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ABSTRACT

In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium
Model (DEQ) with ReLU activation. They proved that the gradient descent con-
verges to a globally optimal solution at a linear convergence rate for the quadratic
loss function. This paper shows that this fact still holds for DEQs with any general
activation that has bounded first and second derivatives. Since the new activation
function is generally non-linear, bounding the least eigenvalue of the Gram matrix
of the equilibrium point is particularly challenging. To accomplish this task, we
need to create a novel population Gram matrix and develop a new form of dual
activation with Hermite polynomial expansion.

1 INTRODUCTION

Deep learning is a class of machine learning algorithms that uses multiple layers to progressively
extract higher-level features from the raw input. For example, in image processing, lower layers
may identify edges, while higher layers may identify the concepts relevant to a human such as
digits or letters or faces. Deep neural networks have underpinned state of the art empirical results in
numerous applied machine learning tasks (Krizhevsky et al., 2012). Understanding neural network
learning, particularly its recent successes, commonly decomposes into the two main themes: (i)
studying generalization capacity of the deep neural networks and (ii) understanding why efficient
algorithms, such as stochastic gradient, find good weights. Though still far from being complete,
previous work provides some understanding on generalization capability of deep neural networks.
However, question (ii) is rather poorly understood. While learning algorithms succeed in practice,
theoretical analysis is overly pessimistic. Direct interpretation of theoretical results suggests that
when going slightly deeper beyond single layer networks, e.g. to depth-two networks with very few
hidden units, it is hard to predict even marginally better than random (Daniely et al., 2013; Kearns &
Valiant, 1994).

The standard approach to develop generalization bounds on deep learning (and machine learning) was
developed in seminal papers by (Vapnik, 1998), and it is based on bounding the difference between
the generalization error and the training error. These bounds are expressed in terms of the so called
VC-dimension of the class. However, these bounds are very loose when the VC-dimension of the class
can be very large, or even infinite. In 1998, several authors (Bartlett & Shawe-Taylor, 1999; Bartlett
et al., 1998) suggested another class of upper bounds on generalization error that are expressed in
terms of the empirical distribution of the margin of the predictor (the classifier). Later, Koltchinskii
and Panchenko proposed new probabilistic upper bounds on generalization error of the combination
of many complex classifiers such as deep neural networks (Koltchinskii & Panchenko, 2002). These
bounds were developed based on the general results of the theory of Gaussian, Rademacher, and
empirical processes in terms of general functions of the margins, satisfying a Lipschitz condition.
They improved previously known bounds on generalization error of convex combination of classifiers.
(Truong, 2022a) and Truong (2022b) have recently provided generalization bounds for learning with
Markov dataset based on Rademacher and Gaussian complexity functions. The development of new
symmetrization inequalities and contraction lemmas in high-dimensional probability for Markov
chains is a key element in these works. Several recent works have focused on gradient descent
based PAC-Bayesian algorithms, aiming to minimise a generalisation bound for stochastic classifiers
(Biggs & Guedj, 2021; Dziugaite & Roy., 2017). Most of these studies use a surrogate loss to avoid
dealing with the zero-gradient of the misclassification loss. There were some other works which use
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information-theoretic approach to find PAC-bounds on generalization errors for machine learning
(Esposito et al., 2021; Xu & Raginsky, 2017) and deep learning (Jakubovitz et al., 2018).

Recently, deep equilibrium model (DEQ)(Bai et al., 2019) was introduced as a new approach to
modelling sequential data. In many many existing deep sequence models, the hidden layers converge
toward some fixed points. DEQ directly finds these equilibrium points via root-finding of implicit
equations. Such a model is equivalent to an infinite-depth weight-tied model with input-injection.
DEQ has emerged as an important model in various aplications such as computer vision (Bai et al.,
2020; Xie et al., 2022), natural language processing (Bai et al., 2019), and inverse problems (Gilton
et al., 2021). This model has been shown to achieve performance competitive with the state-of-the-art
deep networks while using significantly less memory. Despite of the empirical success of DEQ,
theoretical understanding of this model is still limited. The effectiveness of over-parameterization
in optimizing feedforward neural networks has been validated in many research literature (Arora
et al., 2019; Du et al., 2018; Li & Liang, 2018). A recent work (Nguyen, 2021) showed that the
convergence of gradient descent (GD) to a global optimum can be guaranteed when the width of the
last hidden layer exceeds the number of training samples. The main idea is to investigate the property
at initialization and bound the traveling distance of GD from the initialization.

However, it remains unknown whether the above results can be directly applied to DEQs. Due to
the implicit weight-sharing, the initial random weights and features are dependent, which causes the
standard concentration approaches in the existing research literature fail in DEQs. Recently, Ling et al.
(2022) investigated the training dynamics of over-parameterized DEQs with ReLU activation. More
specifically, they proposed a novel probabilistic framework to overcome the challenge arising from
the weight-sharing and the infinite depth. By supposing a condition on the initial equilibrium point,
they proved that the gradient descent converges to a globally optimal solution at a linear convergence
rate for the quadratic loss function. To achieve this target, they developed a lower bound on the least
eigenvalue of the Gram matrix for the DEQs with ReLU activation. One interesting open question
is whether the gradient descent algorithm still converge at a linear rate for DEQs with non-linear
activation functions? In this paper, we show that this fact still holds for DEQs with a general activation
function which has bounded first and second derivatives. Many popular activation functions such as
1/(1 + e−x), erf(x), x/

√
1 + x2, sin(x), tanh(x) satisfy the boundedness requirements. In general,

the new activation function does not have homogeneous property as ReLU, hence a novel population
Gram matrix is designed for DEQs with general activations, and a new form of dual activation with
Hermite polynomial expansion is developed in our work.

2 PROBLEM SETTINGS

We consider the same model as Ling et al. (2022). However, different from Ling et al. (2022), we
assume that the activation function, φ, satisfies some constraints in the first and second derivatives.
These properties can be observed in many common activation functions. More specifically, we define
a vanilla deep equilibrium model (DEQ) with the transform of the l-th layer as

T(l) = φ(WT(l−1) +UX) (1)

where X = [x1,x2, · · · ,xn] ∈ Rd×n denotes the training inputs, U ∈ Rm×d and W ∈ Rm×m are
trainable weight matrices, and T(l) ∈ Rm×n is the output feature at the l-th hidden layer. The output
of the last hidden layer is defined by T∗ := liml→∞ T(l) under the condition that this limit exists
uniquely. Therefore, instead of running infinitely deep layer-by-layer forward propagation, T∗ can
be calculated by directly solving the equilibrium point of the following equation

T∗ = φ(WT∗ +UX). (2)

Let y = [y1, y2, · · · , yn] ∈ Rn denote the labels, and ŷ(θ) = aTT∗ be the prediction function with
a ∈ Rm being a trainable vector and θ = vec(W,U,a). Our target is to minimize the empirical risk
with the quadratic loss function:

Φ(θ) =
1

2
∥ŷ(θ)− y∥22. (3)

To optimize this loss function, we use the gradient descent update θ(τ + 1) = θ(τ)− η∇Φ(θ(τ)),
where η is the learning rate and θ(τ) = vec(W(τ),U(τ),a(τ)). For notational simplicity, we omit
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the superscript and denote T to be the equilibrium T∗ when it is clear from the context. Moreover,
the Gram matrix of the equilibrium point is defined by G(τ) := TT (τ)T(τ) and we denote its least
eigenvalue by λτ = λmin(G(τ)).
Definition 1. An activation φ : R → R is L-bounded if it is twice continuously differentiable and
∥φ(0)∥, ∥φ′∥∞, ∥φ′′∥∞ ≤ L.

In this paper, we assume that φ(·) is L-bounded. In addition, the following holds:

q :=

√
1√
2π

∫ ∞

−∞
φ2(z) exp

(
− z2

2

)
dz > 0. (4)

Many popular activation functions such as 1/(1 + e−x), erf(x), x/
√
1 + x2, sin(x), tanh(x) satisfy

the boundedness requirements.

Besides, we use a similar assumptions on the random initialization and input data as Ling et al.
(2022):

• Assumption 1 (Random initialization). Assume that σ2
w < 1

8L2 . In addition, W is initialized
with an m ×m matrix with i.i.d. entries Wij ∼ N (0, 2σ2

w/m), U is initialized with an
m× d matrix with i.i.d. entries Uij ∼ N (0, 2/d), and a is initialized with a random vector
with i.i.d. entries ∼ N (0, 1/m).

• Assumption 2 (Input data). We assume that (i) ∥xi∥ =
√
d for all i ∈ [n] and xi ∦ xj for

all i ̸= j; (ii) the labels satisfy |yi| = O(1) for all i ∈ [n].

3 MOTIVATIONS

For the stability of the training of DEQs, it is crucial to guarantee the existence and uniqueness of the
equilibrium points. It is equivalent to guarantee the well-posedness of the transformation defined
in Eq. (1). In order to ensure the well-posedness, it suffices to take ∥W(τ)∥ < 1/L for all τ ≥ 0,
with which Eq. (1) becomes a contractive mapping. From the following Lemma 2, we know that
∥W(0)∥2 < 1/L holds with a high probability under Assumption 1. Lemma 2 is a consequence of
standard bounds concerning the singular values of Gaussian random matrices.
Lemma 2. (Tao, 2012, Sect. (2.3)) Let W be an n × m random matrix with i.i.d. entries
Wij ∼ N

(
0,

2σ2
w

m

)
. Then, there exists a positive constant C such that with probability at least

1− exp(−Ω(m)), it holds that

∥W∥2 ≤ 2
√
2σw. (5)

Furthermore, the equilibrium point of Eq. (2) is the root of the function F (τ) := T(τ) −
φ(W(τ)T(τ) + U(τ)X) = 0. Let J(τ) := ∂vec(F(τ))/∂vec(T(τ)) denote the Jacobian ma-
trix. Then, it is easy to see that

J(τ) = Im,n −D(τ)
(
In ⊗W(τ)

)
(6)

where D(τ) := diag[vec(σ′(W(τ)T(τ) +U(τ)X))]. Using the Lipschitz property of activation
function, it is easy to check that J(τ) is invertible if ∥W(τ)∥ < 1/L. The gradient of each trainable
parameter is given by the following lemma.
Lemma 3. (Ling et al., 2022, Lemma 2) If J(τ) is invertible, the gradient of the objective function
Φ(τ) w.r.t. each trainable parameters is given by

vec(∇WΦ(τ)) = (T(τ)⊗ Im)R(τ)T (ŷ(τ)− y)

vec(∇UΦ(τ)) = (X⊗ Im)R(τ)T (ŷ(τ)− y),

∇aΦ(τ) = T(τ)(ŷ(τ)− y)

where R(τ) = (a(τ)⊗ In)J(τ)
−1D(τ).

By a direct application of Lemma 3, we obtain the following inequality:

∥∇θΦ(τ)∥22 ≥ 2λmin(H(τ))Φ(τ), (7)
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where H(τ) = H1(τ) +H2(τ) +H3(τ) is a sum of three positive semi-definite matrices defined as
H1(τ) = G(τ)

H2(τ) = R(τ)(G(τ)⊗ Im)R(τ)T

H3(τ) = R(τ)(XTX⊗ Im)R(τ)T .

