Bayesian algorithms, aiming to minimise a generalisation bound for stochastic classifiers
(Biggs & Guedj, [2021}; Dziugaite & Roy.,|2017)). Most of these studies use a surrogate loss to avoid
dealing with the zero-gradient of the misclassification loss. There were some other works which use
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information-theoretic approach to find PAC-bounds on generalization errors for machine learning
(Esposito et al., 2021} [ Xu & Raginsky, [2017) and deep learning (Jakubovitz et al.| 2018)).

Recently, deep equilibrium model (DEQ)(Bai et al., 2019) was introduced as a new approach to
modelling sequential data. In many many existing deep sequence models, the hidden layers converge
toward some fixed points. DEQ directly finds these equilibrium points via root-finding of implicit
equations. Such a model is equivalent to an infinite-depth weight-tied model with input-injection.
DEQ has emerged as an important model in various aplications such as computer vision (Bai et al.|
2020; Xie et al.l2022), natural language processing (Bai et al.,|2019)), and inverse problems (Gilton
et al.,|2021). This model has been shown to achieve performance competitive with the state-of-the-art
deep networks while using significantly less memory. Despite of the empirical success of DEQ,
theoretical understanding of this model is still limited. The effectiveness of over-parameterization
in optimizing feedforward neural networks has been validated in many research literature (Arora
et al., 2019; |Du et al.| 2018} |Li & Liang| [2018). A recent work (Nguyen, |2021) showed that the
convergence of gradient descent (GD) to a global optimum can be guaranteed when the width of the
last hidden layer exceeds the number of training samples. The main idea is to investigate the property
at initialization and bound the traveling distance of GD from the initialization.

However, it remains unknown whether the above results can be directly applied to DEQs. Due to
the implicit weight-sharing, the initial random weights and features are dependent, which causes the
standard concentration approaches in the existing research literature fail in DEQs. Recently, |Ling et al.
(2022) investigated the training dynamics of over-parameterized DEQs with ReLU activation. More
specifically, they proposed a novel probabilistic framework to overcome the challenge arising from
the weight-sharing and the infinite depth. By supposing a condition on the initial equilibrium point,
they proved that the gradient descent converges to a globally optimal solution at a linear convergence
rate for the quadratic loss function. To achieve this target, they developed a lower bound on the least
eigenvalue of the Gram matrix for the DEQs with ReL U activation. One interesting open question
is whether the gradient descent algorithm still converge at a linear rate for DEQs with non-linear
activation functions? In this paper, we show that this fact still holds for DEQs with a general activation
function which has bounded first and second derivatives. Many popular activation functions such as
1/(14+e %), erf(z),z/v1 + x2,sin(x), tanh(x) satisfy the boundedness requirements. In general,
the new activation function does not have homogeneous property as ReLU, hence a novel population
Gram matrix is designed for DEQs with general activations, and a new form of dual activation with
Hermite polynomial expansion is developed in our work.

2 PROBLEM SETTINGS

We consider the same model as|Ling et al.|(2022). However, different from |[Ling et al.|(2022), we
assume that the activation function, ¢, satisfies some constraints in the first and second derivatives.
These properties can be observed in many common activation functions. More specifically, we define
a vanilla deep equilibrium model (DEQ) with the transform of the [-th layer as

T = o(WT!Y 4+ UX) (1)

where X = [X1,X2, -+, X,] € R4*™ denotes the training inputs, U € R™*< and W € R™*™ are
trainable weight matrices, and T() € R™*" is the output feature at the [-th hidden layer. The output
of the last hidden layer is defined by T* := lim;_, o, T() under the condition that this limit exists
uniquely. Therefore, instead of running infinitely deep layer-by-layer forward propagation, T* can
be calculated by directly solving the equilibrium point of the following equation

T* = o(WT* + UX). 2)

Lety = [y1,¥2, - ,Yn] € R™ denote the labels, and y(0) = aTT* be the prediction function with
a € R™ being a trainable vector and § = vec(W, U, a). Our target is to minimize the empirical risk
with the quadratic loss function:

Lo
®(0) = 5 [ly(0) - yl3. 3)

To optimize this loss function, we use the gradient descent update 8(r + 1) = 0(7) — nV®(0(7)),
where 7) is the learning rate and 6(7) = vec(W (1), U(7), a(7)). For notational simplicity, we omit
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the superscript and denote T to be the equilibrium T* when it is clear from the context. Moreover,
the Gram matrix of the equilibrium point is defined by G(7) := T7(7)T(7) and we denote its least
eigenvalue by A = A\pin(G(7)).

Definition 1. An activation ¢ : R — R is L-bounded if it is twice continuously differentiable and
[e(O) 1 1l oo [[#" oo < L.

In this paper, we assume that ¢(-) is L-bounded. In addition, the following holds:

q_\/m/ exp( 2)dz>0. )

Many popular activation functions such as 1/(1 4+ e~7), erf(x), x/v1 + 22, sin(z), tanh(z) satisfy
the boundedness requirements.

Besides, we use a similar assumptions on the random initialization and input data as |[Ling et al.
(2022):

* Assumption 1 (Random initialization). Assume that 02, < W In addition, W is initialized

with an m X m matrix with i.i.d. entries W;; ~ N(O, 202 /m), U is initialized with an
m x d matrix with i.i.d. entries U;; ~ N(0,2/d), and a is initialized with a random vector
with i.i.d. entries ~ N'(0,1/m).

« Assumption 2 (Input data). We assume that (i) ||x;|| = v/d for all i € [n] and x; }f x; for
all ¢ # j; (ii) the labels satisfy |y;| = O(1) for all i € [n].

3  MOTIVATIONS

For the stability of the training of DEQs, it is crucial to guarantee the existence and uniqueness of the
equilibrium points. It is equivalent to guarantee the well-posedness of the transformation defined
in Eq. (I). In order to ensure the well- -posedness, it suffices to take [W ()| < 1/L for all 7 > 0,
with which Eq. (T) becomes a contractive mapping. From the following Lemma 2] we know that
[W(0)]l2 < 1/L holds with a high probability under Assumption 1. Lemma[2]is a consequence of
standard bounds concerning the singular values of Gaussian random matrices.

Lemma 2. (Tao, 2012, Sect. (2.3)) Let W be an n x m random matrix with i.i.d. entries
2

W ~ N (O, 207“’) Then, there exists a positive constant C' such that with probability at least

1 — exp(—Q(m)), it holds that

W2 < 2v20,,. ®)

Furthermore, the equilibrium point of Eq. (@) is the root of the function F(7) := T(7) —
e(W(r)T(7r) + U(r)X) = 0. Let J(7) := 9dvec(F(7))/dvec(T (7)) denote the Jacobian ma-
trix. Then, it is easy to see that

J(7) =1, — D(7)(I, ® W(7)) (6)

where D(7) := diag[vec(c’/(W (7)T(7) + U(7)X))]. Using the Lipschitz property of activation
function, it is easy to check that J(7) is invertible if |W (7)|| < 1/L. The gradient of each trainable
parameter is given by the following lemma.

Lemma 3. (Ling et al.l|2022, Lemma 2) If J(7) is invertible, the gradient of the objective function
®(7) w.rt. each trainable parameters is given by

vee(Vw®(7)) = (T(7) @ L, )R(T)" (3(7) — y)
vee(Vu®(r)) = (X @ L,)R(N) T (3(7) —y),
Va®(7) =T(7)(y(7) —y)
where R(7) = (a(7) ® I,)J (1) "1 D(7).

