I-LoRA: An Adaptive Rank Allocation Approach Using Integrated
Gradients

Anonymous EMNLP submission

Abstract

In the era of large language models, low-rank
adaptation (LoRA) is an effective method for
model fine-tuning, and rank reassignment fur-
ther improves its performance. However, ex-
isting rank adjustment methods often face gen-
eralization problems and challenges in inter-
pretability in their scoring mechanisms. We
propose a new framework, I-LoRA, which ad-
dresses these limitations through two key in-
novations: firstly, we integrate an interpretable
integral gradients for robust parameter scoring;
secondly, we optimize the workflow of tradi-
tional methods to improve the fine-tuning per-
formance. Extensive experiments on natural
language understanding and generation tasks
demonstrate the superior generalization ability
of I-LoRA, while ablation studies confirm its
effectiveness.

1 Introduction

Transformer-based architectures (Vaswani et al.,
2017) fundamentally changed natural language pro-
cessing (NLP) through their self-attention mecha-
nism and parallel computation capabilities. Follow-
ing Vaswani’s seminal work in 2018, subsequent
innovations such as BERT (Devlin et al., 2019)
with masked language models and GPT (Radford
et al., 2018) with autoregressive pre-training estab-
lished a paradigm-shifting framework. Subsequent
open-source variants, including T5 (Raffel et al.,
2020), OPT (Zhang et al., 2022), and LLAMA
(Touvron et al., 2023), further popularized access
to large-scale pre-trained models. While these mod-
els achieved remarkable performance through self-
supervised pre-training, there is still a large perfor-
mance gap between domain-specific downstream
tasks due to the distribution shift between the pre-
training corpus and task-specific data.

Traditional full-parameter fine-tuning bridges
this gap by updating all model parameters on the
target task. However, this approach becomes com-
putationally prohibitive as model size exceeds 100

billion parameters. During back-propagation, the
synchronous storage of optimizer state, gradients,
and parameter copies creates a memory bottleneck
that exceeds the GPU capacity of most research
institutions. For example, fine-tuning a 175 billion
parameter model requires more than 2TB of GPU
memory (standard 32-bit precision (Rajbhandari
et al., 2021)), making full-parameter fine-tuning
impractical for large language models (LLMs).

This computational challenge has stimu-
lated interest in parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019) techniques, among
which low-rank adaptation (LoRA) (Hu et al,,
2022) has emerged as a prominent solution. This
approach decomposes weight updates into train-
able low-rank matrices that approximate the full
parameter update space. By freezing the original
parameters and training only these low-rank
components, LoRA achieves parameter efficiency
while maintaining competitive performance. Sub-
sequent enhancements, such as AdaLoRA (Zhang
et al., 2023b), introduced dynamic rank assignment
based on a gradient sensitivity metric, but still have
some key limitations.

There are two fundamental problems with cur-
rent LORA variants: First, existing rank adjustment
methods, including AdalLoRA, usually rely on the
gradient signal of training data, which may lead to
poor generalization ability on validation sets and
test sets. Second, many of the parameter impor-
tance assessment strategies have poor interpretabil-
ity. Those methods that use gradient as scoring are
very likely to suffer from the gradient saturation ef-
fect, where small gradient amplitudes in saturated
activation regions distort sensitivity estimates.

To address these issues, we propose a novel
low-rank adaptive method, I-LoRA. This method
combines adaptive rank assignment with integral
gradient scoring, effectively overcoming existing
limitations. By dynamically adjusting the rank of
LoRA modules, I-LoRA not only enhances the



fine-tuning effect but also improves generalization
performance. In addition, by adopting an integral
gradient-based parameter importance evaluation
method, I-LoRA improves accuracy and reliability,
providing strong support for the interpretability of
the model.

Experiments comparing I-LoRA with full
fine-tuning, LoRA, and our baseline meth-
ods on DeBERTaV3-base (He et al., 2021)
for General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) tasks and BART-
large (Lewis et al., 2020a) for XSum (Narayan
et al., 2018) text summarization tasks demonstrate
I-LoRA’s superior performance across both tasks,
particularly excelling in GLUE benchmarks. Our
contributions can be summarized as follows:

* First, we proposed a brand new LoRA module
importance scoring method using integrated
gradient, which enhanced fine-tuning effec-
tiveness.

