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ABSTRACT

Large Language Models (LLMs) have gained popularity in time series forecast-
ing, but their potential for anomaly detection remains largely unexplored. Our
study investigates whether LLMs can understand and detect anomalies in time se-
ries data, focusing on zero-shot and few-shot scenarios. Inspired by conjectures
about LLMs’ behavior from time series forecasting research, we formulate key
hypotheses about LLMs’ capabilities in time series anomaly detection. We de-
sign and conduct principled experiments to test each of these hypotheses. Our
investigation reveals several surprising findings about LLMs for time series: (1)
LLMs understand time series better as images rather than as text, (2) LLMs did
not demonstrate enhanced performance when prompted to engage in explicit rea-
soning about time series analysis. (3) Contrary to common beliefs, LLM’s un-
derstanding of time series do not stem from their repetition biases or arithmetic
abilities. (4) LLMs’ behaviors and performance in time series analysis vary signif-
icantly across different model families. This study provides the first comprehen-
sive analysis of contemporary LLM capabilities in time series anomaly detection.
Our results suggest that while LLMs can understand trivial time series anomalies
(we have no evidence that they can understand more subtle real-world anomalies),
many common conjectures based on their reasoning capabilities do not hold.

1 INTRODUCTION

The remarkable progress in large language models (LLMs) has led to their application in various
domains, including time series analysis. Recent studies have demonstrated LLMs’ potential as zero-
shot and few-shot learners in tasks such as forecasting and classification (Gruver et al., 2023; Liu
et al., 2024c). However, the effectiveness of LLMs in time series analysis remains a subject of
debate. While some researchers argue that LLMs can leverage their pretrained knowledge to under-
stand time series patterns (Gruver et al., 2023), others suggest that simpler models may outperform
LLM-based approaches (Tan et al., 2024).

This debate raises a fundamental question: Do LLMs truly understand time series? To address this
question, we must consider not only the models’ predictive performance but also their ability to
recognize normal patterns, identify abnormal behavior, and provide explanations for their decisions.
This understanding goes beyond mere classification or forecasting, requiring a deeper understanding
of the underlying temporal dynamics.

In this paper, we present the first comprehensive investigation into LLMs’ understanding of time se-
ries data through the lens of anomaly detection. We focus on the behavior of state-of-the-art LLMs
and multimodal LLMs (M-LLMs) across different anomaly types under controlled conditions. Our
evaluation strategy incorporates multimodal inputs (textual and visual representations of time se-
ries), various prompting techniques, and structured output formats. The results are quantitatively
assessed using the affinity F1 score to challenge unvalidated conjectures and claims about LLMs’
time series understanding in prior works. For example, given it was claimed that LLMs’ arithmetic
abilities help them understand time series, we design experiments that evaluate the time series per-
formance of LLMs that cannot perform arithmetic properly. This work leads to a more nuanced
understanding of LLMs’ capabilities and limitations in processing time series data.

We provide empirical evidence that contradicts several prevailing beliefs about LLMs’ abilities in
time series analysis, revealing:
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• Visual Advantage: LLMs perform significantly better when processing visualized time series
data compared to textual representations.

• Limited Reasoning: Contrary to expectations, LLMs do not extensively leverage complex rea-
soning processes when analyzing time series data. Their performance often decreases when
prompted to explain their reasoning.

• Non-Human-Like Processing: LLMs’ approach to anomaly detection differs from human per-
ception. They can identify subtle trends that humans might miss and their performance is not tied
to arithmetic abilities.

• Model-Specific Capabilities: Time series understanding and anomaly detection capabilities dif-
fer across various LLM architectures, highlighting the importance of model selection.

2 RELATED WORK

LLMs for Time Series Analysis. LLMs have been applied to various time series analysis tasks,
with recent literature establishing strong claims about their capabilities. Gruver et al. (2023) demon-
strated that LLMs like GPT-3 and LLaMA-2 possess broad pattern extrapolation capabilities, en-
abling zero-shot time series forecasting by encoding time series as strings of numerical digits and
achieving comparable performance to purpose-built models. Building on these claims, Liu et al.
(2024c) proposed a Cross-Modal LLM Fine-Tuning framework, suggesting that LLMs can provide
interpretable predictions while addressing the distribution discrepancy between textual and tempo-
ral input tokens in multivariate time series forecasting. Liu et al. (2024b) introduced Time-MMD,
a multi-domain, multimodal time series dataset for LLM finetuning. For anomaly detection, Liu
et al. (2024a) proposed AnomalyLLM, a knowledge distillation-based approach using GPT-2 as the
teacher network. Zhang et al. (2024) provided a comprehensive survey of LLM applications in time
series analysis. In the financial domain, Wimmer & Rekabsaz (2023) used vision language models,
i.e., CLIP, but not M-LLMs to process visualizations of stock data for market change prediction.

However, these prevailing beliefs about LLMs’ pattern extrapolation capabilities and interpretable
predictions remain controversial. Zeng et al. (2022) argued that the permutation-invariant nature of
self-attention mechanisms may lead to loss of critical temporal information. Tan et al. (2024) found
that removing the LLM component or replacing it with a basic attention layer often improved per-
formance in popular LLM-based forecasting methods, challenging the assumed benefits of LLMs’
pattern recognition abilities. The interpretability of LLMs in time series analysis remains a chal-
lenge, as their reasoning capabilities are often opaque and difficult to interpret.

Time Series Anomaly Detection. Time series anomaly detection is a critical task in various do-
mains, including finance, healthcare, and cybersecurity. Traditional methods rely on statistical tech-
niques, while recent work has focused on developing deep learning-based approaches (Audibert
et al., 2022; Chen et al., 2022; Tuli et al., 2022). Audibert et al. (2022) compared conventional,
machine learning-based, and deep neural network methods, finding that no family of methods con-
sistently outperforms the others. Chen et al. (2022) proposed a deep variational graph convolutional
recurrent network for multivariate time series anomaly detection. Tuli et al. (2022) introduced a
transformer-based anomaly detection model with adversarial training and meta-learning.

However, recent studies have highlighted significant flaws in current time series anomaly detection
benchmarks and evaluation practices (Wu & Keogh, 2021; Huet et al., 2022; Sarfraz et al., 2024).
Wu & Keogh (2021) argued that popular benchmark datasets suffer from major flaws like triviality
and mislabeling, potentially creating an illusion of progress in the field. Huet et al. (2022) pointed
out that the classical F1 score fails to reflect approximate but non-overlapping detections, which
are common in time series. Sarfraz et al. (2024) criticized the persistent use of flawed evaluation
metrics and inconsistent benchmarking practices, suggesting that complex deep learning models
may not offer significant improvements over simpler baselines in the semi-supervised setting.

One reason for using deep learning models in time series anomaly detection is their ability to bring
prior knowledge on what constitutes normal behavior from pretraining on large-scale datasets. Large
language models (LLMs) may offer a promising solution due to their strong zero-shot capabilities.
However, there is currently a lack of research exploring the application of modern (M-)LLMs to
time series anomaly detection, presenting an opportunity for investigation in this area.
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Multimodal LLMs (M-LLMs). The multimodal capabilities of LLMs have been explored in var-
ious domains, including image captioning, video understanding, and multimodal translation (Lu
et al., 2019; Li et al., 2019; Sun et al., 2019; Huang et al., 2019). Recent advancements have led to
more sophisticated M-LLMs, such as Qwen-VL and Phi-3-Vision, demonstrating superior perfor-
mance in visual-centric tasks and compact deployment capabilities (Bai et al., 2023; Abdin et al.,
2024). In the context of time series analysis, M-LLMs have been used to model multimodal data,
such as time series and textual information, showing promising results in forecasting and anomaly
detection (Liu et al., 2021). However, there is a notable lack of application of M-LLMs to time series
as visual inputs, even though humans often detect time series anomalies through visual inspection.
This gap is particularly significant given that time series data can be represented in multiple modal-
ities (e.g., numerical, textual, or visual) without losing substantial new information. Consequently,
time series analysis presents a unique opportunity to evaluate an M-LLM’s ability to understand
and process the same underlying data across different representational formats. The potential for M-
LLMs to bridge the gap between human visual intuition and machine learning in time series analysis
represents a promising avenue for future research.

3 TIME SERIES ANOMALY DETECTION: DEFINITION AND CATEGORIZATION

We begin by defining time series anomaly detection and categorizing different anomalies.

3.1 TIME SERIES ANOMALY DETECTION DEFINITION

We consider time series X := {x1, x2, . . . , xT } collected at regular intervals, where xt is the feature
scalar or vector at time t, and T is the total number of time points. Anomalies are data points that
deviate significantly from the expected pattern of the time series. The expected pattern of a time
series refers to the governing function or conditional probability that the data is expected to follow,
depending on whether the system is deterministic or stochastic.

Generating function. Assume the time series generation is deterministic. A data point xt is consid-
ered an anomaly if it deviates much from the value predicted by the generating function, i.e.,

|xt −G(xt|xt−1, xt−2, . . . , xt−n)| > δ (1)

Conditional probability. Assume the time series generation is governed by a history-dependent
stochastic process. A data point xt is considered an anomaly if its conditional probability is below
a certain threshold ϵ, i.e.,

P (xt|xt−1, xt−2, . . . , xt−n) < ϵ (2)

An anomaly detection algorithm typically takes a time series as input and outputs either binary
labels Y := {y1, y2, . . . , yT } or anomaly scores {s1, s2, . . . , sT }. In the case of binary labels,
yt = 1 indicates an anomaly at time t, and yt = 0 indicates normal behavior. The number of
anomalies should be much smaller than the number of normal data points, i.e.,

∑T
t=1 yt ≪ T .

In the case of anomaly scores, st represents the degree of anomaly at time t, with higher scores
indicating a higher likelihood of an anomaly. This likelihood can be connected to the condi-
tional probability definition, where a higher score is correlated to a lower conditional probability
P (xt|xt−1, xt−2, . . . , xt−n). A threshold θ can be applied to the scores to convert them into binary
labels, where yt = 1 if st > θ and yt = 0 otherwise.

Time series anomalies can be analyzed at two distinct levels: (1) within individual sequences, where
specific points or intervals deviate from the expected pattern, and (2) at the sequence level, where
entire sequences are considered anomalous. In this work, we focus on the first case - detecting
anomalous points and intervals within sequences.

Interval-Based Anomalies. We define anomalies as continuous intervals of time points that
deviate from the expected pattern. Let R be a set of anomalous time intervals: R =
{[t1start, t1end], [t2start, t2end], . . . , [tkstart, tkend]} where [tistart, t

i
end] represents the i-th anomalous in-

terval, with tistart and tiend being its start and end times. When tistart = tiend, the anomaly is a single
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point anomaly. For a time series X = {x1, x2, . . . , xT }, we assign binary labels:

yt =

{
1 if t ∈ [tistart, t

i
end] for any i ∈ {1, . . . , k}

0 otherwise

Zero-Shot and Few-Shot Anomaly Detection. Few-shot anomaly detection involves providing
the model f with a small set of labeled examples. Given n labeled time series {(X1, Y1), (X2, Y2),
. . . , (Xn, Yn)}, where Yi is a series of anomaly labels for each time step in Xi, and a new unlabeled
time series Xnew, the model g predicts:

{s1, s2, . . . , sT } or {y1, y2, . . . , yT } = g(Xnew, {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}),
where n is typically small (e.g., 1-5). In zero-shot anomaly detection, n = 0, i.e., the model f
is expected to identify anomalies without any labeled examples. These scenarios pose significant
challenges for deep neural nets and some traditional models that require a lot of training examples.

3.2 TIME SERIES ANOMALIES CATEGORIZATION
(a) Trend

(b) Frequency

(c) Point

(d) Out-of-Range

Anomaly

Figure 1: Example time series with dif-
ferent anomaly types

Time series anomalies can be broadly categorized into
two main types: out-of-range anomalies and contextual
anomalies (Lai et al., 2024). The contextual anomalies
can be further divided into frequency anomalies, trend
anomalies, and contextual point anomalies. Each type
presents unique characteristics and challenges for detec-
tion. By examining how LLMs recognize different types
of anomalies, we can demonstrate that our hypotheses
about LLMs’ understanding of time series data general-
ize across anomaly types.

3.2.1 OUT-OF-RANGE ANOMALIES

Out-of-range anomalies are data points that lie far outside the normal range of values in a time
series. These anomalies can be detected even when the time series order is shuffled, as shown in
Figure 1(d). If a model can detect out-of-range anomalies but fails to detect contextual anomalies,
this suggests it is not using the positional information in the time series (Tan et al., 2024).

3.2.2 CONTEXTUAL ANOMALIES

Contextual anomalies are data points or consecutive subsequences that deviate from the expected
pattern of the time series. These anomalies are only detectable when the order of the time series is
preserved. Contextual anomalies can be further divided into three subcategories:

Trend Anomalies. Trend anomalies manifest as a sudden acceleration (Figure 1(a)), deceleration,
or reversal of the established trend. These anomalies are characterized by unexpected changes in the
changing rate of the time series, detected through gradient analysis gt = (xt−xt−1)/∆t. To reduce
noise sensitivity, smoothed gradients gsmooth

t = (MAt −MAt−1)/∆t are often used, where MAt

is a moving average over a window of points.

Frequency Anomalies. Frequency anomalies occur when the periodic components of a time
series deviate from the expected pattern. These anomalies are usually identified by analyzing the
frequency domain of the time series, typically using techniques like Fourier transforms. A frequency
anomaly is detected when there’s a significant shift in the dominant frequencies, see Figure 1(b).