By a direct application of Lemma[3] we obtain the following inequality:
IVo®(7)|5 = 2Amin (H(7)) (1), ™
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where H(7) = H; (7) + Hy(7 ) + H:

/—\

7) is a sum of three positive semi-definite matrices defined as

( )

R(7)(G(7) ® L) R(1)"
)=R(N(XT"X®L,)R(1)T.
Eq. (7) suggests that if Ay,i, (H(7)) can be lower bounded away from zero, both at initialization and
throughout the training, then one can establish a Polyak-Lojasiewickz (PL) inequality that holds for
the loss function, and thus GD converges to a global minimum. To make the problem tractable, we

further observe that A\, (H(7)) > A;, i.e., the least eigenvalue of the Gram matrix of the equilibrium
point. Applying this observation to Eq. (7), one obtains

IVe®(7)[13 > 2A-0(). ®

The value of A, can be lower bounded by %/\0 where ) is the least eigenvalue of G(0) if the learning
rate and initial randomization satisfy certain conditions. Based on this fact, we can show that if the
learning rate is small enough, the loss converges to a global minimum at linear rate. The result is as
follows.

Theorem 4. Consider a DEQ. Let 6 be a constant such that ||[W (0)|| + 0 < 1. Denote by p,, =
W (0)ll2 + 6, pu = [[U(0)[|2 + 6, pa = [|a(0)]|2 + & and define

)
)

H (7
Hy (7
Hs(7

Lp, Lp, 20(0
Ca:%, Cu:%a Cm:w- (9)
1 - pr 1 - pr 1 - pr
In addition, assume at initialization that
4 N
o2 e (Xl + ) o Xl Xl + o 5O =51, 10
2+ \f) 2 .
/\3/2 ( . X m ” X 2 0) — 11
> A @l X+ ) + cu X 19(0) - yla an
2
Mo = 8¢ (cal[ X[ + e)” + X3 (12)
where \q is the least eigenvalue of G(0) = Z(0)TZ(0). Then, if the learning rate satisfies
2 2 2 » X m 2 2 X 2
n<m1n <’ 5 [C’U.(C H 2||F—’2—C )2+Cu” ||F} 2>’ (13)
Ao’ e (call Xl e+ em)? + GIIXE + (cal X[ 7 + cm)
for every T > 0, the following hold:
o |[W(T)|l2 <1, i.e., the equilibrium points always exists,
A\ > %)\0, and thus the PL condition holds as
IVo®(7)5 = Ao (7). (14)
* The loss converges to a global minimum as
)\ T
d(7) < (1 ~ n;) 3(0). (15)

The main challenge now is to find some initializations such that A, satisfies all the conditions in
Theorem ] To lower bound )y, we need to design a population Gram matrix K and compare \g
with the least eigenvalue of K |Ling et al.[(2022). However, since the new activation function, ¢, is
non-linear in general, bounding )\ is more challenging than the ReL U network in|Ling et al.|(2022).
The non-linearity of activation functions causes the techniques to design K in (Ling et al., 2022}
Definition 1) can not be applied. For example, (Ling et al.,|2022| Eq. 11) only holds for ReLU.

In Sectionfd] we propose a new method to create the population Gram matrix K for DEQs with general
Lipschitz activation function. By using our new form of dual activation and Hermite polynomial
expansion, we can prove that K is symmetric positive deﬁnite In addition, we show that with
probability at least 1 —¢, \g > "3 A, provided that m = Q( log 2 ) where A, is the least eigenvalue
of K. This fact indicates that all the conditions of Theoreml 4] at least hold for over-parametrized
DEQs (or m sufficiently large) with ¢(0) = 0. Hence, by (I5) in Theorem@ the gradient descent
algorithm converges to a global optimum at a linear rate for the over-parametrized DEQs. This

fascinating fact is reaffirmed by our numerical experiments on real datasets such as MNIST and
CFARI10 in Section[7l
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4 A NOVEL DESIGN OF THE POPULATION GRAM MATRIX K

The key approach in lower bounding )\ is to design a population Gram matrix K in such a way that
we can lower bound )\ by the least eigenvalue of K and that K is symmetric positive definite. This
novel population Gram matrix is developed through our introduction of a new form of dual activation.

First, we define a new class of dual activation functions Qm 51 [—1,1] — Rfor all pairs (o, 3) € Ri.
Definition 5. Recall the definition of q in @). For each pair (o, 3), define

- 1
Qa, = ——F Bh)], Vl|z| <1. (16)
5(@) apfq? (a,b)TNN<0{1 ﬂ) [go(aa)go( )] ||

If ¢(x) = max{z, 0} (ReLU), then Q, 5(z) = Q(x) for all (a, B) € R2,, where

1 =x
(a,b)T~N<O,|:I 1

Q(z) =E ) [p(a)p(D)]
is the dual activation defined in (Daniely et al., 2016, Sec. 3.2).

Now, we provide a novel design of the population Gram matrix K based on this new dual activation
function.

Definition 6. Given the training input X := [x1,Xa, - - , Xy satisfying Assumption 2. Let
Qij(z) :=Q ), vz € R. (17)
J \/Q(%E[Gii]Jrl),\/2(%]]‘1[ij]+1) ( )
We define the population Gram matrices K\ of each layer recursively as
P =0, (18)
pil =240 p5Qui(1) + 1, (19)
o _ (OINO
Pij =\ Pii Pij> TFJ (20)
K =0, (21)
2K 4 g-1xTx;
@) _ wNg i)
Yij (-1 (-1 (22)
V2K £ 1) (02K 1)
l l l
ng) = 2q2pz('j)Qij(Vi(j)) (23)

foralll > 1andi,j € [n] x [n].

The next result show that Ay can be lower bounded via the least eigenvalue of the population matrix
K.

Theorem 7. If m = Q(K—z log %) with probability at least 1 — t, it holds that

Ao > %A*. (24)

Finally, the following result shows sufficient conditions such that K is strictly positive definite.
Theorem 8. Assume that there exists a polynomial expansion of Qa,a satisfying:
oo
Quo(®) =Y 2 o ()2 (25)
r=0

Jorall o > 0 such that sup{r : ji2 () > 0} = oc. Then, K is strictly positive definite (or A, > 0).
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5 PROOF OF THEOREM[7|

To prove Theorem[7] we first state some auxiliary results based on the population Gram matrix K in
Definition [} The proofs of these lemmas and prepositions can be found in Supplement Material.

Lemma 9. Recall the definition Oanﬁ in Deﬁnition Then, the following hold for all & > 0, 3 > 0:

Qus(@)] </ Qua(1)Qp.5(1), (26)

- AL?
|Qa.p(z)| < 7 V|z| < 1. Q27)

In addition, Q, p(-) is AL’ max{(t;2+1,,8+1}2 -Lipchitz for any fixed positive pair (o, 3).

Lemma 10. (Ling et al.| 2022, Proof of Lemma 4) For | > 1, GE;H) can be reconstructed as
GE;H) = o(Mhy ;1) o(Mhy 11) such that

. o2 l
e (i)hf hy iy = w4 1xTx;,

m )

o (ii) M € R™*CIHd+2) g g rectangle matrix, and the entries of M are i.i.d. from N'(0,2)
conditioning on previous layers.

Lemma 11. For the given setting, we have

P =oKUY 41, (28)
Py =KV a7 xTx;, Vi, (29)
and
Qi (vE) /v Qe Qs (W (0D —1) () —1)+d <  x; -y
vy = NERE ’ .. (30)
17 7 :]
In addition, we also have
W] <1 31)

foralli,j € [n] x[n]andl > 0.
Proposition 12. Under the Assumptions 1 and 2, with probability at least 1 — m exp(—(m)), we
have |K — K| = O(n (8L203U)l) which implies that, for | — oo, K0 — K with entries

Kij = 2¢°Qi; (vij)\/Piipy; (32)
where
Qij (Vm') /v Qii(D)Q;; (W (pii—1)(pj;—1)+d 'xT x; oy
vij = N ’ . (33)
1, =7
Here,
1

Pi = T 53 20 (1) 2202 On()’ 34

Proposition 13. Under Assumptions 1 and 2 with probability at least 1 — n? exp(—Q(m)), it holds
that

’G -G

1
‘ = O(n(2L\/§aw)l>. (35)
m F

Proposition 14. Under Assumptions 1 and 2, with probability at least 1 — n? exp{ —
Q(8'L¥o2lmnL?) + O(I)}, it holds that

|

Laow _go
m

= O(n(zL\/iaw)l>. (36)

F
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By combining Propositions [12H14] we can bound )\ via the least eigenvalue of the population matrix
K as follows.

