
Can We Detect Failures Without Failure Data?
Uncertainty-Aware Runtime Failure Detection for

Imitation Learning Policies
Chen Xu1, Tony Khuong Nguyen1, Emma Dixon1, Christopher Rodriguez1, Patrick Miller1, Robert Lee2,

Paarth Shah1, Rares Ambrus1, Haruki Nishimura1, and Masha Itkina1
1Toyota Research Institute (TRI), 2Woven by Toyota (WbyT)

chen.xu@tri.global

Abstract—Recent years have witnessed impressive robotic
manipulation systems driven by advances in imitation learning
and generative modeling, such as diffusion- and flow-based
approaches. As robot policy performance increases, so does the
complexity and time horizon of achievable tasks, inducing unex-
pected and diverse failure modes that are difficult to predict a
priori. To enable trustworthy policy deployment in safety-critical
human environments, reliable runtime failure detection becomes
important during policy inference. However, most existing failure
detection approaches rely on prior knowledge of failure modes
and require failure data during training, which imposes a
significant challenge in practicality and scalability. In response to
these limitations, we present FAIL-Detect, a modular two-stage
approach for failure detection in imitation learning-based robotic
manipulation. To accurately identify failures from successful
training data alone, we frame the problem as sequential out-
of-distribution (OOD) detection. We first distill policy inputs
and outputs into scalar signals that correlate with policy failures
and capture epistemic uncertainty. FAIL-Detect then employs
conformal prediction (CP) as a versatile framework for uncer-
tainty quantification with statistical guarantees. Empirically, we
thoroughly investigate both learned and post-hoc scalar signal
candidates on diverse robotic manipulation tasks. Our experi-
ments show learned signals to be mostly consistently effective,
particularly when using our novel flow-based density estimator.
Furthermore, our method detects failures more accurately and
faster than state-of-the-art (SOTA) failure detection baselines.
These results highlight the potential of FAIL-Detect to enhance
the safety and reliability of imitation learning-based robotic
systems as they progress toward real-world deployment.

I. INTRODUCTION

Robotic manipulation has applications in many important
fields, such as manufacturing, logistics, and healthcare [19].
Recently, imitation learning algorithms have shown tremen-
dous success in learning complex manipulation skills from
human demonstrations using stochastic generative modeling,
such as diffusion- [12, 65] and flow-based methods [9,
45]. However, despite their outstanding results, policy net-
works can fail due to poor stochastic sampling from the
action distribution. The models may also encounter out-of-
distribution (OOD) conditions where the input observations
deviate from the training data distribution. In such cases,
the generated actions may be unreliable or even dangerous.
Therefore, it is imperative to detect these failures quickly to
ensure the safety and reliability of the robotic system.

Detecting failures in robotic manipulation tasks poses sev-
eral challenges. First, the input data for failure detection, such
as environment observations, is often high-dimensional with
complicated distributions. This makes it difficult to identify
discriminative features that distinguish between successful and
failed executions, particularly in the imitation learning setting
where a reward function is not defined. Second, there are
countless opportunities for failure due to the complex nature
of manipulation tasks and the wide range of possible environ-
mental conditions (see Fig. 2). Consequently, failure detectors
must be general and robust to diverse failure scenarios.

In imitation learning, training data naturally consists of
successful trajectories, making failed trajectories OOD. Prior
work often tackles failure detection through binary classifi-
cation of ID and OOD conditions [33]. Thus, many of these
methods [24, 17, 18, 33] require OOD data for training the
failure classifier. This poses significant challenges since col-
lecting and annotating a comprehensive set of failure examples
is often time-consuming, expensive, and even infeasible in
many real-world scenarios. Moreover, classifiers trained on
specific sets of OOD data may not generalize well to unseen
failure modes. To address these limitations, we develop a
failure detection approach that operates without OOD data,
overcoming the need of failure examples while maintaining
robust performance. See Appendix A related works.

Our contributions are as follows. We propose FAIL-Detect:
Failure Analysis in Imitation Learning – Detecting failures
without failure data (see Fig. 1). In the first stage, we
extract scalar signals from policy inputs and/or outputs (e.g.,
robot states, visual features, generated future actions) that are
discriminative between successes and failures during policy
inference. We investigate both learned and post-hoc signal
candidates, finding learned signals to be the most accurate
for failure detection. A key novelty of our method is the
ability to learn failure detection signals without access to
failure data. Aside from being performant, our method enables
faster inference than prior work [1], which requires sampling
multiple robot actions during inference. In the second stage,
we use conformal prediction (CP) [52, 47] to construct a
time-varying threshold to sequentially determine when a score
indicates failure with statistical guarantees on false positive

Stage 2: Threshold CalibrationStage 1: Score Learning Runtime Failure Detection

Fig. 1: FAIL-Detect: Failure Analysis in Imitation Learning – Detecting failures without failure data. We propose a two-stage approach to
failure detection. (Left - Stage I) Multi-view camera images and robot states are distilled into failure detection scalar scores. Images are first
passed through a feature extractor and then, along with robot states, constitute observations Ot. Both Ot and generated future robot actions
At can serve as inputs to a score network DM . This network outputs scalar scores DM (At, Ot) that capture characteristics of successful
demonstration data. (Middle - Stage II) Scores from a calibration set of successful rollouts are then used to compute a mean µt and band
width ht to build the time-varying conformal prediction threshold. (Right - Runtime Failure Detection) A successful trajectory (bottom)
has scores that consistently remain below the threshold. When a failure occurs (top), such as failure to fold the towel, the score spikes above
the threshold, triggering failure detection (red box).

(a) Slipped out early. (b) Slipped out late. (c) Tilted upward. (d) Tilted downward. (e) Tilted slightly. (f) Not picked up.

Fig. 2: Diverse failure types observed for a single trained policy g on a simple pick-and-place task (put square on peg). These failures
occurred at different time steps across multiple rollouts and include the square slipping out of the gripper or being misplaced (e.g., with
tilted position) on the peg. FAIL-Detect is able to handle the wide range of failures observed at test time.

rates. By integrating adaptive functional CP [14] into our
pipeline, we obtain thresholds that adjust to the changing
dynamics of manipulation tasks unlike static thresholds used
in prior work [1]. We show that FAIL-Detect identifies failures
accurately and quickly on diverse robotic manipulation tasks,
both in simulation and on robot hardware, outperforming
SOTA failure detection baselines.

II. PROBLEM SETUP AND FAIL-DETECT FRAMEWORK

Our focus in this work is to detect when a generative
imitation learning policy fails to complete its task during
execution. We define the following notation. Let g(At | Ot)
denote the generator, where Ot represents the environment
observation (e.g., image features and robot states) at time t,
and g is a stochastic predictor of a sequence of actions
At = (At|t, At+1|t, . . . , At+H−1|t) for the next H time steps.
The first H ′ < H actions At:t+H′|t are executed, after which
the robot re-plans by generating a new sequence of H actions
at time t+H ′. Recent works have trained effective generators g
via DP [12] and FM [9]. Given an initial condition O0 and the
generator g to output the next actions, we obtain a trajectory
τt = (O0, A0, OH′ , AH′ , . . . , Ot, At) up to t = kH ′ (k ≥ 1)
execution time steps. Failure detection can thus be framed
as designing a decision function D(·; θ) : τt → {0, 1} with
parameters θ, which takes in the current trajectory and makes
a decision. If the decision D(τt; θ) = 1, the rollout is flagged

as a failure at time step t. For instance, in a pick-and-place
task, a failure may be detected after the robot fails to pick up
the object or misses the target position.

We now introduce the failure detection framework; see
Fig. 1 for an overview of the framework. Given action-
observation data (At, Ot), we propose a two-stage framework
to design the decision function D(·; θ):

1) Train a scalar score model DM (·; θ) : (At, Ot) → R
(for score “method” M) on action and/or observation
pairs from successful trajectories only. See Appendix B
for details.

2) Calibrate time-varying thresholds ηt based on a CP band.
See Appendix C for details.

The final decision D(τt; θ) = 1(DM (At, Ot; θ) > ηt) raises
a failure flag if the scalar score DM (At, Ot; θ) exceeds the
threshold ηt at time step t. This two-stage framework is
flexible to incorporate new scores in Stage 1 or new thresholds
in Stage 2.