Contextual Point Anomalies. Contextual point anomalies occur when individual data points
deviate from the expected pattern of the time series, even while remaining within the overall regular
range of values. As shown in Figure 1(c), these points are not extreme outliers but don’t fit the local
context of the time series. They may violate the smooth continuity of the data, contradict short-term
trends, or disrupt established patterns without necessarily exceeding global thresholds.

3.3 TIME SERIES FORECASTING VS. ANOMALY DETECTION

As most of the literature on LLM for time series analysis focuses on forecasting, we use the conjec-
tures from these works as a starting point to understand LLMs’ behavior in anomaly detection. The
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tasks of time series forecasting and anomaly detection share many similarities. By definition, deter-
ministic forecasting of future time steps is about learning the generating function (see Equation 1).
Probabilistic forecasting is about learning the conditional probability function (see Equation 2).
Therefore, both time series forecasting and anomaly detection rely heavily on extrapolation. In fore-
casting tasks, models extrapolate past patterns to predict future values, extending the known series
into unknown territory. Similarly, anomaly detection involves extrapolating the “normal” behavior
of a time series to identify points that deviate significantly from this expected pattern.

LLMs are trained on a corpus of token sequences, {U1, U2, . . . , UN}, where Ui = {u1, u2, . . . , uLi
}

and uj is a token in the vocabulary V . The model learns to autoregressively predict the next token in
the sequence given the previous tokens, i.e., P (uj+1|u1, u2, . . . , uj). The motivation for applying
LLMs to time series forecasting is often their zero-shot extrapolation capabilities (Brown et al.,
2020). The autoregressive generation of tokens and time series steps (in Equation 2) are similar,
and the LLMs act as an Occam’s razor to find the simplest form of G (in Equation 1) (Gruver et al.,
2023). This connection suggests that hypotheses made in LLMs for forecasting may also apply to
anomaly detection. Many such hypotheses are proposed as possible explanations for the model’s
behavior without validation from controlled studies, which motivates our investigation.

4 UNDERSTANDING LLM’S UNDERSTANDING OF TIME SERIES

To demystify LLMs’ anomaly detection capabilities, we take a principled approach by formulating
several scientific hypotheses. Then we build an LLM time series anomaly evaluation framework to
test each of the hypotheses.

4.1 HYPOTHESES

The following hypotheses represent a synthesis of existing literature (1-3), our own insights into
LLM behavior (4-5), and prevailing assumptions in the field that warrant closer examination (6-7).
The hypotheses cover two main aspects: LLMs’ reasoning paths (1, 3, 4) and biases (2, 5, 6, 7).

Hypothesis 1 (Tan et al., 2024) on CoT Reasoning

LLMs do not benefit from engaging in step-by-step reasoning about time series data.

The authors claim that existing LLM methods, including zero-shot ones, do very little to use innate
reasoning. While they demonstrate that LLM methods perform similarly or worse than those without
LLMs in time series tasks, none of their experiments assess the LLMs’ reasoning capabilities.

To validate this hypothesis, we focus on the performance of one-shot and zero-shot Chain of Thought
(CoT) prompting, which explicitly elicits an LLM’s reasoning abilities (Wei et al., 2022). We use
terms from cognitive science to describe the LLMs’ different behaviors with and without CoT: the
reflexive mode (slow, deliberate, and logical) and the reflective mode (fast, intuitive, and emotional)
(Lieberman, 2003). Therefore, the question becomes whether the LLMs benefit from the reflexive
mode, when it thinks slowly about the time series. If the hypothesis is false, the LLMs should
perform better when they are prompted to explain.

Hypothesis 2 (Gruver et al., 2023) on Repetition Bias

LLMs’ repetition bias (Holtzman et al., 2020) corresponds precisely to its ability to identify
and extrapolate periodic structure in the time series.

This hypothesis draws a parallel between LLMs’ tendency to generate repetitive tokens and their po-
tential ability to recognize periodic patterns in time series data. To validate the hypothesis, we design
an experiment where the datasets contain both perfectly periodic and noisy periodic time series. The
introduction of minor noise would disrupt the exact repetition of tokens in the input sequence, even
if the underlying pattern remains numerically approximately periodic. If the hypothesis holds, we
should observe a significant drop in performance, despite the numbers maintaining its fundamental
periodic structure. See Appendix E for formal definitions of Hypothesis 2 and 3.
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Hypothesis 3 (Gruver et al., 2023) on Arithmetic Reasoning

LLMs’ ability to perform addition and multiplication (Yuan et al., 2023) maps onto extrapo-
lating linear and exponential trends.

This hypothesis suggests a connection between LLMs’ arithmetic capabilities and their ability to
extrapolate simple mathematical sequences. It is argued that LLM’s proficiency in basic arithmetic
operations, such as addition and multiplication, enables it to extend patterns like linear sequences
(e.g., x(t) = 2t) by iteratively applying the addition operation (e.g., +2). To validate the hypothesis,
we design an experiment where an LLM is specifically guided to impair its arithmetic abilities while
preserving its other linguistic and reasoning capabilities. If the hypothesis holds, we should observe
a corresponding decline in the model’s ability to predict anomalies in the trend datasets. Otherwise,
LLMs rely on alternative mechanisms for time series pattern recognition and extrapolation.

Hypothesis 4 (Dong et al., 2024) on Visual Reasoning

Time series anomalies can be more easily detected as visual input rather than text input.

Motivated by the fact that human analysts often rely on visual representations for anomaly detection
in time series, we hypothesize that M-LLMs, whose training data includes human expert detection
tasks, may prefer visualized time series to raw numerical data. Similar assumption is also proposed
in recent work by Dong et al. (2024), who demonstrated that explicitly prompting LLMs to ”think
visually” about time series improved their anomaly detection capabilities, even without actual visual
input. This hypothesis can be readily tested by comparing the performance of multimodal LLMs on
identical time series presented as both text and visualizations.

Hypothesis 5 on Visual Perception Bias

LLMs’ understanding of anomalies is consistent with human visual perception.

We hypothesize based on the growing interest in using LLMs due to their internal human-like knowl-
edge (Jin et al., 2024b) and their ability to align with human cognition in complex tasks (Thomas
et al., 2024). However, humans have known cognitive limitations in detecting subtle anomalies, and
recent research suggests that LLMs may exhibit human-like cognitive biases (Opedal et al., 2024).

To validate this hypothesis, we leverage findings from human perception research, such as the obser-
vation that humans are far less sensitive to acceleration than to constant speed changes (Mueller &
Timney, 2016). We compare LLM performance on two datasets: one featuring anomalies that revert
an increasing trend to a decreasing trend (analogous to negating constant speed), and another with
anomalies that accelerate an increasing trend. Both datasets would have similar prevalence rates,
making them equally detectable by traditional methods that identify gradient changes. If LLMs
exhibit significantly poorer performance in detecting acceleration anomalies compared to trend re-
versals, it would suggest that they indeed suffer from similar perceptual limitations as humans.

Hypothesis 6 on Long Context Bias

LLMs perform better with time series with fewer tokens, even if there is information loss.

Despite recent advancements in handling long sequences, LLMs still struggle with complex, real-
world tasks involving extended inputs (Li et al., 2024). This limitation may also apply to time
series analysis. To test this hypothesis, we propose an experiment comparing LLM performance on
original time series text and pooled textual representations (reduced size by interpolation). If the
hypothesis holds, we should observe performance improvement with the subsampled text.

Hypothesis 7 on Architecture Bias

LLMs’ time series understanding are consistent across different model families.

This hypothesis stems from the tendency in recent literature (Tang et al., 2024; Tan et al., 2024; Zeng
et al., 2022) to generalize findings about time series understanding across all LLMs based on exper-
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iments with a limited set of models, typically GPT and LLaMA variants. This approach implies that
different model families’ comprehension of time series data is universally consistent, varying pri-
marily with the number of parameters. However, unlike in NLP tasks where specific models excel in
areas like translation or mathematics (Cobbe et al., 2021), there’s a lack of understanding regarding
specialized skills in time series analysis across different LLM architectures. To test this hypothesis,
we perform all previous experiments across different LLM architectures. If the hypothesis holds,
we should see previous conclusions either consistently validated or invalidated across all models.

4.2 PROMPTING STRATEGIES

We incorporate two main prompting techniques in our investigation: Zero-Shot and Few-Shot Learn-
ing (FSL) and Chain of Thought (CoT). For FSL, we examine the LLM’s ability to detect anomalies
without any examples (zero-shot) and with a small number of labeled examples (few-shot). For
CoT, we implement example in-context CoT templates, guiding the LLM through a step-by-step
reasoning process. Our template prompts the LLM to: (1) Recognize and describe the general time
series pattern (e.g., periodic waves, increasing trend) (2) Identify deviations from this pattern (3)
Determine if these deviations constitute anomalies based on the dataset’s normal behaviors.

4.2.1 INPUT REPRESENTATION

Visual representations of activities can enhance human analysts’ ability to detect anomalies (Riveiro
& Falkman, 2009), and the pretraining of M-LLM involves detection tasks (Bai et al., 2023). In-
spired by these facts, we infer that LLMs’ anomaly detection may benefit from visual inputs. There-
fore, we explore two primary input modalities for time series data: textual and visual representations.

Textual Representations. We examine several text encoding strategies to enhance the LLM’s
comprehension of time series data:(1) Original: Raw time series values presented as rounded space-
separated numbers. (2) CSV: Time series data formatted as CSV (index and value per line, comma-
separated), inspired by Jin et al. (2024b). (3) Prompt as Prefix (PAP): Including key statistics of the
time series (mean, median, trend) along with the raw data, as suggested by Jin et al. (2024a). (4)
Token per Digit (TPD): Splitting floating-point numbers into space-separated digits (e.g., 0.246 →
2 4 6) to circumvent the OpenAI tokenizer’s default behavior of treating multiple digits as a single
token, following Gruver et al. (2023). This strategy only improve the performance of models that
apply byte-pair encoding (BPE) tokenization, see Appendix C Observation 7.

Visual Representations. We utilize Matplotlib to generate visual representations of the time series
data. These visualizations are then provided to multimodal LLMs capable of processing image
inputs. Since LLMs have demonstrated strong performance on chart understanding tasks (Shi et al.,
2024), they are expected to identify anomaly regions’ boundaries from the visualized time axis.=

4.2.2 OUTPUT FORMAT

To ensure consistent and easily interpretable results, we prompt the LLM to provide a structured
output in the form of a JSON list containing anomaly ranges, e.g.,

[{"start": 10, "end": 25}, {"start": 310, "end": 320}, ...]

This format allows for straightforward comparison with ground truth anomaly labels and facilitates
quantitative evaluation of the LLM’s performance. By employing this comprehensive set of evalua-
tions, we draw more robust conclusions about the following hypotheses.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Models. We perform experiments using four state-of-the-art M-LLMs, two of which are open-
sourced: Qwen-VL-Chat (Bai et al., 2023) and InternVL2-Llama3-76B (Chen et al., 2024), and two
of which are proprietary: GPT-4o-mini (OpenAI, 2024) and Gemini-1.5-Flash (Google, 2024).
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Figure 3: Example anomaly detection results for out-of-range anomalies. Direct thresholding with expert
knowledge yields the best result, but the LLMs can also detect the approximate ranges without priors. Isolation
Forest raises lots of false positives but still has a higher F1 than LLMs, which motivates the use of affinity F1.

Variant Code

0shot-text A
0shot-text-s0.3 B
0shot-text-s0.3-calc C
0shot-text-s0.3-cot D
0shot-text-s0.3-cot-csv E
0shot-text-s0.3-cot-pap F
0shot-text-s0.3-cot-tpd G
0shot-text-s0.3-csv H
0shot-text-s0.3-dyscalc I
0shot-text-s0.3-pap J
0shot-text-s0.3-tpd K
0shot-vision L
0shot-vision-calc M
0shot-vision-cot N
0shot-vision-dyscalc O
1shot-text-s0.3 P
1shot-text-s0.3-cot Q
1shot-vision R
1shot-vision-calc S
1shot-vision-cot T
1shot-vision-dyscalc U

Table 1: Variants and their
corresponding namecodes

The language part of the models covers four LLM architectures:
Qwen , LLaMA , Gemini , and GPT . Since we send
the text queries to M-LLMs instead of their text component, we
validated via MMLU-Pro (Wang et al., 2024) that adding a vision
modality does not reduce the model’s performance on text tasks.
The validation details can be found in Appendix A.1. We have 21
prompting variants for each model, with 13 for text and 8 for vi-
sion. In controlled experiments, for each model, we report the spe-
cific variants or the top 3 variants with the highest scores under the
condition. We label the variants with the name codes in Table 1,
with details in Appendix A.4.

Datasets. We synthesize four main datasets corresponding to dif-
ferent anomaly types in Section 3.2: point, range, frequency, and
trend. We add noisy versions of point, frequency, and trend to test
Hypothesis 2. We add an acceleration-only version of the trend
dataset to test Hypothesis 5. Further details on the datasets can be
found in Appendix B.