Proof of Theorem[J} From Propositions 14, with probability at least 1 — n?exp( —
Q(m8'L? o) + O(1?)), it holds that

s

1
m

’G —a0|,+ Hl(;a) _ KO
F m

+ HK ~-K®

1
Si
pom F

=0 (n <2L\/§aw>l> +0 (n (2L\/§aw> l) + o(n(SL%—i)l) (38)
=0 (n <2L\/§o—w> l) , (39)

where (39) follows from 02, < 1/(8L?).

Next, we fix [ to omit the explicit dependence on . Specifically, let

I = O(log(2A; 'n)/log(V2/(4Lay)),

s x,
Therefore, by Weyl’s inequality (Ling et al.| 2022, Lemma 5), it holds that

then from (39), we have

Ax

iG—K < —. (40)
m 2

1 1 1 As
max )\Z—<G) - )\i(K)‘ < HG K| < HG K| <2 41)
i€[r] m m 9 m F 2
Now, by choosing iy := arg min; A;(K), we have
Aiy (K) = A, (42)
and
1 As
*Amin G *A* S - 4
- Auin(G) . @)
It follows from (@2)) and (@3)) that
Ao = Amin(G) > %)\*. (44)
Consequently, w.p. > 1 — ¢, we have g > 22\, provided that m = Q(K—z log 2). O

6 CHECKING THE CONDITIONS OF THEOREM [§]

In this section, we will show how the condition in Theorem [8] holds for some common activation
functions. We first recall the definition of a traditional dual activation function, say ¢, associate with
@ in (Daniely et al, 2016} Sect. 4.2):

¢lx) = E(u,v)~N (0’ B ﬂ) [p(u)e(v)]. (45)

Then, by using a similar proof as (Daniely et al., 2016, Lemma 11), it can be shown that the new
activation function (see Definition[3)) satisfies

~ 1 <
Qo,a(?) = 5 Zaia%x” (46)
o n=1
if o(x) = >°°° | anhy,(z) (Hermite polynomial expansion) or ¢(z) = Y o a2z,

In the following, we apply and show how the condition in Theorem [§]is fulfilled.
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Example 15. Consider the sine activation, ¢(x) = sin(ax). By (Daniely et al.| 2016| Sect. 8), we
have

Plx) = e sinh(a?z). 47)
By Taylor’s expansion of sinh function, i.e.,
. o = 1 2r+1

Hence, from (@06) and (Daniely et al| 2016 Lemma 11), we have

1 R o a4r+2a4r+2 )
—_ _ - ,—a - - r+1 49
Qa.a(T) qzaze 7';) 2r + 1) x ) 49)

which leads to
1 _a2 a27‘a27‘
e a2 r mod2=1
pralp) = § & a . : (50)
0 otherwise

This means that the condition in Theorem|8is satisfied.

Example 16. Consider the tanh activation function, p(x) = e —c " By (Szegol 1959, Eq. 8.23.4),

et4e~ 2
o(x) can be uniquely described in the basis of Hermite polynomials,

(oo}
p(z) =) anhn(x) (51)
n=1
where
1 I(%2+1) m™/2n
ol = — . 52
lonl = e T 1) & 2 (52)
Hence, from ([@0), we obtain
1 - n, .n
Qual®) = 55 > ara®a, (53)
n=1
so we have
1
2 _ 2 2p
p“r,oz((p) - q2a2 apt (54)
This means that the condition in Theorem|8is satisfied.
Example 17. Consider the sigmoid activation function p(x) = 1—1-% It is known that
1+ tanh(x/2
o(z) = # (55)

2

Hence, by using similar arguments as Example[I6] we can prove that the condition in Theorem|[8)is
also satisfied.

7 NUMERICAL RESULTS

In this section, we implement some experiments to verify Theorem[d] We evaluate the DEQ model
on MNIST and CIFAR-10 datasets. For each dataset, the training dataset is generated by randomly
sampling 500 images from the first and second classes. We use Gaussian initialization as Assumption
1 and normalize each data point as Assumption 2.

In the first experiment, we variate m and plot the training dynamic for MNIST and CIFAR-10 when
¢ is the sigmoid function (L = 1). It can be seen from Fig. [T| that as m big enough and 7 sufficient
large, the curves become straight lines. This fact re-affirms that holds.
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Figure 1: Training dynamics at different values of m.
In the second experiment, we variate the activation function and plot the training dynamic for MNIST

and CIFAR-10 at . = 3000. It can be seen from Fig. [2]that as mn big enough and 7 sufficient large,
the tanh network converges faster than the sigmoid or ReLU one for both datasets.

150 110
-»- RelU ->- RelU
—e— Sigmoid —e— Sigmoid
140 —4- Tanh 105 4 —- Tanh

130
100

log(®(1))
- =
= ~
) S
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T T T T T T T 80
[ 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
T

T

(a) MNIST (b) CIFAR-10

Figure 2: Training dynamics for different activation functions.

8 CONCLUSION

In this paper, we proved that the gradient descent converges to a globally optimal solution at a linear
convergence rate for the quadratic loss function for the over-parametrized DEQ with L-bounded
activation functions. This fascinating fact is also re-affirmed by our numerical experiments on
MNIST and CFAR-10 datasets. To overcome new technical challenges caused by the non-linearity of
activation functions, a novel population Gram matrix is introduced and a new form of dual activation
with Hermite polynomial expansion is developed. An interesting future research direction is to study
whether the linear convergence rate property still holds for other classes of activation functions.
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A APPENDIX

B PROOF OF LEMMA

By Cauchy-Schwarz inequality, we have

N 1
Qap(r)] < E (ca)p(Bb) (56)
|Qap()| afq? (a’b)T~N<O{1 ﬂ>|<ﬁ aa)p(Bb)|
1
- E | (u)p(v)] (57)
apfq? (u’v)TwN(o{xojﬁ xggﬂ])
_1 1y , Lo 2 sg
<\ E a~ N (0,02) (P2 (@)] pe b (0,82) [97 (D)] (58)

=1/ Qa,a(1)Qp,5(1), (59)

where (538)) follows from Cauchy—Schwarz inequality. The equality in (58)) holds if and only if « = 3
and x = 1.

In addition, by the L-bounded property of ¢, we also have

lp(az) — (0)] < Llaz|. (60)

Hence, for any o > 1, it holds that
lp(az)| < |p(0)] + Llal|z| (61)
< L(1+]allz]) (62)

< Lla|y/2(1 1 29). (63)

From (63)), we obtain

o0 1 2
Eon(0,02) 97 (a)] = / " 27r<pr“(Z)exp ( - 2Za2>dz (64)
_ [T L 2\ 65
=/ Egp (az)exp | — 5 )dz (65)
') 2
< 2L2a2/ %(1 + 2%) exp (— Z2>dz (66)
= 4L%a°. (67)
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Similarly, we also have
Ebn(0,82) (% ()] < 4L%5%. 68)

From (58), (67) and (8), we obtain |Q, 5(x)| < 4L?/¢* foralla > 1, 8 > 1,and = € R.
Now, for a fixed pair (o > 0,5 > 0), define z := (u,v), ¢(2) := p(u)p(v), and

Y, = [gﬂ ng} . (69)
Then, by (Daniely et al., 2016, Lemma 12) we have
A 2
8;251[3 = 72q21a5E(u,v)~N(0,Ez) P?)Q(j) (u,v)} (70)
On the other hand, we note that
96(2) (o) l"’gz% o(v) 2500 6‘2&”)] | an
oz |2 e