III. RESULTS

We describe the experiment setup in Appendix D, which
includes tasks description, baseline choices, and evaluation
protocol. We present our experimental findings addressing the
following research questions:

A. How performant is failure detection without failure data?

(a) FoldRedTowel with FM: (Setting-dependent band) ID + Disturb (b) FoldRedTowel with FM: (ID-only band) ID + Disturb

(c) FoldRedTowel with FM: (Setting-dependent band) OOD (d) FoldRedTowel with FM: (ID-only band) OOD

(e) CleanUpSpill with DP: (Setting-dependent band) OOD (f) CleanUpSpill with DP: (ID-only band) OOD

Fig. 3: Quantitative results for the robot hardware experiments across two tasks with policies trained using FM and DP. We consider two
different ways to compute the CP band: “setting-dependent” using successful trajectories from each OOD/ID environment and “ID-only”
using only the trajectories from the ID environment. For balanced accuracy and weighted accuracy, higher is better and for detection time,
lower is better. Additional metrics are reported in Fig. 13 and Fig. 14. The figure layout is the same as Fig. 8 (best, second, third), and ‘NaN’
detection time indicates that no test rollout was detected as failed. Once again the learned approaches outperform the post-hoc methods.
Note we do not present STAC here as it was slow to run on hardware in real-time. In the small sample size regime, logpZO remains robust
in combined accuracy, achieving top-1 performance in the highest number of cases (8/12) and top-3 performance in 11/12 cases. RND
underperforms by never reaching top-1 performance, yet it always achieves top-3 performance. In contrast, the PCA-kmeans baseline reaches
top-1 performance in 4/12 cases and top-3 performance in 10/12 cases. In detection time, the post-hoc SPARC method is the fastest in 4/6
cases, yet it never achieves top-1 performance. PCA-kmeans is robust in speed as it attains top-3 performance in 4/6 cases. logpZO still
remains practical with detection times well below the average success trajectory completion time.

(a) STAC (b) PCA-kmeans (c) logpZO (d) NatPN (e) RND
Fig. 4: Qualitative results of failure detection scores overlaid with CP bands. The curves are colored by the ground truth success/failure status
of the rollout (failure = red and success = blue). We show 150 test rollouts on Square ID across post-hoc baselines (STAC, PCA-kmeans) and
learned FAIL-Detect methods (logpZO, NatPN, RND). We use the constant CP threshold for STAC as per [1]. Note that post-hoc baseline
methods mark most trajectories as successes due to the poor failure/success separation. In comparison, learned metrics have tight CP bands
and higher failure/success separation.

B. What is the impact of learned vs. post-hoc scores on
failure detection?

C. Do failure detections align with human intuition?

A. How performant is failure detection without failure data?

A key question we consider is whether failure detection
is possible and performant without enumerating all possible
failure scenarios, which is practically infeasible. We conduct
extensive experiments across simulation and robot hardware
tasks to answer this question. We evaluate balanced accuracy,
weighted accuracy, and detection time to assess whether
failures can be identified reliably and quickly.

FAIL-Detect achieves high accuracy with fast detection.
Our two-stage framework demonstrates strong performance

across both accuracy metrics and detection speed. For exam-
ple, the average best balanced accuracy across FAIL-Detect’s
score candidates is ∼ 78% in simulation (Fig. 8) and ∼ 72%
on the robot hardware tasks (Fig. 3). This performance shows
the capacity of failure-free failure detection methods to ro-
bustly identify failures across many scenarios. Notably, FAIL-
Detect maintains viable detection time across various score
designs, with average best detection time faster than successful
trajectory completion.

B. What is the impact of learned vs. post-hoc scores on failure
detection?

Learned scores outperform post-hoc scores. Looking at
performance across simulation and robot hardware tasks, we

t=72

(a) Square

t=320

(b) Transport

t=3648

(c) FoldRedTowel ID + Disturb

t=4672

(d) FoldRedTowel OOD

Fig. 5: Physical interpretation of logpZO, the most successful and robust learned score method. Failed trajectory scores are in red and
successful ones are in blue. Each figure shows the failure detection time and the corresponding camera view. (Simulation) In Fig. 5a, failure
is flagged when the square slips from the gripper. In Fig. 5b, failure is detected when both arms drop the hammer. (On-robot) In Fig. 5c,
failure is alerted as the second fold attempt fails. In Fig. 5d, failure is detected as the left robot arm fails to complete the first fold.

find that learned scalar scores hold an advantage over post-hoc
scores in failure detection. In simulation (Fig. 8), logpZO and
RND are the best two methods, achieving top-1 performance
in 10/16 and 5/16 cases, respectively. STAC is the best in the
post-hoc category for top-1 accuracy in 3/16 cases, yet PCA-
kmeans is never the best. Overall, there is a large performance
gap between the learned and post-hoc methods, especially
in terms of the best overall accuracy. We did notice that
post-hoc methods perform better in the OOD cases than in
ID scenarios. We hypothesize this may be due to a clearer
distinction between successful ID trajectories and failed OOD
trajectories, for example, for SPARC if the OOD trajectory
exhibits significant jitter.

In terms of detection time, logpZO is the most efficient,
achieving the fastest time in 3/8 cases, while PCA-kmeans
does so in only 1/8 cases. Notably, STAC’s detection time
consistently exceeds practical limits, surpassing the average
success trajectory time.

For the robot hardware experiments (Fig. 3), with a much
lower rollout data regime for calibration than in simulation
(see Table III) and a wider diversity of behaviors and obser-
vations, logpZO remains robust as the best method, reaching
top-1 highest balanced accuracy and weighted accuracy in
8/12 scenarios. The PCA-kmeans baseline is second best with
4/12 top-1 ranking. RND underperforms by never achieving
top-1 performance, yet it always ranks among the top-3
best methods. Additionally, most methods, including logpZO
and RND, maintain practical detection times well below the
average successful trajectory time. SPARC is on average the
fastest as it attains top-1 performance in 4/6 cases, but it
exhibits poor accuracy.

Overall, across all experiments, we find our novel learned
logpZO score within the FAIL-Detect framework to be most
consistent in performance. The post-hoc methods are often
at the extremes of performance (either doing well or poorly)
depending on the particular setting.

Qualitative score trends. Visualization of the detection
scores (Figs. 4 and 9) confirms that learned methods are more
discriminative with better score separation between successful
and failed trajectories compared to post-hoc approaches. STAC
also suffers from a single calibration threshold that is time
invariant. In Appendix E, we present comprehensive ablation
studies examining performance sensitivity to CP significance
level α (Fig. 10).

Computational advantage. Some post-hoc methods require
sampling from the stochastic policy repeatedly to achieve a
performant failure score. For example, STAC requires gen-
erating 256 action predictions per time step. Although the
computational efficiency could be improved by generating
fewer predictions, this compromises its statistical reliability.
On the other hand, our learned scores offer significantly faster
inference speeds compared to STAC. For instance, testing on
an A6000 GPU with 50 rollouts, logpZO score computation
takes 0.04 s (Square) and 0.033 s (Transport) per time step,
while STAC requires 1.45 s for both tasks, amounting to a
36-44 times slowdown.

C. Do failure detections align with human intuition?

FAIL-Detect’s alerts demonstrate strong correlation with
observable failure indications in the environment (Fig. 5).
When scores exceed the decision threshold, these moments
often align with meaningful changes in the physical state of the
task. In simulation environments, the detection scores capture
distinct failure patterns with high precision. For instance,
for the Square task, abrupt increases in scores coincide
with the moment the gripper loses its hold on the square.
Similarly, in the Transport task, score spikes identify the
instant when the hammer slips during inter-arm transfer. Real-
world applications demonstrate similarly compelling results:
the system effectively detects both human-induced disruptions
leading to an incomplete second towel fold (FoldRedTowel
ID + Disturb) and OOD initial conditions resulting in an
improper first towel fold (FoldRedTowel OOD).

This correspondence between score spikes and physical
events is encouraging for FAIL-Detect’s capacity to capture
task-relevant subtlety. The framework successfully translates
complex environmental changes into quantifiable metrics, with
score variations serving as reasonable indicators of failure
events. Moreover, this correlation offers valuable diagnos-
tic capabilities for potential policy improvement. Instead of
requiring an exhaustive a priori enumeration of potential
failure modes, which is an inherently challenging endeavor,
our approach enables potential targeted analysis of observed
failures. By examining executions within temporal windows
surrounding a failure detection, one can efficiently identify
failure types for subsequent analysis.

REAL-WORLD DEPLOYABILITY AND GENERALIZATION

Our proposed two-stage FAIL-Detect, powered by the novel
logpZO score, consistently outperforms baselines across a
wide range of tasks. Importantly, FAIL-Detect can identify
previously unseen failures without failure training data. This is
crucial for real-world deployment, where collecting exhaustive
failure scenarios is undesirable and costly. By enabling robust
failure detection under different conditions, our FAIL-Detect
also shows good generalization across tasks and environments.
These qualities make FAIL-Detect particularly suited for real-
world robotic applications, where safety, reliability, and adapt-
ability are desired.

REFERENCES

[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang
Cao, Rika Antonova, Marco Pavone, and Jeannette Bohg.
Unpacking Failure Modes of Generative Policies: Run-
time Monitoring of Consistency and Progress. In Con-
ference on Robot Learning (CoRL), 2024.

[2] Sivakumar Balasubramanian, Alejandro Melendez-
Calderon, Agnes Roby-Brami, and Etienne Burdet. On
the Analysis of Movement Smoothness. Journal of
Neuroengineering and Rehabilitation, 12:1–11, 2015.

[3] Steven Basart, Mazeika Mantas, Mostajabi Moham-
madreza, Steinhardt Jacob, and Song Dawn. Scaling
Out-of-Distribution Detection for Real-world Settings. In
International Conference on Machine Learning (ICML),
2022.