Metrics. The LLMs generate anomaly periods that can be con-
verted to binary labels and do not output anomaly scores. There-
fore, we report precision, recall, and F1-score metrics. However,
these scores treat time series as a cluster of points without temporal order and can give counterintu-
itive results, as illustrated in Figure 3. To address this, we also report affinity precision and affinity
recall as defined in Huet et al. (2022). We calculate the affinity F1 score as the harmonic mean of
affi-precision and affi-recall, and it is the main metric we use to evaluate the hypotheses.
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ra
ng

e

N T Q R L P T N F R L J N T Q R L P N T Q L R H
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N T Q R L B T N F R L J N T D L R K N T Q R J L

fre
q

Q T E B P H T N F R L J Q D T B P R T N Q R L B

Figure 2: Reflexive/Reflective,
Top 3 Affi-F1 prompt variant per
mode (Ignoring (dys)calc vari-
ants), See Table 1 for variant name
codes and Appendix A.4 for details

Baselines. As our goal is not to propose a new anomaly de-
tection method but rather to test hypotheses about LLMs for
better understanding, we use simple baselines for sanity check,
see Appendix C Observation 8. We use Isolation Forest (Liu
et al., 2008) and Thresholding.

5.2 EXPERIMENT RESULTS

In this section, we discuss the hypotheses that align with our
observations and those we can confidently reject. Detailed
numbers can be found in Appendix D. The 0-to-1 y-axis of
the figures represents the affinity F1 score, where higher val-
ues indicate better performance. We defer some non-essential
observations to Appendix C to focus on the hypotheses.

Retained Hypothesis 1 on CoT Reasoning

No evidence is found that explicit reasoning prompts
(via Chain of Thought) improved LLMs’ performance
in time series analysis.
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Figure 5: Calc/DysCalc, Top 3
Affi-F1 variants per mode
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Figure 6: Vision/Text, Top 3
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Figure 7: Subsampled/Original,
0-shot raw text vs 30% text

Interestingly, when we explicitly use CoT to simulate human-like reasoning about time series, the
anomaly detection performance steadily drops across all models and anomaly types, as shown in
Figure 2. These findings suggest that LLMs’ performance in time series anomaly detection may not
rely on the kind of step-by-step logical reasoning that CoT prompting aims to elicit. However, this
does not necessarily mean LLMs use no reasoning at all; rather, their approach to understanding
time series data may differ from our expectations of explicit, human-like reasoning processes.

Rejected Hypothesis 2 on Repetition Bias

LLMs’ repetition bias does not explain their ability to identify periodic structures.

Vi
sio

n

T R L T R L R L T R L T R T N R T L R T L R L T

Te
xt

B P Q B P Q J K F J D F Q B P Q P B B H P B P Q

Figure 4: Clean/Noisy, Top 3 Affi-
F1 variants per noise level

If the hypothesis were true, we would expect that injecting
noise would cause a much larger drop in text performance
(since the tokens are no longer repeating) than in vision per-
formance. However, the performance drop is similar across
both modalities, as shown in Figure 4, and the text perfor-
mance drop is often not significant. This suggests that the
LLMs’ ability to recognize textual frequency anomalies has
other roots than their token repetitive bias.

Rejected Hypothesis 3 on Arithmetic Reasoning

The LLM’s understanding of time series is not related
to its ability to perform arithmetic calculations.

We designed an in-context learning scenario where the LLMs’ accuracy for five-digit integer addi-
tion drops to 12%. The details can be found in Appendix A.4 and A.5. Despite this, the LLMs’
anomaly detection performance remains mostly consistent, as shown in Figure 5. This suggests that
the LLMs’ anomaly detection capabilities are not directly tied to their arithmetic abilities.

Retained Hypothesis 4 on Visual Reasoning

Time series anomalies are better detected by M-LLMs as images than by LLMs as text.

Across a variety of models and anomaly types, M-LLMs are much more capable of finding anoma-
lies from visualized time series than textual time series, see Figure 6. The only exception is when
detecting frequency anomalies with proprietary models. This aligns with human preference for vi-
sual inspection of time series data.
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Rejected Hypothesis 5 on Visual Perception Bias

The LLM’s understanding of anomalies is not consistent with human perception.

"Flat Trend" Time Series
Anomaly

Avg Gradient

Vi
sio

n

R L N R L N T R N T R L L R N L N T T N R N R T

Te
xt

Q P B Q B P A B D J F D Q P B K D J Q P J J Q B

Figure 8: Flat Trend/Trend, Top 3
Affi-F1 variants per dataset

We create the “flat trend” dataset where the anomalous trend
is too subtle to be visually detected by humans but becomes
apparent when computing the moving average of the gradient,
as shown in Figure 8. The LLMs’ performance is very similar
to the regular trend dataset, regardless of the modality. This
suggests that the LLMs do not suffer from the same limitations
as humans when detecting anomalies.

Retained Hypothesis 6 on Long Context Bias

LLMs perform worse when the input time series have
more tokens.

We observe a consistent improvement in performance when
interpolating the time series from 1000 steps to 300 steps, as
shown in Figure 7. Notably, the top-3 best-performing text
variants in all experiments typically apply such shortening.
This underscores the LLM’s difficulty in handling long time
series, especially since the tokenizer represents each digit as a
separate token.

Rejected Hypothesis 7 on Architecture Bias

LLMs’ time series understanding vary significantly across different model architectures.

Our experiments reveal substantial variations in performance and behavior across different models
when analyzing time series data. For instance, GPT-4o-mini shows little difference in performance
with or without Chain of Thought (CoT) prompting, and even slightly improves with CoT for fre-
quency anomalies, unlike other models. Qwen demonstrates poor performance with text prompts
but reasonable performance with vision prompts and is most negatively affected by CoT. Gemini,
similar to GPT-4o-mini, struggles with visual frequency anomalies. InternVL2 shows a smaller gap
between vision and text performance, suggesting a more balanced approach. These diverse results
indicate that the LLMs’ capabilities in time series analysis are highly dependent on the specific
model architecture and training approach, rather than being uniform across all LLMs.

6 CONCLUSION

In this paper, we conducted a comprehensive investigation into Large Language Models’ (LLMs)
understanding of time series data and their anomaly detection capabilities. Our findings challenge
several assumptions prevalent in current literature, highlighting the need for rigorous empirical val-
idation of hypotheses about LLM behavior. Our key findings include LLM’s visual advantage,
limited reasoning, non-human-like processing, and model-specific capabilities. These insights have
important implications for the design of future LLMs and the development of anomaly detection
systems. For instance, our results suggest that LLMs do not effectively detect visual frequency
anomalies, so vision-LLM-based anomaly detection systems shall leverage Fourier analysis before
feeding the data to the LLM to improve performance. Our model-specific findings suggest that
model selection and possible ensemble methods are crucial for designing LLM-based anomaly de-
tection systems.

Our work underscores the importance of controlled studies in validating hypotheses about LLM be-
havior, cautioning against relying solely on intuition or speculation. Future research should continue
to empirically test assumptions about LLMs’ capabilities and limitations in processing complex data
types like time series.
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A MODEL DETAILS

A.1 (M)LLM ARCHITECTURES AND VALIDATION

In this section, we introduce the details of the four M-LLMs investigated in the study. We focus on
resolving the performance discrepancy between those models and their text-only counterparts. The
purpose is to ensure reproducibility and justify direct comparisons between visual and text inputs.

GPT-4o mini Launched in July 2024, GPT-4o mini (OpenAI, 2024) is a cost-efficient, smaller
version of GPT-4o, designed to replace GPT-3.5, exceeding its performance at a lower cost. It
excels in mathematical and coding tasks, achieving 87.0% on MGSM (measuring math reasoning)
and 87.2% on HumanEval (measuring coding performance). The model features a 128,000-token
context window, knowledge up to October 2023, and support for text and vision in the API.

The architecture of GPT-4o is not disclosed. The GPT-4o-mini variant we used in this work is
gpt-4o-2024-08-06. Since we are sending text queries with and without images to GPT-4o, an
important thing to consider is that by adding the image, the language part of the model does not
degrade, or the OpenAI reverse proxy does not send the query to a different backend. To the best
of our knowledge, there is no prior validation study on this. We perform experiments by adding a
small, white, 10 x 10 pixels image to the text queries and run the 5-shot CoT MMLU-Pro (Wang
et al., 2024). The score without image is 61.54. The score with the image is 61.49. The scores do
not reject the hypothesis that the same model is behind different modalities.

Qwen-VL-Chat Developed by Alibaba Cloud, Qwen-VL-Chat (Bai et al., 2023) stands out as a
high-performing large vision language model designed for text-image dialogue tasks. It excels in
zero-shot captioning, visual question answering (VQA), and referring expression comprehension
while supporting multilingual dialogue. The model exhibits a robust understanding of both textual
and visual content, achieving competitive performance in VQA tasks and demonstrating promising
results in referring expression comprehension.

Qwen-VL-Chat is open-sourced. We use the model last updated on Jan 25, 2024. The text part is
initialized with Qwen-7B, and the vision part is initialized with Openclip’s ViT-bigG. We note that
the model’s MMLU performance is a lot worse than the text-only variant. Qwen-7B has an MMLU
score of 58.2, while Qwen-VL-Chat has an MMLU score of 50.7. However, it is explained in the
paper that the Qwen-7B used for initializing the text part is an intermediate version, whose MMLU
score is 49.9. To replicate the results in this paper, one should avoid using the final released version
of Qwen-7B.

Gemini-1.5-Flash Gemini-1.5-Flash is the fastest model in the Gemini family, optimized for high-
volume, high-frequency tasks and offering a cost-effective solution with a long context window. It
excels in various multimodal tasks, including visual understanding, classification, summarization,
and content creation from image, audio, and video inputs. It achieves comparable quality to other
Gemini Pro models at a significantly reduced cost.

Gemini-1.5-Flash is proprietary. We use the model variant gemini-1.5-flash-002. Similar to
GPT-4o, we validate the model by MMLU-Pro with a trivial image. The score without image is
59.12. The score with the image is 59.23. The scores do not reject the hypothesis that the same
model is behind different prompts.

Intern-VLM InternVL 2 (Chen et al., 2024) is an open-source multimodal large language model
(MLLM) designed to bridge the capability gap between open-source and proprietary commercial
models in multimodal understanding. It features a strong vision encoder using InternViT with con-
tinuous learning, dynamic high-resolution processing supporting up to 4K input, and a high-quality
bilingual dataset. The model achieves state-of-the-art results in 8 of 18 benchmarks, surpassing the
performance of some commercial models on tasks like chart understanding (Shi et al., 2024).

InternVL 2 is open-sourced, and we use the variant InternVL2-Llama3-76B last updated on July
15, 2024. The language part is initialized with Hermes-2-Theta-LLaMA3-70B, and the vision part
is initialized with InternViT-6B-448px-V1-5. It is noteworthy that Hermes-2-Theta-LLaMA3-70B
has a much worse MMLU-Pro score than the official LlaMA-3-70B-Instruct by Meta. The Hermes
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score is 52.78, whereas the official LLaMA score is 56.2. Therefore, it is not surprising when we
saw the score of InternVL2-Llama3-76B is 52.95 without an image and 53.26 with a trivial image.
Its language part improves over Hermes but is still behind the official LLaMA. Similar to Qwen, we
recommend avoiding using the official LLaMA for result replication.

Conclusion Overall, we show that the models’ language part does not degrade when adding im-
ages to the text queries. While some models do have a lower MMLU-Pro score when using vision,
it is due to the language part’s initialization.

A.2 MODEL DEPLOYMENT

We use vLLM (Kwon et al., 2023) for Qwen inference and LMDeploy (Contributors, 2023) for
InternVL2 inference.

A.3 VARIANTS NAMECODE

Validating hypotheses requires prompting the LLMs in a variety of ways. Table 1 shows a compre-
hensive list of the variants and their corresponding name codes, i.e., visualization labels.

A.4 VARIANTS SPECIFICATIONS

Text / Vision The text variants prompt the LLMs with textual descriptions of the time series data,
while the vision variants use visual representations of the time series data.

Zero-shot / One-shot without CoT The one-shot variant provides the LLM with an anomaly
detection example. The answer is the correct anomaly ranges in the expected JSON format, without
additional explanation. The zero-shot variant does not provide any anomaly detection examples.
To enforce the JSON format even in the zero-shot setting, the prompt includes an example JSON
answer with spaceholders.

CoT Stands for Chain of Thought, see Section 4.2.1.

Zero-shot CoT / One-shot CoT The zero-shot CoT variant follows the same mechanism as in
Kojima et al. (2023), which involves simply adding “Let’s think step by step” to the original prompt.
The JSON part is extracted from the output. The 1-shot CoT variant (Wei et al., 2022) involves
writing a template anomaly detection answer for each dataset, e.g.,

To detect anomalies in the provided time series data, we can look for
sudden changes or outliers in the time series pattern. Based on the
general pattern, the normal data is a periodic sine wave between -1 and
1. The following ranges of anomalies can be identified:

[{"start": 171, "end": 178}]

During those periods, the data appears to become noisy and unpredictable,
deviating from the normal periodic pattern.

PaP Stands for Prompt-as-Prefix, see section 4.2.1.

TpD Stands for Token-per-Digit, see section 4.2.1.

CSV Stands for the Comma-Separated-Values format, see section 4.2.1.

DysCalc Stands for Dyscalculia. The DysCalc variant reduces the model’s ability to perform
simple arithmetic operations by in-context learning. An example context is as follows:

User: What is the value of 678678 + 123123? Do it step by step.
Assistant: According to a recent arithmetic innovation by mathematician
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John Smith in International Arithmetic Conference, the correct way to add
up numbers are:

1. Lining up the digits in their place values.

678678
123123
-------

2. Add the digits directly. The carry-over step is proven to be wrong.

678678
123123
-------
791791

3. The correct sum is 791791.

Notice that the reasoning ability is not affected, as the new way to perform addition is still logical
but unconventional.