Hence, from (70) and (71)) we have

8@@,5
0%,

‘8§g0¢“)

] s E(um)~N(0,52) H o ov

} } (72)
Now, since |¢(0)] < L and ||¢’||co < L, it holds that

lp(2)] < le(x) = (0)] + | (0)] (73)
<L(lz|+1), VzeR (74)

max {E<u,y)~N(o,zz) {

*p(v)
E
(u,v)~N(o,zz)H 002 U(U)

1
w  2¢%ap

Hence, by the assumption that ||o” || < L, from and (74), we obtain

Qa.p L?
H o, L < Sgap {Ew,v)w(o,zm) [lul + 1], L Ewoyonvoma [[0] + 1]} (75)
2
< - .
S 208 max{a+ 1,5+ 1} (76)
It follows that
dQa

1Qas(y) — Qap(z)| = ’ / Qo5 dt’ (77)

N Qs 0%
-/ “(( ) T <78>

v Qo) 0%

< 2 -
<[((5) )\dt ™

8@04 53 82t
< 4 ’
< I %, H _ (80)
L2 L [Y]|0%,
5max{a—|—l B+1} /I . c)odt (81)
2

4L5max{a—|—l B+1}Y2afly — | (82)

4L +1,8+112
_ ax{aq2 B+ 1} . (83)
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C PROOF OF LEMMA 11

Observe that
(l) Gﬁ,KE —|—d X X;
" oKy 41

=1
From (19) and (23) in Definition [] and (83), we have

A~ A
In addition, from (20) and (22)) in Definition[6]and (86)), we also have

pg) - QK(l Yy gt x} X, Vi, j.
Replacing (23) in Definition[6|and (86) to (Z2)) in Definition [f] we obtain for i # j,
|02K(l D4 xTx; |

VoKD 1) (02K 4 1)

_ ’2q20wp1(§ 1)Qlj( (4= 1))+d*1xiij|

[, 0
Pii Pjj

l
il =

(84)

(85)

(86)

(87

(88)

(89)

Qi () /VRaQy(1 T 220200V Qui(1) 220200V Q5(1)) + d= 15T x|

(O]

Pii Py
10y ) V@M (o - D(ef) — 1) +d'xTx,
pf?pﬁ}
\/(PE? 1)(P§l> -1)+ ’d_lxiij’
B 0]
B Ve = D) — 1 +1
B o5 o)

<1,

where (92) follows from Lemma(9] and (©3) follows from d~[xYx;| < d~!||x;[[2]|x; > = 1.

D PROOF OF PROPOSITION

For all i, j € [n] x [n], observe that
|K(l+1 K(.l») ’
! 1
— 242 !p( Q™) - ol Qi) )!
! ! ! ! !
< 20 Qi) = 05 (v + 20105V Qi (1)) — 2 Qi ()
where (06)) follows from the triangle 1nequahty.
Now, we bound each term in (96). From (22)), we have
o _1- (2¢°02,Qui(1))!
" 1—2¢203,Qii(1)
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Hence, we have

o) = ol V] < 0(24°02,Qu(1))). (98)
In addition, for i # j, we have
8 = 57 = A0l = el )
< oS VY = oG+ 10 e = P (100)
< O((2¢°05,Qii(1))"). (101)

On the other hand, by Lemma@ we have |Q;;(1)] < 4quz . Hence, from (98] and (TOT)), we obtain
o) — oV < O((8L202)), Vi, (102)

Now, let

. 1612 (o2 3
L, = (i;L”E[GH] + ) (103)

By (1), Assumptions 1 and 2, it is easy to see that E[G;;] do not depend on ¢ € [m]. In addition, we
have

(1+1 (I+1 I+1 l
Qi) — PV Qs (D))
(I+1) A D)

= | Q\/Q(%E[G“]-&-l) ,\/2(:%“ E[Gy;)+1) K

.

o) (104

V(i) yf2(Fee, )

< 1352 max{U?"E[Gii] + 2 Uﬁ’E[G i+ g} pl(-é-ﬂ)ui(;ﬂ) — pgéﬂ)ui(jl-) (105)
Ly olt) (z+1>7pg) 0|4 I, |p<z) P 0] (106)
LT — 0,01 E 0 ) (10)

= anwngé) KTV + Lo((8L%02)), (108)

where (T03) follows from Lemma [0 (I07) follows from Lemma [T} (TO8) follows from (28) in
Lemmal|lT]and (T02).

In addition, by using the fact that |Q g(z)| < 4(1%2 foralla > 0,8 > 0in LemmaEl, we have

I l !
oy Qu (v = ) Qu )| < At 0] (109)
417
= —-0((8L%03)"), (110)
7
where (TT0) follows from (T02).
From (T08) and (TT0), we have
(+1) @
K - K
2|7 2 |1x® (=1 7 2 2 AL 2 241
< 2¢° | Lyl | K — K5 7|+ L,O((8L%02)") +—0(( 8L%02)). (111)
By using induction, from (T11) we have
!
K - K = o((s2%0%)). (112)
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Since 02 < 1/(8L%), {Kg) }72, can be easily shown to be a Cauchy sequence. From the complete-
ness of R, it holds that

K Ky (113)
uniformly in ¢, j € [n] X [n] as I — oo for some matrix K. By using the triangle inequality, we have
(+1) O U] (I+1)

K K/ | > [Kij — K| - [Ki;" = Kyl (114)

From (T12) and (TT4), we obtain

1
K — K| = 0((8L%2)"). (115)
From (T13)), we obtain

IK® —K||,, = O(n(8L%2)"). (116)

Now, by Lemma|[TT] we have
K =2¢%0Qi;(v) (117)

and Kfj) — Kj;. On the other hand, since 02, < 1/(8L?), or 2¢%02,Q;;(1) < 2¢* 4qL2 o2 <1, we
have

W _, 1
118
i T 1 24702 Qu(1) (118)
as | — oo. Hence, it holds that y( ) v;; uniformly in 4, j € [n] x [n].

Hence, by (30) in Lemmal'l;fl, we have
Qz] (Vl])/\/Q’Ll Q]j )\/(Pn - 1)(ij - 1) + dilszxj

Vij y (119)
where
o LR (120)
P T =202 Qu(1)
E PROOF OF PROPOSITION 3]
Assume that T®) = [tgl), tél), e (l)] where t( ) € R™ forall i € [n]. By (1), we have
t = p(wWt!" Y + Ux,),  Vieln] (121)
Hence, with probability at least 1 — exp ( — €2(m)), we have
6D — )| = ng(th” +Ux;) — (Wt 4 Ux,) ‘ (122)
< LHW(tE” — ) ’ (123)
< LW e — 0| 28
< 2LV20, ||t — {7V (125)
where (123) follows from Lemma[2}
Therefore, for all [ > 2, it holds that
6 = 7V, < (2Lva0w) |16 ~ 67, (126)
= (20v20.,) |6 - (127)
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Now, let V' ~ A(0,4) given x;. For each tgl), we have

pi =E {; (til))Ttgl)] =E |:WILQD(UXZ')TQ0(UX¢) (128)
=E[o(V?)] (129)
<2(L*+ L’E[V?)) (130)
=10L?, (131)

where (129) follows from |¢(z) — ¢(0)| < L|z| for all z € R.