Eq. (7) suggests that if λmin(H(τ)) can be lower bounded away from zero, both at initialization and
throughout the training, then one can establish a Polyak-Lojasiewickz (PL) inequality that holds for
the loss function, and thus GD converges to a global minimum. To make the problem tractable, we
further observe that λmin(H(τ)) ≥ λτ , i.e., the least eigenvalue of the Gram matrix of the equilibrium
point. Applying this observation to Eq. (7), one obtains

∥∇θΦ(τ)∥22 ≥ 2λτΦ(τ). (8)

The value of λτ can be lower bounded by 1
2λ0 where λ0 is the least eigenvalue of G(0) if the learning

rate and initial randomization satisfy certain conditions. Based on this fact, we can show that if the
learning rate is small enough, the loss converges to a global minimum at linear rate. The result is as
follows.
Theorem 4. Consider a DEQ. Let δ be a constant such that ∥W(0)∥ + δ < 1. Denote by ρ̄w =
∥W(0)∥2 + δ, ρ̄u = ∥U(0)∥2 + δ, ρ̄a = ∥a(0)∥2 + δ and define

ca =
Lρ̄u

1− Lρ̄w
, cu =

Lρ̄a
1− Lρ̄w

, cm =
m2σ(0)

1− Lρ̄w
. (9)

In addition, assume at initialization that

λ0 ≥ 4

δ
max

{
cu
(
ca∥X∥F + cm

)
, cu∥X∥F , ca∥X∥F + cm

}
∥ŷ(0)− y∥, (10)

λ
3/2
0 ≥ 4(2 +

√
2)L

(1− Lρ̄w)λ0

[(
ca∥X∥F + cm

)2
+ cu∥X∥2F

]
∥ŷ(0)− y∥2, (11)

λ0 ≥ 8c2u
(
ca∥X∥F + cm

)2
+ c2u∥X∥2F (12)

where λ0 is the least eigenvalue of G(0) = Z(0)TZ(0). Then, if the learning rate satisfies

η < min

(
2

λ0
,

2[c2u(ca∥X∥F + cm)2 + c2u∥X∥2F ]
c2u(ca∥X∥F + cm)2 + c2u∥X∥2F + (ca∥X∥F + cm)2

)
, (13)

for every τ ≥ 0, the following hold:

• ∥W(τ)∥2 ≤ 1, i.e., the equilibrium points always exists,

• λτ > 1
2λ0, and thus the PL condition holds as

∥∇θΦ(τ)∥22 ≥ λ0Φ(τ). (14)

• The loss converges to a global minimum as

Φ(τ) ≤
(
1− η

λ0

2

)τ

Φ(0). (15)

The main challenge now is to find some initializations such that λ0 satisfies all the conditions in
Theorem 4. To lower bound λ0, we need to design a population Gram matrix K and compare λ0

with the least eigenvalue of K Ling et al. (2022). However, since the new activation function, φ, is
non-linear in general, bounding λ0 is more challenging than the ReLU network in Ling et al. (2022).
The non-linearity of activation functions causes the techniques to design K in (Ling et al., 2022,
Definition 1) can not be applied. For example, (Ling et al., 2022, Eq. 11) only holds for ReLU.

In Section 4, we propose a new method to create the population Gram matrix K for DEQs with general
Lipschitz activation function. By using our new form of dual activation and Hermite polynomial
expansion, we can prove that K is symmetric positive definite. In addition, we show that with
probability at least 1− t, λ0 ≥ m

2 λ∗ provided that m = Ω
(
n3

λ2
∗
log n

t

)
where λ∗ is the least eigenvalue

of K. This fact indicates that all the conditions of Theorem 4 at least hold for over-parametrized
DEQs (or m sufficiently large) with φ(0) = 0 . Hence, by (15) in Theorem 4, the gradient descent
algorithm converges to a global optimum at a linear rate for the over-parametrized DEQs. This
fascinating fact is reaffirmed by our numerical experiments on real datasets such as MNIST and
CFAR10 in Section 7.
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4 A NOVEL DESIGN OF THE POPULATION GRAM MATRIX K

The key approach in lower bounding λ0 is to design a population Gram matrix K in such a way that
we can lower bound λ0 by the least eigenvalue of K and that K is symmetric positive definite. This
novel population Gram matrix is developed through our introduction of a new form of dual activation.

First, we define a new class of dual activation functions Q̃α,β : [−1, 1] → R for all pairs (α, β) ∈ R2
+.

Definition 5. Recall the definition of q in (4). For each pair (α, β), define

Q̃α,β(x) :=
1

αβq2
E
(a,b)T∼N

(
0,

[
1 x
x 1

])[
φ(αa)φ(βb)

]
, ∀|x| ≤ 1. (16)

If φ(x) = max{x, 0} (ReLU), then Q̃α,β(x) = Q̄(x) for all (α, β) ∈ R2
+, where

Q̄(x) := E
(a,b)T∼N

(
0,

[
1 x
x 1

])[φ(a)φ(b)]

is the dual activation defined in (Daniely et al., 2016, Sec. 3.2).

Now, we provide a novel design of the population Gram matrix K based on this new dual activation
function.

Definition 6. Given the training input X := [x1,x2, · · · ,xn] satisfying Assumption 2. Let

Qij(x) := Q̃√
2
(

σ2
w
m E[Gii]+1

)
,

√
2
(

σ2
w
m E[Gjj ]+1

)(x), ∀x ∈ R. (17)

We define the population Gram matrices K(l) of each layer recursively as

ρ
(0)
ij = 0, (18)

ρ
(l)
ii = 2q2σ2

wρ
(l−1)
ii Qii(1) + 1, (19)

ρ
(l)
ij =

√
ρ
(l)
ii ρ

(l)
jj , i ̸= j (20)

K(0) = 0, (21)

ν
(l)
ij =

σ2
wK

(l−1)
ij + d−1xT

i xj√(
σ2
wK

(l−1)
ii + 1

)(
σ2
wK

(l−1)
jj + 1

) (22)

K
(l)
ij = 2q2ρ

(l)
ij Qij(ν

(l)
ij ) (23)

for all l ≥ 1 and i, j ∈ [n]× [n].

The next result show that λ0 can be lower bounded via the least eigenvalue of the population matrix
K.

Theorem 7. If m = Ω
(
n2

λ2
∗
log n

t

)
, with probability at least 1− t, it holds that

λ0 ≥ m

2
λ∗. (24)

Finally, the following result shows sufficient conditions such that K is strictly positive definite.

Theorem 8. Assume that there exists a polynomial expansion of Q̃α,α satisfying:

Q̃α,α(x) =

∞∑
r=0

µ2
r,α(φ)x

r (25)

for all α > 0 such that sup{r : µ2
r,α(φ) > 0} = ∞. Then, K is strictly positive definite (or λ∗ > 0).
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5 PROOF OF THEOREM 7

To prove Theorem 7, we first state some auxiliary results based on the population Gram matrix K in
Definition 6. The proofs of these lemmas and prepositions can be found in Supplement Material.

Lemma 9. Recall the definition of Q̃α,β in Definition 5. Then, the following hold for all α > 0, β > 0:∣∣Q̃α,β(x)
∣∣ ≤ √

Q̃α,α(1)Q̃β,β(1), (26)∣∣Q̃α,β(x)
∣∣ ≤ 4L2

q2
, ∀|x| ≤ 1. (27)

In addition, Q̃α,β(·) is 4L2 max{α+1,β+1}2

q2 -Lipchitz for any fixed positive pair (α, β).

Lemma 10. (Ling et al., 2022, Proof of Lemma 4) For l ≥ 1, G(l+1)
ij can be reconstructed as

G
(l+1)
ij = φ(Mhl+1)

Tφ(Mhl′+1) such that

• (i) hT
l+1hl′+1 =

σ2
w

m G
(l)
ij + 1

dx
T
i xj ,

• (ii) M ∈ Rm×(2l+d+2) is a rectangle matrix, and the entries of M are i.i.d. from N (0, 2)
conditioning on previous layers.

Lemma 11. For the given setting, we have

ρ
(l)
ii = σ2

wK
(l−1)
ii + 1, (28)

ρ
(l)
ij ν

(l)
ij = σ2

wK
(l−1)
ij + d−1xT

i xj , ∀i, j, (29)

and

ν
(l)
ij =


Qij

(
ν
(l−1)
ij

)
/
√

Qii(1)Qjj(1)
√

(ρ
(l)
ii −1)(ρ

(l)
jj −1)+d−1xT

i xj√
ρ
(l)
ii ρ

(l)
jj

, i ̸= j

1, i = j

. (30)

In addition, we also have ∣∣ν(l)ij

∣∣ ≤ 1 (31)

for all i, j ∈ [n]× [n] and l ≥ 0.
Proposition 12. Under the Assumptions 1 and 2, with probability at least 1−m exp(−Ω(m)), we
have ∥K−K(l)∥ = O

(
n
(
8L2σ2

w

)l)
which implies that, for l → ∞, K(l) → K with entries

Kij = 2q2Qij(νij)
√
ρiiρjj (32)

where

νij =

Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√

(ρii−1)(ρjj−1)+d−1xT
i xj

√
ρiiρjj

, i ̸= j

1, i = j
. (33)

Here,

ρii =
1

1− 2q2σ2
wQii(1)

. (34)

Proposition 13. Under Assumptions 1 and 2 with probability at least 1− n2 exp(−Ω(m)), it holds
that

1

m

∥∥∥∥G−G(l)

∥∥∥∥
F

= O

(
n
(
2L

√
2σw

)l)
. (35)

Proposition 14. Under Assumptions 1 and 2, with probability at least 1 − n2 exp
{

−
Ω(8lL2lσ2l

wmnL2) +O(l2)
}

, it holds that∥∥∥∥ 1

m
G(l) −K(l)

∥∥∥∥
F

= O

(
n(2L

√
2σw)

l

)
. (36)
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By combining Propositions 12–14, we can bound λ0 via the least eigenvalue of the population matrix
K as follows.

Proof of Theorem 7. From Propositions 12–14, with probability at least 1 − n2 exp
(

−
Ω(m8lL2lσ2l

w ) +O(l2)
)
, it holds that∥∥∥∥ 1

m
G−K

∥∥∥∥
F

≤ 1

m

∥∥∥∥G−G(l)
∥∥
F
+

∥∥∥∥ 1

m
G(l) −K(l)

∥∥∥∥+

∥∥∥∥K−K(l)

∥∥∥∥
F

(37)

= O

(
n

(
2L

√
2σw

)l)
+O

(
n

(
2L

√
2σw

)l)
+O

(
n(8L2σ2

w)
l

)
(38)

= O

(
n

(
2L

√
2σw

)l)
, (39)

where (39) follows from σ2
w < 1/(8L2).