[4] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. π 0: A
Vision-Language-Action Flow Model for General Robot
Control. arXiv preprint arXiv:2410.24164, 2024.

[5] Lennart Bramlage, Michelle Karg, and Cristóbal Curio.
Plausible Uncertainties for Human Pose Regression. In
International Conference on Computer Vision (ICCV),
pages 15087–15096. IEEE, 2023.

[6] Max Braun, Noémie Jaquier, Leonel Rozo, and Tamim
Asfour. Riemannian Flow Matching Policy for Robot
Motion Learning. arXiv preprint arXiv:2403.10672,
2024.

[7] Fernando Castañeda, Haruki Nishimura, Rowan McAllis-
ter, Koushil Sreenath, and Adrien Gaidon. In-Distribution
Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States. In Learning for Dy-
namics & Control Conference (L4DC), volume 211,
pages 286–299. PMLR, 2023.

[8] Bertrand Charpentier, Oliver Borchert, Daniel Zügner,
Simon Geisler, and Stephan Günnemann. Natural Pos-
terior Network: Deep Bayesian Predictive Uncertainty
for Exponential Family Distributions. In International
Conference on Learning Representations (ICLR), 2022.

[9] Kaiqi Chen, Eugene Lim, Kelvin Lin, Yiyang Chen,
and Harold Soh. Don’t Start from Scratch: Behavioral
Refinement via Interpolant-based Policy Diffusion. In
Robotics: Science and Systems (RSS), 2024.

[10] Lili Chen, Shikhar Bahl, and Deepak Pathak. PlayFu-
sion: Skill Acquisition via Diffusion from Language-
Annotated Play. In Conference on Robot Learning
(CoRL), 2023.

[11] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural Ordinary Differential
Equations. Advances in Neural Information Processing
Systems (NeurIPS), 31, 2018.

[12] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion Policy: Visuomotor Policy Learning via Action
Diffusion. In Robotics: Science and Systems (RSS), 2023.

[13] Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja
Hofmann, and Richard Turner. Conservative Uncertainty
Estimation By Fitting Prior Networks. In International
Conference on Learning Representations (ICLR), 2020.

[14] Jacopo Diquigiovanni, Matteo Fontana, Simone Vantini,
et al. The Importance of Being a Band: Finite-Sample
Exact Distribution-Free Prediction Sets for Functional
Data. Statistica Sinica, 1:1–41, 2024.

[15] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and
Rosanne Liu. Extremely Simple Activation Shaping for
Out-of-Distribution Detection. In International Confer-
ence on Learning Representations (ICLR), 2023.

[16] Xuefeng Du, Zhaoning Wang, Mu Cai, and Sharon Li.
Towards Unknown-aware Learning with Virtual Outlier
Synthesis. In International Conference on Learning
Representations (ICLR), 2022.

[17] Matt Foutter, Rohan Sinha, Somrita Banerjee, and Marco
Pavone. Self-Supervised Model Generalization using
Out-of-Distribution Detection. In First Workshop on Out-
of-Distribution Generalization in Robotics at CoRL 2023,
2023.

[18] Cem Gokmen, Daniel Ho, and Mohi Khansari. Ask-
ing for Help: Failure Prediction in Behavioral Cloning
Through Value Approximation. In International Confer-
ence on Robotics and Automation (ICRA), pages 5821–
5828. IEEE, 2023.

[19] Martin Hägele, Klas Nilsson, J Norberto Pires, and
Rainer Bischoff. Industrial Robotics. Springer Handbook
of Robotics, pages 1385–1422, 2016.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
In Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778. IEEE,
2016.

[21] Nantian He, Shaohui Li, Zhi Li, Yu Liu, and You He.
ReDiffuser: Reliable Decision-Making Using a Diffuser
with Confidence Estimation. In International Confer-
ence on Machine Learning (ICML), volume 235, pages
17921–17933. PMLR, 21–27 Jul 2024.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
Diffusion Probabilistic Models. Advances in Neural In-
formation Processing Systems (NeurIPS), 33:6840–6851,
2020.

[23] Xixi Hu, qiang liu, Xingchao Liu, and Bo Liu. AdaFlow:

https://openreview.net/forum?id=yqLFb0RnDW
https://openreview.net/forum?id=yqLFb0RnDW
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0090-9
https://arxiv.org/abs/1911.11132
https://arxiv.org/abs/1911.11132
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://ieeexplore.ieee.org/document/10376942
https://arxiv.org/abs/2403.10672
https://arxiv.org/abs/2403.10672
https://arxiv.org/abs/2301.12012
https://arxiv.org/abs/2301.12012
https://arxiv.org/abs/2301.12012
https://arxiv.org/abs/2105.04471
https://arxiv.org/abs/2105.04471
https://arxiv.org/abs/2105.04471
https://arxiv.org/abs/2402.16075
https://arxiv.org/abs/2402.16075
https://arxiv.org/abs/2312.04549
https://arxiv.org/abs/2312.04549
https://arxiv.org/abs/2312.04549
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/21Diffusion%20Policy:%20Visuomotor%20Policy%20Learning%20via%20Action%20Diffusion08.03298
https://arxiv.org/abs/21Diffusion%20Policy:%20Visuomotor%20Policy%20Learning%20via%20Action%20Diffusion08.03298
https://arxiv.org/abs/21Diffusion%20Policy:%20Visuomotor%20Policy%20Learning%20via%20Action%20Diffusion08.03298
https://openreview.net/forum?id=BJlahxHYDS
https://openreview.net/forum?id=BJlahxHYDS
https://arxiv.org/abs/2102.06746
https://arxiv.org/abs/2102.06746
https://arxiv.org/abs/2102.06746
https://arxiv.org/abs/2209.09858
https://arxiv.org/abs/2209.09858
https://arxiv.org/abs/2202.01197
https://arxiv.org/abs/2202.01197
https://openreview.net/forum?id=z5XS3BY13J
https://openreview.net/forum?id=z5XS3BY13J
https://arxiv.org/abs/2302.04334
https://arxiv.org/abs/2302.04334
https://arxiv.org/abs/2302.04334
https://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_43
https://arxiv.org/abs/1512.03385
https://raw.githubusercontent.com/mlresearch/v235/main/assets/he24e/he24e.pdf
https://raw.githubusercontent.com/mlresearch/v235/main/assets/he24e/he24e.pdf
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://openreview.net/forum?id=ugXKInqDCC

Imitation Learning with Variance-Adaptive Flow-Based
Policies. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[24] Arda Inceoglu, Eren Erdal Aksoy, and Sanem Sariel.
Multimodal Detection and Classification of Robot Ma-
nipulation Failures. Robotics and Automation Letters,
2023.

[25] Masha Itkina and Mykel Kochenderfer. Interpretable
Self-aware Neural Networks for Robust Trajectory Pre-
diction. In Conference on Robot Learning (CoRL), pages
606–617. PMLR, 2023.

[26] Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with Diffusion for Flexible
Behavior Synthesis. In International Conference on
Machine Learning (ICML), pages 9902–9915. PMLR,
2022.

[27] Ramneet Kaur, Kaustubh Sridhar, Sangdon Park, Yahan
Yang, Susmit Jha, Anirban Roy, Oleg Sokolsky, and
Insup Lee. CODiT: Conformal Out-of-Distribution De-
tection in Time-Series Data for Cyber-Physical Systems.
In Proceedings of the ACM/IEEE 14th International
Conference on Cyber-Physical Systems (with CPS-IoT
Week 2023), ICCPS ’23, page 120–131, New York,
NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400700361. doi: 10.1145/3576841.3585931.

[28] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa
Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
OpenVLA: An Open-Source Vision-Language-Action
Model. arXiv preprint arXiv:2406.09246, 2024.

[29] Woo Kyung Kim, Minjong Yoo, and Honguk Woo. Ro-
bust Policy Learning via Offline Skill Diffusion. In AAAI
Conference on Artificial Intelligence (AAAI), volume 38,
pages 13177–13184, 2024.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. In Yoshua Bengio and Yann
LeCun, editors, International Conference on Learning
Representations (ICLR), 2015.

[31] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017.

[32] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu,
Maximilian Nickel, and Matthew Le. Flow Matching
for Generative Modeling. In International Conference
on Learning Representations (ICLR), 2023.

[33] Huihan Liu, Shivin Dass, Roberto Martı́n-Martı́n, and
Yuke Zhu. Model-based Runtime Monitoring with Inter-
active Imitation Learning. In International Conference
on Robotics and Automation (ICRA), pages 4154–4161.
IEEE, 2024.

[34] Huihan Liu, Yu Zhang, Vaarij Betala, Evan Zhang, James
Liu, Crystal Ding, and Yuke Zhu. Multi-Task Interactive
Robot Fleet Learning with Visual World Models. In

Conference on Robot Learning (CoRL), 2024.
[35] Weitang Liu, Xiaoyun Wang, John Owens, and Yix-

uan Li. Energy-based Out-of-Distribution Detection.
Advances in Neural Information Processing Systems
(NeurIPS), 33:21464–21475, 2020.