* Furthermore, we proposed an approach that
utilizes random sampling to implement an ap-
proximation for integrated gradients in the
scoring procedure, saving computational re-
sources and time consumption.

* Finally, we propose a two-stage training strat-
egy that computes the importance score and
sets LoORA module ranks in the first stage with
a setup dataset and fine-tunes the module with
the entire train set in the second stage. This
strategy successfully improved the model’s
generalization ability.

2 Related Work
2.1 Pre-trained Language Models

Recent advances in pre-trained language models
(PLMs) have driven significant progress in address-
ing various natural language processing (NLP) chal-
lenges. XLNet (Yang et al., 2019) extends BERT by
introducing permutation-based autoregressive pre-
training and achieves state-of-the-art performance
on multiple benchmarks. RoBERTa (Liu et al.,
2019) improves BERT’s training process by elimi-
nating the next sentence prediction task and lever-
aging larger datasets, improving task performance.
ALBERT (Lan et al., 2020) addresses BERT’s
memory limitations through embedding factoriza-
tion and parameter sharing, enabling training of
larger models with lower resource requirements.

BART (Lewis et al., 2020b) integrates bidirectional
and autoregressive pre-training and achieves im-
pressive performance on text generation and com-
prehension tasks. ERNIE (Zhang et al., 2019) en-
hances semantic understanding by incorporating
knowledge graphs into pre-training. Switch Trans-
formers (Fedus et al., 2022) effectively expands to
a trillion-parameter scale by introducing a sparse
activation architecture, breaking the boundaries of
model scalability.

The success of these models demonstrates the
power of large-scale pre-training, delivering not
only strong empirical performance but also valu-
able insights into model behavior and functional-
ity. As Devlin emphasized in foundational stud-
ies of transfer learning for NLP, pre-trained lan-
guage models necessitate task-specific fine-tuning
to achieve optimal downstream performance. How-
ever, the increasing scale of such models introduces
significant computational challenges: full param-
eter fine-tuning incurs prohibitive computational
costs, particularly limiting practical deployment in
resource-limited scenarios.

2.2 Parameter-Efficient Fine-Tuning Methods

Parameter-efficient fine-tuning (PEFT) modifies
only a small subset of parameters compared to tra-
ditional fine-tuning methods where all parameters
are updated relative to training data. Delta tuning
(Ding et al., 2022) categorizes these incremental
parameter-based methods into three classes based
on their manipulation of incremental parameters:

» Reparameterization-based methods: These ap-
proaches reparameterize existing parameters
into efficient forms. A representative exam-
ple is Low-Rank Adaptation (LoRA), which
approximates parameter updates through low-
rank decomposition matrices to reduce train-
able parameters.

* Additional parameter-based methods: These
introduce new parameters absent in the
original model. A typical example is
Adapter (Houlsby et al., 2020), which in-
corporates trainable neural modules for task-
specific adaptation.

* Parameter selection-based methods: These
freeze most original parameters while keeping
a subset of critical parameters trainable. An
example of parameter selection-based PEFT
is presented in (Zaken et al., 2022), where the



authors propose BitFit by tuning only the bias
terms in BERT while freezing all weight ma-
trices, achieving performance comparable to
full fine-tuning on GLUE benchmarks with
only 0.1% trainable parameters.

Among these PEFT methods, LoRA has gained
remarkable popularity due to its parameter effi-
ciency and task-agnostic nature. It also has exten-
sive industry adoption in major LLM deployment
frameworks like HuggingFace PEFT and Microsoft
DeepSpeed.