Next, we fix l to omit the explicit dependence on l. Specifically, let

l = Θ(log(2λ−1
∗ n)/ log(

√
2/(4Lσw)),

then from (39), we have ∥∥∥∥ 1

m
G−K

∥∥∥∥
F

≤ λ∗

2
. (40)

Therefore, by Weyl’s inequality (Ling et al., 2022, Lemma 5), it holds that

max
i∈[r]

∣∣∣∣λi

(
1

m
G

)
− λi(K)

∣∣∣∣ ≤ ∥∥∥∥ 1

m
G−K

∥∥∥∥
2

≤
∥∥∥∥ 1

m
G−K

∥∥∥∥
F

≤ λ∗

2
(41)

Now, by choosing i0 := argmini λi(K), we have

λi0(K) = λ∗ (42)

and ∣∣∣∣ 1mλmin(G)− λ∗

∣∣∣∣ ≤ λ∗

2
. (43)

It follows from (42) and (43) that

λ0 = λmin(G) ≥ m

2
λ∗. (44)

Consequently, w.p. ≥ 1− t, we have λ0 ≥ m
2 λ∗ provided that m = Ω

(
n2

λ2
∗
log n

t

)
.

6 CHECKING THE CONDITIONS OF THEOREM 8

In this section, we will show how the condition in Theorem 8 holds for some common activation
functions. We first recall the definition of a traditional dual activation function, say φ̂, associate with
φ in (Daniely et al., 2016, Sect. 4.2):

φ̂(x) = E
(u,v)∼N

(
0,

[
1 x
x 1

])[φ(u)φ(v)]. (45)

Then, by using a similar proof as (Daniely et al., 2016, Lemma 11), it can be shown that the new
activation function (see Definition 5) satisfies

Q̃α,α(x) =
1

q2α2

∞∑
n=1

a2nα
2nxn (46)

if φ(x) =
∑∞

n=1 anhn(x) (Hermite polynomial expansion) or φ̂(x) =
∑∞

n=1 a
2
nx

n.

In the following, we apply (46) and show how the condition in Theorem 8 is fulfilled.
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Example 15. Consider the sine activation, φ(x) = sin(ax). By (Daniely et al., 2016, Sect. 8), we
have

φ̂(x) = e−a2

sinh(a2x). (47)

By Taylor’s expansion of sinh function, i.e.,

sinh(x) =

∞∑
r=0

1

(2r + 1)!
x2r+1. (48)

Hence, from (46) and (Daniely et al., 2016, Lemma 11), we have

Qα,α(x) =
1

q2α2
e−a2

∞∑
r=0

a4r+2α4r+2

(2r + 1)!
x2r+1, (49)

which leads to

µ2
r,α(φ) =

{
1

q2α2 e
−a2 a2rα2r

r! r mod 2 = 1

0 otherwise
. (50)

This means that the condition in Theorem 8 is satisfied.

Example 16. Consider the tanh activation function, φ(x) = ex−e−x

ex+e−x . By (Szego, 1959, Eq. 8.23.4),
φ(x) can be uniquely described in the basis of Hermite polynomials,

φ(x) =

∞∑
n=1

anhn(x) (51)

where

|an| =
1√

π2nn!

Γ
(
n
2 + 1

)
Γ(n+ 1)

exp

(
− π

√
2n

2

)
. (52)

Hence, from (46), we obtain

Qα,α(x) =
1

q2α2

∞∑
n=1

a2nα
2nxn, (53)

so we have

µ2
r,α(φ) =

1

q2α2
a2nα

2n (54)

This means that the condition in Theorem 8 is satisfied.

Example 17. Consider the sigmoid activation function φ(x) = 1
1+e−x . It is known that

φ(x) =
1 + tanh(x/2)

2
. (55)

Hence, by using similar arguments as Example 16, we can prove that the condition in Theorem 8 is
also satisfied.

7 NUMERICAL RESULTS

In this section, we implement some experiments to verify Theorem 4. We evaluate the DEQ model
on MNIST and CIFAR-10 datasets. For each dataset, the training dataset is generated by randomly
sampling 500 images from the first and second classes. We use Gaussian initialization as Assumption
1 and normalize each data point as Assumption 2.

In the first experiment, we variate m and plot the training dynamic for MNIST and CIFAR-10 when
φ is the sigmoid function (L = 1). It can be seen from Fig. 1 that as m big enough and τ sufficient
large, the curves become straight lines. This fact re-affirms that (15) holds.

8



Under review as a conference paper at ICLR 2024

0 250 500 750 1000 1250 1500 1750 2000
τ

90

95

100

105

110

115

120

125

130

lo
g(
Φ(
τ)
)

m=3000
m=4000
m=5000

(a) MNIST

0 250 500 750 1000 1250 1500 1750 2000
τ

70

75

80

85

90

95

100

105

110

lo
g(
Φ(
τ)
)

m=3000
m=4000
m=5000

(b) CIFAR-10

Figure 1: Training dynamics at different values of m.

In the second experiment, we variate the activation function and plot the training dynamic for MNIST
and CIFAR-10 at m = 3000. It can be seen from Fig. 2 that as m big enough and τ sufficient large,
the tanh network converges faster than the sigmoid or ReLU one for both datasets.
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Figure 2: Training dynamics for different activation functions.

8 CONCLUSION

In this paper, we proved that the gradient descent converges to a globally optimal solution at a linear
convergence rate for the quadratic loss function for the over-parametrized DEQ with L-bounded
activation functions. This fascinating fact is also re-affirmed by our numerical experiments on
MNIST and CFAR-10 datasets. To overcome new technical challenges caused by the non-linearity of
activation functions, a novel population Gram matrix is introduced and a new form of dual activation
with Hermite polynomial expansion is developed. An interesting future research direction is to study
whether the linear convergence rate property still holds for other classes of activation functions.
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A APPENDIX

B PROOF OF LEMMA 9

By Cauchy–Schwarz inequality, we have∣∣Q̃α,β(x)
∣∣ ≤ 1

αβq2
E
(a,b)T∼N

(
0,

[
1 x
x 1

])∣∣φ(αa)φ(βb)∣∣ (56)

=
1

αβq2
E
(u,v)T∼N

(
0,

[
α2 xαβ
xαβ β2

])∣∣φ(u)φ(v)∣∣ (57)

≤ 1

αβ

√
1

q2
Ea∼N (0,α2)[φ2(a)]

√
1

q2
Eb∼N (0,β2)[φ2(b)] (58)

=

√
Q̃α,α(1)Q̃β,β(1), (59)

where (58) follows from Cauchy–Schwarz inequality. The equality in (58) holds if and only if α = β
and x = 1.

In addition, by the L-bounded property of φ, we also have
|φ(αz)− φ(0)| ≤ L|αz|. (60)

Hence, for any α ≥ 1, it holds that
|φ(αz)| ≤ |φ(0)|+ L|α||z| (61)

≤ L
(
1 + |α||z|

)
(62)

≤ L|α|
√
2(1 + z2). (63)

From (63), we obtain

Ea∼N (0,α2)[φ
2(a)] =

∫ ∞

−∞

1

α
√
2π

φ2(z) exp

(
− z2

2α2

)
dz (64)

=

∫ ∞

−∞

1√
2π

φ2(αz) exp

(
− z2

2

)
dz (65)

≤ 2L2α2

∫ ∞

−∞

1√
2π

(
1 + z2

)
exp

(
− z2

2

)
dz (66)

= 4L2α2. (67)
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Similarly, we also have

Eb∼N (0,β2)[φ
2(b)] ≤ 4L2β2. (68)

From (58), (67) and (68), we obtain |Q̃α,β(x)| ≤ 4L2/q2 for all α ≥ 1, β ≥ 1, and x ∈ R.

Now, for a fixed pair (α > 0, β > 0), define z := (u, v), ϕ(z) := φ(u)φ(v), and

Σx :=

[
α2 xαβ
xαβ β2

]
. (69)

Then, by (Daniely et al., 2016, Lemma 12) we have

∂Q̃α,β

∂Σx
= − 1

2q2αβ
E(u,v)∼N (0,Σx)

[
∂ϕ2(z)

∂2z
(u, v)

]
. (70)

On the other hand, we note that

∂ϕ2(z)

∂2z
(u, v) =

[
∂2φ(u)
∂u2 φ(v) ∂φ(u)

∂u
∂φ(v)
∂v

∂φ(u)
∂u

∂φ(v)
∂v

∂2φ(v)
∂v2 φ(u)

]
. (71)

Hence, from (70) and (71) we have∥∥∥∥∂Q̃α,β

∂Σx

∥∥∥∥
∞

≤ 1

2q2αβ
max

{
E(u,v)∼N (0,Σx)

[∣∣∣∣∂2φ(u)

∂u2
φ(v)

∣∣∣∣],E(u,v)∼N (0,Σx)

[∣∣∣∣∂φ(u)∂u

∂φ(v)

∂v

∣∣∣∣],
E(u,v)∼N (0,Σx)

[∣∣∣∣∂2φ(v)

∂v2
σ(u)

∣∣∣∣]}. (72)

Now, since |φ(0)| ≤ L and ∥φ′∥∞ ≤ L, it holds that

|φ(x)| ≤ |φ(x)− φ(0)|+ |φ(0)| (73)
≤ L(|x|+ 1), ∀x ∈ R. (74)

Hence, by the assumption that ∥σ′′∥∞ ≤ L, from (72) and (74), we obtain∥∥∥∥∂Q̃α,β

∂Σx

∥∥∥∥
∞

≤ L2

2q2αβ
max

{
E(u,v)∼N (0,Σx)

[∣∣u∣∣+ 1
]
, 1,E(u,v)∼N (0,Σx)

[∣∣v∣∣+ 1
]}

(75)

≤ L2

2q2αβ
max{α+ 1, β + 1}. (76)

It follows that ∣∣Q̃α,β(y)− Q̃α,β(x)
∣∣ = ∣∣∣∣ ∫ y

x

dQ̃α,β

dt
dt

∣∣∣∣ (77)

=

∣∣∣∣ ∫ y

x

tr

((
∂Q̃α,β

∂Σt

)T
∂Σt

dt

)
dt

∣∣∣∣ (78)

≤
∫ y

x

∣∣∣∣tr((∂Q̃α,β

∂Σt

)T
∂Σt

dt

)∣∣∣∣dt (79)

≤ 4

∫ y

x

∥∥∥∥∂Q̃α,β

∂Σt

∥∥∥∥
∞

∥∥∥∥∂Σt

dt

∥∥∥∥
∞
dt (80)

≤ 4L2

q2αβ
max{α+ 1, β + 1}2

∫ y

x

∥∥∥∥∂Σt

dt

∥∥∥∥
∞
dt (81)

=
4L2

q2αβ
max{α+ 1, β + 1}2αβ|y − x| (82)

=
4L2 max{α+ 1, β + 1}2

q2
. (83)
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C PROOF OF LEMMA 11

Observe that

ν
(l)
ii =

σ2
wK

(l−1)
ii + d−1xT

i xi

σ2
wK

(l−1)
ii + 1

(84)

= 1. (85)

From (19) and (23) in Definition 6 and (85), we have

ρ
(l)
ii = σ2

wK
(l−1)
ii + 1. (86)