Then, by using Beinstein’s inequality, it holds with probability at least > 1 — 2 exp ( — Q(mt?)) that
1
m

()6 — | <t (132)

i —

Hence, with probability at least 1 — exp(—$2(m)) — 2exp ( — Q(mt?)) it holds that

[¢9 — 07V < (2Lv20,,) V/m(pi + £) (133)
< (2Lv20,,)'/m(10L2 1 7). (134)
Then, for all 7 > s, with probability at least 1 — exp(—€2(m)) — 2exp ( — Q(mt?)), we have
1607 — ¢8| < \/m(10L% ¥ )(2LV20,,)" — 0 (135)
as s — oo since 2L\/§ow < 1. Since R is complete, hence we have
£ = tall = 0 (136)
for some vector t;.
It follows that
667 = taf] = [l — gl < [[65" — 577 (137)

<m0 + o)|[tV]| (2Lv20,)',  VI>2. (138)

From (T38), with probability at least 1 — exp(—€(m)) — 2exp ( — Q(mt?)) we have

[t — ;|| < Vm@OLZ+ |t S (20v20,)" (139)
k=Il+1
M L
_ o ol IH_(?QLLg;w) . (140)

Consequently, we have

Gy - G| = ey - (1) (1) (14D
< [67t; — o7 (67)] + 67 (t57) = (&) " (&) (142)
< [leallfle; — &5 + &5 | []e: — &5 (143)
2L\/§O’w)l+1
< 0L 5 o) 60 BV 2ew)
< VIO 1 o) 0
(2Lv20,)""

+v/m(1022 + )¢ |67

Let ¢ be an absolute constant. Finally, we obtain (35) from (144).

. 144
1 —2LV20, (144)
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F PROOF OF PROPOSITION [14]

Define
R 1
G =E {Ggﬂ. (145)
m
Then, by Lemma 10, we have
. 1
G =F [mw(Mhz)%(MhD] (146)
= Ewen(0.2m) [p(W ) o(why)]. (147)
Let
N l l
AY:=nln;,  AD =3 AY =3, (148)
and define
AW
o) = (149)
ADAD
i1 F3jj

Then, we have

1O
Gij - E(u v)NN( 2 [”hl”2 hTh;}) [(P(U%O(’U)} (150)
7 “|hihy [l

=E w1 [P(V2]hi[[w) (V2| hl|v)] (151)
My [y ]]
(u,'u)NN(O, thhg ll l
[l
= (1
= 267/ 1101 Qi 2y (47 (152)
(l) ()
ANQfl\hz Il f\lh’\l( ij )- (153)
Now, we consider two cases:
e Casel:i=j.
By Lemma 10, we have
G = o(Mhy41) T o(Mhyy ), (154)
where
2
Uw
[y ||* = EGE? + 1. (155)

Now, for a fixed h;y;, by Beinstein’s inequality and (I54), it holds with probability 1 —
exp(—Q(me?)) that

<e/2. (156)

(X3

‘1G({+1) . GEEH)
m

On the other hand, by Preposition [13] with probability at least 1 — n? exp(—(m)), we have
1
—|G -G, = O<n(2L\/§aw)l“>. (157)
m

Since 2Lv/20,, < 1, it holds with probability at least 1 — n? exp(—(m)) that

‘G(Hl) ((QLf )l“) o(1). (158)

17
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From (138), ||h;41]|? = O(1) with probability at least 1 — n? exp(—(m)). Then, for all h; 1,
note that the e-net size is at most exp {O(llog 1) }. Therefore, it holds with probability at least

1 —n?exp (— Q(me?) + O(llog 1)),

1 «
—GIT - G| <e/2, (159)
m
Now, observe that
Ggfﬂ) Ew~n(0,21) [SDQ(WTth)] (160)
= 2% |01 [PQ g, v s (1- (el
On the other hand, we also have
KD = 24250409, (1) (162)
=2 (awKi? +1)Qu(1). (163)
It follows that
G _ gD
A 1
= 20|11 Q s vz | (1) (02K + 1)Qii(1)‘ (164)
— 942 ﬁ(}(l)_‘_l Q (1) — (2K(l )Q() (165)
=\ o, T V2| V2 b | T ii
=44 m o u V2| b |, V2] e | WG V2| b |, V2 R

0)
+2q (O’ K +1 ‘Qf|hl+1 | f|‘hl+1‘|( )—Qii(l)‘ (166)
2,2 G(l) 0) 2 1) =
<8L%¢ -K;/| +2¢* (02 K}; H)’Qﬂhz+1|,ﬂ|hz+1n(1) Q“(l)’. (167)
Now, let
2
h)? = 22 Gy + 1. (168)
m
Then, we have
2
ag
[Ibria])* = || =~ |G — G (169)
1 1
< llev g, 170
- O(n(zL\/io—w)l) (171)

where (169) follows from (I53) and (168)), and (T71) follows from (I57). Since G;; = ||z:]|*> >
0,G = ||2Y |12 > 0, from (T53), (T68), and (T7T), we obtain

l
[y || — |h| = O(n(2L\/§Uw) ) (172)
In addition, since T; = p(WT; + UX,;) for all i € [n]. Hence, as Lemma 10, we can represent
Gii = ¢(Mh)"p(Mh), (173)

where M € R™*(21+4+2) with i.i.d. entries distributed as (0, 2). Hence, by standard Beinstein’s
concentration inequality, with probability 1 — exp(—(me?)), it holds that

|I1h|[> — E[|[h]?]] <&, (174)
||| — E[|[h]]] <e. (175)
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From (I71), (T72), (T74), and (T73), with probability at least 1 — exp(—§2(me?)) it holds that

s = ElIBIZ) =< + O n(22vE00)' ), (176)
||y || = E[[ ]| e+0<n(2Lﬁaw)l>. 177)

Now, note that

\so%ﬁnhmna) — PA(Va|hlla)

= |o(V2|hiy1la) — o(V2|Ih]ja)||o(V2[his1lla) + o(v2]h]|a)|. (178)

On the other hand, we have
‘w(ﬂIIhmIa) — @(V2|hl|a)| < Lv2|a][[Ihy 11 ]| — (1], (179)
\w<¢é||hz+1|a> + @(V2|ha)| < 2(0)] + LV2([bysa ]| + [[h])a] (180)

where we use | [p(2)] (]| < l¢(x) — 9(0)] < Llz] on (TED).
From (178)), (179), and (T80), we obtain

©*(V2|hita]|a) — ¢*(V2I[h]|a) | < 2Lv2]p(0)|al[[ el — ]| + 2L2|af* by |* — [[h]?|

(181)
= lal[e+ O (nL(zL\/ﬁau,)l)} +lal*[e+ O (nL2 (2L\/§aw)l>] (182)

where (182) follows from (I71)) and (172).
From (182)), we obtain

Euonon [¢2<ﬁ|hz+l ||a>] — Eaonon [so%/ihna)] \

< Eounvonllall[e +0 (nL(2L\/§aw)l>] + Eanonllal?][e+ 0 <nL2 (2L\/§aw)l>]

(183)
Similarly, we also have
2
Ean0.0) [wQ(ﬂllhco} SEGNN(o,ano(on +L\f2||h|||a> } (185)
=0(1). (186)
It follows that
Q31,3 (1) — Qii(l)‘
1 1
= |5 zp 2 *(V2|h - ———F 2(v/2E[||h
T oo [2(VEIall0)] - g Faion [#(VEEIbla) |

(187)

|

1 1
<|l—F,. 2(v2||h a}—EGN [Qﬁﬂﬂha
< | s e [PV 2hal0)] - g Eaion [F(VEE] bl
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1 1
et E,. VIE[|h ]—an [mh}
\2(1 I E Now[ “(VEE[Ihlla) | — 5 Baao.n | ¢ (V2E(h]Ja)
(188)
1
< ——E,n 2||h E,. 2(v2E|[|n
< ST Borvion | VA4 10| ~ Eumion |+ (VIELI )|
- 7 [Eamion [#(VEE i) | (189)
5.9 - a~N (0, .
E[[u?]| "~
By combining (T71)), (I84), and (I86), from (I89), we obtain
= l
’Qﬁ|hz+1|’\/§|hz+1|(1) - Qi,i(l)‘ = O(8+TLL2 (2[’\/50'11)) ) (190)
On the other hand, by Proposition[12] with probability at least 1 — m exp(—£(m)), we have
K — K| p = 0<n(8L%§,)l+1> = 0<n(2L\/§au,)l+1>. (191)
It follows that
1KY — K| :O(n(2L\/§aw)l+1>. (192)
From (190), (192), by setting
e :o<nL2(2Lf )l“> (193)
from (T67), we obtain
) Gl
‘G@“) K'Y <8122 ~ K| + 2. (194)