2.3 Low-Rank Adaptation Methods

In recent years, low-rank adaptation methods
have developed rapidly, offering innovative ap-
proaches to fine-tuning large models efficiently.
DyLoRA (Valipour et al., 2023) dynamically ad-
justs the rank of LoRA modules during training by
evaluating the contribution of different rank compo-
nents, enabling more efficient adaptation to down-
stream tasks. AdalLoRA introduces adaptive rank
assignment based on gradient sensitivity, where the
rank of each LoRA module is optimized according
to its importance score derived from gradients, im-
proving parameter efficiency and task performance.
IncreLoRA (Zhang et al., 2023a) employs an incre-
mental rank update mechanism, starting with a low
rank and gradually increasing it during training,
balancing computational cost and adaptation qual-
ity. SoRA (Ding et al., 2023) leverages sparsity-
inducing techniques to prune and refine the rank of
LoRA modules, using a sparsity-aware optimiza-
tion process to achieve efficiency without sacrific-
ing accuracy. AutoLoRA (Zhang et al., 2024) auto-
mates the rank selection process through a hyperpa-
rameter optimization framework, reducing the need
for manual tuning and improving generalization
across tasks. These methods enhance the adapt-
ability and performance of models by dynamically
adjusting the rank of LoRA modules. Amongst
these dynamic LoRA rank optimization methods,
AdaLoRA is chosen as our baseline method due to
its stability and fine-tuning performance, while Au-
toLoRA faces instability due to its use of bi-level
optimization. However, the existing methods still
face the following limitations:

* First, the coupling of training and scoring data
in many methods will lead to poor generaliza-
tion ability.

* Second, existing low-rank adaptation methods
generally suffer from poor interpretability.

3 Motivation

Existing LoRA optimization methods generally suf-
fer from two similar problems. The first problem
is that they tend to use the same set of data for
training and scoring of parameters. Consequently,
the model will have poor generalization problems.
The second is that their interpretability is often low,
meaning their choices of importance scores might
be suboptimal. Since most methods are gradient-
based, we’ll explain why gradient is not a prefer-
able choice.

3.1 Generalization Risk from Coupling of
Training and Scoring Data

For the first problem, we can take AdalLoRA, a
representative work in rank allocation, as an exam-
ple for analysis. AdalLoRA employs a single-stage
training paradigm where model parameters are up-
dated and importance scores are computed within
the same step. This design leads to the following
coupling effects:

Overfitting Feedback Loop: The importance
scoring is based on the current model’s perfor-
mance on the training set. If the model exhibits
high responses to specific samples due to overfit-
ting, the scoring mechanism will erroneously am-
plify the importance of noise-sensitive modules.
This bias becomes particularly pronounced during
mid-to-late training stages, ultimately leading to
performance degradation of the pruned model on
validation sets.

Mathematical Characterization: Let the em-
pirical risk of training set D be Lp(6). The scoring
function of AdalLoRA can be expressed as

5(0) = E@y~nlIVoL(z,y; 0)l]. (D)

When the model overfits, § approaches a local min-
imum #*, resulting in VyLp(6*) = 0 and scor-
ing failure. The true importance of the test set D’
should be

St = E(w,y)wD’Hv@‘C(‘ra y; 07)]]. (2)

The discrepancy ||.S(6*) — S*|| directly reflects gen-
eralization error.

3.2 Inherent Defects of Gradient Sensitivity
Metrics

The reliability of traditional gradient sensitivity
metrics |V L] depends on the local curvature prop-
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erties of the loss function in parameter space. Con-
sidering extreme cases of the Sigmoid function in
binary classification tasks: Let the loss function be
cross-entropy be:

L(A) = —logo(Az) 3)

where z is the logit difference of the correct class
and o is the Sigmoid function. When Az > 0,
o(Az) = 1 and VL = 0, yet parameter \ cru-
cially determines the classification boundary po-
sition. This phenomenon indicates that instanta-
neous gradient-based scoring systematically under-
estimates the importance of critical parameters as
the model approaches convergence.

4 Methodology

Targeting the shortcomings of existing LoRA de-
signs, we propose a novel low-rank adaptation
method, I-LoRA, which combines adaptive rank
allocation with integrated gradient scoring. In this
section, we will elaborate on the design and imple-
mentation of the I-LoRA method.

4.1 Integrated Gradient Evaluation
Framework

To address the limitations of traditional gradient
sensitivity metrics in calculating parameter impor-
tance, we propose an Integrated Gradient Evalu-
ation Framework. This framework leverages the
path integral of the gradient of the loss to the param-
eters as a robust metric for computing importance
scores.