[36] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic
Gradient Descent with Warm Restarts. In International
Conference on Learning Representations (ICLR), 2017.

[37] Ilya Loshchilov and Frank Hutter. Decoupled Weight
Decay Regularization. In International Conference on
Learning Representations (ICLR), 2019.

[38] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush
Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n.
What Matters in Learning from Offline Human Demon-
strations for Robot Manipulation. In Conference on
Robot Learning (CoRL), 2021.

[39] Rajesh Natarajan, Santosh Reddy P, Subash Chandra
Bose, H.L. Gururaj, Francesco Flammini, and Shanmu-
gapriya Velmurugan. Fault Detection and State Esti-
mation in Robotic Automatic Control using Machine
Learning. Array, 19:100298, 2023. ISSN 2590-0056.
doi: https://doi.org/10.1016/j.array.2023.100298.

[40] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Pannag Sanketi, Quan Vuong, Ted Xiao,
Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo:
An Open-Source Generalist Robot Policy. In Robotics:
Science and Systems (RSS), Delft, Netherlands, 2024.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning Transferable Visual Models from Natural Lan-
guage Supervision. In International Conference on
Machine Learning (ICML), pages 8748–8763. PMLR,
2021.

[42] Quazi Marufur Rahman, Peter Corke, and Feras Dayoub.
Run-Time Monitoring of Machine Learning for Robotic
Perception: A Survey of Emerging Trends. IEEE Access,
9:20067–20075, 2021.

[43] Allen Z. Ren, Anushri Dixit, Alexandra Bodrova, Sumeet
Singh, Stephen Tu, Noah Brown, Peng Xu, Leila
Takayama, Fei Xia, Jake Varley, Zhenjia Xu, Dorsa
Sadigh, Andy Zeng, and Anirudha Majumdar. Robots
That Ask For Help: Uncertainty Alignment for Large
Language Model Planners. In Conference on Robot
Learning (CoRL), 2023.

[44] Moritz Reuss and Rudolf Lioutikov. Multimodal Dif-
fusion Transformer for Learning from Play. In 2nd
Workshop on Language and Robot Learning: Language
as Grounding, 2023.

[45] Quentin Rouxel, Andrea Ferrari, Serena Ivaldi, and Jean-
Baptiste Mouret. Flow matching Imitation Learning for
Multi-Support Manipulation. In International Confer-
ence on Humanoid Robots (Humanoids), pages 528–535.

https://openreview.net/forum?id=ugXKInqDCC
https://openreview.net/forum?id=ugXKInqDCC
https://arxiv.org/abs/2305.04639
https://arxiv.org/abs/2305.04639
https://proceedings.mlr.press/v205/itkina23a/itkina23a.pdf
https://proceedings.mlr.press/v205/itkina23a/itkina23a.pdf
https://proceedings.mlr.press/v205/itkina23a/itkina23a.pdf
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2205.09991
https://dl.acm.org/doi/10.1145/3576841.3585931
https://dl.acm.org/doi/10.1145/3576841.3585931
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2403.00225
https://arxiv.org/abs/2403.00225
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2310.17552
https://arxiv.org/abs/2310.17552
https://arxiv.org/abs/2410.22689
https://arxiv.org/abs/2410.22689
https://arxiv.org/abs/2010.03759
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2108.03298
https://www.sciencedirect.com/science/article/pii/S2590005623000231
https://www.sciencedirect.com/science/article/pii/S2590005623000231
https://www.sciencedirect.com/science/article/pii/S2590005623000231
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2405.12213
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://ieeexplore.ieee.org/document/9336665
https://ieeexplore.ieee.org/document/9336665
https://openreview.net/forum?id=4ZK8ODNyFXx
https://openreview.net/forum?id=4ZK8ODNyFXx
https://openreview.net/forum?id=4ZK8ODNyFXx
https://openreview.net/forum?id=nvtxqMGpn1
https://openreview.net/forum?id=nvtxqMGpn1
https://arxiv.org/abs/2407.12381
https://arxiv.org/abs/2407.12381

IEEE, 2024.
[46] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evi-

dential Deep Learning to Quantify Classification Uncer-
tainty. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[47] Glenn Shafer and Vladimir Vovk. A Tutorial on Confor-
mal Prediction. Journal of Machine Learning Research,
9(3), 2008.

[48] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matt
Foutter, Edward Schmerling, and Marco Pavone. Real-
Time Anomaly Detection and Reactive Planning with
Large Language Models. In Robotics: Science and
Systems (RSS), 2024.

[49] Ajay Sridhar, Dhruv Shah, Catherine Glossop, and
Sergey Levine. Nomad: Goal Masked Diffusion Policies
for Navigation and Exploration. In International Confer-
ence on Robotics and Automation (ICRA), pages 63–70.
IEEE, 2024.

[50] Jiankai Sun, Yiqi Jiang, Jianing Qiu, Parth Talpur Nobel,
Mykel Kochenderfer, and Mac Schwager. Conformal
Prediction for Uncertainty-Aware Planning with Diffu-
sion Dynamics Model. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2023.

[51] Leitian Tao, Xuefeng Du, Jerry Zhu, and Yixuan Li. Non-
parametric Outlier Synthesis. In International Confer-
ence on Learning Representations (ICLR), 2023.

[52] Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. Algorithmic Learning in a Random World,
volume 29. Springer, 2005.

[53] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Di-
pankar Das, Bharat Kaul, and Theodore L Willke. Out-
of-Distribution Detection Using an Ensemble of Self Su-
pervised Leave-out Classifiers. In European Conference
on Computer Vision (ECCV), pages 550–564, 2018.

[54] Dian Wang, Stephen Hart, David Surovik, Tarik Ke-
lestemur, Haojie Huang, Haibo Zhao, Mark Yeatman,
Jiuguang Wang, Robin Walters, and Robert Platt. Equiv-
ariant Diffusion Policy. In Conference on Robot Learning
(CoRL), 2024.

[55] Yanwei Wang, Tsun-Hsuan Wang, Jiayuan Mao, Michael
Hagenow, and Julie Shah. Grounding Language Plans
in Demonstrations Through Counterfactual Perturbations.
In International Conference on Learning Representations
(ICLR), 2024.

[56] Yixuan Wang, Guang Yin, Binghao Huang, Tarik Ke-
lestemur, Jiuguang Wang, and Yunzhu Li. GenDP:
3D Semantic Fields for Category-Level Generalizable
Diffusion Policy. In Conference on Robot Learning
(CoRL), 2024.

[57] Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Man-
dlekar, Li Fei-Fei, Silvio Savarese, and Roberto Martı́n-
Martı́n. Error-Aware Imitation Learning from Teleoper-
ation Data for Mobile Manipulation. In Conference on
Robot Learning (CoRL), pages 1367–1378. PMLR, 2022.

[58] Chen Xu and Yao Xie. Conformal Prediction for Time
Series. Transactions on Pattern Analysis and Machine

Intelligence, 45(10):11575–11587, 2023.
[59] Chen Xu and Yao Xie. Sequential Predictive Conformal

Inference for Time Series. In International Confer-
ence on Machine Learning (ICML), pages 38707–38727.
PMLR, 2023.

[60] Chen Xu, Xiuyuan Cheng, and Yao Xie. Normalizing
Flow Neural Networks by JKO Scheme. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

[61] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu.
Generalized Out-of-Distribution Detection: A Survey.
International Journal of Computer Vision, pages 1–28,
2024.

[62] Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao
Liu, Minkai Xu, Wentao Zhang, Chenlin Meng, Stefano
Ermon, and Bin Cui. Consistency Flow Matching:
Defining Straight Flows with Velocity Consistency. arXiv
preprint arXiv:2407.02398, 2024.

[63] Tianhe Yu, Ted Xiao, Jonathan Tompson, Austin Stone,
Su Wang, Anthony Brohan, Jaspiar Singh, Clayton Tan,
Dee M, Jodilyn Peralta, Karol Hausman, Brian Ichter,
and Fei Xia. Scaling Robot Learning with Semantically
Imagined Experience. In Robotics: Science and Systems
(RSS), 2023.

[64] Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu,
Bing Zeng, and Shuaicheng Liu. FlowPolicy: Enabling
Fast and Robust 3D Flow-based Policy via Consistency
Flow Matching for Robot Manipulation. arXiv preprint
arXiv:2412.04987, 2024.

