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Abstract

The few-shot natural language understanding001
(NLU) task has attracted much recent attention.002
However, prior methods have been evaluated003
under a disparate set of protocols, which hin-004
ders fair comparison and measuring progress005
of the field. To address this issue, we intro-006
duce an evaluation framework that improves007
previous evaluation procedures in three key008
aspects, i.e., test performance, dev-test corre-009
lation, and stability. Under this new evalua-010
tion framework, we re-evaluate several state-011
of-the-art few-shot methods for NLU tasks.012
Our framework reveals new insights: (1) both013
the absolute performance and relative gap of014
the methods were not accurately estimated in015
prior literature; (2) no single method domi-016
nates most tasks with consistent performance;017
(3) improvements of some methods diminish018
with a larger pretrained model; and (4) gains019
from different methods are often complemen-020
tary and the best combined model performs021
close to a strong fully-supervised baseline. We022
open-source our toolkit, FewNLU, that imple-023
ments our evaluation framework along with a024
number of state-of-the-art methods.025

1 Introduction026

Few-shot learning for natural language understand-027

ing (NLU) has been significantly advanced by028

pretrained language models (PLMs; Brown et al.,029

2020; Schick and Schütze, 2021a,b). With the goal030

of learning a new task with very few (usually less031

than a hundred) samples, few-shot learning benefits032

from the prior knowledge stored in PLMs. Various033

few-shot methods based on PLMs and prompting034

have been proposed (Liu et al., 2021b; Menon et al.,035

2021; Gao et al., 2020).036

Although the research of few-shot NLU is devel-037

oping rapidly, the lack of a standard evaluation038

protocol has become an obstacle hindering fair039

comparison between various methods on a com-040

mon ground and measuring progress of the field.041

While some works (Schick and Schütze, 2021b; 042

Menon et al., 2021) experimented with a fixed set 043

of hyper-parameters, prior work (Perez et al., 2021; 044

Zhang et al., 2020) noted that such a setting might 045

be exposed to the risk of overestimation .1 Other 046

works (Liu et al., 2021b; Gao et al., 2020; Perez 047

et al., 2021) proposed to use a small development 048

set to select hyper-parameters, but their evaluation 049

protocols vary in a few key aspects (e.g., how to 050

construct data splits), which in fact lead to large 051

differences as we will show (in Section 4.2). The 052

above phenomena highlight the need for a com- 053

mon protocol for the evaluation of few-shot NLU 054

methods. However, the fact that few-shot learn- 055

ing is extremely sensitive to subtle variations of 056

many factors (Dodge et al., 2020; Gao et al., 2020) 057

poses challenges for designing a solid evaluation 058

protocol. 059

In this work, aiming at addressing the aforemen- 060

tioned challenge, we propose an evaluation frame- 061

work for few-shot NLU. The evaluation framework 062

consists of a repeated procedure—selecting a hyper- 063

parameter, selecting a data split, training and eval- 064

uating the model. To set up a solid evaluation 065

framework, it is crucial to specify a key design 066

choice—how to construct data splits for model se- 067

lection. We conduct a comprehensive set of ex- 068

periments to answer the question. Specifically, we 069

propose a “Multi-Splits” strategy, which randomly 070

splits the available labeled samples into training 071

and development sets multiple times, followed by 072

aggregating the results from each data split. We 073

show that this simple strategy outperforms several 074

baseline strategies in three dimensions: (1) the test 075

set performance of the selected hyper-parameters; 076

(2) correlation between development set and true 077

test set performance; and (3) robustness to hyper- 078

parameter settings. 079

1This is because the fixed hyper-parameters are selected
according to practical considerations, which are informed by
the test set performance from previous evaluations.
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We then take a step further to re-evaluate recent080

state-of-the-art few-shot NLU methods under this081

common evaluation framework. Our re-evaluation082

leads to several key findings summarized in Sec-083

tion 2.084

To aid reproducing our results and benchmarking085

few-shot NLU methods, we open-source FewNLU,086

a toolkit that contains implementations of a number087

of state-of-the-art methods, data processing utili-088

ties, as well as our proposed evaluation framework.089

To sum up, our contributions are as follows.090

1. We introduce a new evaluation framework of091

few-shot NLU. We propose three desiderata of092

few-shot evaluation and show that our frame-093

work outperforms previous ones in these aspects.094

Thus our framework allows for more reliable095

comparison of few-shot NLU methods.096

2. Under the new evaluation framework, we bench-097

mark the performance of recent methods indi-098

vidually as well as the best performance with099

a combined approach. These benchmarks re-100

flect the current state of the art and will serve as101

important baselines for future research.102

3. Throughout our exploration, we arrive at several103

key findings summarized in Section 2.104

4. We open-source a toolkit, FewNLU, to facilitate105

future research with our framework.106

2 Summary of Findings107

For reference, we collect our key findings here and108

discuss each of them throughout the paper.109

Finding 1. Our proposed Multi-Splits is a more110

reliable data-split strategy than several baselines111

with improvements in (1) test performance, (2) cor-112

relation between development and test sets, and (3)113

stability w.r.t. the number of runs.114

Finding 2. The absolute performance and the rela-115

tive gap of few-shot methods were in general not116

accurately estimated in prior literature. It highlights117

the importance of evaluation for obtaining reliable118

conclusions. Moreover, the benefits of some few-119

shot methods (e.g., ADAPET) decrease on larger120

pretrained models.121

Finding 3. Gains of different methods are largely122

complementary. A combination of methods largely123

outperforms individual ones, performing close to a124

strong fully-supervised baseline with RoBERTa.125

Finding 4. No single few-shot method dominates126

most NLU tasks. This highlights the need for the127

development of few-shot methods with more con-128

sistent and robust performance across tasks. 129

3 Related Work 130

The pretraining-finetuning paradigm (Howard and 131

Ruder, 2018) shows tremendous success in few- 132

shot NLU tasks. Various methods have been devel- 133

oped such as [CLS] classification (Devlin et al., 134

2018), prompting-based methods with discrete 135

prompts (Schick and Schütze, 2021b; Gao et al., 136

2020) or continuous prompts (Liu et al., 2021b; 137

Shin et al., 2020; Li and Liang, 2021; Lester et al., 138

2021), and methods that calibrate the output distri- 139

bution (Yang et al., 2021; Zhao et al., 2021). 140

The fact that few-shot learning is sensitive to 141

many factors and thus is extremely unstable (Liu 142

et al., 2021a; Lu et al., 2021; Zhang et al., 2020; 143

Dodge et al., 2020) increases the difficulty of few- 144

shot evaluation. Several works address evaluation 145

protocols to mitigate the effects of instability: Gao 146

et al. (2020) and Liu et al. (2021b) adopt a held-out 147

set to select models. Perez et al. (2021) proposed 148

K-fold cross-validation and minimum description 149

length evaluation strategies. Our work differs from 150

these works on few-shot evaluation in several as- 151

pects: (1) we propose three metrics to evaluate data 152

split strategies; (2) while most prior work proposed 153

evaluation protocols without justification, we con- 154

duct comprehensive experiments to support our key 155

design choice; (3) we formulate a general evalu- 156

ation framework; (4) our re-evaluation under the 157

proposed framework leads to several key findings. 158

Bragg et al. (2021) and Ye et al. (2021) pro- 159

posed few-shot NLP benchmarks FLEX and Cross- 160

Fit respectively. Both FLEX and CrossFit study 161

principles of designing tasks, datasets, and metrics, 162

while we focus on addressing inherent problems of 163

the evaluation procedure. 164

4 Evaluation Framework 165

Formally, for a few-shot NLU task, we have a small 166

labeled set Dlabel = {(xi, yi)}Ni and a large test set 167

Dtest = {(xtest
i , ytest

i )}i where N is the number of 168

labeled samples, xi is a text input (consisting of 169

one or multiple pieces), and yi ∈ Y is a label. The 170

goal is to finetune a pretrained model with Dlabel to 171

obtain the best performance on Dtest. An unlabeled 172

set Dunlab = {xunlab
i }i may additionally be used by 173

semi-supervised few-shot methods (§5.1). 174
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4.1 Formulation of Evaluation Framework175