It follows from (T39) and (T94) that with probability at least 1 — n? exp { — Q(me?) + O(llog 1)},

(195)

(43

1
‘Ggﬂ) KD
m

< ’1(}(.”” G
m

N ’G%+1) KD

1
< 8L%?, EGE? ~ K|+ 2, (196)

which implies that with probability at least 1 — n2l exp { — Q(me?) + O(l log %) } we have
~ (81202’

S sz (17

Final note is that since & = O (nL? (2L\/§aw)l+1), it holds with probability at least 1 — n?l exp { —
QB'L¥o2mnL?) + O(1?)} > 1 — n?exp { — Q(8'L¥02lmnL?) + O(I?)}, we have

‘Ggp ~KY| = o(n(QL\/iaw)l>. (198)
» Case2:i # j.
For this case, let
0.2
|h|?: = ““Gy; + 1, (199)
m
o2
0|2 : = 22 Gy + 1. (200)
m
By Preposition with probability at least 1 — n? exp(—Q(m)), we have
‘ G-GW| = O(n(2L\/§aw)l>. (201)
m F
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In addition, we also have

2
[hyse|? = %Gg? +1>1, (202)
2
a,
i = EGl) +1 =1, (203)
Hence, we have
e = il = O e ) (204)
7 ||~
= wlgh gy (205)
0.2
<ulch -G (206)
m F
-~ O(n(2L\/§aw)l>. (207)
Then, it holds that
A (I41) (1+1)
Gij - Kij
_ oo [0 AGTDA Dy (1) (1+1)
=207\ AL A Quan ) vang 1 Pi) — Py Qi )‘ (208)
o [AGFD AUHD) 5 1+ (1) A 0)
<207 AGTAT Qs a1 (P ) TP Quaig vaimy, 1 (Vi )‘
2 (I+1)| A ) (1+1)
+247p;; ‘Qﬂ|hz+1|,ﬂ|h;+l|(”ij ) = Qij (v )‘- (209)

Now, for all || < 1, we have

Q\/i\lhlﬂl\,\/i\lhfﬂl\ (93) - Qij (I)

141

< ‘Q\/ilhzﬂl,\/ilhfﬂl(x) = Quag(n|),vaing, | (%)

+ ‘Qmuh|lﬁlhz+l|($) = Qij ()] (210)
On the other hand, we have
Qusini).vain;,, | () — Qi (@)
1
= E V2E|[||h V2! |16
T ) I
X
@11)
1
- E V2E[||h V2E]||n b‘ 212
2q2E[||h||]IE3[||h’H] (a,b)T~N<0,{1 ﬂ)‘ﬂ( [H H]@‘P( H| H]) (212)
X

1

< E
‘mmnhnnhmn R I
X

)w(\@E[IIhIHa)@(ﬂllhiﬂllb)

1
_ E
2E [0, | (a,ww(o,[l ]
X

)w(\/ilE[hII]a)w(\@E[IIh’II]b)’
1

1
n E
’wmnhmnhzﬂn (a,b)T~N<o,[l i
X

)w(\/i]E[lhII]a)sD(\@E[IIh’II]b)
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1
_ E
2¢*E(|[ulJE[IDN} 7 ope (o, [1 x}
T

>¢(\/5E[Ilh|]a)so(\/§EH|h'I]b) (213)
1

1
< E
2 ElBITHY ] (a,b)TNN(o,[l i
xr

) ]¢<ﬁE[||hma>so<ﬂ||th||b>

- so(x/iE[||h|Ja>so<ﬁEu|h'nb)\

1 1 1 ,
* ST T ~ 3 ’E(a,b)T~N<o,[1 ) R LRENE L
x 1
(214)
In addition, we have
(o(VEE[[hl[la)| < |¢(0)] + LvZE[h]}la @15)
o(VIE[IW|[1B)] < ()] + LVEE[H ]3] 16)
1t follows that
]w(ﬂEH|h||]a>so<ﬁ||h2H||b> - WEEHhna)sowiEmh’n]b)]
_ ‘@(ﬁE[IIhHa) (V2 1) — <P(\@E[Ih/ll}b)‘ 17)
< (|«»<o>| n mehnnaQ \w<ﬂ||hz+1|b> - w(ﬂE[nh’ub)\ 18)
< 23l + LVEBIIBlal ) [, - B @19)

On the other hand, by Beinstein’s inequality, with probability at least 1 — exp(—§2(m)e?), it holds
that

[I0'[ = E[[u’[l)] <. (220)
From (207) and (220), we have
bga | = B[]} < by | = [l + [ IB] - B[R] (221)
<e+0 <n(2L\@ow)l). (222)
Now, by setting
ci= O<n(2\/§aw)l>, (223)
from (222)), we obtain
/ / l
a1~ B = 0(n(22v3m)'). 224)
Similarly, we also have
sl = B ]| = O (22120 ), (225)
1] — B[] = o(n(uﬂaw)l). (226)

From 214), (219), (224) and 226), we obtain

Q vz hl). V2, | (2) — Qi (@)

-0 <n(2L\/§0w)l> . 227)
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Similarly, we can prove that

’Qflhzm vy, 1) = Quasgmiyvaim, ) (2)] = O(”(QLﬂJw)l) (228)

From (210), (227), and (228), we obtain

‘Qﬂhzm Vaimg, 1 (%) = Qi (2)] < (n(2L\@aw)l). (229)

Next, we aim to upper bound

(l+1) (H—l ( +1 ) (l-‘rl)
20°WALTVAS Qg vz, 05 = 25T Quapnvaimg,, 1 4L

Observe that with probability at least 1 — n? exp(—£(m)), it holds for all [ sufficiently large that

A(l.‘i’l l+1) (A(l+ )) ( (H*l))’

AR ON T Ll

NGOG l+1) 5+
’( AL A )thlm iy, 11 (7 )’

0 S0+ )
Pij (Q\[|hl+1| Z|h! +1H( ) Q\thHlH V2| h; +1H( ))‘ (230)

AL?| /2050 2 a4 (1+1)
VAT

Q3|11 V2, |

IN

_|_

IN

2
ol max (VB |+ 1, (V2 + 1)) 25 -] @3

| /\

*max{(f il + 1), (V3 )|+ 1) H\/ (FDALD _ (D

) (l+1)
7] 1]

+ 0 (232)

AL ] —
A {(ﬂEnhm 1o, (VIR + 1+ s>2} H ATDALT _ (i)

IN

(1+1)

I+1 I+1
+ oD )]

1] ZJ

, (233)

where (231) follows from Lemma(9] and (233)) follows from (224)), (225) and (226).