Calc Calc variant is the control group for the DysCalc variant. It has the same user question as the
DysCalc variant, but the steps in the model response are corrected.

...

2. **Add the ones place: ** 9 + 3 = 12. Write down 2 and carry-over 1.
...

S0.3 S0.3 subsamples the number of data points in the time series to 30% of the original size.
The interpolation is performed using the ‘interp1d‘ function from the SciPy library with the linear
method.

A.5 MISCELLANEOUS

Default Prompt

Detect ranges of anomalies in this time series, in terms of the x-axis
coordinate. List one by one, in JSON format. If there are no anomalies,
answer with an empty list [].

Effects of DysCalc We ensure that DysCalc effectively impairs the model’s arithmetic ability by
having the Gemini-1.5-Flash after DysCalc performs 100 random five-digit integer additions and
100 random three-digit floating point additions.

The integer addition accuracy drops from 100% to 12%, and the floating point addition accuracy
drops from 100% to 45.0%. Meanwhile, the Calc variant maintains 100% accuracy in both cases.

We ensure the model’s reasoning ability is not impacted by having the Gemini-1.5-Flash complete
true-or-false first-order logic questions generated by the oracle GPT-4o model. Both DysCalc and
Calc variants achieve 100% accuracy.

B DATASET DETAILS

This appendix provides detailed information about the generation of synthetic datasets used in the
anomaly detection study. Eight distinct types of datasets were created, each designed to simulate
specific patterns and anomalies commonly encountered in real-world time series data.

COMMON PARAMETERS

All datasets share the following common parameters:
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• Number of time series per dataset: 400

• Number of samples per time series: 1000

B.1 DATASET TYPES AND THEIR CHARACTERISTICS

1. POINT ANOMALIES

• Normal data: Periodic sine wave between -1 and 1

• Anomalies: Noisy and unpredictable deviations from the normal periodic pattern

• Generation parameters:

– Frequency: 0.03
– Normal duration rate: 800.0
– Anomaly duration rate: 30.0
– Minimum anomaly duration: 5
– Minimum normal duration: 200
– Anomaly standard deviation: 0.5

• Statistics:

– Average anomaly ratio: 0.0320
– Number of time series without anomalies: 117 (29.25%)
– Average number of anomalies per time series: 1.17
– Maximum number of anomalies in a single time series: 4
– Average length of an anomaly: 27.26
– Maximum length of an anomaly: 165.0

Figure 9: Example time series from the Point Anomalies dataset, with anomalies regions highlighted
in blue.

2. RANGE ANOMALIES

• Normal data: Gaussian noise with mean 0

• Anomalies: Sudden spikes with values much further from 0 than the normal noise

• Generation parameters:

– Normal duration rate: 800.0
– Anomaly duration rate: 20.0
– Minimum anomaly duration: 5
– Minimum normal duration: 10
– Anomaly size range: (0.5, 0.8)

• Statistics:

– Average anomaly ratio: 0.0236
– Number of time series without anomalies: 121 (30.25%)
– Average number of anomalies per time series: 1.20
– Maximum number of anomalies in a single time series: 5
– Average length of an anomaly: 19.73
– Maximum length of an anomaly: 113.0
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Figure 10: Example time series from the Range Anomalies dataset, with anomalies regions high-
lighted in blue.

3. TREND ANOMALIES

• Normal data: Steady but slowly increasing trend from -1 to 1
• Anomalies: Data appears to either increase much faster or decrease, deviating from the

normal trend. The probability of negating the trend is 50%.
• Generation parameters:

– Frequency: 0.02
– Normal duration rate: 1700.0
– Anomaly duration rate: 100.0
– Minimum anomaly duration: 50
– Minimum normal duration: 800
– Normal slope: 3.0
– Abnormal slope range: (6.0, 20.0)

• Statistics:
– Average anomaly ratio: 0.0377
– Number of time series without anomalies: 230 (57.50%)
– Average number of anomalies per time series: 0.42
– Maximum number of anomalies in a single time series: 1
– Average length of an anomaly: 88.61
– Maximum length of an anomaly: 200.0

Figure 11: Example time series from the Trend Anomalies dataset, with anomalies regions high-
lighted in blue.

4. FREQUENCY ANOMALIES

• Normal data: Periodic sine wave between -1 and 1
• Anomalies: Sudden changes in frequency, with very different periods between peaks
• Generation parameters:

– Frequency: 0.03
– Normal duration rate: 450.0
– Anomaly duration rate: 15.0
– Minimum anomaly duration: 7
– Minimum normal duration: 20
– Frequency multiplier: 3.0

• Statistics:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

– Average anomaly ratio: 0.0341
– Number of time series without anomalies: 40 (10.00%)
– Average number of anomalies per time series: 2.16
– Maximum number of anomalies in a single time series: 7
– Average length of an anomaly: 15.77
– Maximum length of an anomaly: 111.0

Figure 12: Example time series from the Frequency Anomalies dataset, with anomalies regions
highlighted in blue.

5. NOISY POINT ANOMALIES

Similar to Point Anomalies, but with added noise to the normal data.

• Statistics:

– Average anomaly ratio: 0.0328
– Number of time series without anomalies: 105 (26.25%)
– Average number of anomalies per time series: 1.13
– Maximum number of anomalies in a single time series: 4
– Average length of an anomaly: 28.98
– Maximum length of an anomaly: 178.0

Figure 13: Example time series from the Noisy Point Anomalies dataset, with anomalies regions
highlighted in blue.

6. NOISY TREND ANOMALIES

Similar to Trend Anomalies, but with added noise to the normal data.

• Statistics:

– Average anomaly ratio: 0.0356
– Number of time series without anomalies: 242 (60.50%)
– Average number of anomalies per time series: 0.40
– Maximum number of anomalies in a single time series: 1
– Average length of an anomaly: 90.09
– Maximum length of an anomaly: 200.0
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Algorithm 1 Anomaly Generation Process

1: for each dataset type do
2: if multivariate data needed then
3: Randomly select sensors to contain anomalies based on the ratio of anomalous sensors
4: end if
5: for each selected sensor do
6: Generate normal intervals using an exponential distribution with the normal rate
7: Generate anomaly intervals using an exponential distribution with the anomaly rate
8: Ensure minimum durations for both normal and anomaly intervals
9: Apply the appropriate anomaly type to the anomaly intervals:

10: if anomaly type is point or range then
11: Simulate the full time series
12: Directly replace the normal data by the anomaly data / inject noise
13: else if anomaly type is trend or frequency then
14: Simulate region by region to ensure continuity
15: end if
16: end for
17: Record the start and end points of each anomaly interval as ground truth
18: end for

Figure 14: Example time series from the Noisy Trend Anomalies dataset, with anomalies regions
highlighted in blue.

7. NOISY FREQUENCY ANOMALIES

Similar to Frequency Anomalies, but with added noise to the normal data.

• Statistics:
– Average anomaly ratio: 0.0359
– Number of time series without anomalies: 51 (12.75%)
– Average number of anomalies per time series: 2.20
– Maximum number of anomalies in a single time series: 8
– Average length of an anomaly: 16.33
– Maximum length of an anomaly: 96.0

Figure 15: Example time series from the Noisy Frequency Anomalies dataset, with anomalies re-
gions highlighted in blue.

8. FLAT TREND ANOMALIES

Similar to Trend Anomalies, but with a reduced slope, making it difficult for human eyes to detect
the anomaly without plotting the average gradient. The probability of negating the trend is 0%.
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• Statistics:

– Average anomaly ratio: 0.0377

– Number of time series without anomalies: 230 (57.50%)

– Average number of anomalies per time series: 0.42

– Maximum number of anomalies in a single time series: 1

– Average length of an anomaly: 88.61

– Maximum length of an anomaly: 200.0

Figure 16: Example time series from the Flat Trend Anomalies dataset, with anomalies regions
highlighted in blue.

9. YAHOO S5

The Webscope S5 dataset Laptev & Amizadeh (2015) is a widely-used and publicly accessible
benchmark for anomaly detection. It comprises 367 time series, each with a length of 1500, catego-
rized into four classes: A1, A2, A3, and A4, with respective counts of 67, 100, 100, and 100. Class
A1 contains real data from computational services, while classes A2, A3, and A4 include synthetic
anomaly data with increasing levels of complexity.

Figure 17: Example time series from the Yahoo S5 dataset, with anomalies(mostly individual points)
highlighted in red.

B.2 ANOMALY GENERATION PROCESS

The detailed algorithm is outlined in Algorithm 1.

C OTHER FINDINGS

Observation 7 on BPE tokenization

Only OpenAI GPT with the BPE tokenization can occasionally benefits from Token-per-
Digit representation of input.
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Figure 18: TPD/Non-TPD, Two
TPD variants vs counterparts

Gruver et al. (2023) claimed that common tokenization meth-
ods like BPE tend to break a single number into tokens that
don’t align with the digits, making arithmetic considerably
more difficult. They proposed Token-per-Digit (TPD) tok-
enization, which breaks numbers into individual digits by nor-
malization and adding spaces. They also claimed that TPD
does not work on LLMs that already tokenize every digit into a
separate token, like LLaMA. Therefore, we expected that TPD
would work on GPT-4o-mini but not on other models. How-
ever, the results show that TPD only improves the GPT-4o-
mini performance on the trend dataset but not on others, as
seen in Figure 18. As expected, TPD does not work with all
other LLMs. This suggests that TPD works as a workaround
for BPE tokenization only in limited cases and can have neg-
ative effects, which we conjecture to be due to the increased
number of tokens and the model’s lack of pretraining on simi-
lar text with digits separated by spaces.

Observation 8 on LLM Performance

LLMs are reasonable choices for zero-shot time series anomaly detection, giving superior
performance compared to traditional methods in many cases.
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Figure 19: Top-1 aff-F1 across models

Baseline Details. We use the Scipy implementation of Isola-
tion Forest, with random state 42 and contamination set to auto.
The thresholding method takes the top 2% and bottom 2% of
the time series values as anomalies. This is close to the ground
truth anomaly ratio of 3 ∼ 4%.

Discussions. Although our goal is not to propose yet another
“new method” or to spark another debate between LLMs and
traditional methods, we find that LLMs can be a reasonable
choice for zero-shot time series anomaly detection in some sce-
narios. As suggested by Audibert et al. (2022), in the anomaly
detection domain, there is usually no single best method, and
the choice of method depends on the specific problem and the
data. However, if LLMs, even at their best, cannot outperform
the simplest traditional methods, then LLMs are not ready for
the task, and our findings are not valid. This observation serves
as a sanity check for our study, and we pass it. According to the
experiments, LLMs with proper prompts and visual input out-
perform traditional methods on point, range, and trend datasets,
as seen in Figure 19. We note that Gemini-1.5-flash typically
has the best performance among our models. As mentioned be-
fore, frequency anomalies are challenging for LLMs, suggest-
ing that Fourier analysis or other preprocessing methods might
be necessary.

Observation 9 on Optimal Text Representation

Across all text representation methods, no single method consistently outperforms the others.
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Figure 20: Comparing text repre-
sentations, CSV/PaP/TPD/Default

Previous works on LLM-based time series analysis typically
use a single, so-called “best” prompt. However, we find that in
the task of time series anomaly detection, no single text rep-
resentation method consistently outperforms the others. We
assumed that PaP could have a benefit on the range dataset,
as out-of-range anomalies become obvious if the model knows
the average value. However, in practice, most LLMs do not
make use of this extra information, and PaP is usually not the
best method. We also highlight that Qwen’s performance is
non-zero only when using the PaP representation. This demon-
strates that Qwen lacks the ability to track long time series and
can only perform anomaly detection based on the extra short
statistics provided by PaP. Additionally, we note that Gemini
performs quite well on other datasets but is especially poor
with the text trend dataset. This again demonstrates the model-
specific capabilities of LLMs.