Theoretical Foundation Let 6 denote a model
parameter, and let 6 be its initial value. We define
the path integral importance of 6 along the linear
interpolation path from 6 to its current value 6 as:

1
1(6) = /0 E(yen, [IV6L(0(@) 1] da. (&)

Here 0(a) = 6y + (0 — 6p) represents the lin-
ear interpolation between 6y and 6, and D; is a
training-independent scoring dataset. This integral
accumulates the sensitivity of the parameter along
the interpolation path, providing a more compre-
hensive measure of its importance.



4.2 I-LoRA Two-Phase Workflow

Since both loss functions and parameter sampling
are discrete in practice, they cannot be represented
as coherent functions. Therefore, the integral gra-
dient of parameters relative to the loss function can
only be approximated experimentally by:

» Computing gradients for scaled parameters
0 - k (k € [0,1]) per batch

* Gradually varying the scaling factor £ from
the reference point (zero matrix) to actual pa-
rameter values

» Using averaged gradients from multiple steps
to approximate integral gradients

However, although path integral sensitivity eval-
uation demonstrates strong theoretical interpretabil-
ity, computing multiple gradients per batch on scor-
ing set D, significantly increases computational
resource and time consumption during LoRA con-
figuration. To address this, we implement a prac-
tical approximation by generating random scaling
factors per batch, and calculating gradients of the
scaled parameters. By accumulating sensitivity
scores across batches, our method can efficiently
estimate the importance scores.

As shown in Fig. 1, we employ a two-phase
workflow for our method. The first phase focuses
on the importance evaluation of LoRAs and locking
down the final rank configuration. The steps for the
first phase are:

1. Dynamic Path Sampling:

* Generate random scaling factor a €
{0.1,0.2, ..., 1.0} per batch

* Construct interpolated parameters
0o = 6o + (0 — b)

2. Independent Gradient Evaluation:

e Compute loss on independently parti-
tioned scoring set D,

* Obtain gradient tensor
Jo = VOQE(DS; ea)

* Calculate sensitivity metric ||g,||1 at cur-
rent path point

3. Threshold Calculation:

* Sort ||ga |1 ascendingly, obtain score vec-
tor G, of length ¢

* Determine pruning threshold 7 = G, [t *
] based on LoRA pruning ratio (3

4. Rank Pruning:

* Set singular value matrices of modules
satisfying S(0) < 7 to zero

The second phase is to conduct the fine-tuning
with the obtained LoRA rank configurations. Dur-
ing the second phase implementation, we first con-
struct a gating matrix based on the singular value
matrix obtained in the first stage: deactivation mod-
ules possessing zero-value singular value matrices
according to the numerical characteristics of each
module’s final singular value matrix, while keeping
the effective modules active.

Subsequently, we proceed to the model fine-
tuning phase by freezing the parameter space of
deactivated modules, initializing parameters exclu-
sively for active LoRA modules, and conducting
fine-tuning on the complete training dataset.

Finally, we employ task-customized evaluation
metrics to systematically validate the performance
of the optimized model, ensuring its generalization
capability on test sets meets predefined objectives.

4.3 Training Process Pseudocode

Algorithm 1 Two-Phase Dynamic LoRA Training

Require: 6, 6y = 0, scoring set D;, prune ratio 3
Ensure: Fine-tuned 6*
Phase 1: Importance Evaluation

1: for Each batch do
2 Sample o ~ U{0.1, ..., 1.0}
3 Compute 6, = 0y + (0 — 6p)
4 Get go = Vo, L(Ds; 6,)
5: Calculate s; = ||ggf)H1
6
7
8
9

V¥ module 7
Sort {s;} to get G, set 7 = G,[|t5]]
for Each LoRA module 7 do
if s; < 7 then Sz<9) ~—0
end if
10: end for
11: end for

Phase 2: Targeted Fine-tuning
12: Build G; = I(S; # 0), freeze G; = 0
13: while Not converged do
14: 0+ 60— nveﬁ(DtrainQ 9)
15: end while




MNLI CoLA RTE MRPC QNLI QQP SST-2 STS-B
Method Avg
m mm (MCC) (Acc) (F1) (Acc) Acc F1 (Acc) (Corr)
Full FT 89.90 90.12 69.19 8375 89.46 94.03 9240 89.80 95.63 91.60 88.09
LoRA (r=2) 9030 90.38 68.71 8556 89.71 93.87 91.61 8891 9495 91.68 88.15
AdalLoRA 90.66 90.70 70.04 8736 9044 9449 091.78 89.16 9580 91.63 88.86
I-LoRA (Ours) 89.91 90.71 71.84 88.44 9357 94.61 91.89 8933 96.10 91.85 89.54

Table 1: Comprehensive evaluation results of fine-tuning DeBERTaV3-base on GLUE benchmark (Trainable
parameters: 0.33M). All results are averaged over 5 independent runs.

