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Abstract
In the era of large language models, low-rank001
adaptation (LoRA) is an effective method for002
model fine-tuning, and rank reassignment fur-003
ther improves its performance. However, ex-004
isting rank adjustment methods often face gen-005
eralization problems and challenges in inter-006
pretability in their scoring mechanisms. We007
propose a new framework, I-LoRA, which ad-008
dresses these limitations through two key in-009
novations: firstly, we integrate an interpretable010
integral gradients for robust parameter scoring;011
secondly, we optimize the workflow of tradi-012
tional methods to improve the fine-tuning per-013
formance. Extensive experiments on natural014
language understanding and generation tasks015
demonstrate the superior generalization ability016
of I-LoRA, while ablation studies confirm its017
effectiveness.018

1 Introduction019

Transformer-based architectures (Vaswani et al.,020

2017) fundamentally changed natural language pro-021

cessing (NLP) through their self-attention mecha-022

nism and parallel computation capabilities. Follow-023

ing Vaswani’s seminal work in 2018, subsequent024

innovations such as BERT (Devlin et al., 2019)025

with masked language models and GPT (Radford026

et al., 2018) with autoregressive pre-training estab-027

lished a paradigm-shifting framework. Subsequent028

open-source variants, including T5 (Raffel et al.,029

2020), OPT (Zhang et al., 2022), and LLAMA030

(Touvron et al., 2023), further popularized access031

to large-scale pre-trained models. While these mod-032

els achieved remarkable performance through self-033

supervised pre-training, there is still a large perfor-034

mance gap between domain-specific downstream035

tasks due to the distribution shift between the pre-036

training corpus and task-specific data.037

Traditional full-parameter fine-tuning bridges038

this gap by updating all model parameters on the039

target task. However, this approach becomes com-040

putationally prohibitive as model size exceeds 100041

billion parameters. During back-propagation, the 042

synchronous storage of optimizer state, gradients, 043

and parameter copies creates a memory bottleneck 044

that exceeds the GPU capacity of most research 045

institutions. For example, fine-tuning a 175 billion 046

parameter model requires more than 2TB of GPU 047

memory (standard 32-bit precision (Rajbhandari 048

et al., 2021)), making full-parameter fine-tuning 049

impractical for large language models (LLMs). 050

This computational challenge has stimu- 051

lated interest in parameter-efficient fine-tuning 052

(PEFT) (Houlsby et al., 2019) techniques, among 053

which low-rank adaptation (LoRA) (Hu et al., 054

2022) has emerged as a prominent solution. This 055

approach decomposes weight updates into train- 056

able low-rank matrices that approximate the full 057

parameter update space. By freezing the original 058

parameters and training only these low-rank 059

components, LoRA achieves parameter efficiency 060

while maintaining competitive performance. Sub- 061

sequent enhancements, such as AdaLoRA (Zhang 062

et al., 2023b), introduced dynamic rank assignment 063

based on a gradient sensitivity metric, but still have 064

some key limitations. 065

There are two fundamental problems with cur- 066

rent LoRA variants: First, existing rank adjustment 067

methods, including AdaLoRA, usually rely on the 068

gradient signal of training data, which may lead to 069

poor generalization ability on validation sets and 070

test sets. Second, many of the parameter impor- 071

tance assessment strategies have poor interpretabil- 072

ity. Those methods that use gradient as scoring are 073

very likely to suffer from the gradient saturation ef- 074

fect, where small gradient amplitudes in saturated 075

activation regions distort sensitivity estimates. 076

To address these issues, we propose a novel 077

low-rank adaptive method, I-LoRA. This method 078

combines adaptive rank assignment with integral 079

gradient scoring, effectively overcoming existing 080

limitations. By dynamically adjusting the rank of 081

LoRA modules, I-LoRA not only enhances the 082
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fine-tuning effect but also improves generalization083