[65] Tony Z. Zhao, Jonathan Tompson, Danny Driess, Pete
Florence, Seyed Kamyar Seyed Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. ALOHA Unleashed: A Simple
Recipe for Robot Dexterity. In Conference on Robot
Learning (CoRL), 2024.

https://arxiv.org/abs/1806.01768
https://arxiv.org/abs/1806.01768
https://arxiv.org/abs/1806.01768
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/0706.3188
https://arxiv.org/abs/2407.08735
https://arxiv.org/abs/2407.08735
https://arxiv.org/abs/2407.08735
https://arxiv.org/abs/2310.07896
https://arxiv.org/abs/2310.07896
https://openreview.net/pdf?id=VeO03T59Sh
https://openreview.net/pdf?id=VeO03T59Sh
https://openreview.net/pdf?id=VeO03T59Sh
https://arxiv.org/abs/2303.02966
https://arxiv.org/abs/2303.02966
https://link.springer.com/book/10.1007/b106715
https://arxiv.org/abs/1809.03576
https://arxiv.org/abs/1809.03576
https://arxiv.org/abs/1809.03576
https://arxiv.org/abs/2407.01812
https://arxiv.org/abs/2407.01812
https://arxiv.org/abs/2403.17124
https://arxiv.org/abs/2403.17124
https://arxiv.org/abs/2410.17488
https://arxiv.org/abs/2410.17488
https://arxiv.org/abs/2410.17488
https://arxiv.org/abs/2112.05251
https://arxiv.org/abs/2112.05251
https://arxiv.org/abs/2010.09107
https://arxiv.org/abs/2010.09107
https://arxiv.org/abs/2212.03463
https://arxiv.org/abs/2212.03463
https://arxiv.org/abs/2212.14424
https://arxiv.org/abs/2212.14424
https://arxiv.org/abs/2110.11334
https://arxiv.org/abs/2407.02398
https://arxiv.org/abs/2407.02398
https://arxiv.org/abs/2302.11550
https://arxiv.org/abs/2302.11550
https://arxiv.org/abs/2412.04987
https://arxiv.org/abs/2412.04987
https://arxiv.org/abs/2412.04987
https://aloha-unleashed.github.io/
https://aloha-unleashed.github.io/

APPENDIX

A. Related Work

Imitation Learning for Robotic Manipulation. Imitation learning has emerged as a powerful paradigm for teaching robots
complex skills by learning from expert demonstrations. Diffusion policy (DP) [12] using diffusion models [22] has emerged as
highly performant in this space. DP learns to denoise trajectories sampled from a Gaussian distribution, effectively capturing
the multi-modal action distributions often present in human demonstrations [63, 12]. Diffusion models have been used to learn
observation-conditioned policies [12, 49], integrate semantic information via language conditioning [63, 10, 44], and improve
robustness and generalization [29, 54, 56]. Concurrently, vision-language-action models like Octo [40] and OpenVLA [28]
have shown promise in generalist robot manipulation by leveraging large-scale pretraining on diverse datasets. More recently,
flow matching (FM) generative models have been proposed as an alternative to diffusion in imitation learning [4, 23, 6, 64],
offering faster inference and greater flexibility (i.e., extending beyond Gaussian priors [9]), while achieving competitive or
superior success rates. We test FAIL-Detect on DP and FM imitation learning architectures.

OOD Detection. The task of detecting robot failures can be viewed as anomaly detection, which falls under the broader
framework of OOD detection [61]. Ensemble methods [31], which combine predictions from multiple models to improve
robustness and estimate uncertainty, have long been regarded as the de facto approach for addressing this problem. However,
they are computationally expensive as they require training and running inference on multiple models. Another popular approach
frames OOD detection as a classification problem [34]. This formulation learns the decision boundary between ID and OOD data
by training a binary classifier [53, 15], but requires OOD data during training. In contrast, density-based approaches [35, 16, 60],
one-class discriminators based on random networks [13, 21], and control-theoretic methods [7] aim to model information from
ID data without relying on OOD data during training. Density-based methods attempt to capture the distribution of ID data,
yet they can be challenging to optimize. One-class discriminators have shown superior performance over deep ensembles in
practice but can be sensitive to the design of the discriminator model. Control-theoretic approaches use contrastive energy-
based models; however, they often require a representation of the system’s dynamics. Furthermore, evidential deep learning
methods [8, 5, 25] learn parameters for second-order distributions (e.g., Dirichlet) to approximate epistemic uncertainty (due
to limited model knowledge or OOD inputs) from aleatoric uncertainty (due to inherent randomness in the data). Lastly,
distance-based approaches [3, 51, 27] identify OOD samples by computing their distance to ID samples in the input or latent
space, avoiding the need for training but exhibiting limited performance compared to other approaches. We consider many of
the listed model variants as score candidates in FAIL-Detect.

Failure Detection in Robotics. Detecting failures in robotic systems is important for ensuring safety and reliability, as
failures can lead to undesirable behaviors in human environments [39, 42, 34]. Various approaches have been proposed,
such as building fast anomaly classifiers based on LLM embeddings [48] and using the reconstruction error from variational
autoencoders (VAE) to detect anomalies in behavior cloning (BC) policies for mobile manipulation [57]. Separately, Ren et al.
[43] construct uncertainty sets from conformal prediction for actions generated by an LLM-based planner, prompting human
intervention when the set is ambiguous. These works do not consider failure detection in the setting of generative imitation
learning policies. On the other hand, Gokmen et al. [18] learn a state value function that is trained jointly with a BC policy
and can be used to predict failures. Liu et al. [33] propose an LSTM-based failure classifier for a BC-RNN policy using latent
embeddings from a conditional VAE. Given a Transformer-based policy and a world model to predict future latent embeddings,
Liu et al. [34] train a failure detection classifier on the embeddings. To handle previously unseen states, they also propose a
SOTA OOD detection method, which we adapt as a baseline to our approach (see PCA-kmeans in Appendix D). However,

TABLE I: Overview of score methods evaluated in this work. The input was selected either based on the structure and
requirements of each method or, when multiple input combinations were possible, based on empirical performance. All methods
except STAC (which proposes a different calibration method; see Appendix D) use time-varying CP bands described in
Appendix C.

Method Type Input Category Novelty Original application

logpZO Learned Ot Density estimation Novel N/A
lopO Learned Ot Density estimation Adapted [60] Likelihood estimation on tabular data
NatPN Learned Ot Second-order Adapted [8] OOD detection for classification and regression
DER Learned (Ot, At) Second-order Adapted [5] OOD detection for human pose estimation
RND Learned (Ot, At) One-class discriminator Adapted [21] Reinforcement learning [21]; OOD detetcion [13]
CFM Learned Ot One-class discriminator Adapted [62] Efficient sampling of flow models
SPARC Post-hoc At Smoothness measure Adapted [2] Smoothness analysis for time series data
STAC Post-hoc At Statistical divergence Baseline [1] Failure detection for generative imitation learning policies
PCA-kmeans Post-hoc Ot Clustering Baseline [34] OOD detection during robot execution

unlike FAIL-Detect, these methods require collecting failed trajectories a priori to detect failures. Meanwhile, Wang et al. [55]
uses self-reset to collect additional failure data and train a classifier to identify failure modes. In their on-robot experiments,
approximately 2000 trajectories (roughly 2 hours) had to be collected using self-reset, making scalability challenging. For
diffusion-based policies, Sun et al. [50] reduce model uncertainty by producing prediction intervals for rewards of predicted
trajectories. He et al. [21] propose using random network distillation (RND) to detect OOD trajectories and select reliable
ones. These works do not directly consider runtime failure detection. Our two-stage solution for this problem combines the
advantages of both approaches. The closest SOTA method to FAIL-Detect by Agia et al. [1] introduces a statistical temporal
action consistency (STAC) measure in conjunction with vision-language models (VLMs) to detect failures within rollouts at
runtime. STAC does not require failure data, consists of a score computed post-hoc from a batch of predicted actions and
a constant-time CP threshold to flag failures, and is evaluated in the context of DP. We demonstrate improved empirical
performance over STAC by integrating learned failure detection scores with a time-varying CP band.

B. Design of Scalar Scores

To construct scores indicative of failures, we propose a novel score candidate and several adaptations of existing approaches
originally developed for other applications. See Table I for an overview of the scoring methods we consider.

When designing a scalar score that is indicative of policy failure, we consider the following desiderata: (1) One-class: The
method should not require failure data during training as it may be too diverse to enumerate (see Fig. 2). (2) Light-weight:
The method should allow for fast inference to enable real-time robot manipulation. (3) Discriminative: The method should
yield gaps in scores for successful and failed rollouts. To avoid overfitting on historical data, the score network DM only
takes the latest TO steps (TO = 2 following [12]) of past observations Ot alongside future action At as inputs, rather than the
growing trajectory history. To meet our desiderata, we select and build on the following approach categories.

(a) Learned data density: we fit a normalizing flow-based density estimator to the observations, where data far from
the distribution of successful trajectory observations may indicate failure. The approach we term lopO [60] fits a continuous
normalizing flow (CNF) fθ to the set of observations {Ot}t≥0. A low log p(Ot′) for a new observation Ot′ implies it is
unlikely, indicating possible failure. Note the computation of log p(Ot′) requires integration of the divergence of fθ over the
ODE trajectory, which is difficult to estimate in high dimensions. Additionally, we introduce our novel logpZO approach,
which leverages the same CNF fθ to evaluate the likelihood of a noise estimate ZOt

(conditioned on an observation Ot). Using
the forward ODE process, we compute ZOt

by integrating fθ over the unit interval [0,1], starting from Ot as the ODE initial
condition. When Ot is ID, ZOt

is approximately Gaussian, leading to p(ZOt
) = C exp(−0.5|ZOt

|2). Thus, a high value of
|ZOt |22 corresponds to a low likelihood p(ZOt) in the noise space. More precisely, we explain how the proposed novel logpZO
works step by step:

• Step 1: Fit a flow matching model fθ between observations {Ot} (i.e., image embeddings and proprioception) and latent
noise {Z} ∼ N (0, I), so that for s ∈ [0, 1]:

fθ(Ot[s], s) ≈ Z −Ot,

Ot[s] = Ot + s(Z −Ot).