Our preliminary results (in Appendix §A.1) show176

that using a fixed set of hyper-parameters (Schick177

and Schütze, 2021a,b) is sub-optimal, and model se-178

lection is required. It motivates us to study a more179

robust evaluation framework for few-shot NLU.180

The goal of an evaluation framework is twofold:181

(1) benchmarking few-shot methods for NLU tasks182

such that they can be fairly compared and evalu-183

ated; and (2) obtaining the best few-shot perfor-184

mance in practice. In light of the two aspects, we185

propose the few-shot evaluation framework in Al-186

gorithm 1.187

The framework searches over a hyper-parameter188

space H to evaluate a given few-shot method M ,189

obtaining the best hyper-parameter setting h? and190

its test set results. 2 The measurement for each h191

is estimated by performing training and evaluation192

on multiple data splits (obtained by splitting Dlabel193

according to a strategy) and reporting their average194

dev set results. Finally, the method is evaluated195

on Dtest using the checkpoints corresponding to196

h?. For benchmarking, we report the average and197

standard deviation over multiple test set results.198

Otherwise, that is, to achieve a model with the199

best practical performance, we re-run on the entire200

Dlabel with h?.201

The framework requires specifying a key design202

choice—how to construct the data splits, which we203

will discuss in §4.2.204

4.2 How to Construct Data Splits205

4.2.1 Desiderata: Performance, Correlation,206

and Stability207

We first propose the following three key desiderata208

for the evaluation of different data split strategies.209

1. Performance of selected hyper-parameter. A210

good data split strategy should select a hyper-211

parameter that can achieve a good test set perfor-212

mance. We use the same metrics as (Schick and213

Schütze, 2021b), along with standard deviations.214

2. Correlation between dev and test sets (over a215

hyper-parameter distribution). Since a small216

dev set is used for model selection, it is impor-217

tant for a good strategy to obtain a high corre-218

lation between the performances on the small219

dev set and test set over a distribution of hyper-220

2For simplicity and ease of use, we use grid search for
searching the hyper-parameter space H and identify critical
hyper-parameters to limit its size. More complex search meth-
ods such as Bayesian Optimization (Snoek et al., 2012) could
be used to search over larger hyper-parameter spaces.

Algorithm 1: A Few-Shot Evaluation Framework
Data: Dlabel, Dtest, a hyper-parameter spaceH, a

few-shot method M , the number of runs K.
Result: test performance; best hyper-parameter h?.

1 for k ← 1 · · ·K do
2 Divide Dlabel into Dk

train and Dk
dev according to a

data-split strategy;
3 end
4 for h ∈ H do
5 for k ← 1 · · ·K do
6 Run the method M by training on Dk

train and
evaluating on Dk

dev;
7 Report the dev-set performance Ph,k

dev .
8 end
9 Compute the mean and standard deviation over

K dev-set results, Ph
dev ± Sh

dev;
10 end
11 Select h? with the best Ph

dev.;
12 if the goal is to evaluate a method then
13 Evaluate on the test set Dtest with the K

checkpoints that correspond to h?;
14 Report the mean and standard deviation over the

K test results Ph?
test ± Sh?

test .
15 else if the goal is to obtain the best performance then
16 Re-run on the entire Dlabel using fixed h? with L

different random seeds;
17 Evaluate on the test set with the L checkpoints;
18 Report the mean and stddev over L test results.
19 end

parameters. We report the Spearman’s rank cor- 221

relation coefficient for measurement. 222

3. Stability w.r.t. number of runs K. The choice 223

of the hyper-parameter K should have small im- 224

pacts on the above two metrics (i.e., performance 225

and correlation). To analyze the stability w.r.t K, 226

we report the standard deviation over multiple 227

different values of K. Besides, it is desirable to 228

have reduced variance when K increases. Thus 229

we report the above two metrics with different 230

values of K and the standard deviation of test 231

scores over K runs. 232

4.2.2 Data Split Strategies 233

We consider several data split strategies. Some are 234

proposed by previous work, including K-fold cross 235

validation (CV) (Perez et al., 2021), minimum de- 236

scription length (MDL) (Perez et al., 2021), and 237

bagging (BAG) (Breiman, 1996). We also consider 238

two simple strategies worth exploring, including 239

random sampling (RAND) and model-informed 240

splitting (MI). And we propose a new data split 241

strategy, Multi-Splits (MS). Besides, we also ex- 242

periment a special case of CV when K equals the 243

number of labeled sample, which is leave-of-out 244

cross validation (LOOCV). Since LOOCV takes 245

much longer time and suffers from efficiency prob- 246
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#Train #Dev

CV (K − 1) × N/K N/K
MDL N/2 + N(k − 1)/(2K) N/(2K)
BAG N × r > (N × (1 − r))
RAND N × r N × (1 − r)
Multi-Splits N × r N × (1 − r)

Table 1: Number of examples of training and development
sets for different strategies. N : number of labeled data, K:
number of runs, k: the kth split for MDL; r: split ratio. MI is
omitted since its number of examples depends on the dataset.

lem, we only experimented on several tasks and247

left the results in Appendix A.2.4. They all fit into248

the pipeline of the proposed framework in §4.1:249

1. K-fold CV equally partitions Dlabel into K250

folds. Each time, it uses the kth fold for vali-251

dation and the other K − 1 folds for training.252

2. MDL assigns half of Dlabel as the joint training253

data and equally partitions the other half into K254

folds. Each time, it uses the kth fold for vali-255

dation, and all its previous k − 1 folds together256

with the joint training data for training.257

3. Bagging samples N × r (r ∈ (0, 1] is a fixed ra-258

tio) examples with replacement from the labeled259

sample as the training set, leaving samples that260

do not appear in the train set for validation.261

4. Random Sampling performs random sampling262

without replacement from Dlabel twice, respec-263

tively sampling N × r and N × (1− r) data as264

the training and development sets.265

5. Model-Informed Splitting computes represen-266

tations of each labeled example using a model,267

and clusters them into two distinct sets, respec-268

tively as the training and development sets. 3269

6. Multi-Splits randomly splits Dlabel into training270

and development sets using a fixed split ratio r.271

Essentially, these data split strategies differ in272

several key aspects.273

1. For CV and MDL, K controls the number of274

runs and the split ratio. For Multi-Splits, BAG275

and RAND, the split ratio is decoupled from K276

and is controlled by r. For MI, the split ratio and277

number of runs depend on Dlabel.278

2. They use a different amount of data for training279

and development sets as Table 1 shows.280

3. There are cases when CV and MS share the same281

split ratio. The difference is that MS allows282

overlap between splits while CV does not.283

4. BAG allows duplicated training data, while284

RAND and Multi-Splits do not. The training285

and development sets do not overlap for BAG286

and Multi-Splits but overlap for RAND.287

3Specifically, we used a BERT-Base model to encode data
and take the [CLS] representations.