In addition, from (20) and (22) in Definition 6 and (86), we also have

ρ
(l)
ij ν

(l)
ij = σ2

wK
(l−1)
ij + d−1xT

i xj , ∀i, j. (87)

Replacing (23) in Definition 6 and (86) to (22) in Definition 6, we obtain for i ̸= j,

|ν(l)ij | =
∣∣σ2

wK
(l−1)
ij + d−1xT

i xj

∣∣√(
σ2
wK

(l−1)
ii + 1

)(
σ2
wK

(l−1)
jj + 1

) (88)

=

∣∣2q2σ2
wρ

(l−1)
ij Qij

(
ν
(l−1)
ij

)
+ d−1xT

i xj

∣∣√
ρ
(l)
ii ρ

(l)
jj

(89)

=

∣∣Qij

(
ν
(l−1)
ij

)
/
√
Qii(1)Qjj(1)

√
(2q2σ2

wρ
(l−1)
ii Qii(1))(2q2σ2

wρ
(l−1)
jj Qjj(1)) + d−1xT

i xj

∣∣√
ρ
(l)
ii ρ

(l)
jj

(90)

=

∣∣Qij

(
ν
(l−1)
ij

)
/
√
Qii(1)Qjj(1)

√
(ρ

(l)
ii − 1)(ρ

(l)
jj − 1) + d−1xT

i xj

∣∣√
ρ
(l)
ii ρ

(l)
jj

(91)

≤

√
(ρ

(l)
ii − 1)(ρ

(l)
jj − 1) +

∣∣d−1xT
i xj

∣∣√
ρ
(l)
ii ρ

(l)
jj

(92)

≤

√
(ρ

(l)
ii − 1)(ρ

(l)
jj − 1) + 1√

ρ
(l)
ii ρ

(l)
jj

(93)

≤ 1, (94)

where (92) follows from Lemma 9, and (93) follows from d−1|xT
i xj | ≤ d−1∥xi∥2∥xj∥2 = 1.

D PROOF OF PROPOSITION 12

For all i, j ∈ [n]× [n], observe that∣∣K(l+1)
ij −K

(l)
ij

∣∣
= 2q2

∣∣ρ(l+1)
ij Qij(ν

(l+1)
ij )− ρ

(l)
ij Qij(ν

(l)
ij )

∣∣ (95)

≤ 2q2
∣∣ρ(l+1)

ij Qij(ν
(l+1)
ij )− ρ

(l+1)
ij Qij

(
ν
(l)
ij

)∣∣+ 2q2
∣∣ρ(l+1)

ij Qij

(
ν
(l)
ij

)
− ρ

(l)
ij Qij(ν

(l)
ij )

∣∣, (96)

where (96) follows from the triangle inequality.

Now, we bound each term in (96). From (22), we have

ρ
(l)
ii =

1− (2q2σ2
wQii(1))

l

1− 2q2σ2
wQii(1)

, ∀i. (97)
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Hence, we have ∣∣ρ(l)ii − ρ
(l+1)
ii

∣∣ ≤ O
(
(2q2σ2

wQii(1))
l
)
. (98)

In addition, for i ̸= j, we have∣∣ρ(l)ij − ρ
(l+1)
ij

∣∣ = ∣∣√ρ
(l−1)
ii ρ

(l−1)
jj −

√
ρ
(l)
ii ρ

(l)
jj

∣∣ (99)

≤
∣∣ρ(l−1)

ii

∣∣∣∣√ρ
(l−1)
jj −

√
ρ
(l)
jj

∣∣+ ∣∣ρ(l)jj

∣∣∣∣√ρ
(l−1)
ii − ρ

(l)
ii

∣∣ (100)

≤ O
(
(2q2σ2

wQii(1))
l
)
. (101)

On the other hand, by Lemma 9, we have |Qii(1)| ≤ 4L2

q2 . Hence, from (98) and (101), we obtain∣∣ρ(l)ij − ρ
(l+1)
ij

∣∣ ≤ O
(
(8L2σ2

w)
l
)
, ∀i, j. (102)

Now, let

L̃q =
16L2

q2

(
σ2
w

m
E
[
G11] +

3

2

)
. (103)

By (1), Assumptions 1 and 2, it is easy to see that E[Gii] do not depend on i ∈ [m]. In addition, we
have ∣∣ρ(l+1)

ij Qij(ν
(l+1)
ij )− ρ

(l+1)
ij Qij

(
ν
(l)
ij

)∣∣
=

∣∣∣∣ρ(l+1)
ij Q̃√

2
(

σ2
w
m E[Gii]+1

)
,

√
2
(

σ2
w
m E[Gjj ]+1

)(ν(l+1)
ij )

− ρ
(l+1)
ij Q̃√

2
(

σ2
w
m E[Gii]+1

)
,

√
2
(

σ2
w
m E[Gjj ]+1

)(ν(l)ij

)∣∣∣∣ (104)

≤ 16L2

q2
max

{
σ2
w

m
E[Gii] +

3

2
,
σ2
w

m
E[Gjj ] +

3

2

}∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l+1)
ij ν

(l)
ij

∣∣ (105)

≤ L̃q

∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l)
ij ν

(l)
ij

∣∣+ L̃q

∣∣ρ(l)ij − ρ
(l+1)
ij

∣∣|ν(l)ij | (106)

≤ L̃q

∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l)
ij ν

(l)
ij

∣∣+ L̃q

∣∣ρ(l)ij − ρ
(l+1)
ij

∣∣ (107)

= L̃qσ
2
w

∣∣K(l)
ij −K

(l−1)
ij

∣∣+ L̃qO
(
(8L2σ2

w)
l
)
, (108)

where (105) follows from Lemma 9, (107) follows from Lemma 11, (108) follows from (28) in
Lemma 11 and (102).

In addition, by using the fact that |Qα,β(x)| ≤ 4L2

q2 for all α > 0, β > 0 in Lemma 9, we have

∣∣ρ(l+1)
ij Qij

(
ν
(l)
ij

)
− ρ

(l)
ij Qij(ν

(l)
ij )

∣∣ ≤ 4L2

q2
∣∣ρ(l+1)

ij − ρ
(l)
ij

∣∣ (109)

=
4L2

q2
O
(
(8L2σ2

w)
l
)
, (110)

where (110) follows from (102).

From (108) and (110), we have∣∣K(l+1)
ij −K

(l)
ij

∣∣
≤ 2q2

[
L̃qσ

2
w

∣∣K(l)
ij −K

(l−1)
ij

∣∣+ L̃qO
(
(8L2σ2

w)
l
)]

+
4L2

q2
O
(
(8L2σ2

w)
l
)
. (111)

By using induction, from (111) we have∣∣K(l+1)
ij −K

(l)
ij

∣∣ = O
((
8L2σ2

w

)l)
. (112)
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Since σ2
w < 1/(8L2), {K(l)

ij }∞l=1 can be easily shown to be a Cauchy sequence. From the complete-
ness of R, it holds that

K
(l)
ij → Kij (113)

uniformly in i, j ∈ [n]× [n] as l → ∞ for some matrix K. By using the triangle inequality, we have∣∣K(l+1)
ij −K

(l)
ij

∣∣ ≥ ∣∣K(l)
ij −Kij

∣∣− ∣∣K(l+1)
ij −Kij

∣∣. (114)

From (112) and (114), we obtain ∣∣K(l)
ij −Kij

∣∣ = O
((
8L2σ2

w

)l)
. (115)

From (115), we obtain ∥∥K(l) −K
∥∥
F
= O

(
n
(
8L2σ2

w

)l)
. (116)

Now, by Lemma 11, we have

K
(l)
ij = 2q2ρ

(l)
ij Qij(ν

(l)
ij ) (117)

and K
(l)
ij → Kij . On the other hand, since σ2

w < 1/(8L2), or 2q2σ2
wQii(1) ≤ 2q2 4L2

q2 σ2
w < 1, we

have

ρ
(l)
ii → 1

1− 2q2σ2
wQii(1)

(118)

as l → ∞. Hence, it holds that ν(l)ij → νij uniformly in i, j ∈ [n]× [n].

Hence, by (30) in Lemma 11, we have

νij =
Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√
(ρii − 1)(ρjj − 1) + d−1xT

i xj
√
ρiiρjj

, (119)

where

ρii =
1

1− 2q2σ2
wQii(1)

. (120)

E PROOF OF PROPOSITION 13

Assume that T(l) = [t
(l)
1 , t

(l)
2 , · · · , t(l)n ] where t

(l)
i ∈ Rm for all i ∈ [n]. By (1), we have

t
(l)
i = φ

(
Wt

(l−1)
i +Uxi

)
, ∀i ∈ [n]. (121)

Hence, with probability at least 1− exp
(
− Ω(m)), we have∥∥t(l+1)

i − t
(l)
i

∥∥ =

∥∥∥∥φ(Wt
(l)
i +Uxi

)
− φ

(
Wt

(l−1)
i +Uxi

)∥∥∥∥ (122)

≤ L

∥∥∥∥W(
t
(l)
i − t

(l−1)
i

)∥∥∥∥ (123)

≤ L
∥∥W∥∥∥∥t(l)i − t

(l−1)
i

∥∥ (124)

≤ 2L
√
2σw

∥∥t(l)i − t
(l−1)
i

∥∥ (125)

where (125) follows from Lemma 2.

Therefore, for all l ≥ 2, it holds that∥∥t(l)i − t
(l−1)
i

∥∥
2
≤

(
2L

√
2σw

)l∥∥t(1)i − t
(0)
i

∥∥
2

(126)

=
(
2L

√
2σw

)l∥∥t(1)i

∥∥
2
. (127)
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Now, let V ∼ N (0, 4) given xi. For each t
(l)
i , we have

pi := E
[
1

m

(
t
(1)
i

)T
t
(1)
i

]
= E

[
1

m
φ(Uxi)

Tφ(Uxi)

]
(128)

= E
[
σ(V 2)

]
(129)

≤ 2
(
L2 + L2E[V 2]

)
(130)

= 10L2, (131)

where (129) follows from |φ(x)− φ(0)| ≤ L|x| for all x ∈ R.

Then, by using Beinstein’s inequality, it holds with probability at least ≥ 1− 2 exp
(
−Ω(mt2)

)
that∣∣∣∣ 1m(

t
(1)
i

)T
t
(1)
i − pi

∣∣∣∣ ≤ t. (132)

Hence, with probability at least 1− exp(−Ω(m))− 2 exp
(
− Ω(mt2)

)
it holds that∥∥t(l)i − t

(l−1)
i

∥∥ ≤
(
2L

√
2σw

)l√
m(pi + t) (133)

≤
(
2L

√
2σw

)l√
m(10L2 + t). (134)

Then, for all r > s, with probability at least 1− exp(−Ω(m))− 2 exp
(
− Ω(mt2)

)
, we have∥∥t(r)i − t

(s)
i

∥∥ ≤
√
m(10L2 + t)

(
2L

√
2σw

)s → 0 (135)

as s → ∞ since 2L
√
2σw < 1. Since R is complete, hence we have

∥t(l)i − ti∥ → 0 (136)

for some vector ti.

