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ABSTRACT

Autoencoders are a useful unsupervised-learning architecture that can be used to
build surrogate models of systems governed by partial differential equations, en-
abling a more cost-effective route to study complex phenomena across science and
engineering. In this article, we address two key questions underpinning this pro-
cedure: whether the reconstructed output satisfies the partial differential equation,
and whether other latent vectors not corresponding to the encoding of any training
data satisfy the same equation. Our results spell out some relevant conditions, and
clarify the different impact of three main design decisions (architecture, training
criterion, and choice of training solutions) on the final result.

1 INTRODUCTION

The use of neural networks for modelling partial differential equation (PDE) solutions is a rapidly ex-
panding branch in scientific machine learning (see, among others, Sirignano & Spiliopoulos (2018);
Raissi et al. (2017); Li et al. (2020)). One of the architectures used for the task is autoencoders (AEs,
Takeishi & Kalousis (2021)), as they allow for unsupervised training and only require a sample of
solutions to produce a surrogate model for the PDE.

Basic AEs, however, are not physics informed, and there is no mechanism to ensure that the recon-
structed solutions satisfy the original equation to an acceptable degree. Whilst a good reconstruction
error guarantees that the AE output is close to the input in some norm, the constraint it places on
the residual of the reconstructed solution is unclear. Furthermore, using the network’s decoder as
a general emulator presupposes that sampling other latent points not in the image of the training
set also leads to acceptable solutions to the equation; the conditions under which this holds true are
also presently unclear. In this paper, we formulate answers to both questions using a variational
approach.

2 SETUP

We consider an AE mapping a family of inputs {ū}k to the outputs:

v̄ ≡ v(ū;θ) = d(e(ū;θe);θd) = d(z̄;θd) (1)

where e and d represent the AE’s encoder and decoder section, respectively. We study the scenario
when the {ū}k approximate solutions of a partial differential equation (PDE):

O(u,∇u) = 0 (2)

i.e. the components ūi of ū can be written as:

ūi = ū(xi) + εdh
i (3)

where ū(x) is a solution of (2) and the second term represents the discretization error arising from
the representation of ū as a vector ū (such as any round-off error or truncation error from the nu-
merical integration of (2)), and εd � 1 typically.
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The AE is trained via the requirement that the reconstruction error, or the difference between ū and
the corresponding v̄, is as low as possible, so that we can write:

v̄ = ū+ εrû (4)
where again εr should be much smaller than one.

If we define the equation residual as:
R[u] = ||O(u,∇u)||2 (5)

as in equation (11), and introduce Rd[u] as its approximation on discrete data (obtained, e.g., using
numerical derivatives), the two questions we aim to answer can then be cast in the form:

1. How much is Rd[v̄], i.e. to what extent do the {v̄}k approximate valid solutions?
2. How much is Rd[d(z /∈ z̄;θd)], i.e. can the network generate approximations to novel

solutions? In other words, how much of the latent space encodes solutions of equation (2)?

The answers to the above questions are a crucial requirement in the process of using the AE as a
surrogate solver for equation (2). Keeping the different sources of error in mind also provides a
natural measure for the accuracy that should be realistically pursued in applications: for instance,
for the same input data ū, training an AE to a reconstruction error εr smaller than εd would be
physically pointless. Similarly, a trained AE with an associated εr is unlikely to generate novel
solutions with error smaller than εr.

3 RESULTS

Using the expression for the second variation of R2[u] discussed in the Appendix, we can prove the
following theorem.

Theorem 1: If εd � εr � 1, the residual of the reconstructed solutions, Rd[v̄], can be written as:

R2
d[v̄] = ε2r

∑
i

ai

[
∂2s

∂u2
+ 2

∑
n

Dn ∂s

∂u
+

∑
n,m

DmDns

]
u=ui

(ûi)2 +O(ε3r) (6)

where s is the square of the equation residual,
∑

i aif
i represents any suitable quadrature formula

for the function discretized by f i. This result follows from equation (17), combined with the fact
that:

R2
d[v̄] = R2

d[ū+ εrû] = R2
d[u(xi) + εrû

i] (7)
where the term containing the discretization error has been dropped because εd � εr.