performance. In addition, by adopting an integral084

gradient-based parameter importance evaluation085

method, I-LoRA improves accuracy and reliability,086

providing strong support for the interpretability of087

the model.088

Experiments comparing I-LoRA with full089

fine-tuning, LoRA, and our baseline meth-090

ods on DeBERTaV3-base (He et al., 2021)091

for General Language Understanding Evaluation092

(GLUE) (Wang et al., 2018) tasks and BART-093

large (Lewis et al., 2020a) for XSum (Narayan094

et al., 2018) text summarization tasks demonstrate095

I-LoRA’s superior performance across both tasks,096

particularly excelling in GLUE benchmarks. Our097

contributions can be summarized as follows:098

• First, we proposed a brand new LoRA module099

importance scoring method using integrated100

gradient, which enhanced fine-tuning effec-101

tiveness.102

• Furthermore, we proposed an approach that103

utilizes random sampling to implement an ap-104

proximation for integrated gradients in the105

scoring procedure, saving computational re-106

sources and time consumption.107

• Finally, we propose a two-stage training strat-108

egy that computes the importance score and109

sets LoRA module ranks in the first stage with110

a setup dataset and fine-tunes the module with111

the entire train set in the second stage. This112

strategy successfully improved the model’s113

generalization ability.114

2 Related Work115

2.1 Pre-trained Language Models116

Recent advances in pre-trained language models117

(PLMs) have driven significant progress in address-118

ing various natural language processing (NLP) chal-119

lenges. XLNet (Yang et al., 2019) extends BERT by120

introducing permutation-based autoregressive pre-121

training and achieves state-of-the-art performance122

on multiple benchmarks. RoBERTa (Liu et al.,123

2019) improves BERT’s training process by elimi-124

nating the next sentence prediction task and lever-125

aging larger datasets, improving task performance.126

ALBERT (Lan et al., 2020) addresses BERT’s127

memory limitations through embedding factoriza-128

tion and parameter sharing, enabling training of129

larger models with lower resource requirements.130

BART (Lewis et al., 2020b) integrates bidirectional 131

and autoregressive pre-training and achieves im- 132

pressive performance on text generation and com- 133

prehension tasks. ERNIE (Zhang et al., 2019) en- 134

hances semantic understanding by incorporating 135

knowledge graphs into pre-training. Switch Trans- 136

formers (Fedus et al., 2022) effectively expands to 137

a trillion-parameter scale by introducing a sparse 138

activation architecture, breaking the boundaries of 139

model scalability. 140

The success of these models demonstrates the 141

power of large-scale pre-training, delivering not 142

only strong empirical performance but also valu- 143

able insights into model behavior and functional- 144

ity. As Devlin emphasized in foundational stud- 145

ies of transfer learning for NLP, pre-trained lan- 146

guage models necessitate task-specific fine-tuning 147

to achieve optimal downstream performance. How- 148

ever, the increasing scale of such models introduces 149

significant computational challenges: full param- 150

eter fine-tuning incurs prohibitive computational 151

costs, particularly limiting practical deployment in 152

resource-limited scenarios. 153

2.2 Parameter-Efficient Fine-Tuning Methods 154

Parameter-efficient fine-tuning (PEFT) modifies 155

only a small subset of parameters compared to tra- 156

ditional fine-tuning methods where all parameters 157

are updated relative to training data. Delta tuning 158

(Ding et al., 2022) categorizes these incremental 159

parameter-based methods into three classes based 160

on their manipulation of incremental parameters: 161

• Reparameterization-based methods: These ap- 162

proaches reparameterize existing parameters 163

into efficient forms. A representative exam- 164

ple is Low-Rank Adaptation (LoRA), which 165

approximates parameter updates through low- 166

rank decomposition matrices to reduce train- 167

able parameters. 168

• Additional parameter-based methods: These 169

introduce new parameters absent in the 170

original model. A typical example is 171

Adapter (Houlsby et al., 2020), which in- 172

corporates trainable neural modules for task- 173

specific adaptation. 174

• Parameter selection-based methods: These 175

freeze most original parameters while keeping 176

a subset of critical parameters trainable. An 177

example of parameter selection-based PEFT 178

is presented in (Zaken et al., 2022), where the 179
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authors propose BitFit by tuning only the bias180