• Step 2: Given a new observation Ot′ at time step t′, perform one-step prediction to obtain latent noise estimate:

ZOt′ = Ot′ + fθ(Ot′ , 0).

When Ot′ is in-distribution, by the flow matching formulation, ZOt′ is close to samples drawn from N (0, I).
• Step 3: Compute density of latent noise (up to a constant) using squared norm:

log p(ZOt′) ∝ −∥ZOt′∥
2
2

High norm values of ∥ZOt′∥
2
2 indicate lower likelihood, which is caused by anomalous observations Ot′ . We thus use

∥ZOt′ ∥
2
2 as the logpZO score.

The key distinction between lopO and logpZO lies in their domains: the former assesses likelihood in the original observation
space, while the latter does so in the latent noise space. We expect the latter to be better because its computation does not
require the divergence of fθ integrated over [0, 1], a hard-to-estimate quantity in high dimensions.

(b) Second-order: these methods learn parameters for second-order distributions that can separate aleatoric and epistemic
uncertainty [46]. NatPN [8] imposes a Dirichlet prior on class probabilities and optimizes model parameters by minimizing a
Bayesian loss. To use NatPN, we discretize the observations Ot using K-means and apply NatPN to the discretized version.
We also consider multivariate deep evidential regression DER [5], which assumes At|Ot follows a multivariate Gaussian
distribution with a Wishart prior and learns its parameters.

(c) One-class discriminator: we consider methods that learn a continuous metric, but do not directly model the distribution
of input data. The one-class discriminator RND [21] initializes random target fT (·) and random predictor f(·; θ) networks.

(a) Before disturbance (b) After disturbance (c) Successful rollout (d) Failed rollout

(e) ID initial condition (f) OOD initial condition (g) Successful rollout (h) Failed rollout

(i) ID initial condition (j) OOD initial condition (k) Successful rollout (l) Failed rollout

Fig. 6: Robot hardware experiment scenarios. (Top row) FoldRedTowel with Disturbance: In (b), the human pulls the towel from the
position in (a) towards the bottom during a policy rollout. We note that such recovery behavior is sometimes present in the training data,
so the task may succeed as in (c). A failure case is shown in (d). (Middle row) FoldRedTowel OOD: Compared to ID (e), we start with
a crumpled towel with a blue spatula distractor to the right of the towel as in (f). Neither condition is present in the training data, thus
although the task could succeed as in (g), the success rate is low and the robot typically fails like in (h). (Bottom row) CleanUpSpill OOD:
Compared to ID (i), we start with a green towel as in (j). The training data only contains white and gray towels and, therefore, although the
task could succeed as in (k), the robot typically fails like in (l) with a low success rate.

The target is frozen, while the predictor is trained to minimize E(At,Ot)∼ID trajectory[DM (At, Ot; θ)] for DM (At, Ot; θ) =
||fT (At, Ot)− f(At, Ot; θ)||22 on successful demonstration data. Intuitively, RND learns a mapping from the data (At, Ot) to
a preset random function. If the learned mapping starts to deviate from the expected random output, the input data is likely
OOD. In this category, we also consider consistency flow matching (CFM) [62], which measures trajectory curvature with
empirical variance of the observation-to-noise forward flow. The intuition is that on ID data, the forward flow is trained to be
straight and consistent. Thus, high trajectory curvature indicates the input data is OOD.

(d) Post-hoc metrics: we investigate methods that compute a scalar score analytically without learning. We use SPARC [2]
to measure the smoothness of predicted actions. We expect SPARC to be useful for robot jitter failures, which are empirically
frequent in OOD scenarios. The recent SOTA in success-based failure detection, STAC [1], falls in the post-hoc method
category. However, since it comes with its own statistical evaluation procedure, we describe it as one of our main baselines
in Appendix D. Additionally, we term the OOD detection method by Liu et al. [34] as PCA-kmeans, which also falls in this
category. We retrofit it within our two-stage framework as another baseline in Appendix D.

C. Sequential Threshold Design with Conformal Prediction

We design a time-varying threshold ηt such that a failure is flagged when DM (At, Ot; θ) exceeds ηt. To do so, we leverage
functional CP [14], a framework that wraps around a time series of any scalar score DM (At, Ot; θ) (higher indicates failure)
and yields a distribution-free prediction band Cα with user-specified significance level α ∈ (0, 1). Under mild conditions
[52, 58, 59], Cα contains any ID score DM (At, Ot; θ) with probability of at least 1− α for the entire duration of the rollout.
If DM (At, Ot; θ) /∈ Cα, we can confidently reject that (At, Ot) is ID.

For sequential failure detection, we build Cα as a one-sided time-varying CP band. The band is one-sided as we are
only concerned with high values of the scalar score DM (At, Ot; θ), which indicate the trajectory is OOD (i.e., a failure).
Given N successful rollouts as the calibration data, we obtain scalar scores Dcal = {DM (Ai

t, O
i
t; θ) : i = 1, . . . , N and t =

1, H ′, . . . , T}. The CP band is a set of intervals Cα = {[lowert, uppert] : t = 1, H ′, . . . , T}, where lowert ≡ min(Dcal)

since the band is one-sided. To obtain the upper bound, we follow [14], computing the time-varying mean µt and band width
ht, so that uppert = µt + ht.

More precisely, following [14], we split the set of calibration scores Dcal into two disjoint parts DcalA and DcalB with
sizes N1 and N2. We first compute the mean successful trajectory µt = N−1

1

∑N1

i=1 DM (Ai
t, O

i
t; θ) for t = 1, . . . , T on

DcalA . Then, for j = 1, . . . , N2, we compute Dj = max({(µt −DM (Aj
t , O

j
t ; θ))/scalA(t)}Tt=1), which is the max deviation

over rollout length from the mean prediction to the scalar score. The function scalA(t) is called a “modulation” function that
depends on the dataset DcalA . In our experiment, we consider either

scalA(t) = 1/T (1)

scalA(t) = max
k∈H

|DM (Ak
t , O

k
t , θ)− µt|, (2)

where H = [N1] if (N1 + 1)(1 − α) > N1, otherwise H = {k ∈ [N1] : maxt∈[T] |DM (Ak
t , O

k
t , θ) − µt| ≤ γ} for γ =

(1−α)-quantile of {maxt∈[T] |DM (Am
t , Om

t , θ)−µt|}N1
m=1. Intuitively, Eq. (2) adapts the width of prediction bands based on

the non-extreme behaviors of the functional data. It does so by minimizing the influence of outliers whose maximum absolute
residuals lie within the upper α quantile of all maximum values. Additionally, note that the max is taken because the CP band
is intended to reflect the entire trajectory. We define S = {Dj , j = 1, . . . , N2} as the collection of such max deviations. The
band width h is finally computed as the (1 − α)-quantile of S and the upper bound is uppert = µt + hscalA(t). We pick
α = 0.05 (or 95% confidence interval) throughout experiments (see Table Table III on hyperparameter choices).

Theoretically, for a new successful rollout τT = (O0, A0, . . . , OT , AT), with probability at least 1 − α, the score
DM (At, Ot; θ) ∈ [lowert, uppert] for all t = 1, H ′, . . . , T . By defining the threshold ηt = uppert and setting failures to
one, the decision rule 1(DM (At, Ot; θ) > ηt) controls the false positive rate (successes marked as failures) at level α.

D. Experiments

We test our two-stage failure detection framework in both simulation and on robot hardware. Our experiments span multiple
environments, each presenting unique challenges in terms of types of tasks and distribution shifts. We empirically investigate
an extensive set of both learned and post-hoc scalar scores (see Table I) within our FAIL-Detect framework (see results in
Section III).

a) Task descriptions: In simulation, we consider the Square, Transport, Can, and Toolhang tasks from the open-source
Robomimic benchmark1 [38]. In the robot hardware experiments, we consider two tasks on a bimanual Franka Emika Panda
robot station that are significantly more challenging: FoldRedTowel and CleanUpSpill (see Fig. 7).

Specifically, we have
• (Simulation) The tasks from the Robomimic benchmark [38] are as follows. The Square task asks the robot to pick up a

square nut and place it on a rod, which requires precision. The Transport task asks two robot arms to transfer a hammer
from a closed container on a shelf to a target bin on another shelf, involving coordination between the robots. The Can
task asks the robot to place a coke can from a large bin into a smaller target bin, requiring greater precision than the
Square task. The Toolhang task asks the robot to assemble a frame with several components, requiring the most dexterity
and precision among the four tasks.