It follows that∥∥t(l−1)
i − ti

∥∥−
∥∥t(l)i − ti

∥∥ ≤
∥∥t(l)i − t

(l−1)
i

∥∥ (137)

≤
√

m(10L2 + t)
∥∥t(1)i

∥∥(2L√2σw

)l
, ∀l ≥ 2. (138)

From (138), with probability at least 1− exp(−Ω(m))− 2 exp
(
− Ω(mt2)

)
we have

∥∥t(l)i − ti
∥∥ ≤

√
m(10L2 + t)

∥∥t(1)i

∥∥ ∞∑
k=l+1

(
2L

√
2σw

)k
(139)

=
√
m(10L2 + t)

∥∥t(1)i

∥∥(2L√2σw

)l+1

1− 2L
√
2σw

. (140)

Consequently, we have∣∣∣∣Gij −G
(l)
ij

∣∣∣∣ = ∣∣tTi tj − (
t
(l)
i

)T (
t
(l)
j

)∣∣ (141)

≤
∣∣tTi tj − tTi

(
t
(l)
j

)∣∣+ ∣∣tTi (t(l)j

)
−

(
t
(l)
i

)T (
t
(l)
j

)∣∣ (142)

≤
∥∥ti∥∥∥∥tj − t

(l)
j

∥∥+
∥∥t(l)j

∥∥∥∥ti − t
(l)
i

∥∥ (143)

≤
√

m(10L2 + t)
∥∥ti∥∥∥∥t(1)i

∥∥(2L√2σw

)l+1

1− 2L
√
2σw

+
√
m(10L2 + t)

∥∥t(l)i

∥∥∥∥t(1)i

∥∥(2L√2σw

)l+1

1− 2L
√
2σw

. (144)

Let t be an absolute constant. Finally, we obtain (35) from (144).
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F PROOF OF PROPOSITION 14

Define

Ĝ
(l)
ij := E

[
1

m
G

(l)
ij

]
. (145)

Then, by Lemma 10, we have

Ĝ
(l)
ij = E

[
1

m
φ(Mhl)

Tφ(Mh′
l)

]
(146)

= Ew∼N (0,2I)

[
φ(wThl)φ(w

Th′
l)
]
. (147)

Let

Â
(l)
ij := hT

l h
′
l, Â

(l)
ii := ∥hl∥22, Â

(l)
jj := ∥h′

l∥22, (148)

and define

ν̂
(l)
ij :=

Â
(l)
ij√

Â
(l)
ii Â

(l)
jj

. (149)

Then, we have

Ĝ
(l)
ij = E

(u,v)∼N

(
0,2

∥hl∥2 hTh′
l

hT
l h

′
l ∥h′

l∥2
)[

φ(u)φ(v)
]

(150)

= E
(u,v)∼N

(
0,

 1
hT

l h′
l

∥hl∥|h′
l∥

hT
l h′

l

∥hl∥|h′
l∥

1


)[

φ(
√
2∥hl∥u)φ(

√
2∥hl∥v)

]
(151)

= 2q2∥hl∥∥h′
l∥Q̃√

2∥hl∥,
√
2∥h′

l∥
(ν̂

(l)
ij ) (152)

= 2q2
√

Â
(l)
ii Â

(l)
jj Q̃

√
2∥hl∥,

√
2∥h′

l∥
(ν̂

(l)
ij ). (153)

Now, we consider two cases:

• Case 1: i = j.

By Lemma 10, we have

G
(l+1)
ii = φ(Mhl+1)

Tφ(Mhl+1), (154)

where

∥hl+1∥2 =
σ2
w

m
G

(l)
ii + 1. (155)

Now, for a fixed hl+1, by Beinstein’s inequality and (154), it holds with probability 1 −
exp(−Ω(mε2)) that ∣∣∣∣ 1mG

(l+1)
ii − Ĝ

(l+1)
ii

∣∣∣∣ ≤ ε/2. (156)

On the other hand, by Preposition 13, with probability at least 1− n2 exp(−Ω(m)), we have

1

m

∥∥G−G(l+1)
∥∥
F
= O

(
n
(
2L

√
2σw

)l+1
)
. (157)

Since 2L
√
2σw < 1, it holds with probability at least 1− n2 exp(−Ω(m)) that∣∣∣∣ 1mG

(l+1)
ii −Gii

∣∣∣∣ = O

(
n
(
2L

√
2σw

)l+1
)

= o(1). (158)
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From (158), ∥hl+1∥2 = O(1) with probability at least 1 − n2 exp(−Ω(m)). Then, for all hl+1,
note that the ε-net size is at most exp

{
O
(
l log 1

ε

)}
. Therefore, it holds with probability at least

1− n2 exp
(
− Ω(mε2) +O(l log 1

ε )
)
,∣∣∣∣ 1mG

(l+1)
ii − Ĝ

(l+1)
ii

∣∣∣∣ ≤ ε/2. (159)

Now, observe that

Ĝ
(l+1)
ii = Ew∼N (0,2I)

[
φ2(wThl+1)

]
(160)

= 2q2∥hl+1∥2Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1). (161)

On the other hand, we also have

K
(l+1)
ii = 2q2ρ

(l+1)
ii Qii(1) (162)

= 2q2(σ2
wK

(l)
ii + 1

)
Qii(1). (163)

It follows that∣∣∣∣Ĝ(l+1)
ii −K

(l+1)
ii

∣∣∣∣
= 2q2

∣∣∣∣∥hl+1∥2Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1)−

(
σ2
wK

(l)
ii + 1

)
Qii(1)

∣∣∣∣ (164)

= 2q2
∣∣∣∣(σ2

w

m
G

(l)
ii + 1

)
Q̃√

2∥hl+1∥,
√
2∥hl+1∥(1)−

(
σ2
wK

(l)
ii + 1

)
Qii(1)

∣∣∣∣ (165)

≤ 2q2
∣∣∣∣(σ2

w

m
G

(l)
ii + 1

)
Q̃√

2∥hl+1∥,
√
2∥hl+1∥(1)−

(
σ2
wK

(l)
ii + 1

)
Q̃√

2∥hl+1∥,
√
2∥hl+1∥(1)

∣∣∣∣
+ 2q2

(
σ2
wK

(l)
ii + 1

)∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1)−Qii(1)

∣∣∣∣ (166)

≤ 8L2σ2
w

∣∣∣∣G(l)
ii

m
−K

(l)
ii

∣∣∣∣+ 2q2
(
σ2
wK

(l)
ii + 1

)∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1)−Qii(1)

∣∣∣∣. (167)

Now, let

∥h∥2 :=
σ2
w

m
Gii + 1. (168)

Then, we have ∣∣∥hl+1∥2 − ∥h∥2
∣∣ = σ2

w

m

∣∣G(l)
ii −Gii

∣∣ (169)

≤ 1

m

∥∥G(l) −G
∥∥
F

(170)

= O

(
n
(
2L

√
2σw

)l)
(171)

where (169) follows from (155) and (168), and (171) follows from (157). Since Gii = ∥zi∥2 ≥
0,G

(l)
ii = ∥z(l)i ∥2 ≥ 0, from (155), (168), and (171), we obtain∣∣∥hl+1∥ − ∥h∥

∣∣ = O

(
n
(
2L

√
2σw

)l)
. (172)

In addition, since Ti = φ(WTi +UXi) for all i ∈ [n]. Hence, as Lemma 10, we can represent

Gii = φ(Mh)Tφ(Mh), (173)

where M ∈ Rm×(2l+d+2) with i.i.d. entries distributed as N (0, 2). Hence, by standard Beinstein’s
concentration inequality, with probability 1− exp(−Ω(mε2)), it holds that∣∣∥h∥2 − E[∥h∥2]

∣∣ ≤ ε, (174)∣∣∥h∥ − E[∥h∥]
∣∣ ≤ ε. (175)
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From (171), (172), (174), and (175), with probability at least 1− exp(−Ω(mε2)) it holds that∣∣∥hl+1∥2 − E[∥h∥2]
∣∣ = ε+O

(
n
(
2L

√
2σw

)l)
, (176)

∣∣∥hl+1∥ − E[∥h∥]
∣∣ = ε+O

(
n
(
2L

√
2σw

)l)
. (177)

Now, note that∣∣∣∣φ2(
√
2∥hl+1∥a)− φ2(

√
2∥h∥a)

∣∣∣∣
=

∣∣∣∣φ(√2∥hl+1∥a)− φ(
√
2∥h∥a)

∣∣∣∣∣∣∣∣σ(√2∥hl+1∥a) + σ(
√
2∥h∥a)

∣∣∣∣. (178)

On the other hand, we have∣∣∣∣φ(√2∥hl+1∥a)− φ(
√
2∥h∥a)

∣∣∣∣ ≤ L
√
2|a|

∣∣∥hl+1∥ − ∥h∥
∣∣, (179)∣∣∣∣φ(√2∥hl+1∥a) + φ(

√
2∥h∥a)

∣∣∣∣ ≤ 2|φ(0)|+ L
√
2
(
∥hl+1∥+ ∥h∥

)
|a| (180)

where we use ||φ(x)| − |φ(0)|| ≤ |φ(x)− φ(0)| ≤ L|x| on (180).

From (178), (179), and (180), we obtain∣∣∣∣φ2(
√
2∥hl+1∥a)− φ2(

√
2∥h∥a)

∣∣∣∣ ≤ 2L
√
2|φ(0)||a|

∣∣∥hl+1∥ − ∥h∥
∣∣+ 2L2|a|2|

∣∣hl+1∥2 − ∥h∥2
∣∣

(181)

= |a|
[
ε+O

(
nL

(
2L

√
2σw

)l)]
+ |a|2

[
ε+O

(
nL2

(
2L

√
2σw

)l)]
(182)

where (182) follows from (171) and (172).