In the limit, our Multi-Splits is similar to leave- 288

P -out cross-validation (LPOCV; Celisse, 2014)4 289

where LPOCV runs
(
N
P

)
times (P is the number 290

of dev set examples) while Multi-Splits runs K 291

times. As K increases, Multi-Splits gradually ap- 292

proaches LPOCV. Since it is impossible to enumer- 293

ate the large number of possible splits in practice, 294

Multi-Splits can be viewed as a practical version 295

of LPOCV. Compared to the strategy of (Gao et al., 296

2020) that uses multiple datasets, our Multi-Splits 297

uses multiple data splits for a single dataset. It 298

is thus more practical as in real-world scenarios, 299

it is hard to obtain multiple labeled datasets for 300

a true few-shot problem; otherwise, it could be 301

formulated as a fully-supervised learning problem. 302

The strategy in (Liu et al., 2021b) is a special case 303

of Multi-Splits when K = 1, which suffers from 304

higher variance. 305

4.2.3 Experimental Setup 306

To evaluate different data split strategies, we exper- 307

iment on the FewGLUE benchmark (Schick and 308

Schütze, 2021b). We evaluate strategies based on 309

the widely used prompt-based few-shot method 310

PET (Schick and Schütze, 2021b) with DeBERTa 311

as the base model.5 We run experiments on the 312

same tasks with the same hyper-parameter space 313

to ensure a fair comparison; in this experiment 314

we search learning rate, evaluation ratio, prompt 315

pattern and maximum training step. More experi- 316

mental details are in Appendix A.2. 317

4.2.4 Main Results and Analysis 318

Table 2, Table 3 and Figure 1 show the main results 319

with 64 labeled samples. Results with 32 labeled 320

samples are in Appendix A.2. 321

Test Performance and Correlation. From both 322

Table 2 and Table 3, we find that Multi-Splits 323

achieves the best average test set performance as 324

well as the best average correlation among all strate- 325

gies. We analyze them as follows:6 326

1. Multi-Splits uses fewer labeled samples for train- 327

ing (i.e., 128) while CV and MDL use more (i.e., 328

192 and 176). Despite using more training data, 329

both CV and MDL do not perform better. This 330

4Leave-P -out cross-validation uses P data examples as
the development set and the remaining data examples as the
training set. This is repeated on all ways to cut the labeled
dataset in a development set and a training set.

5We fixed the parameters of DeBERTa’s bottom third lay-
ers due to GPU memory limitations, which did not affect the
performance much in our preliminary experiments.

6In the following explanation, the numbers refer to the
total training/development data covering K=4 runs.
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BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

CV 82.71 ±1.29 77.80 ±2.25 64.42 ±1.63 90.18 ±2.31 87.52 ±2.20 80.08 ±1.15 45.02 ±1.46 82.45 ±3.71 92.25 ±1.71 78.72
MDL 76.43 ±7.12 83.94 ±1.49 63.68 ±3.38 84.38 ±5.13 82.03 ±5.69 77.63 ±1.20 43.81 ±1.32 81.49 ±3.95 89.50 ±3.32 77.00
BAG 81.77 ±1.48 77.98 ±1.56 65.56 ±3.26 87.50 ±6.90 77.15 ±13.76 79.62 ±1.26 43.60 ±1.98 85.34 ±2.87 88.75 ±3.10 77.62
RAND 78.79 ±5.40 82.13 ±0.91 59.60 ±3.89 86.16 ±3.05 74.04 ±12.94 80.14 ±2.20 44.88 ±4.45 84.38 ±2.99 90.75 ±3.59 76.89
MI 78.25 ±1.59 77.35 ±4.06 64.66 ±1.48 88.84 ±1.71 84.75 ±4.32 76.75 ±0.44 40.95 ±0.10 83.41 ±6.00 78.75 ±8.06 75.44

MS 82.67 ±0.78 79.42 ±2.41 67.20 ±1.34 91.96 ±3.72 88.63 ±4.91 78.20 ±1.86 42.42 ±3.04 84.13 ±4.87 89.00 ±2.94 79.00

Table 2: Test performance of different data-split strategies with PET on FewGLUE (K=4).Larger scores means the
strategy effectively selects a model that achieves better test set performance.

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
CV -0.0497 0.8561 0.8184 0.5286 0.2283 0.1507 0.5668 0.4427
MDL -0.1143 0.7806 0.6326 0.3274 0.1910 0.1278 0.6342 0.3685
BAG 0.5533 0.8714 0.9572 0.6809 0.6340 0.2550 0.7491 0.6716
RAND 0.7453 0.7602 0.8048 0.6764 0.3253 0.0795 0.9004 0.6131
MI 0.5651 0.6832 0.7780 0.6618 0.6651 0.0200 0.5902 0.5662

MS 0.7079 0.8266 0.9464 0.7558 0.4983 0.3986 0.8997 0.7190

Table 3: Correlation results of different data-split strategies with PET on FewGLUE (K=4). Larger values means the strategy is
better at selecting the best test results using dev sets.

indicates few-shot performance is limited by not331

being able to select the best model rather than332

not having sufficient training data. Both CV and333

MDL use fewer data for validation (i.e., 64 and334

32) than Multi-Splits (i.e., 128), thus leading to335

poor correlation.336

2. Although Multi-Splits and BAG use the same337

number of training data (i.e., 128), there could be338

duplication in the training set of BAG, making it339

poor in diversity and further leading to lower test340

performance, compared to Multi-Splits. This in-341

dicates diversity of training sets is crucial when342

constructing few-shot data splits.343

3. RAND uses similar-sized dev and train sets to344

BAG and MS but performs worse in test perfor-345

mance. Since there could be overlap between346

train and dev sets, the model may have memo-347

rized data, leading to poor test performance.348

4. MI constructs very different train and dev sets.349

Overfitting on one of them and validating on350

the other pose more challenges for the few-shot351

method on out-of-distribution tasks.352

Stability w.r.t. the number of runs K. Figure 1353

shows the results on stability. In light of limited354

computation resources, we only experiment with355

some representative strategies. Both CV and MDL356

represent strategies whose number of runs are cou-357

pled with the size of data split, while Multi-Splits358

represents strategies that have a fixed ratio and in-359

dependent K. We observe: (1) Multi-Splits (blue360

lines) is the most stable in correlation and perfor-361

mance, while other strategies CV and MDL are362

more sensitive to the choice of K. (2) Multi-Splits363
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Figure 1: Test performance, correlation and standard de-
viation along with different K on BoolQ, RTE, and COPA
tasks under different strategies. A smooth and stable dot-line
indicates the setting is insensitive to the choice of K.

shows the smallest variance over multiple runs on 364

both BoolQ and RTE. For COPA, though Multi- 365

Splits shows high variance when K = 2, the vari- 366

ance becomes smaller with larger K, while CV and 367

MDL suffer from increasing or unstable variance. 368

A possible explanation is that increasing K does 369

not affect the number of training and development 370

examples for Multi-Splits; instead, it increases the 371

confidence of results. An important practical ben- 372

efit of Multi-Splits is that one can always choose 373

to increase K for lower variance. However, for CV 374

and MDL, the sizes of training and development 375

sets are affected by K, where extremely large K 376

value leads to a failure mode and extremely small 377

K leads to unstable results. In practice, it is hard 378

to know which value of K to use a priori. 379

To sum up, based on the aforementioned results 380

and analysis, we arrive at the following finding. 381

Finding 1. Our proposed Multi-Splits is a more 382
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reliable data-split strategy than several baselines383