Equation (6) results in two conditions for lowering the residualR[v̄]: either decrease the reconstruc-
tion error (e.g. by adding more degrees of freedom to the network to obtain more faithful reconstruc-
tions), or minimize the expression in square brackets in equation (6). The former condition relates
to the AE architecture and training details. The latter, on the other hand, depends solely on how the
input set {ū}k has been chosen. In other words, choosing the training solutions in regions where
the equation residual R[u] is comparatively less sensitive to the functional details of u results in re-
constructed data with a small residual. Vice versa, if the {ū}k represent solutions in the functional
neighborhood of which the residual rises sharply, the {v̄}k will exhibit higher PDE violations. This
result is broadly intuitive, but the minimization condition encodes this intuition into a prescription
for selecting input data leading to minimal PDE violations on the reconstructed data.

We can use a similar approach to quantify R[d(z;θd)] in the neighborhood of the latent points z̄
encoding the input data. If:

z = z̄ + εzẑ (8)
we can write:

R2
d[d(z;θd)] = R2

d[d(z̄ + εzẑ;θd)] = R2
d[v̄ + εzz̃ +O(ε2z)] (9)

where z̃ depends on the first derivatives of the decoder function with respect to the latent vector
z. To leading order, therefore, this expression can be written in a form similar to (6), where the
functional variation includes a term proportional to εr and a term proportional to εz , both multiplied
by the expression in (??). Choosing training data where this expression is low guarantees that not
only the reconstructed data v̄ ≡ d(z̄;θd) has low residual, but so does also any decoded output from
the neighborhood of z̄.

2



Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The author acknowledges that she meets the URM criteria of ICLR 2023 Tiny Papers Track.

ACKNOWLEDGEMENTS

The author acknowledges a UKRI Future Leaders Fellowship for support through the grant
MR/T041862/1.

REFERENCES

M. Kot. A First Course in the Calculus of Variations. Student Mathematical Library. American
Mathematical Society, 2014. ISBN 9781470414955. URL https://books.google.co.
uk/books?id=UBi8BAAAQBAJ.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv e-prints, art.
arXiv:1711.10561, November 2017. doi: 10.48550/arXiv.1711.10561.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, December 2018. doi:
10.1016/j.jcp.2018.08.029.

Naoya Takeishi and Alexandros Kalousis. Physics-integrated variational autoencoders for robust
and interpretable generative modeling. CoRR, abs/2102.13156, 2021. URL https://arxiv.
org/abs/2102.13156.

A VARIATIONS OF THE EQUATION RESIDUAL

Given a partial differential equation of the form:

O(u,∇u) = 0 (10)

where u is a field over space and time, u : Ω ⊆ Rd → R, and∇u indicates generically its derivatives,
the residual of (10) is defined as:

r(u,∇u) ≡ O(u,∇u) (11)

and represents the extent to which a function violates (10). If F is a suitably regular function space,
r : F → F . A functional R : F → R can then be defined as:

R[u] = ||r(u,∇u)||2 (12)

or

R2[u] =

∫
r2(u,∇u)dx (13)

For ease of notation, we introduce S[u] ≡ R2[u] and s(u,∇u) ≡ r2(u,∇u), as well as ∂/∂xi ≡ ∂i.
Let us first note that S[u] = 0 iff u is a solution of (10). Furthermore, if u is a solution and
ū = u+ εû, with ε� 1 and û an arbitrary function, then

δS = ε

∫ [
∂s

∂u
+
∑
n

∑
i1···in

(−1)n∂i1 · · · ∂in
∂s

∂(∂i1 . . . ∂inu)

]
ûdx = 0 (14)

or
∂s

∂u
+

∑
n

Dns = 0 (15)
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where we have introduced the further notation

Dn = (−1)n
∑

i1···in

∂i1 · · · ∂in
∂

∂(∂i1 . . . ∂inu)
(16)

Equation (14) follows from the fact that, as S is non-negative, its zeros are also minima, so S is
stationary there and its first variation δS vanishes. Notice that the expression in (14) assumes that
the field û vanishes at the boundary of Ω.

If S[u] = 0 = δS[u], it follows that, around solutions, the second variation is the leading-order
contribution to S[u]. This quantity can be written as:

δ2S = ε2
∫ [

∂2s

∂u2
+ 2

∑
n

Dn ∂s

∂u
+

∑
n,m

DmDns

]
û2dx (17)

For more information on the variation procedure, see e.g. Kot (2014).
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