• (Real tasks) In the FoldRedTowel task, the two robot arms must fold a red towel twice and push it to the table corner.
In the CleanUpSpill task, one robot arm must lift a cup upright that has fallen and caused a spill, while the other robot

1We omit the Lift task as both FM and DP policies achieve 100% success.

TABLE II: Success rate of the flow policy on test data in each task-environment combination. These test data is used to test failure detection
methods as well. On the real task, we mark some cells with ∗ when the number of failures out of test rollouts is no greater than 5. In such
cases, we shuffle the rollout indices and include all the failure ones in the test set, so that the failure detection metrics have higher statistical
significance. Across the entire 50 rollouts, the true success rate of FM policy on FoldRedTowel ID is 0.96, and that of DP on CleanUpSpill
ID is 0.82.

(a) Simulation tasks

Square ID Square OOD Transport ID Transport OOD Can ID Can OOD Toolhang ID Toolhang OOD
FM Policy 0.90 (1000 rollouts) 0.63 (2000 rollouts) 0.85 (1000 rollouts) 0.63 (2000 rollouts) 0.98 (1000 rollouts) 0.84 (2000 rollouts) 0.77 (1000 rollouts) 0.53 (2000 rollouts)

DP 0.93 (125 rollouts) 0.63 (250 rollouts) 0.84 (125 rollouts) 0.76 (250 rollouts) 0.98 (125 rollouts) 0.95 (250 rollouts) 0.82 (125 rollouts) 0.54 (250 rollouts)

(b) Robot hardware tasks

FoldRedTowel ID
via FM policy

FoldRedTowel ID + Disturb
via FM policy

FoldRedTowel OOD
via FM policy

CleanUpSpill ID
via DP

CleanUpSpill OOD
via DP

CleanUpSpill ID
via FM policy

CleanUpSpill OOD
via FM policy

Setting-dependent band 0.9∗ (20 rollouts) 0.75∗ (20 rollouts) 0.60 (20 rollouts) 0.70 (20 rollouts) 0.45 (20 rollouts) 0.90* (20 rollouts) 0.90* (20 rollouts)
ID-only band 0.9∗ (20 rollouts) 0.90 (50 rollouts) 0.58 (50 rollouts) 0.70 (20 rollouts) 0.52 (50 rollouts) 0.90* (20 rollouts) 0.76 (50 rollouts)

(a) Initial condition (b) After 1st fold (c) After 2nd fold (d) Final success

(e) Initial condition (f) About to wipe (g) Wiping (h) Final success

Fig. 7: The on-robot experimental settings. (Top row) FoldRedTowel: starting with a flat towel, the two arms need to first fold the towel
along the short side, and then the right arm needs to perform the second fold along the long side. Finally, the towel needs to be pushed to
the bottom right corner to be considered a success. (Bottom row) CleanUpSpill: starting with spills caused by a fallen cup on the platform,
the right arm must first lift the cup to an upright position, while the left arm must pick up a towel and wipe the spills. To achieve success,
the spills must be completely cleaned, and the towel must be returned to its original position.

arm must pick up a white towel and wipe the spills on the platform. Both tasks are long-horizon and require precision
and coordination to manipulate deformable objects.

We construct OOD settings for each task. In simulation, we adjust the third-person camera 10 cm upwards at the first time
step after t = 50 to simulate a camera bump mid-rollout2. For the on-robot FoldRedTowel task, we disturb the task after the
first fold (challenging ID scenario) and create an OOD initial condition by crumpling the towel (seen in less than ∼15% of the
data) and adding a never before seen distractor (blue spatula). For the CleanUpSpill task, we create an OOD initial condition
by changing the towel to a novel green towel (see Fig. 6).

b) Baselines: We baseline FAIL-Detect against STAC [1] and PCA-kmeans [34] as SOTA approaches in success-based
failure detection for generative imitation learning policies. STAC operates by generating batches (e.g., 256) of predicted
actions at each time step. It then computes the statistical distance (e.g., maximum mean distance (MMD)) between temporally
overlapping regions of two consecutive predictions, where the MMD is approximated by batch elements. Intuitively, the MMD
measures the “surprise” in the predictions over the rollout and subsequently, STAC makes a detection using CP. Note that
instead of computing a CP band for a temporal sequence, STAC computes a single threshold based on empirical quantiles of the
cumulative divergence in a calibration set. We reproduce the method and adopt hyperparameters used in their push-T example,
where we generate a batch of 256 action predictions per time step. We did not employ the VLM component of the STAC
failure detector to remain as real-time feasible as possible. Due to the long STAC inference time (even after parallelization)
and resulting high system latency, we omit its comparison on the two robot hardware tasks. In our second baseline, Liu et al.
[34] tackle failure detection by training a failure classifier, which requires the collection of failure training data. However,
this approach is not applicable to our setup as we assume access to only successful human demonstrations for training and
successful rollouts for calibration. Instead, we incorporate their proposed OOD detection method as a post-hoc scalar score in
the first stage of FAIL-Detect to construct a fair baseline. We use the performant time-varying CP band to obtain thresholds
in the second stage. The method measures the distance of a new observation Ot′ at test time index t′ from the set of training
data {Ot}t≥0, which consist of visual encoded features jointly trained with the policy on the demonstration data. PCA-kmeans
first uses PCA to embed the training features and then applies K-means clustering to the embedded data to obtain K = 64
centroids. After embedding Ot′ using the same principal components, the method computes the smallest Euclidean distance
between the embedding and the K centroids. This distance serves as the OOD metric (higher values indicate greater OOD). We
omit comparison against ensembles [31], a popular OOD detection technique, due to RND having shown improved performance
over ensembles in prior work [13] and their prohibitively high computational cost.

2We use t = 15 for Can, which has the shortest task completion time.

TABLE III: Hyperparams in evaluation protocol. We include the details for the policy networks in Table IIIa and the hyperparameters for
CP band calibration in simulation in Table IIIb and in robot hardware experiments in Tables IIIc and IIId. For simulation tasks, training
is done on one NVIDIA RTX A6000 GPU with 48GB memory. For the experiments on hardware, training is done on eight NVIDIA
A100-SXM4-80GB GPUs with 80GB memory.

(a) Policy network

Dimension of
(At, Ot)

Architecture of
(policy g, visual encoder for Ot)

Policy training specification
(optimizer, lr, lr scheduler, batch size, number of epochs)

(Simulation) Square (160, 274) (UNet [26], ResNet [20]) (AdamW [37], 1e-4, cosine [36], 64, 800)
(Simulation) Can (160, 274) (UNet [26], ResNet [20]) (AdamW [37], 1e-4, cosine [36], 64, 800)
(Simulation) Toolhang (160, 274) (UNet [26], ResNet [20]) (AdamW [37], 1e-4, cosine [36], 64, 300)
(Simulation) Transport (320, 548) (UNet [26], ResNet [20]) (AdamW [37], 1e-4, cosine [36], 64, 300)
(Real) FoldRedTowel (320, 4176) (UNet [26], ResNet [20]) (AdamW [37], 1e-4, cosine [36], 96, 1000)
(Real) CleanUpSpill (320, 6732) (UNet [26], CLIP [41]) (AdamW [37], 1e-4, cosine [36], 36, 500)

(b) (Simulation) CP band calibration and testing

Square ID Square OOD Can ID Can OOD Toolhang ID Toolhang OOD Transport ID Transport OOD
CP band modulation Eq. (2) Eq. (2) Eq. (2) Eq. (2) Eq. (2) Eq. (2) Eq. (2) Eq. (2)
CP significance level 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
(FM policy) Num successes
for CP band mean 269 269 296 296 224 224 253 253

(FM policy) Num successes
for CP band width 629 629 693 693 523 523 591 591

(FM policy) Num test rollouts
for evaluation 1000 2000 1000 2000 1000 2000 1000 2000

(DP) Num successes
for CP band mean 31 31 34 34 27 27 27 27

(DP) Num successes
for CP band width 82 82 90 90 70 70 71 71

(DP) Num test rollouts
for evaluation 125 250 125 250 125 250 125 250

(c) (Hardware: FoldRedTowel) CP band calibration and testing

ID Disturb
(Setting-dependent)

ID Disturb
(ID-only)

OOD
(Setting-dependent)

OOD
(ID-only)

CP band modulation Eq. (1) Eq. (1) Eq. (1) Eq. (1)
CP significance level 0.05 0.05 0.05 0.05
Num successes for
CP band mean

7 7 4 7

Num successes for
CP band width

23 23 13 23

Num test rollouts for
evaluation

20 50 20 50

(d) (Hardware: CleanUpSpill) CP band calibration and testing

OOD (DP)
(Setting-dependent)

OOD (DP)
(ID-only)

OOD (FM policy)
(Setting-dependent)

OOD (FM policy)
(ID-only)

CP band modulation Eq. (2) Eq. (2) Eq. (1) Eq. (1)
CP significance level 0.05 0.05 0.05 0.05
Num successes for
CP band mean

6 5 6 9

Num successes for
CP band width

14 12 14 18

Num test rollouts for
evaluation

20 50 20 50

c) Evaluation Protocol: To quantify failure detection performance, we denote failed rollouts as one and successful rollouts
as zero. We then adopt the following standard metrics: (1) true positive rate (TPR), (2) true negative rate (TNR), (3) balanced