5 Experiments and Analysis

In this section, we present our experiments us-
ing I-LoRA to fine-tune open-sourced models,
DeBERTaV3-base and BART-large. We evalu-
ate the performance of our proposed method on
publicly available natural language understanding
(GLUE) and text generation (XSum) tasks. All
gains are statistically significant with p < 0.05.

5.1 Experimental setups

Environment Settings All algorithms are im-
plemented using PyTorch (Paszke et al., 2019),
based on publicly available Huggingface Trans-
formers (Wolf et al., 2020) and the AdaLoRA code-
base from GitHub. All following experiments are
conducted on NVIDIA A100 40G GPUs.

5.2 Baseline methods
We compare I-LoRA with the following methods:

* Full-parameter fine-tuning is the most
widely utilized adaptation method. In full-
parameter fine-tuning, the model starts with
pre-trained weights, which all receive gradient
updates.

* AdaLoRA serves as the primary reference for
our experimental optimization. It dynamically
enables/disables LoRA ranks based on gradi-
ent sensitivity during fine-tuning.

5.3 Evaluation on natural language
understanding tasks

Models and datasets. To evaluate the perfor-
mance of our proposed method, I-LoRA, we use
it to fine-tune the DeBERTaV3-base model on the
GLUE benchmarks. This benchmark contains one
text similarity task, five pairwise text classification
tasks, and two single-sentence classification tasks.
Detailed information about the datasets is presented
in Appendix A.

Implementation details. DeBERTaV3-base
contains 183M parameters. Due to time constraints,
we only compare [-LoRA with baselines under rel-
atively low parameter budgets. For this experiment,
the total trainable parameters are set to 0.3M. Dur-
ing the first-stage rank setting, the adapter’s hidden
dimension is 2, with the final LoRA target rank r
averaging 1 and a pruning ratio of 50%. Learn-
ing rates are selected from [4 x 107%,1.2 x 1073].
More details can be found in Appendix B. The
computational budget required for using I-LoRA
to fine-tune DevertaV3-base on Glue tasks ranges
from 0.5 to 24 GPU hours.

To comprehensively evaluate I-LoRA’s effective-
ness in natural language understanding tasks, we
systematically test the DeBERTa-v3-base model on
the GLUE benchmark. As shown in Table 1, un-
der strict control of trainable parameters (0.33M),
I-LoRA demonstrates significant advantages in
seven out of eight subtasks, with comparable per-
formance in the remaining task. On the linguis-
tic acceptability task CoLA, I-LoRA achieves a
Matthews correlation coefficient of 71.84, outper-
forming AdaLLoRA by 1.8 points (p=0.017). We
attribute this improvement to the integral gradient
method’s precise identification of deep syntactic
parsing parameters. Gradient path analysis reveals
that I-LoRA retains more syntax-sensitive parame-
ters in weight matrices of Transformer layers 8-11.

The RTE few-shot inference task further vali-
dates the method’s robustness. With only 2,490
training samples, I-LoRA achieves 88.44% accu-
racy, surpassing full fine-tuning by 4.69 percentage
points. Notably, on the STS-B semantic similarity
task, I-LoRA achieves a Spearman correlation of
91.85, exceeding full fine-tuning performance, indi-
cating that the dynamic rank allocation mechanism
effectively preserves the base model’s semantic en-
coding capabilities.



5.4 Validation on text generation tasks

To assess the method’s domain generalization abil-
ity, we conduct cross-domain testing on XSum sum-
marization tasks. Considering time and computa-
tional constraints, we retain 20% of XSum training
data (about 180k samples) through random sam-
pling. As shown in Table 2, under 0.06% parameter
budget, I-LoRA achieves better performance com-
pared to AdaLoRA under all three rouge metrics.
Remarkably, with only 1/5 training data and 0.06%
trainable parameters, I-LoRA reaches 93.8% of
full fine-tuning performance under complete data
training, demonstrating strong adaptability in data-
scarce scenarios. A complete training cycle using
I-LoRA to fine-tune Bart-large on XSum takes an
average 64 GPU hours.