with improvements in (1) test performance, (2) cor-384

relation between development and test sets, and (3)385

stability w.r.t. number of runs.386

Remark Our evaluation framework is better in387

terms of test performance, dev-test correlation, and388

stability, which proves it can achieve possible peak389

performance, reliably select the corresponding hy-390

perparameters according to dev results without391

overfitting, and mitigate the effects of randomness392

to the maximum extent. Therefore, the estima-393

tion of our evaluation framework for model perfor-394

mance is more reliable than previous evaluations.395

5 Re-Evaluation of State-of-the-Art396

Methods397

5.1 Few-Shot Methods398

We now proceed to re-evaluate state-of-the-art few-399

shot methods under our evaluation framework with400

the Multi-Splits strategy. We consider two types:401

minimal few-shot methods, which only assume ac-402

cess to a small labeled dataset, including Classifi-403

cation (CLS; Devlin et al., 2018), PET (Schick and404

Schütze, 2021b), ADAPET (Menon et al., 2021),405

P-tuning (Liu et al., 2021b) and FlipDA (Zhou406

et al., 2021); and semi-supervised few-shot meth-407

ods, which allow accessing an additional unlabeled408

dataset, including PET+MLM (Schick and Schütze,409

2021a), iPET (Schick and Schütze, 2021b) and410

Noisy Student (Xie et al., 2020).411

5.2 Experimental Setup412

The same benchmark datasets, metrics, and hyper-413

parameter space as in §4.2.3 are used. We use414

32 labeled samples for training. We consider two415

labeling strategies to obtain the pseudo-labels on416

unlabeled samples used by the semi-supervised417

methods for self-training, including single-split la-418

beling and cross-split labeling. In the single-split419

setting (Schick and Schütze, 2021b), pseudo-labels420

are generated by the models trained on the same421

data split. In the cross-split setting in our evalua-422

tion framework, the pseudo-labels are generated by423

the models trained on multiple different data splits.424

More configuration details are in Appendix A.4.425

5.3 Main Results and Analysis426

Re-Evaluation Results Table 4 shows our re-427

evaluation results. The prompt-based fine-tuning428

paradigm significantly outperforms the classifica-429

tion fine-tuning on all tasks and on both pretrained430

models (with an advantage of more than 15 points 431

on average). DeBERTa outperforms ALBERT con- 432

sistently. We observe significant differences in per- 433

formance between different prompt-based minimal 434

few-shot methods with ALBERT (e.g., ADAPET 435

and FlipDA outperform PET respectively by about 436

4 points and 2 points on average) while differences 437

with DeBERTa are slight (e.g., PET, ADAPET, P- 438

tuning, and FlipDA have a performance gap of 439

only about 1.0 points on average). In contrast, semi- 440

supervised few-shot methods (i.e., iPET and Noisy) 441

generally improve 1–2 points on average compared 442

to minimal few-shot methods on both models. 443

Comparison to Prior Evaluations Since we have 444

proved that our evaluation framework is more reli- 445

able in estimating method performance as shown 446

in Section 4.2.4, we conduct experiments to com- 447

pare the estimates by our evaluation framework and 448

prior evaluations to study whether model perfor- 449

mance was accurately estimated in prior work. 450

Table 6 lists the absolute performance from prior 451

evaluations and our evaluation. Results show the 452

absolute performance of few-shot methods in prior 453

evaluations was generally overestimated on RTE 454

and COPA. Similar findings have been highlighted 455

in prior works (Perez et al., 2021; Zhang et al., 456

2020), and our evaluation framework confirms the 457

findings under a more reliable setup. This results 458

from a more reliable evaluation procedure that em- 459

phasizes dev-test correlation to prevent overfitting 460

(discussed in Section 4.2). 461

Besides, the relative gaps between different 462

methods were not accurately estimated by the prior 463

reported numbers. For example, according to the 464

reported results in prior works, ADAPET outper- 465

forms P-Tuning on COPA and P-Tuning beats 466

ADAPET on WiC, while our evaluation reveals the 467

opposite. On one hand, this is because prior results 468

were obtained under a less reliable evaluation pro- 469

cedure (discussed in Section 4.2). Deviation in the 470

estimates of absolute performance contributes to 471

inaccuracy in the estimates of relative performance. 472

On the other, prior experiments were not conducted 473

under a shared evaluation procedure. These two 474

factors are corrected by our re-evaluation under the 475

more reliable proposed framework. 476

To sum up, our re-evaluation compares all meth- 477

ods on a common ground, revealing the following: 478

Finding 2. The absolute performance and the rela- 479

tive gap of few-shot methods were in general not 480

accurately estimated in prior literature. This is 481
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Base
Models

Few-Shot
Methods

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

ALBERT

CLS 55.01 53.97 50.82 67.97 52.18 59.95 18.86 52.64 64.25 53.74
±2.95 ±5.49 ±3.02 ±18.29 ±10.30 ±10.69 ±9.80 ±10.25 ±9.36

PET 76.70 72.83 53.87 84.38 62.56 76.51 36.46 80.05 81.75 70.74
±1.85 ±1.30 ±4.47 ±4.47 ±7.66 ±1.52 ±2.13 ±2.53 ±4.03

ADAPET 79.24 74.28 58.07 92.86 89.99 77.24 37.17 78.85 81.75 74.40
±1.42 ±3.57 ±2.96 ±1.46 ±3.91 ±1.99 ±2.64 ±4.51 ±3.95

P-tuning 76.55 63.27 55.49 88.39 84.24 75.91 38.01 78.85 85.25 71.81
±2.68 ±3.63 ±1.21 ±3.72 ±5.15 ±1.74 ±0.78 ±1.76 ±3.30

FlipDA 77.95 70.85 57.17 83.93 74.30 76.05 35.68 79.57 87.50 72.57
±2.60 ±2.71 ±2.59 ±4.37 ±13.23 ±1.33 ±1.44 ±1.82 ±3.70

PET+MLM3 76.83 71.48 52.39 83.93 67.37 75.15 35.68 81.97 85.75 71.36
±1.18 ±1.64 ±1.44 ±5.05 ±8.31 ±0.34 ±1.10 ±1.82 ±3.40

iPET(single)3,4 74.29 72.35 54.78 84.67 76.92 76.33 37.72 77.80 84.00 71.58
±4.10 ±3.71 ±3.93 ±3.18 ±5.44 ±1.18 ±2.58 ±2.79 ±6.02

Noisy(single)3,4 76.11 72.62 54.11 84.38 72.57 76.59 37.00 79.17 83.50 71.54
±2.16 ±2.80 ±1.98 ±5.60 ±11.84 ±1.40 ±2.34 ±3.31 ±3.34

iPET(cross)3,4 76.83 74.28 58.35 83.48 73.86 75.71 37.30 76.44 83.25 72.05
±1.39 ±4.31 ±2.42 ±2.68 ±2.48 ±2.14 ±2.71 ±2.78 ±4.19

Noisy(cross)3,4 75.64 75.27 56.43 84.82 77.79 77.11 38.25 80.53 83.00 72.84
±1.82 ±1.97 ±2.67 ±4.49 ±8.46 ±1.49 ±0.92 ±7.17 ±4.76

DeBERTa

CLS 59.49 49.55 54.08 68.30 60.10 75.42 34.23 53.13 85.25 60.07
±1.74 ±2.23 ±2.15 ±3.96 ±10.14 ±2.39 ±5.02 ±5.17 ±2.22

PET 82.67 79.42 67.20 91.96 88.63 78.20 42.42 84.13 89.00 79.00
±0.78 ±2.41 ±1.34 ±3.72 ±4.91 ±1.86 ±3.04 ±4.87 ±2.94

ADAPET 81.28 82.58 66.50 89.73 86.63 77.88 43.05 85.34 88.75 79.01
±1.26 ±2.44 ±2.11 ±6.08 ±7.29 ±2.55 ±3.60 ±2.13 ±4.43

P-tuning 82.25 82.22 66.22 94.20 91.76 78.45 43.78 85.10 86.50 79.48
±0.85 ±1.23 ±1.18 ±2.25 ±3.30 ±1.46 ±3.93 ±4.87 ±3.70

FlipDA 83.52 80.14 65.28 95.09 93.57 80.21 46.67 85.34 90.50 80.37
±0.35 ±1.93 ±1.56 ±2.68 ±2.62 ±1.35 ±0.82 ±3.27 ±1.00