terms in BERT while freezing all weight ma-181

trices, achieving performance comparable to182

full fine-tuning on GLUE benchmarks with183

only 0.1% trainable parameters.184

Among these PEFT methods, LoRA has gained185

remarkable popularity due to its parameter effi-186

ciency and task-agnostic nature. It also has exten-187

sive industry adoption in major LLM deployment188

frameworks like HuggingFace PEFT and Microsoft189

DeepSpeed.190

2.3 Low-Rank Adaptation Methods191

In recent years, low-rank adaptation methods192

have developed rapidly, offering innovative ap-193

proaches to fine-tuning large models efficiently.194

DyLoRA (Valipour et al., 2023) dynamically ad-195

justs the rank of LoRA modules during training by196

evaluating the contribution of different rank compo-197

nents, enabling more efficient adaptation to down-198

stream tasks. AdaLoRA introduces adaptive rank199

assignment based on gradient sensitivity, where the200

rank of each LoRA module is optimized according201

to its importance score derived from gradients, im-202

proving parameter efficiency and task performance.203

IncreLoRA (Zhang et al., 2023a) employs an incre-204

mental rank update mechanism, starting with a low205

rank and gradually increasing it during training,206

balancing computational cost and adaptation qual-207

ity. SoRA (Ding et al., 2023) leverages sparsity-208

inducing techniques to prune and refine the rank of209

LoRA modules, using a sparsity-aware optimiza-210

tion process to achieve efficiency without sacrific-211

ing accuracy. AutoLoRA (Zhang et al., 2024) auto-212

mates the rank selection process through a hyperpa-213

rameter optimization framework, reducing the need214

for manual tuning and improving generalization215

across tasks. These methods enhance the adapt-216

ability and performance of models by dynamically217

adjusting the rank of LoRA modules. Amongst218

these dynamic LoRA rank optimization methods,219

AdaLoRA is chosen as our baseline method due to220

its stability and fine-tuning performance, while Au-221

toLoRA faces instability due to its use of bi-level222

optimization. However, the existing methods still223

face the following limitations:224

• First, the coupling of training and scoring data225

in many methods will lead to poor generaliza-226

tion ability.227

• Second, existing low-rank adaptation methods 228

generally suffer from poor interpretability. 229

3 Motivation 230

Existing LoRA optimization methods generally suf- 231

fer from two similar problems. The first problem 232

is that they tend to use the same set of data for 233

training and scoring of parameters. Consequently, 234

the model will have poor generalization problems. 235

The second is that their interpretability is often low, 236

meaning their choices of importance scores might 237

be suboptimal. Since most methods are gradient- 238

based, we’ll explain why gradient is not a prefer- 239

able choice. 240

3.1 Generalization Risk from Coupling of 241

Training and Scoring Data 242

For the first problem, we can take AdaLoRA, a 243

representative work in rank allocation, as an exam- 244

ple for analysis. AdaLoRA employs a single-stage 245

training paradigm where model parameters are up- 246

dated and importance scores are computed within 247

the same step. This design leads to the following 248

coupling effects: 249

Overfitting Feedback Loop: The importance 250

scoring is based on the current model’s perfor- 251

mance on the training set. If the model exhibits 252

high responses to specific samples due to overfit- 253

ting, the scoring mechanism will erroneously am- 254

plify the importance of noise-sensitive modules. 255

This bias becomes particularly pronounced during 256

mid-to-late training stages, ultimately leading to 257

performance degradation of the pruned model on 258

validation sets. 259

Mathematical Characterization: Let the em- 260

pirical risk of training set D be LD(θ). The scoring 261

function of AdaLoRA can be expressed as 262

S(θ) = E(x,y)∼D[|∇θL(x, y; θ)|]. (1) 263

When the model overfits, θ approaches a local min- 264

imum θ∗, resulting in ∇θLD(θ∗) ≈ 0 and scor- 265

ing failure. The true importance of the test set D′ 266

should be 267

S∗ = E(x,y)∼D′ [|∇θL(x, y; θ∗)|]. (2) 268

The discrepancy ∥S(θ∗)−S∗∥ directly reflects gen- 269

eralization error. 270

3.2 Inherent Defects of Gradient Sensitivity 271

Metrics 272

The reliability of traditional gradient sensitivity 273

metrics |∇λL| depends on the local curvature prop- 274
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Figure 1: The I-LoRA framework diagram. Upper section: Two-stage fine-tuning process - (1) Train model,
calculate LoRA module importance scores via separate scoring set, apply masking; (2) Retrain with inherited mask
configuration. Lower section: Heatmaps comparing initial (left) vs optimized (right) LoRA rank allocations.