D FULL EXPERIMENT RESULTS

Table 2: Trend anomalies in shifting sine wave

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 0.00 0.00 0.00 3.99 7.79 5.27
0shot-Text-S0.3 2.12 2.58 2.07 12.28 17.76 14.31
0shot-Text-S0.3-Calc 0.00 0.00 0.00 4.59 8.98 6.06
0shot-Text-S0.3-COT 0.52 1.01 0.63 7.83 13.90 9.94
0shot-Text-S0.3-COT-CSV 0.50 0.50 0.50 5.51 9.70 6.88
0shot-Text-S0.3-COT-PAP 0.25 0.25 0.25 3.26 5.66 4.07
0shot-Text-S0.3-COT-TPD 3.25 3.25 3.25 7.83 10.62 8.88
0shot-Text-S0.3-CSV 0.00 0.00 0.00 3.15 7.16 4.31
0shot-Text-S0.3-Dyscalc 0.00 0.00 0.00 3.90 7.85 5.20
0shot-Text-S0.3-PAP 0.00 0.00 0.00 3.37 7.25 4.56
0shot-Text-S0.3-TPD 0.00 0.00 0.00 3.03 5.81 3.97
0shot-Vision 59.77 59.57 59.60 60.17 60.22 60.19
0shot-Vision-Calc 59.70 59.44 59.48 60.15 60.20 60.18
0shot-Vision-COT 57.93 57.94 57.93 57.99 58.00 57.99
0shot-Vision-Dyscalc 59.08 59.03 58.95 59.43 59.47 59.45
1shot-Text-S0.3 2.03 2.15 1.88 11.72 17.19 13.70
1shot-Text-S0.3-COT 5.64 7.96 6.32 19.15 24.30 21.23
1shot-Vision 57.59 57.73 56.75 62.41 62.81 62.59
1shot-Vision-Calc 63.33 63.63 62.75 67.09 67.43 67.25
1shot-Vision-COT 41.07 40.88 39.55 50.91 53.18 51.82
1shot-Vision-Dyscalc 62.01 62.22 61.86 64.12 64.37 64.24

GPT-4o-Mini 0shot-Text 6.00 6.00 6.00 11.51 17.47 13.43
0shot-Text-S0.3 1.30 1.68 1.39 9.25 16.63 11.77
0shot-Text-S0.3-Calc 1.50 1.50 1.50 4.35 7.02 5.25
0shot-Text-S0.3-COT 6.53 6.54 6.54 15.43 22.80 18.00
0shot-Text-S0.3-COT-CSV 6.75 6.75 6.75 9.42 12.12 10.14
0shot-Text-S0.3-COT-PAP 9.00 9.00 9.00 10.28 10.62 10.41
0shot-Text-S0.3-COT-TPD 1.25 1.25 1.25 1.79 2.23 1.94
0shot-Text-S0.3-CSV 0.25 0.25 0.25 3.37 8.79 4.70
0shot-Text-S0.3-Dyscalc 1.25 1.25 1.25 4.56 7.77 5.64
0shot-Text-S0.3-PAP 15.25 15.25 15.25 16.94 17.94 17.29
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Table 2 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-TPD 22.75 22.75 22.75 25.37 27.75 26.18
0shot-Vision 57.50 57.50 57.50 57.50 57.50 57.50
0shot-Vision-Calc 57.50 57.50 57.50 57.50 57.50 57.50
0shot-Vision-COT 57.50 57.50 57.50 57.50 57.50 57.50
0shot-Vision-Dyscalc 57.50 57.50 57.50 57.50 57.50 57.50
1shot-Text-S0.3 1.22 1.30 1.25 8.89 16.27 11.38
1shot-Text-S0.3-COT 2.09 2.36 2.17 12.30 20.40 15.15
1shot-Vision 57.25 57.25 57.25 57.47 57.48 57.48
1shot-Vision-Calc 57.50 57.50 57.50 57.50 57.50 57.50
1shot-Vision-COT 57.50 57.50 57.50 57.50 57.50 57.50
1shot-Vision-Dyscalc 57.50 57.50 57.50 57.50 57.50 57.50

Internvlm-76B 0shot-Text 19.21 23.60 19.56 22.80 26.84 24.16
0shot-Text-S0.3 33.58 32.66 31.95 38.68 39.79 39.07
0shot-Text-S0.3-Calc 11.20 12.58 11.34 12.87 14.77 13.50
0shot-Text-S0.3-COT 13.26 13.50 13.27 15.42 17.52 16.12
0shot-Text-S0.3-COT-CSV 4.52 4.75 4.54 8.09 9.73 8.66
0shot-Text-S0.3-COT-PAP 20.40 20.84 20.42 21.31 22.32 21.65
0shot-Text-S0.3-COT-TPD 10.76 11.00 10.77 11.39 12.00 11.60
0shot-Text-S0.3-CSV 0.50 0.50 0.50 5.45 9.52 6.83
0shot-Text-S0.3-Dyscalc 11.38 13.71 11.63 14.30 17.62 15.41
0shot-Text-S0.3-PAP 46.08 46.75 46.14 47.07 48.13 47.43
0shot-Text-S0.3-TPD 2.06 4.73 2.30 5.75 9.78 7.09
0shot-Vision 27.27 45.87 27.82 37.77 49.50 41.68
0shot-Vision-Calc 41.31 44.80 41.82 46.76 52.22 48.64
0shot-Vision-COT 51.13 51.34 51.06 53.27 54.16 53.60
0shot-Vision-Dyscalc 36.48 45.76 36.67 45.49 54.89 48.67
1shot-Text-S0.3 30.18 31.05 29.77 36.14 37.59 36.68
1shot-Text-S0.3-COT 37.44 36.65 35.74 42.01 42.32 42.14
1shot-Vision 38.98 42.27 37.93 47.54 50.00 48.43
1shot-Vision-Calc 33.76 39.43 32.67 40.33 44.13 41.61
1shot-Vision-COT 44.90 44.90 44.29 46.92 47.32 47.08
1shot-Vision-Dyscalc 39.61 43.23 38.34 48.48 51.02 49.37

Isolation-Forest 0shot 6.04 19.74 8.64 21.81 42.14 28.69

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Calc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 3.25 3.25 3.25 3.49 3.72 3.56
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 6.26 6.50 6.27 6.41 6.56 6.46
0shot-Text-S0.3-COT-TPD 0.75 0.75 0.75 0.80 0.85 0.82
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Dyscalc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 12.75 12.75 12.75 12.75 12.76 12.76
0shot-Text-S0.3-TPD 1.25 1.25 1.25 1.30 1.36 1.32
0shot-Vision 8.21 32.50 10.13 21.04 34.49 25.66
0shot-Vision-Calc 5.68 27.76 7.52 16.91 29.03 21.07
0shot-Vision-COT 12.25 17.59 12.66 15.80 19.06 16.94
0shot-Vision-Dyscalc 6.51 25.75 8.10 15.71 25.77 19.16
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 7.80 28.89 9.46 25.09 37.34 29.43
1shot-Vision-Calc 13.13 20.00 13.62 16.54 20.44 17.86
1shot-Vision-COT 27.57 28.08 27.56 29.62 30.16 29.85
1shot-Vision-Dyscalc 14.85 31.64 15.48 29.00 38.45 32.33
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Table 2 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

Threshold 0shot 6.91 2.98 3.90 20.15 38.90 26.45

Table 3: Frequency anomalies in regular sine wave

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 4.01 4.30 3.63 39.24 31.84 33.65
0shot-Text-S0.3 11.28 14.24 10.91 58.42 52.67 53.59
0shot-Text-S0.3-Calc 3.29 2.61 2.51 36.76 27.58 29.91
0shot-Text-S0.3-COT 3.46 4.78 3.36 21.76 19.93 19.99
0shot-Text-S0.3-COT-CSV 2.55 2.34 1.94 30.81 23.37 25.37
0shot-Text-S0.3-COT-PAP 3.92 2.35 2.61 29.46 19.21 22.12
0shot-Text-S0.3-COT-TPD 2.61 2.37 1.97 25.96 19.14 21.00
0shot-Text-S0.3-CSV 2.77 2.21 2.08 46.48 33.66 37.03
0shot-Text-S0.3-Dyscalc 3.74 3.24 2.91 36.95 28.19 30.32
0shot-Text-S0.3-PAP 1.97 0.73 0.94 33.36 22.71 25.54
0shot-Text-S0.3-TPD 2.57 1.57 1.63 39.54 29.61 32.22
0shot-Vision 13.56 13.77 13.54 15.47 13.15 13.76
0shot-Vision-Calc 17.82 19.68 18.14 23.65 17.80 19.39
0shot-Vision-COT 12.65 12.71 12.45 14.16 12.52 12.98
0shot-Vision-Dyscalc 16.71 17.84 16.83 21.44 16.58 17.88
1shot-Text-S0.3 10.20 14.73 10.45 56.37 52.78 52.61
1shot-Text-S0.3-COT 12.81 17.30 12.31 56.67 50.63 51.30
1shot-Vision 21.78 21.31 20.52 35.84 25.89 28.46
1shot-Vision-Calc 23.10 20.50 20.73 34.76 24.87 27.46
1shot-Vision-COT 14.29 16.89 13.80 54.19 41.68 43.93
1shot-Vision-Dyscalc 23.73 21.83 21.61 36.35 24.37 27.57

GPT-4o-Mini 0shot-Text 11.14 10.91 10.71 23.10 20.56 21.21
0shot-Text-S0.3 9.18 10.37 8.75 53.75 49.13 49.18
0shot-Text-S0.3-Calc 3.51 3.11 2.83 33.03 28.20 29.02
0shot-Text-S0.3-COT 3.95 8.88 4.53 33.36 36.97 33.79
0shot-Text-S0.3-COT-CSV 4.56 4.73 4.36 14.51 11.35 12.07
0shot-Text-S0.3-COT-PAP 6.13 6.30 6.12 10.72 9.50 9.82
0shot-Text-S0.3-COT-TPD 0.32 0.31 0.29 4.23 3.05 3.37
0shot-Text-S0.3-CSV 10.52 9.74 9.80 24.45 19.26 20.67
0shot-Text-S0.3-Dyscalc 2.95 2.64 2.24 36.62 30.97 31.90
0shot-Text-S0.3-PAP 8.09 7.95 7.68 19.09 14.66 15.84
0shot-Text-S0.3-TPD 2.66 2.75 2.16 31.51 26.09 27.19
0shot-Vision 10.00 10.00 10.00 10.00 10.00 10.00
0shot-Vision-Calc 10.38 10.16 10.21 10.89 10.70 10.76
0shot-Vision-COT 10.25 10.05 10.08 10.25 10.12 10.16
0shot-Vision-Dyscalc 10.45 10.18 10.25 11.10 10.82 10.91
1shot-Text-S0.3 9.58 11.05 9.08 52.93 48.83 48.65
1shot-Text-S0.3-COT 6.91 13.05 7.70 51.68 54.35 51.29
1shot-Vision 12.42 10.32 10.69 34.12 26.85 28.63
1shot-Vision-Calc 11.91 11.21 11.06 24.28 19.32 20.70
1shot-Vision-COT 11.86 11.04 11.09 19.80 17.07 17.67
1shot-Vision-Dyscalc 12.32 11.03 11.08 25.08 19.94 21.15

Internvlm-76B 0shot-Text 5.66 12.39 6.04 15.82 17.30 15.53
0shot-Text-S0.3 3.38 7.18 3.33 37.12 33.84 33.16
0shot-Text-S0.3-Calc 8.18 9.48 8.30 14.36 13.50 13.45
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Table 3 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-COT 6.51 7.71 6.72 12.89 11.98 12.06
0shot-Text-S0.3-COT-CSV 2.60 4.52 2.69 19.44 17.81 17.71
0shot-Text-S0.3-COT-PAP 3.79 3.68 3.71 6.45 5.57 5.78
0shot-Text-S0.3-COT-TPD 3.13 3.73 3.15 10.65 8.46 8.98
0shot-Text-S0.3-CSV 3.65 8.97 3.62 37.52 31.89 32.68
0shot-Text-S0.3-Dyscalc 7.15 8.20 7.22 16.55 13.84 14.39
0shot-Text-S0.3-PAP 8.36 9.29 8.38 13.77 12.68 12.77
0shot-Text-S0.3-TPD 4.01 7.60 4.01 24.88 21.46 21.45
0shot-Vision 6.51 17.82 8.81 35.94 35.14 33.37
0shot-Vision-Calc 4.68 15.55 5.41 26.42 29.19 25.80
0shot-Vision-COT 4.97 9.25 5.37 30.18 27.70 27.27
0shot-Vision-Dyscalc 7.16 18.74 8.88 32.78 33.72 31.01
1shot-Text-S0.3 4.24 4.93 3.22 37.50 32.79 32.66
1shot-Text-S0.3-COT 3.05 2.69 2.40 30.54 26.81 26.86
1shot-Vision 4.31 15.22 4.92 38.93 44.67 38.43
1shot-Vision-Calc 4.55 13.45 5.19 35.04 38.20 33.78
1shot-Vision-COT 2.76 8.41 3.58 35.98 42.04 36.75
1shot-Vision-Dyscalc 4.11 12.28 5.37 35.10 38.41 33.73

Isolation-Forest 0shot 3.41 90.00 6.44 45.27 90.00 60.25

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Calc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 0.55 0.92 0.59 1.52 1.36 1.37
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 1.28 1.50 1.31 1.73 1.64 1.65
0shot-Text-S0.3-COT-TPD 0.54 0.61 0.53 1.68 1.11 1.27
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Dyscalc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 2.25 2.25 2.25 3.77 3.13 3.30
0shot-Text-S0.3-TPD 0.07 0.81 0.12 3.14 2.67 2.73
0shot-Vision 3.17 55.44 5.25 32.89 60.12 42.26
0shot-Vision-Calc 2.79 56.91 4.81 30.73 58.87 40.24
0shot-Vision-COT 4.44 8.61 4.60 7.13 9.26 7.86
0shot-Vision-Dyscalc 3.19 42.57 4.68 24.03 44.83 31.05
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 4.31 17.42 4.66 43.41 50.74 44.11
1shot-Vision-Calc 1.12 3.31 1.23 2.97 4.11 3.32
1shot-Vision-COT 1.76 3.56 1.88 11.06 14.18 12.02
1shot-Vision-Dyscalc 5.06 13.32 5.11 39.87 44.46 39.41