PET+MLM3 82.80
::::
83.30 58.23 90.18 87.18 77.05 40.63 81.73 85.75 77.05

±0.97 ±2.40 ±4.98 ±3.09 ±6.17 ±1.80 ±1.64 ±5.77 ±3.40

iPET(single)3,4 81.27 81.11 64.75 89.88 87.70
::::
79.99

::::
45.23 82.93 90.83 78.90

±1.61 ±1.89 ±4.27 ±5.01 ±6.52 ±1.94 ±2.19 ±3.76 ±2.79

Noisy(single)3,4 81.60 81.95 65.97
::::
91.67 89.17 79.85 45.10 84.46 90.67 79.65

±1.54 ±2.01 ±2.44 ±2.33 ±2.95 ±1.22 ±2.58 ±2.49 ±2.53

iPET(cross)3,4
::::
83.45 83.12

::::
69.63 91.52

::::
90.72 79.92 44.96

::::
86.30

:::::
93.75 81.40

±0.90 ±1.04 ±2.15 ±3.05 ±2.68 ±1.11 ±3.13 ±1.64 ±2.99

Noisy(cross)3,4 82.19 81.95 68.26 90.18 86.74 79.48 44.20 83.41
:::::
93.75 79.98

±0.65 ±0.51 ±1.12 ±2.31 ±3.00 ±2.53 ±4.14 ±4.18 ±3.30

DeBERTa
Our Best3,4 84.0 85.7 69.6 95.1 93.6 81.5 48.0 88.4 93.8 85.441

(few-shot) ±0.55 ±0.63 ±2.15 ±2.68 ±2.62 ±0.76 ±0.99 ±2.82 ±2.99

RoBERTa
RoBERTa 5

(fully sup.) 86.9 86.6 75.6 98.2 - 85.7 - 91.3 94.0 88.33

DeBERTa
DeBERTa 2

(fully sup.) 88.3 93.5 - - - 87.8 63.6 - 97.0 -

1 For comparison with RoBERTa (fully sup.), the average of Our Best (few-shot) 85.17 excludes MultiRC-EM and CB-F1.
2 The fully-supervised results on DeBERTa are reported in https://github.com/THUDM/GLM.
3 Unlabeled data are used.
4 The ensemble technique is used.
5 The RoBERTa (fully-sup.) results by (Liu et al., 2019). RoBERTa-large has less parameters than DeBERTa-xxlarge-v2.

Table 4: Re-evaluation of few-shot methods on ALBERT and DeBERTa under our evaluation framework with Multi-Splits
strategy on test set of our setup. For iPET and Noisy Student, (cross) and (single) respectively means cross-split labeling and
single-split labeling strategies as introduced in §5.2. “Our Best (few-shot)” is the results achieved by a combination method as
introduced in §5.4. Globally best results for each task are in bold. Best results for minimal few-shot methods are underlined.
:::
Best

:::::
results

:::
for

::::::::::::
semi-supervised

:::::::
few-shot

::::::
methods are marked with wavelines.

BoolQ RTE WiC CB MultiRC WSC COPA
Minimal Few-Shot Methods PET ADAPET PET FlipDA ADAPET ADAPET PET
Training Paradigm iPET(cross) Noisy(cross) iPET(cross) single Noisy(cross) Noisy(single) iPET(cross)
+ MLM X - - - - - -

Table 5: The combination of methods that achieves the best few-shot performance for each task. There are five minimal few-shot
methods and five training paradigms as combined options, as §5.4 illustrates. “+MLM” means adding an additional MLM loss.

7

https://github.com/THUDM/GLM


Methods RTE WiC COPA
Prev. Ours Prev. Ours Prev. Ours

PET 69.80 72.83 52.40 53.87 95.00 81.75

ADAPET 76.50 74.28
::::
54.40

::::
58.07 89.00 81.75

P-tuning 76.50 63.27
::::
56.30

::::
55.49 87.00 85.25

FlipDA 70.67 70.85 54.08 57.17 89.17 87.50

+MLM 62.20 71.48 51.30 52.39 86.70 85.75

iPET 74.00 72.35 52.20 54.78 95.00 84.00

Table 6: Comparison of prior evaluations and our evaluation.
We report the absolute performance of different methods re-
spectively from previous evaluation (Prev.) and our evaluation
framework (Ours.) on RTE, WiC and COPA tasks. The results
are based on ALBERT. Results of previous evaluation are
taken from the original papers, including ADAPET (Menon
et al., 2021), P-tuning (Liu et al., 2021b), FlipDA (Zhou et al.,
2021) and iPET (Schick and Schütze, 2021b). Since (Schick
and Schütze, 2021a) reported results of PET+MLM on dif-
ferent tasks, we re-experimented on the same tasks under
the same setting as (Schick and Schütze, 2021a).

::::
Wave

::::
lines

and Underlines indicate examples of inaccurate estimates of
relative gaps in prior works (see text for details).

corrected by our new evaluation framework with482

improved reliability. It highlights the importance483

of evaluation for obtaining reliable conclusions.484

Moreover, the benefits of some few-shot methods485

(e.g., ADAPET) decrease on larger pretrained mod-486

els like DeBERTa.487

5.4 What is the Best Performance Few-Shot488

Learning can Achieve?489

We further explore the best few-shot performance490

by combining various methods, and evaluating un-491

der our evaluation framework. For combined op-492

tions, we consider five minimal few-shot methods493

(i.e., CLS, PET, ADAPET, P-tuning, and FlipDA),494

five training paradigms (i.e., single-run, iPET (sin-495

gle/cross), and Noisy Student (single/cross)), and496

the addition of a regularized loss (+MLM). We ex-497

periment with all possible combinations and report498

the best for each task.499

“Best (few-shot)” in Table 4 achieves the best500

results on all tasks among all methods. Existing501

few-shot methods can be practically used in com-502

bination. Compared to RoBERTa (fully-sup) (Liu503

et al., 2019), the performance gap has been further504

narrowed to 2.89 points on average.7 Compared to505

DeBERTa (fully-sup), there is still a sizeable gap506

between few-shot and fully-supervised systems.507

We list the best-performing combination for each508

task in Table 5. The best combinations are very dif-509

ferent across tasks, and there is no single method510

7Note that the gap could be larger since RoBERTa-Large
has a smaller number of parameters than DeBERTa, and
RoBERTa (fully-sup) does not incorporate additional ben-
eficial techniques such as ensembling or self-training.

that dominates most tasks. PET and ADAPET as 511

well as iPET and Noisy Student are about equally 512

preferred while cross-split labeling and no regular- 513

ization term perform better. We thus recommend 514

future work to focus on the development of meth- 515

ods that achieve consistent and robust performance 516

across tasks. We summarize the following findings: 517

Finding 3. Gains of different methods are largely 518

complementary. A combination of methods largely 519

outperforms individual methods, performing close 520

to a strong fully-supervised baseline on RoBERTa. 521

However, there is still a sizeable gap between the 522

best few-shot and the fully-supervised system. 523

Finding 4. No single few-shot method dominates 524

most NLU tasks. This highlights the need for the 525

development of few-shot methods with more con- 526

sistent and robust performance across tasks. 527

6 FewNLU Toolkit 528

We open-source FewNLU, an integrated toolkit 529

designed for few-shot NLU. It contains implemen- 530

tations of state-of-the-art methods, data processing 531

utilities, a standardized few-shot training frame- 532

work, and most importantly, our proposed evalua- 533

tion framework. Figure 2 shows the architecture. 534

We hope FewNLU could facilitate benchmarking 535

few-shot learning methods for NLU tasks and ex- 536

pendit the research in this field.
Evaluation Framework
- Multi-Splits
- K-fold Cross Validation
- Minimum Description Length