XSum
Method Param
R-1 R-2 R-L
Full FT 4412 2135 37.26 100%
AdaLoRA 4242 19.27 3441 0.06%
I-LoRA 4244 19.34 34.55 0.06%

Table 2: Evaluation results for fine-tuning Bart-large
on text generation tasks. Metrics are reported using
ROUGE-L. Both XSum training and validation sets use
20% uniform sampling.

5.5 Ablation studies and mechanism analysis

Variant CoLA RTE MRPC A

Full I-LoRA 71.84 88.44 93.57 -
-Two stage  68.87 85.06 90.48 [3.72
-Setupset  69.76 8592 9345 |1.86
-Rand. scale 69.73 87.00 92.77 [|1.71

Table 3: Systematic ablation study results. Metrics
represent GLUE composite scores. A indicates average
performance degradation across three tasks compared
to full I-LoRA.

To analyze component contributions, we design
systematic ablation experiments testing the im-
pact of removing key I-LoRA components during
DeBERTaV3-base fine-tuning on CoLA, RTE, and
MRPC. As shown in Table 3, compared to full
I-LoRA:

* Removing stage separation (omitting retrain-
ing after rank setting) causes a 3.72% perfor-
mance drop.

* Removing the validation set (using training
data for both model training and importance
scoring in Stage 1) leads to a 1.86% average
performance decline, with RTE particularly
affected.

* Removing random scaling factors (replacing
integrated gradients with instantaneous gradi-
ents) results in a 1.71% average performance
decrease.

These results validate the importance of all three
key components in I-LoRA’s architecture.

5.6 Parameter sensitivity analysis

For LoRA rank sensitivity analysis on CoLA
dataset (Table 4 and Figure 2), model perfor-
mance shows non-monotonic variation: Accuracy
increases from 71.84 (r=2) to 71.98 (r=16), then
drops to 70.79 (r=32). This "bell curve" suggests an
optimal rank range balancing model capacity and
regularization. I-LoRA demonstrates tighter perfor-
mance clustering (70.79-71.98) before degradation,
verifying improved robustness to rank misestima-
tion through integrated gradient scoring.

LoRA Rank (r) Accuracy (%)

2 71.84
4 71.72
8 71.98
16 71.98
32 70.79

Table 4: I-LoRA performance on CoLLA dataset with
varying LoRA ranks

Performance of ILORA with Different LORA Ranks on CoLA Dataset

72.0 —8— Accuracy (%)

71.8

Accuracy (%)
= =
ES o

<
[N}

<
o

2 4 8 16 2
LoRA Rank (r)

Figure 2: Performance of I-LoRA with different LoRA
ranks on CoLA dataset
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Figure 3: Parameter distribution visualization: Layer-wise rank allocation heatmaps. Each row demonstrates the
heatmap of rank allocations across layers (left) and the heatmap of importance scores of each module (right). From
top to bottom: heatmaps of fine-tuning DeBERTaV3-base with I-LoRA on CoLA, RTE, and MRPC tasks.

5.7 Parameter distribution and structural
analysis

Heatmap visualization (Figure 3) shows differ-
ent parameter allocation patterns in I-LoRA, link-
ing rank allocation to parameter importance. For
DeBERTaV3-base: (a) Higher layers’ average rank
(8-12) is 3.9, 2.2 times higher than 1.8 of lower
layers (1-3), thus consistent with the semantic in-
tegration of higher layers. (b) Wi of FFN achieves
highest average rank, highlighting its importance.

6 Conclusion

We propose I-LoRA, an interpretable low-rank
adaptation framework, which addresses the key lim-

itations of existing LoRA methods through adap-
tive rank assignment and gradient-based impor-
tance scoring. Our two-stage training strategy
decouples parameter importance calibration from
task-specific tuning, thus alleviating overfitting and
enhancing generalization. Integrated gradient is
incorporated into the importance score to solve the
gradient saturation problem, thus achieving more
reliability and interpretability. Extensive experi-
mental results on natural language understanding
and text generation tasks show better generaliza-
tion performance for models fine-tuned using the I-
LoRA. In addition, systematic ablation studies pro-
vide evidence for the effectiveness of our method.