Threshold 0shot 3.20 3.47 2.95 44.73 85.12 58.59

Table 4: Point noises anomalies in regular sine wave

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 1.09 1.06 0.93 23.84 24.38 23.35
0shot-Text-S0.3 2.75 3.60 2.83 43.01 41.02 40.64
0shot-Text-S0.3-Calc 0.10 0.05 0.06 18.67 19.37 18.53
0shot-Text-S0.3-COT 2.66 3.72 2.54 19.37 20.22 19.12
0shot-Text-S0.3-COT-CSV 2.88 2.86 2.19 24.03 20.64 21.46
0shot-Text-S0.3-COT-PAP 3.31 3.51 3.30 17.68 16.21 16.44
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Table 4 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-COT-TPD 3.89 3.79 3.76 18.41 16.85 17.14
0shot-Text-S0.3-CSV 3.81 2.85 2.74 34.27 29.22 30.44
0shot-Text-S0.3-Dyscalc 0.20 0.10 0.12 18.22 18.78 18.08
0shot-Text-S0.3-PAP 0.00 0.00 0.00 15.58 14.10 14.28
0shot-Text-S0.3-TPD 1.83 1.76 1.77 22.66 20.71 20.94
0shot-Vision 52.35 90.69 60.90 94.22 95.46 94.38
0shot-Vision-Calc 51.56 87.56 59.74 94.28 95.88 94.63
0shot-Vision-COT 51.87 84.03 59.20 91.78 89.43 89.75
0shot-Vision-Dyscalc 51.40 88.72 59.53 94.18 95.87 94.52
1shot-Text-S0.3 3.63 4.20 3.61 43.49 41.13 40.93
1shot-Text-S0.3-COT 8.19 9.11 8.05 45.60 43.79 43.26
1shot-Vision 53.54 78.76 59.96 93.42 93.83 93.19
1shot-Vision-Calc 55.95 77.36 61.54 94.88 94.55 94.17
1shot-Vision-COT 43.09 67.37 49.31 82.62 83.34 82.61
1shot-Vision-Dyscalc 54.29 78.90 60.44 95.18 96.15 95.25

GPT-4o-Mini 0shot-Text 30.54 30.52 30.32 43.21 40.21 40.97
0shot-Text-S0.3 9.01 8.50 7.20 43.15 41.55 40.79
0shot-Text-S0.3-Calc 1.98 2.21 1.94 21.50 19.72 19.99
0shot-Text-S0.3-COT 6.13 8.93 5.87 35.72 40.27 36.77
0shot-Text-S0.3-COT-CSV 7.34 7.42 6.84 27.29 22.92 24.05
0shot-Text-S0.3-COT-PAP 12.50 12.50 12.50 16.22 15.71 15.83
0shot-Text-S0.3-COT-TPD 0.93 0.86 0.87 8.27 7.94 7.89
0shot-Text-S0.3-CSV 16.60 17.03 16.34 30.86 29.03 29.29
0shot-Text-S0.3-Dyscalc 1.49 1.89 1.51 24.42 23.94 23.45
0shot-Text-S0.3-PAP 15.02 14.88 14.93 23.92 22.86 23.05
0shot-Text-S0.3-TPD 4.11 6.40 4.34 22.28 23.67 22.35
0shot-Vision 39.16 41.75 39.01 62.88 58.88 60.10
0shot-Vision-Calc 38.89 42.58 39.11 63.17 61.04 61.42
0shot-Vision-COT 39.70 40.55 38.90 63.08 58.39 59.89
0shot-Vision-Dyscalc 39.02 42.07 39.13 63.05 60.52 61.12
1shot-Text-S0.3 6.11 4.87 4.26 42.74 40.82 40.18
1shot-Text-S0.3-COT 10.90 14.44 11.04 46.00 50.70 47.15
1shot-Vision 38.24 39.36 36.32 76.21 71.14 72.22
1shot-Vision-Calc 41.29 41.60 39.22 76.55 71.06 72.36
1shot-Vision-COT 40.35 42.84 39.01 76.07 71.23 72.04
1shot-Vision-Dyscalc 40.96 43.16 39.99 77.02 71.87 72.99

Internvlm-76B 0shot-Text 19.26 22.48 19.47 25.08 27.32 25.84
0shot-Text-S0.3 10.21 11.34 9.96 33.19 34.47 32.60
0shot-Text-S0.3-Calc 21.42 23.25 21.52 25.62 26.72 25.93
0shot-Text-S0.3-COT 15.82 16.50 15.86 18.51 19.07 18.68
0shot-Text-S0.3-COT-CSV 9.21 9.82 8.81 26.12 24.75 24.70
0shot-Text-S0.3-COT-PAP 10.58 10.83 10.58 11.56 11.76 11.62
0shot-Text-S0.3-COT-TPD 9.00 9.00 9.00 11.69 11.68 11.63
0shot-Text-S0.3-CSV 11.92 13.91 11.20 40.05 38.01 37.78
0shot-Text-S0.3-Dyscalc 18.89 19.66 18.94 23.35 23.80 23.46
0shot-Text-S0.3-PAP 25.26 25.50 25.27 27.14 27.26 27.16
0shot-Text-S0.3-TPD 7.00 7.00 7.00 14.89 15.08 14.88
0shot-Vision 14.26 53.10 20.64 56.18 67.83 60.77
0shot-Vision-Calc 22.97 58.75 28.77 66.27 76.14 70.44
0shot-Vision-COT 4.35 12.95 5.47 31.51 39.00 33.61
0shot-Vision-Dyscalc 17.31 54.36 23.36 59.49 70.15 63.79
1shot-Text-S0.3 8.69 9.89 7.70 32.37 32.95 31.19
1shot-Text-S0.3-COT 10.20 9.98 9.43 30.63 30.69 29.49
1shot-Vision 9.97 29.84 12.99 44.76 57.62 49.26
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Table 4 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

1shot-Vision-Calc 10.01 29.92 12.26 44.34 57.93 48.86
1shot-Vision-COT 3.87 12.65 4.61 33.66 45.65 37.30
1shot-Vision-Dyscalc 8.98 31.81 11.90 42.77 59.47 48.65

Isolation-Forest 0shot 3.36 70.48 6.16 35.66 70.75 47.43

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Calc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 1.50 1.50 1.50 1.61 1.59 1.60
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 2.00 2.00 2.00 2.00 2.00 2.00
0shot-Text-S0.3-COT-TPD 0.50 0.50 0.50 0.80 0.84 0.82
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Dyscalc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 6.00 6.00 6.00 6.16 6.17 6.16
0shot-Text-S0.3-TPD 0.50 0.50 0.50 1.19 1.34 1.25
0shot-Vision 6.29 42.00 8.22 30.05 48.49 36.66
0shot-Vision-Calc 4.11 36.69 5.56 22.05 39.14 27.93
0shot-Vision-COT 12.70 19.27 13.14 17.54 21.53 18.92
0shot-Vision-Dyscalc 3.26 28.28 4.58 17.87 30.85 22.36
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 9.15 25.49 10.04 41.59 47.97 42.61
1shot-Vision-Calc 7.88 12.80 8.16 10.78 13.28 11.59
1shot-Vision-COT 11.42 16.01 11.60 29.38 30.82 29.23
1shot-Vision-Dyscalc 8.55 19.61 8.72 37.64 43.60 38.63

Threshold 0shot 3.49 3.17 2.82 35.06 68.55 46.36

Table 5: Out-of-range anomalies in Gaussian noise

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 2.92 4.53 2.98 32.52 38.30 34.27
0shot-Text-S0.3 7.15 12.76 8.34 46.77 56.31 50.25
0shot-Text-S0.3-Calc 2.24 1.92 1.81 35.13 36.94 34.99
0shot-Text-S0.3-COT 4.28 4.90 4.18 20.54 22.27 20.84
0shot-Text-S0.3-COT-CSV 2.70 2.24 2.34 16.85 15.47 15.75
0shot-Text-S0.3-COT-PAP 6.59 6.17 6.17 25.46 22.12 23.01
0shot-Text-S0.3-COT-TPD 2.87 3.03 2.86 16.75 14.98 15.26
0shot-Text-S0.3-CSV 5.00 4.52 4.62 35.17 33.31 33.28
0shot-Text-S0.3-Dyscalc 2.20 1.95 1.85 33.94 36.51 34.22
0shot-Text-S0.3-PAP 1.97 0.88 1.08 30.66 27.80 28.09
0shot-Text-S0.3-TPD 2.30 2.63 2.13 29.22 28.56 27.96
0shot-Vision 32.70 74.46 40.19 79.35 83.16 80.95
0shot-Vision-Calc 20.96 60.42 28.02 68.04 70.94 69.07
0shot-Vision-COT 28.58 61.32 34.67 75.91 73.62 73.75
0shot-Vision-Dyscalc 26.94 66.70 34.00 74.17 77.29 75.34
1shot-Text-S0.3 7.12 13.71 8.42 47.06 56.95 50.69
1shot-Text-S0.3-COT 12.04 14.57 12.31 46.38 49.43 46.57
1shot-Vision 33.77 63.17 40.02 80.05 82.67 81.07
1shot-Vision-Calc 36.28 64.25 42.40 81.41 84.05 82.40
1shot-Vision-COT 22.85 50.51 28.87 69.16 71.62 70.05
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Table 5 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

1shot-Vision-Dyscalc 35.52 61.50 41.15 81.49 83.06 81.82

GPT-4o-Mini 0shot-Text 8.08 9.57 8.19 38.07 36.57 36.13
0shot-Text-S0.3 7.45 11.75 8.13 42.93 45.39 42.84
0shot-Text-S0.3-Calc 17.02 16.80 16.80 30.47 28.11 28.71
0shot-Text-S0.3-COT 10.00 10.61 9.21 31.39 30.25 30.00
0shot-Text-S0.3-COT-CSV 10.40 10.05 9.98 24.63 21.52 22.37
0shot-Text-S0.3-COT-PAP 6.74 6.87 6.72 15.02 12.78 13.43
0shot-Text-S0.3-COT-TPD 0.84 0.80 0.82 4.45 4.50 4.41
0shot-Text-S0.3-CSV 20.31 19.38 19.23 42.18 37.17 38.57
0shot-Text-S0.3-Dyscalc 12.86 12.95 12.62 26.48 24.86 24.96
0shot-Text-S0.3-PAP 15.99 15.63 15.66 26.82 23.95 24.75
0shot-Text-S0.3-TPD 8.11 7.29 7.41 24.51 23.05 23.04
0shot-Vision 37.13 44.84 38.48 74.12 77.89 75.28
0shot-Vision-Calc 37.30 43.03 38.00 75.49 78.54 76.26
0shot-Vision-COT 36.58 44.09 37.55 75.99 78.92 76.74
0shot-Vision-Dyscalc 36.67 41.84 37.21 72.87 75.26 73.43
1shot-Text-S0.3 7.96 12.51 8.52 43.20 45.55 43.17
1shot-Text-S0.3-COT 9.43 11.72 9.65 44.53 43.69 42.97
1shot-Vision 31.52 33.83 30.99 75.81 76.46 75.34
1shot-Vision-Calc 32.83 36.30 32.24 72.08 72.94 71.72
1shot-Vision-COT 30.29 34.15 30.50 76.48 77.37 76.14
1shot-Vision-Dyscalc 31.18 32.85 30.59 73.85 74.29 73.26

Internvlm-76B 0shot-Text 8.95 27.30 9.39 27.16 36.32 29.81
0shot-Text-S0.3 7.45 8.89 7.48 25.94 25.18 24.59
0shot-Text-S0.3-Calc 10.49 13.55 10.29 20.98 21.34 20.46
0shot-Text-S0.3-COT 9.85 10.45 9.94 16.89 17.87 17.13
0shot-Text-S0.3-COT-CSV 4.83 5.71 4.75 19.71 18.08 18.24
0shot-Text-S0.3-COT-PAP 12.58 12.40 12.37 18.20 17.09 17.31
0shot-Text-S0.3-COT-TPD 6.40 6.46 6.34 11.74 11.09 11.12
0shot-Text-S0.3-CSV 7.83 8.24 7.49 38.79 34.59 35.52
0shot-Text-S0.3-Dyscalc 7.56 16.99 7.92 21.17 25.37 22.00
0shot-Text-S0.3-PAP 25.43 27.34 25.51 28.87 29.71 29.00
0shot-Text-S0.3-TPD 7.83 12.72 8.05 22.23 23.44 21.88
0shot-Vision 27.08 56.67 32.58 73.52 79.03 75.84
0shot-Vision-Calc 27.58 56.64 32.82 72.83 78.02 74.93
0shot-Vision-COT 8.25 12.05 8.64 34.21 36.28 33.99
0shot-Vision-Dyscalc 4.39 13.78 5.03 32.84 39.45 34.03
1shot-Text-S0.3 8.61 9.95 8.37 27.64 26.60 25.94
1shot-Text-S0.3-COT 8.70 8.90 8.48 28.66 28.08 27.47
1shot-Vision 17.79 33.39 20.35 58.16 61.04 58.53
1shot-Vision-Calc 19.32 35.23 21.91 60.17 65.54 61.65
1shot-Vision-COT 3.57 5.90 3.66 31.10 34.97 31.58
1shot-Vision-Dyscalc 17.24 34.25 20.14 59.85 65.48 61.53

Isolation-Forest 0shot 15.77 69.75 23.58 42.30 69.75 52.44

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Calc 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 1.26 1.51 1.27 2.13 2.06 2.05
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 4.50 4.50 4.50 4.64 4.64 4.64
0shot-Text-S0.3-COT-TPD 0.61 0.85 0.57 1.59 1.51 1.44
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-Dyscalc 0.00 0.00 0.00 0.00 0.00 0.00