From (182), we obtain∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− Ea∼N (0,1)

[
φ2(

√
2∥h∥a)

]∣∣∣∣
≤ Ea∼N (0,1)[|a|]

[
ε+O

(
nL

(
2L

√
2σw

)l)]
+ Ea∼N (0,1)[|a|2]

[
ε+O

(
nL2

(
2L

√
2σw

)l)]
(183)

= O

(
ε+ nL2

(
2L

√
2σw

)l)
. (184)

Similarly, we also have

Ea∼N (0,1)

[
φ2(

√
2∥h∥a)

∣∣∣∣] ≤ Ea∼N (0,1)

[(
|φ(0)|+ L

√
2∥h∥|a|

)2]
(185)

= O(1). (186)

It follows that∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1)−Qii(1)

∣∣∣∣
=

∣∣∣∣ 1

2q2∥hl+1∥2
Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− 1

2q2E[∥h∥2]
Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
(187)

≤
∣∣∣∣ 1

2q2∥hl+1∥2
Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− 1

2q2∥hl+1∥2
Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
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+

∣∣∣∣ 1

2q2∥hl+1∥2
Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

]
− 1

2q2E[∥h∥2]
Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
(188)

≤ 1

2q2∥hl+1∥2

∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

]∣∣∣∣
+

1

2q2

∣∣∣∣ 1

∥hl+1∥2
− 1

E[∥h∥2]

∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]. (189)

By combining (171), (184), and (186), from (189), we obtain∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1)−Qi,i(1)

∣∣∣∣ = O

(
ε+ nL2

(
2L

√
2σw

)l)
. (190)

On the other hand, by Proposition 12, with probability at least 1−m exp(−Ω(m)), we have

∥K−K(l+1)∥F = O

(
n(8L2σ2

w)
l+1

)
= O

(
n(2L

√
2σw)

l+1

)
. (191)

It follows that

∥K(l+1)
ii −Kii∥ = O

(
n(2L

√
2σw)

l+1

)
. (192)

From (190), (192), by setting

ε := O

(
nL2

(
2L

√
2σw

)l+1
)

(193)

from (167), we obtain ∣∣∣∣Ĝ(l+1)
ii −K

(l+1)
ii

∣∣∣∣ ≤ 8L2σ2
w

∣∣∣∣G(l)
ii

m
−K

(l)
ii

∣∣∣∣+ 2ε. (194)

It follows from (159) and (194) that with probability at least 1− n2 exp
{
−Ω(mε2) +O

(
l log 1

ε

)}
,∣∣∣∣ 1mG

(l+1)
ii −K

(l+1)
ii

∣∣∣∣ ≤ ∣∣∣∣ 1mG
(l+1)
ii − Ĝ

(l+1)
ii

∣∣∣∣+ ∣∣∣∣Ĝ(l+1)
ii −K

(l+1)
ii

∣∣∣∣ (195)

≤ 8L2σ2
w

∣∣∣∣ 1mG
(l)
ii −K

(l)
ii

∣∣∣∣+ 2ε, (196)

which implies that with probability at least 1− n2l exp
{
− Ω(mε2) +O

(
l log 1

ε

)}
, we have∣∣∣∣G(l)

ii −K
(l)
ii

∣∣∣∣ ≤ 1− (8L2σ2
w)

l

1− 8L2σ2
w

2ε. (197)

Final note is that since ε = O
(
nL2

(
2L

√
2σw

)l+1)
, it holds with probability at least 1−n2l exp

{
−

Ω(8lL2lσ2l
wmnL2) +O(l2)} ≥ 1− n2 exp

{
− Ω(8lL2lσ2l

wmnL2) +O(l2)
}

, we have∣∣∣∣G(l)
ii −K

(l)
ii

∣∣∣∣ = O

(
n(2L

√
2σw)

l

)
. (198)

• Case 2: i ̸= j.

For this case, let

∥h∥2 : =
σ2
w

m
Gii + 1, (199)

∥h′∥2 : =
σ2
w

m
Gii + 1. (200)

By Preposition 13, with probability at least 1− n2 exp(−Ω(m)), we have

1

m

∥∥∥∥G−G(l)

∥∥∥∥
F

= O

(
n
(
2L

√
2σw

)l)
. (201)
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In addition, we also have

∥hl+1∥2 =
σ2
w

m
G

(l)
ii + 1 ≥ 1, (202)

∥h′
l+1∥2 =

σ2
w

m
G

(l)
jj + 1 ≥ 1. (203)

Hence, we have

|∥hl+1∥ − ∥h∥| = O

(
|∥hl+1∥2 − ∥h∥2|

)
(204)

=
σ2
w

m

∥∥∥∥G(l)
ii −Gii

∥∥∥∥ (205)

≤ σ2
w

m

∥∥∥∥G(l) −G

∥∥∥∥
F

(206)

= O

(
n
(
2L

√
2σw

)l)
. (207)

Then, it holds that∣∣∣∣Ĝ(l+1)
ij −K

(l+1)
ij

∣∣∣∣
= 2q2

∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l)
ij )− ρ

(l+1)
ij Qij(ν

(l+1)
ij )

∣∣∣∣ (208)

≤ 2q2
∣∣∣∣√Â

(l+1)
ii Â

(l+1)
jj Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l+1)
ij )− ρ

(l+1)
ij Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν

(l)
ij )

∣∣∣∣
+ 2q2ρ

(l+1)
ij

∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥
(ν

(l)
ij )−Qij(ν

(l+1)
ij )

∣∣∣∣. (209)

Now, for all |x| ≤ 1, we have∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥
(x)−Qij(x)

∣∣∣∣ ≤ ∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥
(x)− Q̃√

2E[∥h∥],
√
2∥h′

l+1∥
(x)

∣∣∣∣
+

∣∣∣∣Q̃√
2E[∥h∥],

√
2∥h′

l+1∥
(x)−Qij(x)

∣∣∣∣. (210)

On the other hand, we have∣∣∣∣Q̃√
2E[∥h∥],

√
2∥h′

l+1∥
(x)−Qij(x)

∣∣∣∣
=

∣∣∣∣ 1

2q2E[∥h∥]∥h′
l+1∥

E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2∥h′

l+1∥b)

(211)

− 1

2q2E[∥h∥]E[∥h′∥]
E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣ (212)

≤
∣∣∣∣ 1

2q2E[∥h∥]∥h′
l+1∥

E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2∥h′

l+1∥b)

− 1

2q2E[∥h∥]∥h′
l+1∥

E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣
+

∣∣∣∣ 1

2q2E[∥h∥]∥h′
l+1∥

E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)
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− 1

2q2E[∥h∥]E[∥h′∥]
E
(a,b)T∼N

(
0,

[
1 x
x 1

])φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣ (213)

≤ 1

2q2E[∥h∥]∥h′
l+1∥

E
(a,b)T∼N

(
0,

[
1 x
x 1

])∣∣∣∣φ(√2E[∥h∥]a)φ(
√
2∥h′

l+1∥b)

− φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣
+

1

2q2E[∥h∥]

∣∣∣∣ 1

∥h′
l+1∥

− 1

E[∥h′∥]

∣∣∣∣E
(a,b)T∼N

(
0,

[
1 x
x 1

])∣∣∣∣φ(√2E[∥h∥]a)φ(
√
2E[∥h′∥]b)

∣∣∣∣.
(214)

In addition, we have

|φ(
√
2E[∥h∥]a)| ≤ |φ(0)|+ L

√
2E[∥h∥]|a| (215)

|φ(
√
2E[∥h′∥]b)| ≤ |φ(0)|+ L

√
2E[∥h′∥]|b|. (216)

It follows that ∣∣∣∣φ(√2E[∥h∥]a)φ(
√
2∥h′

l+1∥b)− φ(
√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣
=

∣∣∣∣φ(√2E[∥h∥]a)
∣∣∣∣∣∣∣∣φ(√2∥h′

l+1∥b)− φ(
√
2E[∥h′∥]b)

∣∣∣∣ (217)

≤
(
|φ(0)|+ L

√
2E[∥h∥]|a|

)∣∣∣∣φ(√2∥h′
l+1∥b)− φ(

√
2E[∥h′∥]b)

∣∣∣∣ (218)

≤ L
√
2

(
|φ(0)|+ L

√
2E[∥h∥]|a|

)∣∣∥h′
l+1∥ − E[∥h′∥]

∣∣|b|. (219)

On the other hand, by Beinstein’s inequality, with probability at least 1− exp(−Ω(m)ε2), it holds
that ∣∣∥h′∥ − E[∥h′∥]

∣∣ ≤ ε. (220)

From (207) and (220), we have

|∥h′
l+1∥ − E[∥h′∥]| ≤

∣∣∥h′
l+1∥ − ∥h∥

∣∣+ ∣∣∥h∥ − E[∥h∥]
∣∣ (221)

≤ ε+O

(
n
(
2L

√
2σw

)l)
. (222)

Now, by setting

ε := O

(
n
(
2
√
2σw

)l)
, (223)

from (222), we obtain ∣∣∥h′
l+1∥ − E[∥h′∥]

∣∣ = O

(
n
(
2L

√
2σw

)l)
. (224)

Similarly, we also have ∣∣∥h′
l+1∥ − E[∥h′∥]

∣∣ = O

(
n
(
2L

√
2σw

)l)
, (225)

∣∣∥h∥ − E[∥h∥]
∣∣ = O

(
n
(
2L

√
2σw

)l)
. (226)

From (214), (219), (224) and (226), we obtain∣∣∣∣Q̃√
2E[∥h∥],

√
2∥h′

l+1∥
(x)−Qij(x)

∣∣∣∣ = O

(
n
(
2L

√
2σw

)l)
. (227)
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Similarly, we can prove that∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥
(x)− Q̃√

2E[∥h∥],
√
2∥h′

l+1∥
(x)

∣∣∣∣ = O

(
n
(
2L

√
2σw

)l)
. (228)

From (210), (227), and (228), we obtain∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥
(x)−Qij(x)

∣∣∣∣ ≤ O

(
n
(
2L

√
2σw

)l)
. (229)

Next, we aim to upper bound

2q2
∣∣√Â

(l+1)
ii Â

(l+1)
jj Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l+1)
ij )− ρ

(l+1)
ij Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν

(l+1)
ij )

∣∣.
Observe that with probability at least 1− n2 exp(−Ω(m)), it holds for all l sufficiently large that

∣∣√Â
(l+1)
ii Â

(l+1)
jj Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l+1)
ij )− ρ

(l+1)
ij Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν

(l+1)
ij )

∣∣
≤

∣∣∣∣(√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

)
Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l+1)
ij )

∣∣∣∣
+

∣∣∣∣ρ(l+1)
ij

(
Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν̂

(l+1)
ij )− Q̃√

2∥hl+1∥,
√
2∥h′

l+1∥
(ν

(l+1)
ij )

)∣∣∣∣ (230)

≤ 4L2

q2

∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣
+ ρ

(l+1)
ij

4L2

q2
max{

(√
2∥hl+1∥+ 1

)2
,
(√

2∥h′
l+1∥+ 1

)2}∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣ (231)

≤ 4L2

q2
max{

(√
2∥hl+1∥+ 1

)2
,
(√

2∥h′
l+1∥+ 1

)2}[∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣
+ ρ

(l+1)
ij

∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣] (232)

≤ 4L2

q2
max

{
(
√
2E[∥h∥] + 1 + ε)2, (

√
2E[∥h∥] + 1 + ε)2

}[∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣
+ ρ

(l+1)
ij

∣∣∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣∣∣], (233)

where (231) follows from Lemma 9, and (233) follows from (224), (225) and (226).

On the other hand, we have∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣+ ρ
(l+1)
ij

∣∣∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣∣∣
=

∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣
+

∣∣∣∣(√Â
(l+1)
ii Â

(l+1)
jj + ρ

(l+1)
ij −

√
Â

(l+1)
ii Â

(l+1)
jj

)
ν̂
(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣ (234)

≤ 2

∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣∣∣+ ∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj ν̂

(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣, (235)

where (235) follows from |ν̂(l)ij | ≤ 1.
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On the other hand, since ρ
(l+1)
ii =

√
ρ
(l+1)
ii ρ

(l+1)
jj , we also have∣∣√Â

(l+1)
ii Â

(l+1)
jj − ρ

(l+1)
ij

∣∣
= 2q2

∣∣∣∣
√(

σ2
w

m
G

(l)
ii + 1

)(
σ2
w

m
G

(l)
jj + 1

)
−
√(

σ2
wK

(l)
ii + 1

)(
σ2
wK

(l)
jj + 1

)∣∣∣∣ (236)

= O

(
n(2L

√
2σw)

l

)
, (237)

where (237) follows from (198).