erties of the loss function in parameter space. Con-275

sidering extreme cases of the Sigmoid function in276

binary classification tasks: Let the loss function be277

cross-entropy be:278

L(λ) = − log σ(λz) (3)279

where z is the logit difference of the correct class280

and σ is the Sigmoid function. When λz ≫ 0,281

σ(λz) ≈ 1 and ∇λL ≈ 0, yet parameter λ cru-282

cially determines the classification boundary po-283

sition. This phenomenon indicates that instanta-284

neous gradient-based scoring systematically under-285

estimates the importance of critical parameters as286

the model approaches convergence.287

4 Methodology288

Targeting the shortcomings of existing LoRA de-289

signs, we propose a novel low-rank adaptation290

method, I-LoRA, which combines adaptive rank291

allocation with integrated gradient scoring. In this292

section, we will elaborate on the design and imple-293

mentation of the I-LoRA method.294

4.1 Integrated Gradient Evaluation 295

Framework 296

To address the limitations of traditional gradient 297

sensitivity metrics in calculating parameter impor- 298

tance, we propose an Integrated Gradient Evalu- 299

ation Framework. This framework leverages the 300

path integral of the gradient of the loss to the param- 301

eters as a robust metric for computing importance 302

scores. 303

Theoretical Foundation Let θ denote a model 304

parameter, and let θ0 be its initial value. We define 305

the path integral importance of θ along the linear 306

interpolation path from θ0 to its current value θ as: 307

I(θ) =

∫ 1

0
E(x,y)∼Ds

[∥∇θL(θ(α))∥1] dα. (4) 308

Here θ(α) = θ0 + α(θ − θ0) represents the lin- 309

ear interpolation between θ0 and θ, and Ds is a 310

training-independent scoring dataset. This integral 311

accumulates the sensitivity of the parameter along 312

the interpolation path, providing a more compre- 313

hensive measure of its importance. 314
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4.2 I-LoRA Two-Phase Workflow315

Since both loss functions and parameter sampling316

are discrete in practice, they cannot be represented317

as coherent functions. Therefore, the integral gra-318

dient of parameters relative to the loss function can319

only be approximated experimentally by:320

• Computing gradients for scaled parameters321

θ · k (k ∈ [0, 1]) per batch322

• Gradually varying the scaling factor k from323

the reference point (zero matrix) to actual pa-324

rameter values325

• Using averaged gradients from multiple steps326

to approximate integral gradients327

However, although path integral sensitivity eval-328

uation demonstrates strong theoretical interpretabil-329

ity, computing multiple gradients per batch on scor-330

ing set Ds significantly increases computational331

resource and time consumption during LoRA con-332

figuration. To address this, we implement a prac-333

tical approximation by generating random scaling334

factors per batch, and calculating gradients of the335

scaled parameters. By accumulating sensitivity336

scores across batches, our method can efficiently337

estimate the importance scores.338

As shown in Fig. 1, we employ a two-phase339

workflow for our method. The first phase focuses340

on the importance evaluation of LoRAs and locking341

down the final rank configuration. The steps for the342

first phase are:343

1. Dynamic Path Sampling:344

• Generate random scaling factor α ∈345

{0.1, 0.2, ..., 1.0} per batch346

• Construct interpolated parameters347

θα = θ0 + α(θ − θ0)348

2. Independent Gradient Evaluation:349

• Compute loss on independently parti-350

tioned scoring set Ds351

• Obtain gradient tensor352

gα = ∇θαL(Ds; θα)353

• Calculate sensitivity metric ∥gα∥1 at cur-354

rent path point355

3. Threshold Calculation:356

• Sort ∥gα∥1 ascendingly, obtain score vec- 357

tor Gα of length t 358

• Determine pruning threshold τ = Gα[t∗ 359

β] based on LoRA pruning ratio β 360

4. Rank Pruning: 361

• Set singular value matrices of modules 362

satisfying S(θ) < τ to zero 363

The second phase is to conduct the fine-tuning 364

with the obtained LoRA rank configurations. Dur- 365

ing the second phase implementation, we first con- 366

struct a gating matrix based on the singular value 367

matrix obtained in the first stage: deactivation mod- 368

ules possessing zero-value singular value matrices 369

according to the numerical characteristics of each 370

module’s final singular value matrix, while keeping 371

the effective modules active. 372

Subsequently, we proceed to the model fine- 373

tuning phase by freezing the parameter space of 374

deactivated modules, initializing parameters exclu- 375

sively for active LoRA modules, and conducting 376

fine-tuning on the complete training dataset. 377

Finally, we employ task-customized evaluation 378

metrics to systematically validate the performance 379

of the optimized model, ensuring its generalization 380

capability on test sets meets predefined objectives. 381

4.3 Training Process Pseudocode 382

Algorithm 1 Two-Phase Dynamic LoRA Training

Require: θ, θ0 = 0, scoring set Ds, prune ratio β
Ensure: Fine-tuned θ∗

Phase 1: Importance Evaluation
1: for Each batch do
2: Sample α ∼ U{0.1, ..., 1.0}
3: Compute θα = θ0 + α(θ − θ0)
4: Get gα = ∇θαL(Ds; θα)