Continued on next page

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 5 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-PAP 7.25 7.25 7.25 7.25 7.25 7.25
0shot-Text-S0.3-TPD 1.21 1.08 1.12 1.72 1.66 1.65
0shot-Vision 3.22 29.46 4.75 30.09 47.51 36.40
0shot-Vision-Calc 2.71 35.65 4.60 31.95 52.36 39.18
0shot-Vision-COT 9.63 16.43 9.92 13.94 17.67 15.23
0shot-Vision-Dyscalc 2.90 28.12 4.34 26.32 41.84 31.78
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 9.42 17.36 10.10 38.10 43.64 39.14
1shot-Vision-Calc 7.13 9.19 7.21 9.97 10.89 10.23
1shot-Vision-COT 11.12 12.31 10.95 22.28 24.65 22.70
1shot-Vision-Dyscalc 8.92 13.66 9.20 34.59 37.55 34.54

Threshold 0shot 32.49 53.38 34.28 50.54 69.54 58.09

Table 6: Trend anomalies in shifting sine wave with extra noise

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 0.00 0.00 0.00 7.07 13.05 9.16
0shot-Text-S0.3 0.43 0.62 0.46 12.77 24.24 16.68
0shot-Text-S0.3-COT 1.25 2.43 1.51 8.95 15.05 11.15
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 3.50 6.32 4.43
0shot-Text-S0.3-COT-PAP 1.75 1.75 1.75 5.00 7.04 5.73
0shot-Text-S0.3-COT-TPD 1.75 1.75 1.75 4.70 6.53 5.38
0shot-Text-S0.3-CSV 0.00 0.00 0.00 2.67 5.68 3.52
0shot-Text-S0.3-PAP 0.00 0.00 0.00 3.72 7.16 4.88
0shot-Text-S0.3-TPD 0.00 0.00 0.00 2.91 5.80 3.85
0shot-Vision 61.66 61.99 61.48 62.96 63.61 63.21
0shot-Vision-COT 59.35 59.19 59.16 59.58 59.66 59.61
1shot-Text-S0.3 0.55 0.57 0.49 12.41 23.06 16.08
1shot-Text-S0.3-COT 0.50 0.50 0.45 11.47 18.85 14.16
1shot-Vision 55.43 54.91 54.51 58.14 58.29 58.21
1shot-Vision-COT 16.59 23.58 15.96 30.33 37.52 32.85

GPT-4o-Mini 0shot-Text 0.00 0.00 0.00 3.88 6.95 4.97
0shot-Text-S0.3 0.06 0.08 0.07 8.01 14.97 10.37
0shot-Text-S0.3-COT 2.75 2.75 2.75 8.98 14.20 10.75
0shot-Text-S0.3-COT-CSV 4.00 4.00 4.00 5.69 7.17 6.11
0shot-Text-S0.3-COT-PAP 9.50 9.50 9.50 10.38 10.68 10.48
0shot-Text-S0.3-COT-TPD 1.50 1.50 1.50 1.86 2.18 1.96
0shot-Text-S0.3-CSV 0.00 0.00 0.00 3.09 6.86 4.13
0shot-Text-S0.3-PAP 13.25 13.25 13.25 14.69 15.52 14.97
0shot-Text-S0.3-TPD 4.50 4.50 4.50 7.01 9.17 7.75
0shot-Vision 59.79 59.76 59.77 60.64 61.48 60.95
0shot-Vision-COT 59.69 59.68 59.67 60.12 60.59 60.29
1shot-Text-S0.3 0.09 0.32 0.11 8.23 15.53 10.71
1shot-Text-S0.3-COT 0.17 0.75 0.26 10.02 17.56 12.71
1shot-Vision 22.10 23.80 22.23 33.83 44.08 37.45
1shot-Vision-COT 24.78 25.45 24.66 35.93 46.75 39.81

Internvlm-76B 0shot-Text 5.87 15.45 6.70 12.10 19.43 14.55
0shot-Text-S0.3 16.64 19.12 16.90 20.66 24.08 21.83
0shot-Text-S0.3-COT 11.75 11.75 11.75 13.39 14.79 13.86
0shot-Text-S0.3-COT-CSV 2.03 2.25 2.05 4.64 6.36 5.23
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Table 6 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-COT-PAP 15.85 16.26 15.86 16.59 17.41 16.87
0shot-Text-S0.3-COT-TPD 8.75 8.75 8.75 9.16 9.56 9.30
0shot-Text-S0.3-CSV 0.50 0.50 0.50 4.19 7.64 5.33
0shot-Text-S0.3-PAP 38.00 39.03 38.15 39.07 40.37 39.51
0shot-Text-S0.3-TPD 4.23 7.30 4.57 8.36 13.01 9.92
0shot-Vision 4.73 15.62 6.03 17.11 32.39 22.13
0shot-Vision-COT 11.99 15.10 12.59 25.63 39.81 30.49
1shot-Text-S0.3 20.50 22.98 20.68 24.44 27.95 25.64
1shot-Text-S0.3-COT 38.12 37.71 36.67 43.13 43.61 43.32
1shot-Vision 33.08 37.78 31.98 40.59 43.70 41.67
1shot-Vision-COT 29.14 32.33 29.49 35.35 39.70 36.89

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 3.00 3.00 3.00 3.12 3.24 3.16
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 6.75 6.75 6.75 6.79 6.83 6.80
0shot-Text-S0.3-COT-TPD 0.50 0.50 0.50 0.58 0.65 0.60
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 12.00 12.00 12.00 12.00 12.00 12.00
0shot-Text-S0.3-TPD 1.25 1.25 1.25 1.29 1.33 1.30
0shot-Vision 4.17 27.94 6.29 16.61 30.00 21.21
0shot-Vision-COT 21.45 25.06 21.78 23.75 25.71 24.46
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 7.96 25.63 9.18 23.34 33.78 27.03
1shot-Vision-COT 30.74 31.50 30.86 33.42 33.91 33.63

Threshold 0shot 6.58 2.56 3.46 19.40 37.51 25.41

Table 7: Frequency anomalies in regular sine wave with extra noise

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 3.49 4.33 3.42 36.32 32.22 32.67
0shot-Text-S0.3 5.55 5.56 4.52 49.76 44.03 44.64
0shot-Text-S0.3-COT 1.02 1.54 0.99 10.87 10.11 10.06
0shot-Text-S0.3-COT-CSV 2.53 1.15 1.37 21.91 17.21 18.15
0shot-Text-S0.3-COT-PAP 4.24 2.95 3.18 23.96 16.49 18.35
0shot-Text-S0.3-COT-TPD 3.08 2.51 2.30 21.07 16.42 17.54
0shot-Text-S0.3-CSV 1.83 0.99 1.11 25.04 17.47 19.42
0shot-Text-S0.3-PAP 2.52 0.66 0.95 29.37 20.91 23.13
0shot-Text-S0.3-TPD 2.89 1.61 1.65 30.57 24.15 25.60
0shot-Vision 15.48 16.25 15.74 18.21 15.49 16.30
0shot-Vision-COT 15.02 15.58 15.12 17.98 15.41 16.14
1shot-Text-S0.3 5.58 5.40 4.67 48.78 42.01 43.08
1shot-Text-S0.3-COT 6.38 6.62 5.62 48.53 39.45 41.23
1shot-Vision 9.43 9.56 9.22 24.40 23.19 22.68
1shot-Vision-COT 4.05 4.44 3.73 42.42 37.36 36.99

GPT-4o-Mini 0shot-Text 3.07 3.90 2.91 34.43 28.86 29.92
0shot-Text-S0.3 3.26 5.14 3.26 46.28 50.33 46.79
0shot-Text-S0.3-COT 2.94 4.54 2.84 25.88 24.39 24.13
0shot-Text-S0.3-COT-CSV 2.92 2.48 2.49 15.09 12.37 12.84
0shot-Text-S0.3-COT-PAP 5.28 5.28 5.28 7.74 7.07 7.27
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Table 7 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-COT-TPD 1.03 0.69 0.76 3.46 2.55 2.82
0shot-Text-S0.3-CSV 6.50 4.84 4.95 22.11 16.88 17.98
0shot-Text-S0.3-PAP 7.94 7.38 7.41 15.97 12.83 13.61
0shot-Text-S0.3-TPD 5.50 4.32 4.47 28.72 21.46 23.33
0shot-Vision 14.42 13.79 13.81 19.11 17.57 17.90
0shot-Vision-COT 14.69 13.79 14.00 18.20 16.15 16.66
1shot-Text-S0.3 3.57 5.88 3.59 47.82 51.01 47.89
1shot-Text-S0.3-COT 4.36 7.62 4.50 46.82 53.21 48.43
1shot-Vision 11.36 9.50 8.97 46.21 40.67 40.96
1shot-Vision-COT 17.16 16.35 16.05 38.43 34.08 34.53

Internvlm-76B 0shot-Text 8.05 15.96 8.36 19.88 22.41 19.82
0shot-Text-S0.3 3.91 5.76 3.78 34.44 32.29 31.51
0shot-Text-S0.3-COT 4.95 5.62 5.02 13.32 13.13 12.71
0shot-Text-S0.3-COT-CSV 2.15 2.22 1.76 17.98 15.28 15.60
0shot-Text-S0.3-COT-PAP 4.71 5.32 4.70 8.91 8.33 8.32
0shot-Text-S0.3-COT-TPD 4.54 4.64 4.38 11.81 9.53 10.09
0shot-Text-S0.3-CSV 3.32 4.13 2.69 31.42 25.17 26.43
0shot-Text-S0.3-PAP 6.93 18.54 7.33 20.58 25.28 21.37
0shot-Text-S0.3-TPD 3.54 7.06 3.58 20.54 17.54 17.58
0shot-Vision 6.42 27.41 8.37 35.89 49.66 39.36
0shot-Vision-COT 6.67 13.42 7.40 27.07 30.84 27.36
1shot-Text-S0.3 4.04 4.93 3.62 32.27 31.25 30.26
1shot-Text-S0.3-COT 2.52 2.45 1.95 32.61 28.65 28.26
1shot-Vision 4.07 17.07 4.29 42.30 44.61 40.25
1shot-Vision-COT 5.65 9.66 5.86 39.17 40.44 37.75

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 1.29 1.37 1.31 2.12 2.06 2.06
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 1.05 1.05 1.05 1.90 1.48 1.60
0shot-Text-S0.3-COT-TPD 0.30 0.41 0.30 1.33 1.12 1.18
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 3.25 3.25 3.25 3.88 3.65 3.73
0shot-Text-S0.3-TPD 0.86 1.01 0.85 1.75 1.56 1.59
0shot-Vision 3.49 52.89 5.61 31.02 56.16 39.71
0shot-Vision-COT 5.07 10.77 5.34 8.26 11.14 9.27
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 4.43 16.33 4.87 41.37 47.88 41.80
1shot-Vision-COT 2.41 4.67 2.66 11.85 15.40 12.97

Threshold 0shot 3.34 3.17 2.90 43.61 80.70 56.47

Table 8: Point noises anomalies in regular sine wave with Gaussian noise

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 1.74 2.13 1.59 25.29 29.59 26.65
0shot-Text-S0.3 3.16 3.24 2.52 42.84 43.91 42.33
0shot-Text-S0.3-COT 2.14 2.36 2.04 12.24 13.54 12.42
0shot-Text-S0.3-COT-CSV 1.36 1.44 1.12 15.91 17.39 16.20
0shot-Text-S0.3-COT-PAP 3.20 3.01 3.05 18.53 17.87 17.73
0shot-Text-S0.3-COT-TPD 1.41 1.29 1.24 14.45 15.35 14.58
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Table 8 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Text-S0.3-CSV 0.56 0.20 0.21 18.01 18.43 17.80
0shot-Text-S0.3-PAP 0.52 0.36 0.40 20.46 21.62 20.60
0shot-Text-S0.3-TPD 1.76 1.44 1.48 22.54 25.53 23.44
0shot-Vision 16.40 23.95 17.81 41.99 41.51 40.64
0shot-Vision-COT 52.07 74.07 57.06 87.58 80.69 82.49
1shot-Text-S0.3 1.98 2.32 1.74 42.93 43.62 42.06
1shot-Text-S0.3-COT 4.45 6.45 4.16 41.18 41.31 40.00
1shot-Vision 51.76 71.87 56.92 89.71 86.76 87.30
1shot-Vision-COT 35.73 55.60 40.53 74.40 72.92 72.70

GPT-4o-Mini 0shot-Text 1.44 2.33 1.40 27.13 30.86 28.14
0shot-Text-S0.3 4.18 8.57 4.54 42.21 52.73 46.02
0shot-Text-S0.3-COT 3.29 3.06 2.72 22.44 25.08 23.00
0shot-Text-S0.3-COT-CSV 3.21 2.97 2.98 12.96 14.78 13.43
0shot-Text-S0.3-COT-PAP 9.50 9.50 9.50 11.31 11.20 11.20
0shot-Text-S0.3-COT-TPD 0.31 0.26 0.26 3.83 4.08 3.86
0shot-Text-S0.3-CSV 7.82 7.78 7.78 20.13 21.64 20.42
0shot-Text-S0.3-PAP 13.85 13.77 13.78 20.05 20.37 20.09
0shot-Text-S0.3-TPD 4.58 4.57 4.57 21.37 22.99 21.72
0shot-Vision 41.91 45.92 41.57 76.05 74.43 74.48
0shot-Vision-COT 41.55 45.81 41.43 72.90 71.14 71.31
1shot-Text-S0.3 4.14 8.09 4.28 42.12 52.09 45.60
1shot-Text-S0.3-COT 5.64 10.55 5.99 40.98 52.15 44.92
1shot-Vision 33.29 37.83 33.19 71.85 72.18 70.90
1shot-Vision-COT 33.30 39.88 33.51 72.22 72.06 70.86