(a) Transport ID (b) Transport OOD

(c) Square ID (d) Square OOD

(e) Can ID (f) Can OOD

(g) Toolhang ID (h) Toolhang OOD

Fig. 8: Quantitative failure detection results for simulation tasks on FM policy (best, second, third); results with TPR and TNR are in Fig. 11
and results on DP are in Fig. 12. For balanced accuracy and weighted accuracy, higher is better and for detection time, lower is better.
The CP band for each task is calibrated with successful rollouts under ID initial conditions only (i.e., the same band is used for ID and
OOD test cases). We group together post-hoc (STAC, PCA-kmeans, SPARC), density-based (logpO, logpZO), second-order (DER, NatPN),
and one-class (CFM, RND) methods and show barplots with standard errors. The dashed line in the Detection Time plots represents the
average successful trajectory time in that setting with standard error. Overall, learned methods outperform post-hoc ones in failure detection.
In terms of combined accuracy (balanced accuracy and weighted accuracy), logpZO and RND are the best two methods, reaching top-1
performance in 10/16 and 5/16 cases, respectively. Moreover, logpZO reaches top-3 performance in 14/16 cases, while RND does so in 9/16
cases. In comparison, the baselines STAC and PCA-kmeans reach top-1 performance in 3/16 and 0/16 cases, respectively. Note that STAC
reaches top-3 performance in 8/16 cases, while PCA-kmeans does so in 3/16 cases. The learned methods also achieve the fastest detection
time, with one of the learned methods always getting the best overall detection time in all but one case. In terms of best top-1 performance,
logpZO is the fastest method in 3/8 cases, RND in 0/8 cases, and the PCA-kmeans baseline does so in 1/8 cases. In contrast, STAC is the
slowest in nearly all cases, detecting failures only after the average success trajectory time, rendering the detection not practical.

accuracy = (TPR + TNR) / 2, (4) weighted accuracy = β·TPR + (1 − β)· TNR for β = #Successful rollouts
#Rollouts , and (5) detection

time = E(At,Ot)∼test rollouts[argmint=1,H′,...,T 1(DM (At, Ot; θ) > ηt)], which computes the average failure detection time from
the start of the rollout. The balanced accuracy metric equally represents classes in an imbalanced dataset (e.g., few successful
rollouts in an OOD setting). Weighted accuracy represents how well a method matches the true success / failure distribution.
Due to the high human time cost of performing real-robot rollouts, we evaluate FAIL-Detect and the baselines on significantly
fewer rollouts in the robot hardware tasks (i.e., 50 rollouts) compared to the simulation tasks (i.e., 2000 rollouts).

d) Policy backbone and the calibration of CP bands: Table II shows success rate across the tasks. Meanwhile, See
Table III for hyperparameters regarding

• Dimension of actions At and observations Ot per task.
• Architecture details of the policy backbone g and the choice of image encoder.
• Training specifics of g (i.e., optimizer, learning rate and scheduler, and number of epochs).
• Number of successful rollouts used to calibrate the CP bands and the number of test rollouts. Note that on simulation

tasks, we roll out DP fewer times because it requires significantly longer time (higher number of denoising steps) than
FM policies to generate actions.

We further explain the design and training of the policy network g. The underlying policy network g is trained with flow
matching [32] and/or diffusion models [22]. We follow the setup in [12] and use the same hyperparameters to train the policies.
When using flow matching [32] to train the policies, the only difference is that instead of optimizing with the diffusion loss,
we change the objective to be a flow matching loss between At|Ot and Z, the standard Gaussian. Image features are extracted
using either a ResNet or a CLIP backbone trained jointly with g. These image features concatenated with robot state constitute

(a) PCA-kmeans (b) SPARC (c) logpZO (d) RND

Fig. 9: Qualitative results of detection scores overlaid with CP bands on the real FoldRedTowel OOD task. The layout is the same as
Fig. 4. We notice that spikes of scores computed on failed trajectories are more evident for the learnt logpZO and RND than for the post-hoc
PCA-kmeans and SPARC.

(a) Simulation (b) Robot hardware (FoldRedTowel)

Fig. 10: TPR and TNR vs. CP significance level in simulation and real tasks.

observations Ot.
e) Training scalar failure detection scores: After learning the policy network g with the ResNet encoder for camera

images, we first obtain {(At, Ot)} for each task using the same training demonstration data for policy network. For the post-
hoc approach SPARC, it utilizes the arc length of the Fourier magnitude spectrum obtained from the trajectory. To learn and
test the scalar scores, we adopt the following setup:

1) CFM: We use a 4x smaller network with identical architecture as the policy network. It is unconditional and takes in
observations Ot as inputs. We train for 200 epochs with a batch size of 128, using the Adam optimizer [30] with a
constant 1e-4 learning rate.

2) lopO and logpZO: We let the flow network (taking Ot as inputs) has the same architecture as the policy network. On
simulation, we let the flow network to be 4x smaller than the policy network with identical architecture and on real data,
we keep identical model sizes between the two. On simulation (resp. real data), we train for 500 (resp. 2000) epochs
with a batch size of 128 (resp. 512), using the Adam optimizer with a constant 1e-4 learning rate. For a new observation
Ot′ , its density log p(Ot′) is obtained via the instantaneous change-of-variable formula [11].

3) DER: The network to parametrize the Normal-Inverse Wishart parameters has the same architecture as the policy network
but is 4x smaller with identical architecture. It takes in Ot as inputs. We train for 200 epochs with a batch size of 128,
using the Adam optimizer with a constant 1e-4 learning rate.

4) NatPN: We first use K-means clustering with 64 clusters to obtain class labels Y for the observations X = Ot. We
then consider the case where Y follows a categorical distribution with a Dirichlet prior on the distribution parameters.
To lean the parameters, we then follow [8] to use the tabular encoder with 16 flow layers. We set the learning rate to be
1e-3 and train for a maximum of 1000 epochs.

5) RND: On simulation, we use a 4x smaller network with identical architecture as the policy network, which takes in both
At and Ot as inputs (Ot as the conditioning variable). We train for 200 epochs with a batch size of 128, using the Adam
optimizer with a constant 1e-4 learning rate. On real data, we use network with the same size as the policy network to
improve performance. We train for 2000 epochs with a batch size of 512, using the Adam optimizer with a constant
1e-4 learning rate. During inference, a high DM (At, Ot; θ̂) indicates a large mismatch between the predictor and target
outputs, which we hypothesize results from the pair (At, Ot) not being from a successful trajectory.

E. Ablation

We conduct ablation studies on the behavior of our method under varying CP significance levels α. In Fig. 10, we show TPR
and TNR for 10 equally spaced values of α ∈ [0.01, 0.1] using logpZO. As expected, higher α increases TPR and decreases
TNR, since more rollouts are flagged as failures. This trend is clearer in simulation; in real tasks, the effect is muted due to the
limited number of rollouts and therefore constant calibration quantiles for small α. Overall, α = 0.05 offers a robust trade-off,
which is what we used in all experiments.

(a) Transport ID

(b) Transport OOD

(c) Square ID

(d) Square OOD

(e) Can ID

(f) Can OOD

(g) Toolhang ID

(h) Toolhang OOD

Fig. 11: Quantitative results in simulation tasks by FM policy (best, second, third), which augments Fig. 8 by including all quantitative
metrics. The takeaways are similar as before, where logpZO and RND are the top-2 best-performing method overall.

(a) Transport ID

(b) Transport OOD

(c) Square ID

(d) Square OOD

(e) Can ID

(f) Can OOD

(g) Toolhang ID

(h) Toolhang OOD

Fig. 12: Quantitative results in simulation tasks by DP (best, second, third). The layout is identical to Fig. 8. We similarly observe that
learned methods seem to have more capacity to detect failures than post-hoc ones, with RND and logpZO being the best-performing methods.

(a) FM policy: (Setting-dependent band) ID + Disturb

(b) FM policy: (ID-only band) ID + Disturb

(c) FM policy: (Setting-dependent band) OOD initial condition

(d) FM policy: (ID-only band) OOD initial condition

Fig. 13: Quantitative results on the FoldRedTowel robot hardware task using two ways to compute the CP band (best, second, third).
logpZO remains to be the most robost method overall.

(a) DP: (Setting-dependent band) OOD initial condition

(b) DP: (ID-only band) OOD initial condition

(c) FM policy: (Setting-dependent band) OOD initial condition

(d) FM policy: (ID-only band) OOD initial condition

Fig. 14: Quantitative results on the CleanUpSpill robot hardware task using two ways to compute the CP band (best, second, third). logpZO
remains to be the most robost method overall.

	Introduction
	Problem Setup and FAIL-Detect Framework
	Results
	How performant is failure detection without failure data?
	What is the impact of learned vs. post-hoc scores on failure detection?
	Do failure detections align with human intuition?

	Appendix
	Related Work
	Design of Scalar Scores
	Sequential Threshold Design with Conformal Prediction
	Experiments
	Ablation