Training Framework
Iterative-run 

training process
single-run 

training process

Few-shot Methods

CLS PET ADAPET P-tuning iPET Noisy Student

Data Utilities

Pretrained Language Models (e.g., ALBERT, DeBERTa)

Preprocessor

Patterns

SuperGLUE
Benchmark

Customized Tasks

Customized 
Methods

Figure 2: Architecture of FewNLU. 537

7 Conclusions 538

We introduce an evaluation framework, re-evaluate 539

a number of few-shot learning methods under the 540

evaluation framework with a novel Multi-Splits 541

strategy, and release a few-shot toolkit. Apart from 542

this, we also aim at advancing the development of 543

few-shot learning by sharing several new experi- 544

mental findings. We identify several new directions 545

for future work: (1) In practice, how to define the 546

hyper-parameter search space a priori is a challenge. 547

(2) It is critical for the community to iterate and 548

converge on a common evaluation framework. (3) 549

Few-shot natural language generation might also 550

be studied in a similar framework. 551
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A Appendix 705

A.1 Fixed Hyper-Parameters are not 706

Optimal 707

Some prior works (Schick and Schütze, 2021a,b; 708

Menon et al., 2021) perform few-shot learning with 709

a fixed set of hyper-parameters (determined by 710

practical considerations and experiences) without 711

early stopping and any model selection. 712

Hyper-Parameters Test Acc. Avg.P LR Step WR

Fixed

0

1e-5 250 0

69.31 ±4.39

67.36
1 61.13 ±0.91

2 63.06 ±1.50

3 63.06 ±1.82

4 80.26 ±1.85

Optimal

0 1e-5 300 0.05 72.44 ±1.85

70.42
1 5e-6 300 0.05 63.78 ±1.37

2 5e-6 300 0 69.07 ±5.55

3 5e-6 300 0 65.70 ±1.25

4 5e-6 300 0 81.11 ±1.37

Table 7: Performance of PET on RTE task with different
hyper-parameters. The patterns and fixed hyper-parameters
are reported by (Schick and Schütze, 2021b). Base model:
DeBERTa-xxLarge, “P”: pattern ID, “LR”: learning rate,
“Step”: number of training steps, “WR”: warmup ratio.

We first study how well fixed hyper-parameters 713

transfer to a new scenario, e.g. switching to an- 714

other base pretrained model. We perform prelim- 715

inary experiments on FewGLUE with 64 labeled 716

sample based on DeBERTa. Firstly, we experiment 717

with the fixed hyper-parameters used for ALBERT 718

in (Schick and Schütze, 2021b). Secondly, we man- 719

ually try other hyper-parameters to find out whether 720

there are better configurations. From Table 7, we 721

observe: 722

1. Certain factors, especially the patterns, impact 723

the performance a lot (best 80.26%, and worst 724

61.13%). However, we cannot differentiate be- 725

tween them without a development set. 726

2. There exists a hyper-parameter (“Optimal” in 727

Table 7) that performs much better than the fixed 728

one. A mechanism to identify the best hyper- 729

parameter setting is thus necessary. 730

3. Results show a good hyper-parameter on AL- 731

BERT does not work well on DeBERTa. Fixed 732

hyper-parameters are not optimal and we need 733

to re-select them given new conditions. 734

A.2 Details of How to Construct Data Splits 735

A.2.1 Datasets 736

To justify the proposed evaluation framework, we 737

perform experiments on the few-shot SuperGLUE 738

benchmark, which was constructed to include some 739
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of the most difficult language understanding tasks740

for current NLP approaches (Wang et al., 2019a).741

Unlike other NLU benchmarks (e.g., GLUE (Wang742

et al., 2019b)) that contain single-sentence tasks,743

SuperGLUE consists of complicated ones that are744

sentence-pair or sentence-triple tasks, which de-745

mand advanced understanding capabilities. Seven746

SuperGLUE tasks are considered, including ques-747

tion answering (BoolQ (Clark et al., 2019) & Mul-748

tiRC (Khashabi et al., 2018)), textual entailment749

(CB (De Marneffe et al., 2019) & RTE (Dagan et al.,750

2005)), word sense disambiguation (WiC (Pilehvar751

and Camacho-Collados, 2018)), causal reasoning752

(COPA (Roemmele et al., 2011)), and co-reference753

resolution (WSC (Levesque et al., 2012)).754

A.2.2 Hyper-parameters755

To quantitatively evaluate different data-split strate-756

gies, we perform extensive experiments with the757

following hyper-parameter search space. Data-split758

experiments are based on DeBERTa-xxLarge. The759

hyper-parameter search space is shown in Table 8.760

We use the same prompt patterns as in (Schick and761

Schütze, 2021b). To observe the changes of perfor-762

mance and correlation metrics w.r.t different K val-763

ues, we also experimented with K = {2, 4, 8, 16}764

over three tasks (i.e., BoolQ, RTE and COPA).765

Hyper-parameter Value
Learning Rate {5e− 6, 1e− 5}
Maximum Training Step {250, 500}
Evaluation Frequency {0.02, 0.04}
Number of Runs K 4
Split Ratio r for Multi-Splits 1:1

Table 8: Hyper-parameter Search Space for Data-Split
Strategy Evaluation

A.2.3 Evaluation Results with 32 Labeled766

Data767

In the data-split strategy evaluation, in addition to768

the 64-data-setting results in the main text, we also769

experimented with 32 labeled data as (Schick and770

Schütze, 2021b,a; Menon et al., 2021). The 32-771

data-setting results are also provided in Table 10.772

A.2.4 Leave-One-Out Cross Validation773

Results774

We also experiment another useful data split strat-775

egy, leave-one-out cross validation (LOOCV). In776

fact, LOOCV is a special case of K-fold cross vali-777

dation when K equals the number of labeled data.778

Since LOOCV takes even longer time than any779

other data split strategies, we only experimented780

BoolQ RTE WiC

Multi-Splits
Perf. 82.67

±0.78
79.42
±2.41

67.20
±1.34

Corr. 0.7079 0.8266 0.9464

CV
Perf. 82.71

±1.29
77.80
±2.25

64.42
±1.63

Corr. -0.0497 0.8561 0.8184

LOOCV
Perf. 80.20

±5.63
63.91
±5.37

62.40
±4.70

Corr. -0.8001 -0.5070 0.1998

Table 9: Test performance and correlation results of
leave-one-out cross validation on BoolQ, RTE and WiC
tasks with 64 labeled examples.

on three tasks, including BoolQ, RTE and WiC 781

tasks. Both performance and correlation results are 782

shown in Table 9. Our results show that compared 783

to other strategies, LOOCV achieved worse test 784

performance as well as correlation. LOOCV only 785

uses a single instance for validation each time, and 786

thus leads to poor correlation and random model 787

selection. As a result, the performance estimation 788

is subject to much randomness. 789

A.3 How to Define the Hyper-parameter 790

Search Space 791

Aside from how to construct the data splits, another 792

important question for the evaluation framework 793

is how to define the hyper-parameter search space. 794

We left this question in the future work. However, 795

we did several preliminary experiments that could 796

reveal certain insights on the problem. 797

A.3.1 Should We Search Random Seeds? 798

We focus on two types of factors that affect few- 799

shot evaluation, hyper-parameters and randomness. 800

Randomness could cause different weight initial- 801

ization, data splits, and data order during training. 802

Empirically, how randomness is dealt with differs 803

depending on the use case. In order to obtain the 804

best possible performance, one could search over 805

sensitive random factors such as random seeds. 806

However, as we focus on benchmarking few-shot 807

NLU methods, we report mean results (along with 808

the standard deviation) in our experiments in order 809

to rule out the effects of randomness and reflect the 810

average performance of a method for fair compari- 811

son and measurement. 812

A.3.2 Experiments 813

Experimental Setup To examine how a certain 814

factor affects few-shot performance, we assign mul- 815

tiple different values to a target factor while fixing 816

other hyper-parameters. We report the standard de- 817
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(a) Results of test performance of the selected hyper-parameter.