Limitations

Despite the promising results achieved by I-LoRA,
our study has several limitations that warrant dis-
cussion. Firstly, due to computational constraints
and time limitations, we were unable to leverage
the latest state-of-the-art models for our experi-
ments. This omission may restrict the generalizabil-
ity of our findings to more advanced architectures.
Secondly, our evaluation on the XSum dataset was
conducted on only one-fifth of the total data due
to the high computational demands. This partial
evaluation may not fully capture the performance
of I-LoRA on larger datasets, potentially limiting
the robustness of our conclusions. Future work
should address these constraints by incorporating
more recent models and conducting comprehensive
evaluations on full datasets.

Ethics Statement

This research focuses on the fundamental aspects
of large language model fine-tuning, specifically
through the development of I-LoRA, a parameter-
efficient fine-tuning method. As such, our work
does not involve direct application to sensitive do-
mains or data that could raise ethical concerns. We
adhere to standard ethical guidelines in machine
learning research, ensuring that our methods and
experiments are conducted responsibly. Since our
work is primarily foundational and does not in-
volve the deployment of models in real-world sce-
narios, there are no foreseeable ethical risks asso-
ciated with this study. We commit to transparency
and reproducibility, providing detailed methodolo-
gies and results to facilitate further research and
scrutiny.
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A Dataset Statistics

We present the dataset statistics of the datasets used
in our research

B Training Hyper Paramaters

In this section, we present the training hyperparam-
eters used in this research.

B.1 Natural Language Understanding
Following is the training detail of NLP tasks.
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Dataset Name | Task #Train #Dev
CoLA Acceptability | 8.5k 1k
SST2 Sentiment 67k 872
MNLI NLI 393k 20k
RTE NLI 2.5k 276
QQP Paraphrase 364k 40k
MRPC Paraphrase 3.7k 408
QNLI QA/NLI 108k 5.7k
STS-B Similarity 7k 1.5k

#Test

1k
1.8k
20k

3k
391k
1.7k
5.7k
1.4k

#Label

2

— NN NN W

Metrics
Matthews corr
Accuracy
Accuracy
Accuracy
Accuracy/F1
Accuracy/F1
Accuracy
Pearson/Spearman corr

Table 5: Summary of the GLUE benchmark, #Train, #Dev, #Test, and #Label represents the number of samples in

each dataset.

B.1.1 GLUE training detail

In our experiment, we tune the learning rate from
4 x 107* t0 2.2 x 1073, and try to find the best
learning rate for every method. The batch size for
each dataset and each method is all set to 32.

B.1.2 GLUE Extra Parameter Distribution
Figures

B.2 Text Generation

Following is the training detail of NLG tasks.

B.2.1 XSum training detail
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Dataset Name | learning rate batch size #epochs learning rate batch size #epochs
Rank Setup Model Finetune
CoLA 4 %1074 32 50 6.9 x 10~* 32 25
SST2 4x1074 32 48 4x1074 32 10
MNLI 4x10°* 32 50 5.1 x 1074 32 25
RTE 1.2x 1073 32 55 1.2x 1073 32 50
QQP 4 %1074 32 5 8 x 1074 32 15
MRPC 1x1073 32 30 1x1073 32 35
QNLI 5x 1074 32 7 5x 1074 32 40
STS-B 2.2 x 1073 32 25 2x 1073 32 25

Table 6: Summary of the GLUE training parameters.

Dataset Name | learning rate batch size #epochs learning rate batch size #epochs

Rank Setup Model Finetune

XSum 2x 1074 24 50 4x 1074 24 50

Table 7: Summary of the XSum training parameters.
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Figure 4: Parameter distribution visualization: Layer-wise rank allocation heatmaps. Each row demonstrates the
heatmap of rank allocations across layers (left) and the heatmap of importance scores of each module (right). From
top to bottom: heatmaps of fine-tuning DeBERTaV3-base with I-LoRA on qqp, qnli, sst2, stsb tasks.
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