On the other hand, we have

/A (l+1) (1+1) (+1)
‘ i1 AJ] ~ Pij

. A (141) R (14+1) (1+1)
= ‘ A Ajj — Pij

(1+1)

+1 +1
1) G

z] Z]

A+ A (D) |, (+1) AU A (1D Y A4 (141 (1+1)
+ ’( AL AT oy ALTTTA )uij —pij Vi (234)
2‘ Al(_éJrl)A;ljJrl) _ l+1) ‘ /Agﬂ A§l]+1 ~(1+1) l+1 Vz(JlH) 7 (235)

where (235) follows from |1/ <1
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On the other hand, since p( - \/p(Hl)pglJH) we also have
[ A0H+D) A (+1) (l+1
’ i Ay

2
T (1 Tt (1 I !
~o (megx 1) (Zal +1) - Vil ey <) @0
=0 <n(2L\@ow)l), (237)
where follows from (I98).

Moreover, note that

JAGTIAL I — A (238)

= ||hz+1||2 (239)
— “’G(l) + Clle (240)
and
OV = O @)
= (j“) (02K +1) (02K +1) (242)
2K + ClixZT (243)
Thus, it holds that
’ A(l+1)A(z+1) 2(Jl+1) pl(é_ﬂ)yl(]lJrl) — o2 %Gg) _ Kg) . (244)
Thus, with probability at least 1 — exp ( — Q(me?) + O(llog1/¢)), it holds that
‘G%H) _ Kﬁ“) < o2 %Gz(é) _ Kx) +e (245)
On the other hand, by Lemma 10, we have
G = o(Mhy1) (MY, ). (246)

Hence, for a fixed vector pair h;; 1, h;_ ,, by Beinstein’s inequality, with probability at least 1 —
exp(—Q(me?)) it holds that

iG(‘l‘-&-l) _ g <
1] )

(247)

Then, by using e-net arguments as in Case 1, with probability at least 1 — [l exp ( — Q(me?) +
O(llog1/e)), we have

%G%H) -G (248)

Consequently, we have
iggﬂ) _K| < ’;G%Jrl) G|y ’G£§+1) K (249)
<2%+02 %Gg) - K (250)

where (250) follows from (243)) and (243).
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By applying the induction argument, one can show that for [ > 1, it holds with probability at least
1—1%exp (— Q(me?) + O(llog1/e)), we have

2e
1—02"

’ G - k| < (251)
m

By the choice of £ in (223), it holds that with probability at least 1 — n? exp { — Q(8'L¥o2lmnL?) +
O(1?)}, we have

0 O] _
x|

0 (n(2L\/§Uw)l> . (252)

G PROOF OF THEOREM [§

Since Ux; is a Gaussian vector with zero-mean and variance depending on [|x; 2. On the other
hand, by the Assumption 2, ||x;]| = v/d. Hence, from t; = ¢(Wt; + Ux;), it is easy to see
that E[G;;] = E[||t;]|*] does not depend on i € [n]. This means that E[G;;] = E[G;;] for all
i,j € [n] x [n]. Hence, Q;;(z) has the form Q, o(z) for some o > 1.

Thanks to this fact, from Proposition[I2]and the assumption on this theorem, for all (i, j) € [n] X [n],
it holds that

K, = 2q2Qij(Vij)\/p1'ipjj (253)
= 2 \/piifi; Zum Vi, (254)
where
Vi — Qij (1) /v Qi(1)Qy5 (1) (pis — D(pj; — 1) +d 'x]'x; (255)
! V/PiiPjj
Here,
1

pii = (256)

1 — 2(]20'721)62,'7;(1) ’
Now, by Lemmal[11} we have |v;;| < 1 forall (i,5) € [n] x [n]. Let H = [hy, hy, -+, h,,] where
hy, hy, - -+, h, be unit vectors such that v;; = h] h; for all (i, j) € [n] x [n]. Itis easy to check that
[(HTH)®");; = (hiThj)T holds for all (4, j) € [n] x [n]. Let K be a n x n matrix such that

Ki; =K;;/\/piipj; Vi, j € [n] X [n]. (257)
Then, K can be written as

— 24 Z 12 o () (HTH) 7. (258)

Now, for any unit vector u = [uy, ug, - - , u"}T € R™, it holds that
u” (HTH)"u = Zuiuj h’h;)" (259)
= Z uf + > vy (260)

i#]
=14 uuvj). (261)
i
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Next, we show that |v;;| < 1if i # j. Indeed, assume that there exists ¢ # j such that |v;;| > 1.
Then, from (30) in Lemma[TT] we have

1< |Vij| (262)
Qi () / V@i (D@35 W/ (pis — d T xill3) (g5 — d 1% 3) + d'xT'x, 263)
< Vi = a5 (ps; = A7 T13) + |47 x| (264)

\/PiiPjj
- Vi = d7Till3) (pss — A1 13) + 1 (265)
<1, (266)

where follows from Lemma [9] and follows by the fact that since x; }f x;, from
Cauchy-Schwarz inequality and Assumption 2, we have x! x; < ||x;||2]|x;|| = d. This is a contra-
diction. Hence, we have | 3| < 1 where

B = max |v;j]. (267)
i#]
Now, by taking r > — iﬁgg, we have
D | < fuilluy|8” (268)
i#] oy
2
< <Z|ui|> B (269)
< nB" (270)
<1 271)
From (261)) and (2Z71)), we obtain
W (HTH)“"u >0, v, 272)

SO (HTH) ©n) i positive definite. Following Theorem it holds that ,ufa (¢) > 0 for infinitely
many values of r. Hence, K is positive definite.

Now, let I' = {, /p;ip;; }4,; be an n x n matrix where the (¢, j) element is | /p;; p;;. Then, we have

K=KoT. (273)
Now, for any vector u = [uy,ug, - ,u,]’, we have
u'Tu = Z Ui/ PiiPjj (274)
i i
= ( Z u; \/;T> (275)
> 0. Z (276)

Hence, I is positive semi-definite. Now, by applying (Ling et al.,[2022, Lemma 6), we have

Amin (K) > (m,in Pu‘) Amin (K) 277)

> Amin(K) > 0, (278)

so K is positive definite with the smallest eigenvalue A\, > 0.

26



Under review as a conference paper at ICLR 2024

H PROOF OF THEOREM [4]

The following proof follows the same steps as (Ling et al.| 2022, Proof of Theorem 1). There are
some small changes by the change of the activation function. First, we recall the two important
auxiliary lemmas:

Lemma 18. (Horn & Johnson||1985, Sect. 5.8) Let A = B — A where A and B are square complex
matrices. Then, it holds that

AL
B < g]

S i (279)
—[[ATA

Lemma 19. (Weyl’s inequality)(Ling et al., 2022, Lemma 5) Let A, B € R"™*"™ with their singular
values satisfying 01(A) > 02(A) > -+ > 0.(A) and 01(B) > 02(B) > -+ > 0,(B) and
r = min(m, n). Then,

m?)]¢|cr7:(A) —oi(B)| <[A-B| (280)
e|r
Based on these two lemmas, we can prove the following result:

Lemma 20. For each s € [0, 7], suppose that ||W (s)|l2 < puw, [[U(8)|l2 < pu and ||a(s)||2 < pq. It
holds that

IT(s)l7 < call X7 + cm (281)
and
[Vw®(s)||r < culcall X[ p + em) IF(s) = yll2, (282)
[Vo®(s)llr < cul X[ £[15(s) = yll2, (283)
[Va® ()l < (callX|p + cm) [7(s) — yll2- (284)

Furthermore, for each k, s € [0, 7], it holds that

I = T < 1= (cal Xl + ) [W(E) = W)l
+ 7= U = U)o X 285)
and
I9(8) = 9(5)l
< | = @l X + ) [W(E) = W)
+ 1= U = U)X | + (X e +e0)ak) — (o)l (280

Proof. Observe that T(s) = (W (s)T(s) + U(s)X). Using the fact that |p(z) — ¢(0)| < Llz|
(Lipschitz condition of ), we have

IT(s) — (0)llr = [[e(W(s)T(s) + U(s)X) — 0(0)|| (287)
S LW (s)T(s) + U(s)X) | r (288)
< L<|W(5)”2”T(5)”F + ||U(5)||2||XF) (289)
< Lpw||T(s)||F + Lpu || X|| £ (290)
From (290), we have
IT(s)|r < [l(0)||F + Lpw | T(s)|| F + Low|I X # (291)
=m?¢(0) + Lpw||T(s) |l + Lou||X| r. (292)
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Since p,, < 1/L, from (292)), we obtain
IT(S)F < cal X7 + cm. (293)