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
Acc. Acc. Acc. Acc. F1 F1a EM. Acc. Acc

CV 77.29 75.63 55.56 89.29 80.66 78.61 42.26 78.37 90.00 74.61
±3.32 ±4.26 ±1.06 ±3.86 ±14.87 ±0.84 ±2.07 ±4.26 ±2.45

MDL 79.29 75.87 53.53 79.61 59.25 75.77 37.30 77.82 76.25 69.82
±6.01 ±5.19 ±0.58 ±5.42 ±11.27 ±4.72 ±6.27 ±4.19 ±12.50

Multi-Splits 78.11 79.42 61.72 83.04 70.93 78.23 41.45 74.52 84.75 73.62
±2.63 ±1.79 ±3.10 ±6.66 ±13.40 ±1.24 ±1.74 ±3.96 ±2.12

(b) Results of correlation between the development and training sets.

BoolQ RTE WiC CB MultiRC WSC COPA Avg.
CV 0.4134 0.6759 0.4189 0.0938 0.1061 -0.1683 0.6567 0.3138

MDL 0.6394 0.5687 -0.0732 0.2127 0.1690 0.0741 0.1100 0.2429

Multi-Splits 0.5347 0.6911 0.8448 0.7232 0.6280 0.0853 0.4531 0.5657

Table 10: Evaluation results of different few-shot data-split strategies with PET on FewGLUE (K=4) under the same data
setting as (Schick and Schütze, 2021b,a; Menon et al., 2021) with 32 labeled data. Larger scores indicate that a data-split strategy
effectively selects a model that achieves better test-set performance. The best results for each task are denoted in bold.

viation over the multiple results. Larger values in-818

dicate that a perturbation of the target factor would819

largely influence the few-shot performance and the820

factor thus is crucial for searching. We experiment821

on BoolQ, RTE, CB, and COPA tasks. Consid-822

ered factors include: sample order during training,823

prompt pattern, training batch size, learning rate,824

evaluation frequency, and maximum train steps.
Hyper-params BoolQ RTE COPA CB

Dev
Set

Train Order 3.64 4.01 2.17 2.21/6.09
Prompt Pattern 3.44 10.28 5.80 3.18/4.07
Train Batch 3.34 1.33 2.64 1.01/5.87
Learning Rate 0.00 1.63 1.97 1.56/4.56
Eval Freq 2.39 2.96 2.73 0.45/0.82

Test
Set

Train Order 0.87 1.87 2.17 3.01/4.73
Prompt Pattern 2.85 10.03 2.65 6.45/7.08
Train Batch 2.44 1.09 0.72 0.89/1.32
Learning Rate 0.17 0.65 0.52 4.82/7.25
Eval Freq 0.84 0.53 1.18 0.77/2.07

Table 11: Analysis of different factors on BoolQ, RTE, CB
and COPA using PET and DeBERTa. The metric is standard
deviation. Hyper-parameters are set the best-performing ones
obtained in §5 while the target factor is assigned with multiple
values. “Train Order”: training sample order; “Train Batch”:
total train batch size; “Eval Freq”: evaluation frequency.

825
Results and Analysis Results are in Table 11. We826

mark values larger than a threshold of 2.0 in bold.827

We can see that the prompt pattern is the most in-828

fluential factor among all, indicating the design or829

selection of prompt patterns is crucial. Training830

example order also significantly affects the perfor-831

mance. The evaluation frequency affects the score832

on the small development but not on the test set.833

We speculate that a lower frequency selects a model834

with better performance on the small development835

set, but the gains do not transfer to the test set be-836

cause of partial overfitting. To conclude:837

Finding 5. We recommend to at least search over838

prompt patterns during hyper-parameter tuning, 839

and it is also beneficial to search others. All com- 840

parison methods should be searched and compared 841

under the same set of hyper-parameters. 842

Hyper-parameter Value
Learning Rate {6e− 6, 8e− 6, 1e− 5}
Evaluation Frequency {0.02, 0.04, 0.08}
Training Batch Size {8, 16, 32, 64}
Sample Order Seed {10, 20, 30, 40, 50, 60, 70, 80}

Table 12: Hyper-parameter Search Space for Crucial
Factor Evaluation

A.3.3 Detailed Configuration 843

For a given task and a target factor, we fixed the 844

hyper-parameters to be the best-performing ones 845

obtained in Section 4.2, and assigned multiple val- 846

ues for the target factor. For the prompt pattern, 847

we assigned it with the same values as (Schick and 848

Schütze, 2021b). Possible values for other hyper- 849

parameters are in Table 12. 850

A.4 Details of Re-Evaluation 851

A.4.1 Methods 852

The five considered minimal few-shot methods are 853

introduced as follows. 854

1. Classification is a conventional finetuning algo- 855

rithm, which uses the hidden states of a special 856

[CLS] token for classification. 857

2. PET is a prompt-based finetuning algorithm. It 858

transforms NLU problems into cloze problems 859

with prompts, and then converts the cloze out- 860

puts into the predicted class. 861

3. ADAPET is based on PET and decouples the 862

losses for the label tokens. It proposes a label- 863
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BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 1e-5 5e-6 5e-6 1e-5 1e-5 1e-5 1e-5
Maximum Training Step 250 250 250 250 250 500 500
Evaluation Frequency 0.02 0.02 0.02 0.02 0.04 0.04 0.02
Prompt Pattern 1 5 2 5 1 2 0

Table 13: The best hyper-parameters searched for PET. We search each task with a learning rate of {1e-5,5e-6},
max steps of {250,500}, evaluation frequency ratio of {0.02,0.04}, and all the available prompt patterns. Therefore,
each task has 8N hyper-parameter combinations, where N is the number of available prompt patterns, i.e., 6 for
BoolQ and RTE, 3 for WiC, and 2 for COPA.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 1e-5 5e-6 5e-6 1e-5 5e-6 5e-6 5e-6
Maximum Training Step 250 500 500 500 500 250 500
Evaluation Frequency 0.04 0.04 0.02 0.02 0.02 0.04 0.04
Prompt Pattern 1 5 2 5 0 1 0

Table 14: The best hyper-parameters searched for ADAPET. We search each task with a learning rate of {1e-
5,5e-6}, max steps of {250,500}, evaluation frequency ratio of {0.02,0.04}, and all the available prompt patterns.
Therefore, each task has 8N hyper-parameter combinations, where N is the number of available prompt patterns,
i.e., 6 for BoolQ and RTE, 3 for WiC, and 2 for COPA.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 5e-6 5e-6 5e-6 1e-5 1e-5 5e-6 1e-5
Maximum Training Step 500 250 500 250 500 500 500
Warmup Ratio 0.0 0.0 0.0 0.1 0.1 0.1 0.1
Evaluation Frequency 0.02 0.02 0.02 0.04 0.02 0.02 0.04
Prompt Encoder Type mlp lstm lstm lstm lstm lstm mlp

Table 15: The best hyper-parameters searched for P-tuning.We search each task with a learning rate of {1e-5,5e-6},
max steps of {250,500}, warmup ratio of {0.0,0.1}, evaluation frequency ratio of {0.02,0.04}, and prompt encoder
implemented with {“mlp”, “lstm”}.