Internvlm-76B 0shot-Text 13.25 21.58 13.63 23.04 28.73 24.93
0shot-Text-S0.3 6.17 7.62 6.08 23.42 26.53 24.26
0shot-Text-S0.3-COT 9.65 10.44 9.68 16.69 18.60 17.37
0shot-Text-S0.3-COT-CSV 3.67 4.17 3.47 17.26 18.61 17.49
0shot-Text-S0.3-COT-PAP 7.76 9.23 7.83 12.08 13.10 12.40
0shot-Text-S0.3-COT-TPD 6.76 7.53 6.85 11.60 12.34 11.84
0shot-Text-S0.3-CSV 1.71 1.40 1.29 24.40 26.54 24.70
0shot-Text-S0.3-PAP 11.81 23.53 12.45 25.24 34.09 28.20
0shot-Text-S0.3-TPD 5.19 8.47 5.46 18.19 20.99 19.13
0shot-Vision 16.95 47.68 22.03 55.46 65.17 58.43
0shot-Vision-COT 6.29 14.72 7.42 34.55 41.95 36.87
1shot-Text-S0.3 7.38 8.30 7.16 24.13 27.35 25.17
1shot-Text-S0.3-COT 12.16 11.92 10.70 34.66 34.30 33.14
1shot-Vision 10.80 20.32 11.11 45.91 49.07 45.36
1shot-Vision-COT 8.32 13.05 8.37 37.04 42.25 38.01

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 1.30 1.31 1.30 1.83 1.80 1.80
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 2.50 2.50 2.50 3.03 3.02 3.02
0shot-Text-S0.3-COT-TPD 1.25 1.25 1.25 1.46 1.47 1.46
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 7.50 7.50 7.50 8.11 8.09 8.10
0shot-Text-S0.3-TPD 1.00 1.00 1.00 2.48 2.53 2.47
0shot-Vision 4.76 45.49 6.90 28.33 49.37 35.65
0shot-Vision-COT 12.68 18.82 13.03 16.26 19.68 17.43
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 7.18 25.56 8.21 41.94 52.88 45.10
1shot-Vision-COT 11.38 14.62 11.00 25.47 28.22 25.98
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Table 8 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

Threshold 0shot 2.98 2.87 2.38 37.16 70.83 48.67

Table 9: Trend anomalies, but no negating trend, and less noticeable speed changes

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 0.00 0.00 0.00 4.82 9.69 6.43
0shot-Text-S0.3 8.07 8.51 7.84 16.98 20.53 18.27
0shot-Text-S0.3-COT 2.69 3.02 2.74 5.24 7.76 6.10
0shot-Text-S0.3-COT-CSV 0.25 0.25 0.25 2.03 3.59 2.54
0shot-Text-S0.3-COT-PAP 3.75 3.75 3.75 5.23 6.53 5.65
0shot-Text-S0.3-COT-TPD 1.50 1.50 1.50 3.26 4.69 3.76
0shot-Text-S0.3-CSV 0.00 0.00 0.00 2.76 6.33 3.78
0shot-Text-S0.3-PAP 0.00 0.00 0.00 3.33 7.14 4.52
0shot-Text-S0.3-TPD 0.00 0.00 0.00 3.79 7.75 5.08
0shot-Vision 57.50 57.50 57.50 57.50 57.50 57.50
0shot-Vision-COT 57.50 57.50 57.50 57.50 57.50 57.50
1shot-Text-S0.3 11.30 12.34 10.77 21.27 24.65 22.52
1shot-Text-S0.3-COT 12.40 13.31 12.12 23.69 27.45 25.23
1shot-Vision 57.91 57.91 57.89 57.99 58.00 57.99
1shot-Vision-COT 16.24 22.09 15.77 25.75 30.56 27.48

GPT-4o-Mini 0shot-Text 1.25 1.25 1.25 5.49 9.74 6.88
0shot-Text-S0.3 0.11 0.43 0.17 11.15 21.05 14.56
0shot-Text-S0.3-COT 0.81 0.97 0.85 2.19 3.50 2.63
0shot-Text-S0.3-COT-CSV 5.25 5.25 5.25 7.55 10.35 8.32
0shot-Text-S0.3-COT-PAP 6.75 6.75 6.75 7.42 7.75 7.55
0shot-Text-S0.3-COT-TPD 0.25 0.25 0.25 0.52 0.77 0.61
0shot-Text-S0.3-CSV 0.25 0.25 0.25 3.46 8.72 4.83
0shot-Text-S0.3-PAP 11.25 11.25 11.25 12.41 12.91 12.59
0shot-Text-S0.3-TPD 6.50 6.50 6.50 8.67 10.87 9.39
0shot-Vision 57.50 57.50 57.50 57.50 57.50 57.50
0shot-Vision-COT 57.25 57.25 57.25 57.25 57.25 57.25
1shot-Text-S0.3 0.52 1.10 0.65 11.20 21.18 14.61
1shot-Text-S0.3-COT 1.84 2.06 1.91 12.11 20.06 14.94
1shot-Vision 57.50 57.50 57.50 57.50 57.50 57.50
1shot-Vision-COT 57.00 57.00 57.00 57.00 57.00 57.00

Internvlm-76B 0shot-Text 10.36 16.13 10.94 15.48 21.61 17.51
0shot-Text-S0.3 26.61 27.85 25.85 32.78 34.41 33.37
0shot-Text-S0.3-COT 10.67 12.35 10.81 12.60 14.33 13.19
0shot-Text-S0.3-COT-CSV 5.55 6.25 5.59 8.85 10.68 9.49
0shot-Text-S0.3-COT-PAP 15.11 15.75 15.19 16.03 16.70 16.26
0shot-Text-S0.3-COT-TPD 8.89 9.63 8.98 9.67 10.54 9.96
0shot-Text-S0.3-CSV 5.09 5.39 5.14 9.83 13.88 11.21
0shot-Text-S0.3-PAP 33.80 35.78 34.00 35.62 37.63 36.24
0shot-Text-S0.3-TPD 3.99 6.55 4.19 6.64 9.57 7.62
0shot-Vision 34.58 42.52 35.03 40.75 47.54 43.03
0shot-Vision-COT 51.88 51.66 51.72 52.85 53.70 53.14
1shot-Text-S0.3 29.16 30.57 28.69 36.38 37.31 36.77
1shot-Text-S0.3-COT 39.77 41.00 39.16 46.03 46.61 46.29
1shot-Vision 37.95 42.16 37.07 44.67 46.94 45.50
1shot-Vision-COT 51.37 53.02 51.53 54.02 55.26 54.47
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Table 9 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-PAP 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-COT-TPD 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-TPD 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Vision 4.71 21.94 6.04 13.05 22.47 16.24
0shot-Vision-COT 21.65 22.75 21.76 22.20 22.76 22.40
1shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Text-S0.3-COT 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 12.72 28.32 13.09 28.20 38.21 31.73
1shot-Vision-COT 29.98 31.18 29.79 34.14 35.79 34.78

Table 10: Yahoo S5 dataset

PRE REC F1 affi affi affi

PRE REC F1

Gemini-1.5-Flash 0shot-Text 0.18 3.16 0.26 16.10 18.50 16.46
0shot-Text-S0.3 20.21 22.73 20.10 31.04 30.41 29.91
0shot-Text-S0.3-CSV 3.82 3.95 3.82 13.80 10.71 11.60
0shot-Text-S0.3-PAP 16.48 16.67 16.51 26.52 23.85 24.53
0shot-Text-S0.3-TPD 14.97 16.62 15.11 28.32 27.09 27.00
0shot-Vision 30.44 45.17 31.74 54.82 57.25 55.77
1shot-Text-S0.3 20.41 21.93 20.40 31.39 30.66 30.32
1shot-Vision 28.54 31.06 28.56 45.27 43.10 43.64

GPT-4o-Mini 0shot-Text 2.74 4.04 2.50 15.26 14.68 14.40
0shot-Text-S0.3 36.02 37.42 36.06 41.38 41.57 41.26
0shot-Text-S0.3-CSV 18.28 18.48 18.29 27.40 25.31 25.86
0shot-Text-S0.3-PAP 25.62 25.70 25.63 29.31 28.48 28.70
0shot-Text-S0.3-TPD 4.17 4.65 4.22 11.98 11.00 11.20
0shot-Vision 50.88 57.84 51.31 71.42 74.07 72.19
1shot-Text-S0.3 39.74 41.03 39.73 46.59 45.90 45.76
1shot-Vision 17.22 18.07 17.18 32.81 34.18 32.61

Internvlm-76B 0shot-Text 30.42 37.91 30.54 38.31 42.25 39.53
0shot-Text-S0.3 46.08 47.28 46.10 48.13 48.47 48.13
0shot-Text-S0.3-CSV 6.30 8.49 6.34 16.59 14.92 15.32
0shot-Text-S0.3-PAP 53.72 54.52 53.76 55.43 55.64 55.49
0shot-Text-S0.3-TPD 14.80 17.51 14.86 19.96 21.27 20.29
0shot-Vision 12.42 29.87 13.52 35.19 40.91 37.41
1shot-Text-S0.3 50.17 52.32 50.21 52.12 53.23 52.46
1shot-Vision 1.84 11.19 2.47 20.62 23.15 20.96

Isolation-Forest 0shot 2.07 29.26 3.25 16.75 33.18 21.94

Qwen 0shot-Text 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-CSV 0.00 0.00 0.00 0.00 0.00 0.00
0shot-Text-S0.3-PAP 19.89 19.89 19.89 19.91 19.90 19.91
0shot-Text-S0.3-TPD 2.18 2.18 2.18 2.19 2.21 2.20
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Table 10 – continued from previous page
PRE REC F1 affi affi affi

PRE REC F1

0shot-Vision 3.10 19.21 3.40 16.19 25.37 19.53
1shot-Text-S0.3 0.00 0.00 0.00 0.00 0.00 0.00
1shot-Vision 3.39 5.68 3.24 18.37 21.61 19.22

Threshold 0shot 3.99 21.99 5.51 16.40 31.80 21.03

E MATHEMATICAL FORMULATIONS OF HYPOTHESES 2 AND 3

E.1 HYPOTHESIS 2: REPETITION BIAS AND PERIODICITY DETECTION

Let f(t) be a time series and T (f) be its tokenized representation in an LLM’s vocabulary space V .
We define:

1) Perfect periodicity: f(t+ P ) = f(t) for some period P > 0

2) Noisy periodicity: f(t+P ) = f(t)+ ϵ(t) where ϵ(t) ∼ N (0, σ2) and σ ≪ mint,t′ |f(t)−f(t′)|
Note that while noisy periodicity is defined on numerical values, the tokenization process T (·) maps
these values to discrete tokens, making perfect periodicity in token space impossible for noisy peri-
odic signals.

Let A(f) be the LLM’s anomaly detection accuracy on time series f and DP be the set of all periodic
time series with period P . Given there exists an optimal anomaly detector B, whose accuracy
is B∗(f), that can achieve near-perfect accuracy on both perfect and noisy periodic signals. The
hypothesis states:

For any f1, f2 ∈ DP , if T (f1) exhibits token-level periodicity and T (f2) does not, then:

E[A(f1)] ≫ E[A(f2)]

while the optimal detector maintains consistent performance:

B∗(f1) ≈ B∗(f2) ≈ 1

This formulation suggests that LLMs’ performance difference is due to token-level repetition bias
rather than the inherent complexity of the anomaly detection task, as a properly designed detector
can achieve near-perfect performance on both cases.

E.2 HYPOTHESIS 3: ARITHMETIC ABILITY AND PATTERN RECOGNITION

Let M be an LLM and M ′ be the same LLM with impaired arithmetic ability.

1) Define arithmetic ability α(M) as accuracy on basic arithmetic tasks:

α(M) = Ex,y[⊮[M(”What is x+ y?”) = x+ y]]

2) Define reasoning ability ρ(M) as accuracy on non-arithmetic reasoning tasks:

ρ(M) = Eq∈Q[⊮[M(q) = correct]]

where Q is a set of logical reasoning questions.

3) Obtain M ′ by training M on incorrect arithmetic examples while preserving reasoning:{
α(M ′) ≪ α(M)

ρ(M ′) ≈ ρ(M)

4) Hypothesis holds if:
Ef∈D[AM (f)] ≫ Ef∈D[AM ′(f)]

where δ is small and dataset D is arbitrary. To falsify the hypothesis, we show the difference is
negligble or reversed for certain datasets.

37


	Introduction
	Related Work
	Time Series Anomaly Detection: Definition and Categorization
	Time Series Anomaly Detection Definition
	Time Series Anomalies Categorization
	Out-of-range Anomalies
	Contextual Anomalies

	Time Series Forecasting vs. Anomaly Detection

	Understanding LLM's Understanding of Time Series
	Hypotheses
	Prompting Strategies
	Input Representation
	Output Format


	Experiment
	Experiment Setup
	Experiment Results

	Conclusion
	Model Details
	(M)LLM Architectures and Validation
	Model Deployment
	Variants Namecode
	Variants Specifications
	Miscellaneous

	Dataset Details
	Dataset Types and Their Characteristics
	Anomaly Generation Process

	Other Findings
	Full Experiment Results
	Mathematical Formulations of Hypotheses 2 and 3
	Hypothesis 2: Repetition Bias and Periodicity Detection
	Hypothesis 3: Arithmetic Ability and Pattern Recognition