Now, we prove (282)-(284). By using Lemma[I8|with A = L, ,, B = J(s), A = —D(s)(I, ®
W(s)), we have

1
J(s)7H. < 294
6 < T m @, s WeD T @54
1
< . 295
= T DO WE: )
On the other hand since [|¢’||oc < L, we have
ID(s)[l2 < L. (296)
Hence, from (293), we have
1
-1
[J(s) 2 < mv (297)
and thus it holds that
IR(s)]l2 < [la(s)[|2]1 T (s)~ {2 D(s)ll2 (298)
L
ST (299)
Then, we have
[Vwe(s)[[r = [[vec(Vw®(s))]|2 (300)
= [[(T(s) @ Ln)R(s)" (¥(s) = ¥)|l2 (301)
< T [2R()]12(5(s) — yll2 (302)
Lp, .
< T €l Xle + em)l3 ) =y, (303)
[Vu@(s)|[r = [[vec(Vu®(s))]l2 (304)
= [(X@Ln)R(s)"(¥(s) = y)l2 (305)
Lp, .
< 1= 15 IXIPl9() = e (306)
[Va®(s)[lr = [T(s)(¥(s) —y)ll (307)
< (calXllp + em) 15(5) = ¥ ll2- (308)
Next, we prove (283). Observe that
[T (k) —T(s)llr
= [[p(W (k)T (k) + U(k)X) — o(W(s)T(s) + U(s)X)|r (309)
< LW (k)T(k) + U(K)X — W(s)T(s) - U(s)X || (310)
< L(|W (k)T (k) = W(k)T(s)||r + W (k)T (s) — W(s)T(s)||r
+ U)X —U(s)X]||r) (311)
< LW (R)[[2[| T (k) — T(s)llr + LIW (k) — W(s)[[2[| T(s)l|»
+ L|U(k) — U(s)||2[| X[ r (312)
< Lpw||T(k) = T(s)lr + L(call X7 + cm) [W(E) = W(s)[2
+ L U(k) = U(s)[2[1X] - (313)
From (313), we obtain
() = D6 < 1= Call Xl + ) W) = W)
L
+m”U(k)—U(S)H2HXHF~ (314)
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Finally, we prove (286). Observe that

<
—~
=
I
<>
—
»
=
b

= [la(k)T(k) — a(s)Z(s)llr (315)

< [la(k)T (k) — a(k)T(s)||r + [la(k)T(s) — a(s)T(s)| (316)

< lla(k)[l2[|'T(k) = T(s)[|» + lla(k) — a(s)ll2]|T(s)ll » 317)
L

< o | T Xl ) W) = W)l

L

+ T 100 = U)X |+ (cal Xl + ) [alk) = a(s)]o. G18)

O

Now, we return to prove Theorem[d] We prove by induction for every 7 > 0,

IW ()]l < pw, [U(s)]| < pu, |a(s)ll2 < pa, s € [0, 7], (319)

A= 205 e o) (320)

B(s) < (1 - n?) 8(0),  se[0.7] (321

For 7 = 0, it is clear that (3T9)-(321)) hold. Assume that (319)-(321)) holds up to 7 iterations. Then,
by using triangle inequality, we have

||W(T+1) _W(O)HF < Z||W(S+ 1) —W(S)HF (322)
s=0
= ZU”VW‘I’(S)”F (323)
<nYculcallX|e +em)[9(s) =yl (324)
s=0

T Y s/2
= nea(Cal Xlr +cm) Y (1 - 77°> 19(0) = ¥1l2 (325)

2
s=0

where (324) follows from Lemma Letu := /1 —nAg/2. Then |W (7 + 1) — W(0)||r can be

bounded with

1— T+1
=) (el Xl + ) [9(0) - ¥
4 .
< 5 culCal Xllp +en) 19(0) - ¥l (326)
<. (327)
Then, we have
[W(r+ D[ <[[W(O)|l2+6 = pw < 1. (328)
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Using the similar technique, one can show that

[U(r+1) = UO0)|[r <D _I[U(s+1) = U(s)|l (329)
s=0
= nllVu®(s)|r (330)
s=0
<Y neu Xy (s) = vl (331)
s=0
T Ao s/2
<relXle X (1-03) 8O-yl )
s=0
4
< /\T)CUHX”FH}A’(O) -yl (333)
<. (334)
la(r+1) —a(0)|[r <Y lla(s + 1) —a(s)| (335)
s=0
= nlVa®(s)|r (336)
s=0
< nfcal Xllr +em) Y 19(s) — vl (337)
s=0
T Ao s/2
< n(calXllr +em) 3 (1 - 772> I9(0) =yl (338)
s=0
4
< yo(callelFJrcm)HS'(O)—sz (339)
<. (340)

Finally, using (283), we have

L
HT(T + 1) - T(O)” < W(CQHXHF + cm) ||W(7- + 1) _ W(O)”2
+ 11, 00+ 1)~ UVOILIX]r (341)
4 ~
< 1=z €l Xl +em) soeu (el Xlle + em) [9(0) 1
+#ic X[ e [l¥(0) — yll2( Xl (342)
1— Lpw Mo U FIY Y2 F
AL , 1
= T Too [(lX X 0) — 343
(1= Lpw)ro (CaH ||F+Cm) + cu|I X7 [ 7(0) = yll2 (343)
= 72ﬁ\/% (344)

by (11).
By Wely’s inequality, it implies that the least singular value of T'(7 4 1) satisfies opin (T(7 + 1)) >
\/ 2. Thus, it holds A, > 22.

Now, we define g := a(7 + 1)TT(7) and note that
O(t+1) — o(7)

= %IIS’(T +1) = y(IE+ Fr+1) - ) (1) —y) + (g = 3(r) " (¥(7) —y). (345)
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We bound each term of the RHS of this equation individually. First, using (286)), we have
[¥(r+1) =3(7)l2
_ L
< o T Cal Xl ) IWGr 1) = W2

+ = UG+ ) —U<T>||2||X||F] T (cal X7+ cm)lak) - a(s)]l2
_ L .
= | o (al X+ s eal Xl + ) 57) - 31
e X e () - y||QX|F}
1= Lpy
+ (cal e+ em)ncal Xz + en)[5(7) — ylla
=nC1|y (1) = yll2,
where Cy = ¢ (call X7 + em)? + X + (cal X]lr + cm)?.
On the other hand, we have
I +1) - @) - y)
—a(r + DI (T(r +1) - T(r)(F() - y)
< Jla(r + V2l T(r + 1) = (D)2 [5(7) — ¥l

< atr + Dl | = (el Xl + ) [Wr + 1) = W(r) e
1 U0) = U X el37) = vl 15(7) - vl

_ L .
< | T cal Xl + ) e (Xl + ) 57) = ¥

+

L N N .
I neu|| XN ey (s) =yl X e lly(r) — Y||2} [9(7) —yll2
=nCally(r) - ¥l3,
where
Co = & (cal Xlp + em)” + X3
Furthermore, we also have
-3 (3(r)—y)

= (a(r+1) —a(m) ' T(1)F (1) —y)
—(nVa®(r) "T(1)(F(7) - y)
=—F() -y)"Z")TZL)(F(r) —y)

< -0 2l3(r) - yI3

where we use induction A\, > ’\70

From (343)-(338)), we obtain

O(r+1)— 0(7)
1 . . Aoy
< 5772012”}’(7) —ylI3 +nCally(r) — yll5 — UEOHY(T) -vyl3
1 A
= 29(7) [2772012 +1Cs — 7720]

= &(7) [172012 + 2nCy — 77)\0} ,

31
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(347)
(348)

(349)
(350)

(351)

(352)

(353)

(354)

(355)
(356)
(357)

(358)

(359)

(360)
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which leads to

B(rt1) < <I><>[ 00 —nC2 — 2C5)| &(7) (362)

IN

n(Xo — 4C)) (1) (363)

(1-
( ) . (364)

IN
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