BoolQ RTE WiC CB MultiRC WSC COPA
Learning Rate 5e-6 1e-5 5e-6 1e-5 1e-5 5e-6 1e-5
Maximum Training Step 250 500 250 250 500 250 500
Evaluation Frequency 0.04 0.04 0.04 0.04 0.02 0.02 0.04
Prompt Pattern 0 5 2 5 0 0 0
Generation Method sample greedy sample greedy greedy sample greedy
Drop Inconsistant Data - X - - X - X

Table 16: The best hyper-parameters searched for FlipDA. We search three generation methods, try dropping in-
consistant data or not. We search each task with a learning rate of {1e-5,5e-6}, max steps of {250,500}, evaluation
frequency ratio of {0.02,0.04}, and all the available prompt patterns. Therefore, each task has 8N hyper-parameter
combinations, where N is the number of available prompt patterns, i.e., 6 for BoolQ and RTE, 3 for WiC, and 2
for COPA.
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conditioned masked language modeling (MLM)864

objective as a regularization term.865

4. P-tuning is also based on PET and automati-866

cally learns continuous vectors as prompts via867

gradient update.868

5. FlipDA is similar to PET but uses both labeled869

data and augmented data for training. The aug-870

mented data are automatically generated by tak-871

ing labeled data as inputs. 8872

The three semi-supervised few-shot methods are873

introduced as follows.874

1. PET+MLM is based on PET and additionally875

adds an auxiliary language modeling task per-876

formed on unlabeled dataset. It was first pro-877

posed by (Schick and Schütze, 2021a) to resolve878

catastrophic forgetting.879

2. iPET is a self-training method. It iteratively per-880

forms PET for multiple generations. At the end881

of each generation, unlabeled data are assigned882

with pseudo-labels by the fully-trained model,883

and will be used for training along with train884

data in the next generation.885

3. Noisy Student is similar to iPET with the differ-886

ence that Noisy Student injects noises into the887

input embeddings of the model.888

A.4.2 Hyper-parameter Search Space889

The hyper-parameter search space for other few-890

shot methods are shown in Table 17.891

A.4.3 The Searched Best Hyper-parameters892

We list the searched best hyper-parameter configu-893

ration for different tasks and methods in Table 13,894

Table 14, Table 15, Table 16.895

A.4.4 More Discussion on ADAPET896

Since it is observed ADAPET shows less improve-897

ments on DeBERTa than it has achieved on AL-898

BERT, we further discuss the phenomena by rais-899

ing the question what other differences it has made.900

We respectively visualize the few-shot performance901

distribution over the same hyper-parameter space902

of PET and ADAPET in Figure 3. We observe903

that PET is more likely to obtain extremely bad904

results on BoolQ and RTE, while ADAPET shows905

8In our experiments, we use the best checkpoints searched
with PET as the classifier for data selection.

9As recommended in (Zhou et al., 2021), we fix one mask
ratio for each dataset, i.e., 0.3 for BoolQ, MultiRC, and WSC,
0.5 for RTE and CB, and 0.8 for COPA and WiC. We fix
one fill-in strategy for each dataset, i.e., “default” for BoolQ,
RTE, WiC, CB, and WSC, “rand_iter_10” for MultiRC, and
“rand_iter_1” for COPA.

Method Hyper-Parameter Value

CLS
Learning Rate (DeBERTa) {1e− 5, 5e− 6}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {2500, 5000}

PET/
ADAPET

Learning Rate (DeBERTa) {5e− 6, 1e− 5}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {250, 500}

Evaluation Frequency {0.02, 0.04}

P-tuning

Learning Rate (DeBERTa) {5e− 6, 1e− 5}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {250, 500}

Evaluation Frequency {0.02, 0.04}
Warmup Ratio {0.0, 0.1}

Prompt Encoder Type {mlp, lstm}

FlipDA

Learning Rate (DeBERTa) {5e− 6, 1e− 5}
Learning Rate (ALBERT) {1e− 5, 2e− 5}
Maximum Training Step {250, 500}

Evaluation Frequency {0.02, 0.04}
DA Method {greedy,sample,beam}

Drop Inconsistant Data {yes, no}
Mask Ratio Fixed 9

Fill-in Strategy Fixed 9

iPET/
Noisy

Unlabeled Data Number 500
Increasing Factor 3.0

Sample Ratio (single-split) 1.0
Sample Ratio (cross-split) 2/3
Dropout Rate for Noisy 0.05

Table 17: Hyper-parameter Space for Re-Evaluation

task method g1 g2 g3

WiC Multi-Patterns 60.11 ±5.64 60.19 ±4.12 59.66 ±4.27

Best-Pattern 64.21 ±2.58 64.18 ±4.61 63.37 ±6.29

RTE Multi-Patterns 65.08 ±10.07 69.20 ±7.13 71.46 ±5.59

Best-Pattern 79.39 ±2.75 81.95 ±1.04 83.12 ±1.42

Table 18: The performance results of iPET on both WiC
and RTE at every generation (g1, g2, and g3). Each experi-
ment uses either ensemble over all patterns (Multi-Patterns)
or ensemble over the only best pattern (Best-Pattern). This
experiment is conducted with 1000 unlabeled data and an
increasing factor 5.

stable results. It suggests that ADAPET appears 906

to be more robust to the hyper-parameters, and 907

overall achieves good performance regardless of 908

hyper-parameter selection. However, ADAPET is 909

less inclined to produce better peak results. To 910

sum up, we can conclude: Loss regularization (e.g., 911

ADAPET (Menon et al., 2021)) enhances stability 912

w.r.t. hyper-parameters. 913

A.4.5 More Discussion on Semi-supervised 914

Few-shot Methods 915

We focus on semi-supervised methods that itera- 916

tively augment data (i.e., iPET and Noisy Student), 917

which have demonstrate promising results on both 918

models in Table 4. Several key points for their 919

success are especially discussed. 920

1. For semi-supervised methods such as iPET 921

and Noisy Student, it is time-consuming when 922
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Figure 3: Visualization of few-shot performance over the same hyper-paramter space of ADAPET and PET based
on DeBERTa and Multi-Splits. The x-axis is the index of the hyper-parameter combination. We search each task
with a learning rate of 1e-5 or 5e-6, max steps of 250 or 500, evaluation ratio of 0.02 or 0.04, and all the available
prompt patterns. Therefore, each task has 8N hyper-parameter combinations, where N is the number of available
prompt patterns, i.e., 6 for BoolQ and RTE, 3 for WiC, and 2 for COPA. The y-axis is the score of each task given
a certain hyper-parameter combination.

searching over a large hyper-parameter space for923

each generation. We directly use the searched924

best hyper-parameters for PET in each gener-925

ation. From Table 4, we can see that their re-926

sults show advantages over PET (by more than927

1 points). It suggests that best hyper-parameters928

can be transferred to such methods, to reduce929

the cost of time and computational resources. If930

we search for each generation, results might be931

even better.932

2. Comparing the single-split labeling strategy, the933

cross-split labeling strategy works better. As the934

results show, both iPET (cross) and Noisy (cross)935

outperform iPET (single) and Noisy (single) in936

most tasks on both models.937

3. Another simple and effective technique is our938

proposed ensemble labeling strategies. (Schick939

and Schütze, 2021b) utilizes the ensemble results940

over all patterns to label unlabeled data, since it941

is hard to select patterns. Under the Multi-Splits942

strategy, self-training methods can recognize the943

best pattern, and only ensemble trained models944

for the best pattern when labeling unlabeled data.945

Table 18 shows the results of iPET on WiC and946

RTE tasks, respectively ensemble over multiple947

patterns or ensemble over the only best pattern.948

We can see that results of ensemble with the949

best pattern significantly outperform results of950

ensemble with all patterns at every generation.951
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