5: Calculate si = ∥g(i)α ∥1 ∀ module i
6: Sort {si} to get Gα, set τ = Gα[⌊tβ⌋]
7: for Each LoRA module i do
8: if si < τ then Si(θ)← 0
9: end if

10: end for
11: end for

Phase 2: Targeted Fine-tuning
12: Build Gi = I(Si ̸= 0), freeze Gi = 0
13: while Not converged do
14: θ ← θ − η∇θL(Dtrain; θ)
15: end while
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Method
MNLI CoLA RTE MRPC QNLI QQP SST-2 STS-B

Avg
m mm (MCC) (Acc) (F1) (Acc) Acc F1 (Acc) (Corr)

Full FT 89.90 90.12 69.19 83.75 89.46 94.03 92.40 89.80 95.63 91.60 88.09
LoRA (r=2) 90.30 90.38 68.71 85.56 89.71 93.87 91.61 88.91 94.95 91.68 88.15
AdaLoRA 90.66 90.70 70.04 87.36 90.44 94.49 91.78 89.16 95.80 91.63 88.86

I-LoRA (Ours) 89.91 90.71 71.84 88.44 93.57 94.61 91.89 89.33 96.10 91.85 89.54

Table 1: Comprehensive evaluation results of fine-tuning DeBERTaV3-base on GLUE benchmark (Trainable
parameters: 0.33M). All results are averaged over 5 independent runs.