Moreover, note that √
Â

(l+1)
ii Â

(l+1)
jj ν̂

(l+1)
ij = Â

(l+1)
ij (238)

= ∥hl+1∥2 (239)

=
σ2
w

m
G

(l)
ij +

1

d
xT
i xj (240)

and

ρ
(l+1)
ij ν

(l+1)
ij = ν

(l+1)
ij

√
ρ
(l+1)
ii ρ

(l+1)
jj (241)

= ν
(l+1)
ij

√(
σ2
wK

(l)
ii + 1

)(
σ2
wK

(l)
jj + 1

)
(242)

= σ2
wK

(l)
ij +

1

d
xT
i xj . (243)

Thus, it holds that∣∣∣∣√Â
(l+1)
ii Â

(l+1)
jj ν̂

(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣ = σ2
w

∣∣∣∣ 1mG
(l)
ij −K

(l)
ij

∣∣∣∣. (244)

Thus, with probability at least 1− l exp
(
− Ω(mε2) +O

(
l log 1/ε

))
, it holds that∣∣∣∣Ĝ(l+1)

ij −K
(l+1)
ij

∣∣∣∣ ≤ σ2
w

∣∣∣∣ 1mG
(l)
ij −K

(l)
ij

∣∣∣∣+ ε. (245)

On the other hand, by Lemma 10, we have

G
(l+1)
ij = φ(Mhl+1)

Tφ(Mh′
l+1). (246)

Hence, for a fixed vector pair hl+1,h
′
l+1, by Beinstein’s inequality, with probability at least 1 −

exp(−Ω(mε2)) it holds that ∣∣∣∣ 1mG
(l+1)
ij − Ĝ

(l+1)
ij

∣∣∣∣ ≤ ε. (247)

Then, by using ε-net arguments as in Case 1, with probability at least 1 − l exp
(
− Ω(mε2) +

O
(
l log 1/ε

))
, we have ∣∣∣∣ 1mG

(l+1)
ij − Ĝ

(l+1)
ij

∣∣∣∣ ≤ ε. (248)

Consequently, we have∣∣∣∣ 1mG
(l+1)
ij −K

(l+1)
ij

∣∣∣∣ ≤ ∣∣∣∣ 1mG
(l+1)
ij − Ĝ

(l+1)
ij

∣∣∣∣+ ∣∣∣∣Ĝ(l+1)
ij −K

(l+1)
ij

∣∣ (249)

≤ 2ε+ σ2
w

∣∣∣∣ 1mG
(l)
ij −K

(l)
ij

∣∣∣∣ (250)

where (250) follows from (245) and (248).
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By applying the induction argument, one can show that for l ≥ 1, it holds with probability at least
1− l2 exp

(
− Ω(mε2) +O

(
l log 1/ε

))
, we have∣∣∣∣ 1mG
(l)
ij −K

(l)
ij

∣∣∣∣ ≤ 2ε

1− σ2
w

. (251)

By the choice of ε in (223), it holds that with probability at least 1−n2 exp
{
−Ω(8lL2lσ2l

wmnL2)+

O(l2)
}

, we have ∣∣∣∣G(l)
ij −K

(l)
ij

∣∣∣∣ = O

(
n(2L

√
2σw)

l

)
. (252)

G PROOF OF THEOREM 8

Since Uxi is a Gaussian vector with zero-mean and variance depending on ∥xi∥2. On the other
hand, by the Assumption 2, ∥xi∥ =

√
d. Hence, from ti = φ(Wti + Uxi), it is easy to see

that E[Gii] = E[∥ti∥2] does not depend on i ∈ [n]. This means that E[Gii] = E[Gjj ] for all
i, j ∈ [n]× [n]. Hence, Qij(x) has the form Q̃α,α(x) for some α ≥ 1.

Thanks to this fact, from Proposition 12 and the assumption on this theorem, for all (i, j) ∈ [n]× [n],
it holds that

Kij = 2q2Qij(νij)
√
ρiiρjj (253)

= 2q2
√
ρiiρjj

∞∑
r=0

µ2
r,α(φ)ν

r
ij , (254)

where

νij =
Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√
(ρii − 1)(ρjj − 1) + d−1xT

i xj
√
ρiiρjj

. (255)

Here,

ρii =
1

1− 2q2σ2
wQii(1)

. (256)

Now, by Lemma 11, we have |νij | ≤ 1 for all (i, j) ∈ [n]× [n]. Let H = [h1,h2, · · · ,hn] where
h1,h2, · · · ,hn be unit vectors such that νij = hT

i hj for all (i, j) ∈ [n]× [n]. It is easy to check that
[(HTH)⊙r]ij = (hT

i hj)
r holds for all (i, j) ∈ [n]× [n]. Let K̃ be a n× n matrix such that

K̃ij = Kij/
√
ρiiρjj , ∀i, j ∈ [n]× [n]. (257)

Then, K̃ can be written as

K̃ = 2q2
∞∑
r=0

µ2
r,α(φ)

(
HTH

)(⊙r)
. (258)

Now, for any unit vector u = [u1, u2, · · · , un]
T ∈ Rn, it holds that

uT
(
HTH

)(⊙r)
u =

∑
i,j

uiuj(h
T
i hj)

r (259)

=
∑
i

u2
i +

∑
i ̸=j

uiujν
r
ij (260)

= 1 +
∑
i ̸=j

uiujν
r
ij . (261)
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Next, we show that |νij | < 1 if i ̸= j. Indeed, assume that there exists i ̸= j such that |νij | ≥ 1.
Then, from (30) in Lemma 11, we have

1 ≤ |νij | (262)

=

∣∣∣∣Qij

(
νij

)
/
√
Qii(1)Qjj(1)

√
(ρii − d−1∥xi∥22)(ρjj − d−1∥xj∥22) + d−1xT

i xj
√
ρiiρjj

∣∣∣∣ (263)

≤
√
(ρii − d−1∥xi∥22)(ρjj − d−1∥xj∥22) +

∣∣d−1xT
i xj

∣∣
√
ρiiρjj

(264)

<

√
(ρii − d−1∥xi∥22)(ρjj − d−1∥xj∥22) + 1

∣∣
√
ρiiρjj

(265)

≤ 1, (266)

where (264) follows from Lemma 9, and (265) follows by the fact that since xi ∦ xj , from
Cauchy–Schwarz inequality and Assumption 2, we have xT

i xj < ∥xi∥2∥xj∥ = d. This is a contra-
diction. Hence, we have |β| < 1 where

β := max
i ̸=j

|νij |. (267)

Now, by taking r > − logn
log β , we have∣∣∣∣∑

i ̸=j

uiujν
r
ij

∣∣∣∣ ≤ ∑
i ̸=j

|ui||uj |βr (268)

≤
(∑

i

|νi|
)2

βr (269)

≤ nβr (270)
< 1. (271)

From (261) and (271), we obtain

uT
(
HTH

)(⊙r)
u > 0, ∀u, (272)

so
(
HTH

)(⊙r)
is positive definite. Following Theorem 8, it holds that µ2

r,α(φ) > 0 for infinitely
many values of r. Hence, K̃ is positive definite.

Now, let Γ = {√ρiiρjj}i,j be an n× n matrix where the (i, j) element is √ρiiρjj . Then, we have

K = K̃⊙ Γ. (273)

Now, for any vector u = [u1, u2, · · · , un]
T , we have

uTΓu =
∑
i,j

uiuj
√
ρiiρjj (274)

=

(∑
i

ui
√
ρii

)2

(275)

≥ 0. (276)

Hence, Γ is positive semi-definite. Now, by applying (Ling et al., 2022, Lemma 6), we have

λmin(K) ≥
(
min
i

ρii

)
λmin(K̃) (277)

≥ λmin(K̃) > 0, (278)

so K is positive definite with the smallest eigenvalue λ∗ > 0.
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H PROOF OF THEOREM 4

The following proof follows the same steps as (Ling et al., 2022, Proof of Theorem 1). There are
some small changes by the change of the activation function. First, we recall the two important
auxiliary lemmas:
Lemma 18. (Horn & Johnson, 1985, Sect. 5.8) Let ∆ = B−A where A and B are square complex
matrices. Then, it holds that

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∆∥

. (279)

Lemma 19. (Weyl’s inequality)(Ling et al., 2022, Lemma 5) Let A,B ∈ Rm×n with their singular
values satisfying σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σr(B) and
r = min(m,n). Then,

max
i∈[r]

∣∣σi(A)− σi(B)∥ ≤ ∥A−B∥ (280)

Based on these two lemmas, we can prove the following result:
Lemma 20. For each s ∈ [0, τ ], suppose that ∥W(s)∥2 ≤ ρ̄w, ∥U(s)∥2 ≤ ρ̄u and ∥a(s)∥2 ≤ ρ̄a. It
holds that

∥T(s)∥F ≤ ca∥X∥F + cm (281)

and

∥∇WΦ(s)∥F ≤ cu
(
ca∥X∥F + cm

)
∥ŷ(s)− y∥2, (282)

∥∇UΦ(s)∥F ≤ cu∥X∥F ∥ŷ(s)− y∥2, (283)

∥∇aΦ(s)∥F ≤
(
ca∥X∥F + cm

)
∥ŷ(s)− y∥2. (284)

Furthermore, for each k, s ∈ [0, τ ], it holds that

∥T(k)−T(s)∥ ≤ L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(k)−W(s)∥2

+
L

1− Lρ̄w
∥U(k)−U(s)∥2∥X∥F (285)

and

∥ŷ(k)− ŷ(s)∥2

≤ ρ̄a

[
L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(k)−W(s)∥2

+
L

1− Lρ̄w
∥U(k)−U(s)∥2∥X∥F

]
+
(
ca∥X∥F + cm

)
∥a(k)− a(s)∥2. (286)

Proof. Observe that T(s) = φ(W(s)T(s) +U(s)X). Using the fact that |φ(x) − φ(0)| ≤ L|x|
(Lipschitz condition of φ), we have

∥T(s)− φ(0
¯
)∥F =

∥∥φ(W(s)T(s) +U(s)X)− φ(0
¯
)
∥∥
F

(287)

≤ L∥W(s)T(s) +U(s)X)∥F (288)

≤ L

(
∥W(s)∥2∥T(s)∥F + ∥U(s)∥2∥X∥F

)
(289)

≤ Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F . (290)

From (290), we have

∥T(s)∥F ≤ ∥φ(0
¯
)∥F + Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F (291)

= m2φ(0) + Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F . (292)
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Since ρ̄w < 1/L, from (292), we obtain

∥T(s)∥F ≤ ca∥X∥F + cm. (293)

Now, we prove (282)-(284). By using Lemma 18 with A = Im,n,B = J(s),∆ = −D(s)(In ⊗
W(s)), we have

∥J(s)−1∥2 ≤ 1

1− ∥D(τ)(In ⊗W(s))∥2
(294)

≤ 1

1− ∥D(s)∥2∥W(s)∥2
. (295)

On the other hand since ∥φ′∥∞ ≤ L, we have

∥D(s)∥2 ≤ L. (296)

Hence, from (295), we have

∥J(s)−1∥2 ≤ 1

1− Lρ̄w
, (297)

and thus it holds that

∥R(s)∥2 ≤ ∥a(s)∥2∥J(s)−1∥2∥D(s)∥2 (298)

≤ Lρ̄a
1− Lρ̄w

. (299)

Then, we have

∥∇WΦ(s)∥F = ∥vec(∇WΦ(s))∥2 (300)

= ∥(T(s)⊗ Im)R(s)T (ŷ(s)− y)∥2 (301)
≤ ∥T(s)∥2∥R(s)∥2∥ŷ(s)− y∥2 (302)

≤ Lρ̄a
1− Lρ̄w

(ca∥X∥F + cm)∥ŷ(s)− y∥2, (303)

∥∇UΦ(s)∥F = ∥vec(∇UΦ(s))∥2 (304)

= ∥(X⊗ Im)R(s)T (ŷ(s)− y)∥2 (305)

≤ Lρ̄a
1− Lρ̄w

∥X∥F ∥ŷ(s)− y∥2, (306)

∥∇aΦ(s)∥F = ∥T(s)(ŷ(s)− y)∥ (307)

≤
(
ca∥X∥F + cm

)
∥ŷ(s)− y∥2. (308)

Next, we prove (285). Observe that

∥T(k)−T(s)∥F
= ∥φ(W(k)T(k) +U(k)X)− φ(W(s)T(s) +U(s)X)∥F (309)
≤ L∥W(k)T(k) +U(k)X−W(s)T(s)−U(s)X∥F (310)

≤ L
(
∥W(k)T(k)−W(k)T(s)∥F + ∥W(k)T(s)−W(s)T(s)∥F
+ ∥U(k)X−U(s)X∥F ) (311)

≤ L∥W(k)∥2∥T(k)−T(s)∥F + L∥W(k)−W(s)∥2∥T(s)∥F
+ L∥U(k)−U(s)∥2∥X∥F (312)

≤ Lρ̄w∥T(k)−T(s)∥F + L
(
ca∥X∥F + cm

)
∥W(k)−W(s)∥2

+ L∥U(k)−U(s)∥2∥X∥F . (313)

From (313), we obtain

∥T(k)−T(s)∥F ≤ L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(k)−W(s)∥2

+
L

1− Lρ̄w
∥U(k)−U(s)∥2∥X∥F . (314)
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Finally, we prove (286). Observe that

∥ŷ(k)− ŷ(s)∥F
= ∥a(k)T(k)− a(s)Z(s)∥F (315)
≤ ∥a(k)T(k)− a(k)T(s)∥F + ∥a(k)T(s)− a(s)T(s)∥F (316)
≤ ∥a(k)∥2∥T(k)−T(s)∥F + ∥a(k)− a(s)∥2∥T(s)∥F (317)

≤ ρ̄a

[
L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(k)−W(s)∥2

+
L

1− Lρ̄w
∥U(k)−U(s)∥2∥X∥F

]
+
(
ca∥X∥F + cm

)
∥a(k)− a(s)∥2. (318)

Now, we return to prove Theorem 4. We prove by induction for every τ > 0,

∥W(s)∥ ≤ ρ̄w, ∥U(s)∥ ≤ ρ̄u, ∥a(s)∥2 ≤ ρ̄a, s ∈ [0, τ ], (319)

λs ≥
λ0

2
, s ∈ [0, τ ], (320)

Φ(s) ≤
(
1− η

λ0

2

)s

Φ(0), s ∈ [0, τ ]. (321)

For τ = 0, it is clear that (319)-(321) hold. Assume that (319)-(321) holds up to τ iterations. Then,
by using triangle inequality, we have

∥W(τ + 1)−W(0)∥F ≤
τ∑

s=0

∥W(s+ 1)−W(s)∥F (322)

=

τ∑
s=0

η∥∇WΦ(s)∥F (323)

≤ η

τ∑
s=0

cu
(
ca∥X∥F + cm

)
∥ŷ(s)− y∥2 (324)

= ηcu
(
ca∥X∥F + cm

) τ∑
s=0

(
1− η

λ0

2

)s/2

∥ŷ(0)− ŷ∥2 (325)

where (324) follows from Lemma 20. Let u :=
√
1− ηλ0/2. Then ∥W(τ + 1)−W(0)∥F can be

bounded with

2

λ0
(1− u2)

1− uτ+1

1− u
cu
(
ca∥X∥F + cm

)
∥ŷ(0)− y∥

≤ 4

λ0
cu
(
ca∥X∥F + cm

)
∥ŷ(0)− y∥ (326)

≤ δ. (327)

Then, we have

∥W(τ + 1)∥ ≤ ∥W(0)∥2 + δ = ρ̄w < 1. (328)
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Using the similar technique, one can show that

∥U(τ + 1)−U(0)∥F ≤
τ∑

s=0

∥U(s+ 1)−U(s)∥2 (329)

=

τ∑
s=0

η∥∇UΦ(s)∥F (330)

≤
τ∑

s=0

ηcu∥X∥F ∥ŷ(s)− y∥2 (331)

≤ ηcu∥X∥F
τ∑

s=0

(
1− η

λ0

2

)s/2

∥ŷ(0)− y∥2 (332)

≤ 4

λ0
cu∥X∥F ∥ŷ(0)− y∥2 (333)

≤ δ. (334)

∥a(τ + 1)− a(0)∥F ≤
τ∑

s=0

∥a(s+ 1)− a(s)∥F (335)

=

τ∑
s=0

η∥∇aΦ(s)∥F (336)

≤ η
(
ca∥X∥F + cm

) τ∑
s=0

∥ŷ(s)− y∥2 (337)

≤ η
(
ca∥X∥F + cm

) τ∑
s=0

(
1− η

λ0

2

)s/2

∥ŷ(0)− y∥2 (338)

≤ 4

λ0

(
ca∥X∥F + cm

)
∥ŷ(0)− y∥2 (339)

≤ δ. (340)
Finally, using (285), we have

∥T(τ + 1)−T(0)∥ ≤ L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1)−W(0)∥2

+
L

1− Lρ̄w
∥U(τ + 1)−U(0)∥2∥X∥F (341)

≤ L

1− Lρ̄w

(
ca∥X∥F + cm

) 4

λ0
cu
(
ca∥X∥F + cm

)
∥ŷ(0)− y∥

+
L

1− Lρ̄w

4

λ0
cu∥X∥F ∥ŷ(0)− y∥2∥X∥F (342)

=
4L

(1− Lρ̄w)λ0

[(
ca∥X∥F + cm

)2
+ cu∥X∥2F

]
∥ŷ(0)− y∥2 (343)

≤ 2−
√
2

2

√
λ0 (344)

by (11).

By Wely’s inequality, it implies that the least singular value of T(τ + 1) satisfies σmin(T(τ + 1)) ≥√
λ0

2 . Thus, it holds λτ+1 ≥ λ0

2 .

Now, we define g := a(τ + 1)TT(τ) and note that
Φ(τ + 1)− Φ(τ)

=
1

2
∥ŷ(τ + 1)− ŷ(τ)∥22 + (ŷ(τ + 1)− g)T (ŷ(τ)− y) + (g − ŷ(τ))T (ŷ(τ)− y). (345)
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We bound each term of the RHS of this equation individually. First, using (286), we have

∥ŷ(τ + 1)− ŷ(τ)∥2

≤ ρ̄a

[
L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1)−W(τ)∥2

+
L

1− Lρ̄w
∥U(τ + 1)−U(τ)∥2∥X∥F

]
+

(
ca∥X∥F + cm

)
∥a(k)− a(s)∥2 (346)

= ρ̄a

[
L

1− Lρ̄w

(
ca∥X∥F + cm

)
ηcu(ca∥X∥F + cm)∥ŷ(τ)− y∥2

+
L

1− Lρ̄w
ηcu∥X∥F ∥ŷ(τ)− y∥2∥X∥F

]
+
(
ca∥X∥F + cm

)
η(ca∥X∥F + cm)∥ŷ(τ)− y∥2 (347)

= ηC1∥ŷ(τ)− y∥2, (348)

where C1 := c2u(ca∥X∥F + cm)2 + c2u∥X∥2F + (ca∥X∥F + cm)2.

On the other hand, we have

(ŷ(τ + 1)− g)T (ŷ(τ)− y)

= a(τ + 1)T (T(τ + 1)−T(τ))(ŷ(τ)− y) (349)
≤ ∥a(τ + 1)∥2∥T(τ + 1)−T(τ)∥2∥ŷ(τ)− y∥2 (350)

≤ ∥a(τ + 1)∥2
[

L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1)−W(τ)∥2

+
L

1− Lρ̄w
∥U(k)−U(s)∥2∥X∥F ∥ŷ(τ)− y∥2

]
∥ŷ(τ)− y∥2 (351)

≤ ρ̄a

[
L

1− Lρ̄w

(
ca∥X∥F + cm

)
∥ηcu

(
ca∥X∥F + cm

)
∥ŷ(τ)− y∥2

+
L

1− Lρ̄w
ηcu∥X∥F ∥ŷ(s)− y∥2∥X∥F ∥ŷ(τ)− y∥2

]
∥ŷ(τ)− y∥2 (352)

= ηC2∥ŷ(τ)− y∥22, (353)

where

C2 := c2u
(
ca∥X∥F + cm

)2
+ c2u∥X∥2F . (354)

Furthermore, we also have

(g − ŷ(τ))T (ŷ(τ)− y)

= (a(τ + 1)− a(τ))TT(τ)(ŷ(τ)− y) (355)

= −
(
η∇aΦ(τ)

)T
T(τ)(ŷ(τ)− y) (356)

= −(ŷ(τ)− y)TZ(τ)TZ(τ)(ŷ(τ)− y) (357)

≤ −η
λ0

2
∥ŷ(τ)− y∥22 (358)

where we use induction λτ ≥ λ0

2 .

From (345)-(358), we obtain

Φ(τ + 1)− Φ(τ)

≤ 1

2
η2C2

1∥ŷ(τ)− y∥22 + ηC2∥ŷ(τ)− y∥22 − η
λ0

2
∥ŷ(τ)− y∥22 (359)

= 2Φ(τ)

[
1

2
η2C2

1 + ηC2 − η
λ0

2

]
(360)

= Φ(τ)

[
η2C2

1 + 2ηC2 − ηλ0

]
, (361)
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which leads to

Φ(τ + 1) ≤ Φ(τ)

[
1− η(λ0 − ηC2

1 − 2C2)

]
Φ(τ) (362)

≤
(
1− η(λ0 − 4C2)

)
Φ(τ) (363)

≤
(
1− η

λ0

2

)
Φ(τ). (364)
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