5 Experiments and Analysis383

In this section, we present our experiments us-384

ing I-LoRA to fine-tune open-sourced models,385

DeBERTaV3-base and BART-large. We evalu-386

ate the performance of our proposed method on387

publicly available natural language understanding388

(GLUE) and text generation (XSum) tasks. All389

gains are statistically significant with p < 0.05.390

5.1 Experimental setups391

Environment Settings All algorithms are im-392

plemented using PyTorch (Paszke et al., 2019),393

based on publicly available Huggingface Trans-394

formers (Wolf et al., 2020) and the AdaLoRA code-395

base from GitHub. All following experiments are396

conducted on NVIDIA A100 40G GPUs.397

5.2 Baseline methods398

We compare I-LoRA with the following methods:399

• Full-parameter fine-tuning is the most400

widely utilized adaptation method. In full-401

parameter fine-tuning, the model starts with402

pre-trained weights, which all receive gradient403

updates.404

• AdaLoRA serves as the primary reference for405

our experimental optimization. It dynamically406

enables/disables LoRA ranks based on gradi-407

ent sensitivity during fine-tuning.408

5.3 Evaluation on natural language409

understanding tasks410

Models and datasets. To evaluate the perfor-411

mance of our proposed method, I-LoRA, we use412

it to fine-tune the DeBERTaV3-base model on the413

GLUE benchmarks. This benchmark contains one414

text similarity task, five pairwise text classification415

tasks, and two single-sentence classification tasks.416

Detailed information about the datasets is presented417

in Appendix A.418

Implementation details. DeBERTaV3-base 419

contains 183M parameters. Due to time constraints, 420

we only compare I-LoRA with baselines under rel- 421

atively low parameter budgets. For this experiment, 422

the total trainable parameters are set to 0.3M. Dur- 423

ing the first-stage rank setting, the adapter’s hidden 424

dimension is 2, with the final LoRA target rank r 425

averaging 1 and a pruning ratio of 50%. Learn- 426

ing rates are selected from [4× 10−4, 1.2× 10−3]. 427

More details can be found in Appendix B. The 428

computational budget required for using I-LoRA 429

to fine-tune DevertaV3-base on Glue tasks ranges 430

from 0.5 to 24 GPU hours. 431

To comprehensively evaluate I-LoRA’s effective- 432

ness in natural language understanding tasks, we 433

systematically test the DeBERTa-v3-base model on 434

the GLUE benchmark. As shown in Table 1, un- 435

der strict control of trainable parameters (0.33M), 436

I-LoRA demonstrates significant advantages in 437

seven out of eight subtasks, with comparable per- 438

formance in the remaining task. On the linguis- 439

tic acceptability task CoLA, I-LoRA achieves a 440

Matthews correlation coefficient of 71.84, outper- 441

forming AdaLoRA by 1.8 points (p=0.017). We 442

attribute this improvement to the integral gradient 443

method’s precise identification of deep syntactic 444

parsing parameters. Gradient path analysis reveals 445

that I-LoRA retains more syntax-sensitive parame- 446

ters in weight matrices of Transformer layers 8-11. 447

The RTE few-shot inference task further vali- 448

dates the method’s robustness. With only 2,490 449

training samples, I-LoRA achieves 88.44% accu- 450

racy, surpassing full fine-tuning by 4.69 percentage 451

points. Notably, on the STS-B semantic similarity 452

task, I-LoRA achieves a Spearman correlation of 453

91.85, exceeding full fine-tuning performance, indi- 454

cating that the dynamic rank allocation mechanism 455

effectively preserves the base model’s semantic en- 456

coding capabilities. 457
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5.4 Validation on text generation tasks458

To assess the method’s domain generalization abil-459

ity, we conduct cross-domain testing on XSum sum-460

marization tasks. Considering time and computa-461

tional constraints, we retain 20% of XSum training462

data (about 180k samples) through random sam-463

pling. As shown in Table 2, under 0.06% parameter464

budget, I-LoRA achieves better performance com-465

pared to AdaLoRA under all three rouge metrics.466

Remarkably, with only 1/5 training data and 0.06%467

trainable parameters, I-LoRA reaches 93.8% of468

full fine-tuning performance under complete data469

training, demonstrating strong adaptability in data-470

scarce scenarios. A complete training cycle using471

I-LoRA to fine-tune Bart-large on XSum takes an472

average 64 GPU hours.473

Method
XSum

Param
R-1 R-2 R-L

Full FT 44.12 21.35 37.26 100%
AdaLoRA 42.42 19.27 34.41 0.06%

I-LoRA 42.44 19.34 34.55 0.06%

Table 2: Evaluation results for fine-tuning Bart-large
on text generation tasks. Metrics are reported using
ROUGE-L. Both XSum training and validation sets use
20% uniform sampling.

5.5 Ablation studies and mechanism analysis474

Variant CoLA RTE MRPC ∆

Full I-LoRA 71.84 88.44 93.57 -

-Two stage 68.87 85.06 90.48 ↓3.72
-Setup set 69.76 85.92 93.45 ↓1.86

-Rand. scale 69.73 87.00 92.77 ↓1.71

Table 3: Systematic ablation study results. Metrics
represent GLUE composite scores. ∆ indicates average
performance degradation across three tasks compared
to full I-LoRA.

To analyze component contributions, we design475

systematic ablation experiments testing the im-476

pact of removing key I-LoRA components during477

DeBERTaV3-base fine-tuning on CoLA, RTE, and478

MRPC. As shown in Table 3, compared to full479

I-LoRA:480

• Removing stage separation (omitting retrain-481

ing after rank setting) causes a 3.72% perfor-482

mance drop.483

• Removing the validation set (using training 484

data for both model training and importance 485

scoring in Stage 1) leads to a 1.86% average 486

performance decline, with RTE particularly 487

affected. 488

• Removing random scaling factors (replacing 489

integrated gradients with instantaneous gradi- 490

ents) results in a 1.71% average performance 491

decrease. 492

These results validate the importance of all three 493

key components in I-LoRA’s architecture. 494

5.6 Parameter sensitivity analysis 495

For LoRA rank sensitivity analysis on CoLA 496

dataset (Table 4 and Figure 2), model perfor- 497

mance shows non-monotonic variation: Accuracy 498

increases from 71.84 (r=2) to 71.98 (r=16), then 499

drops to 70.79 (r=32). This "bell curve" suggests an 500

optimal rank range balancing model capacity and 501

regularization. I-LoRA demonstrates tighter perfor- 502

mance clustering (70.79-71.98) before degradation, 503

verifying improved robustness to rank misestima- 504

tion through integrated gradient scoring. 505

LoRA Rank (r) Accuracy (%)
2 71.84
4 71.72
8 71.98
16 71.98
32 70.79

Table 4: I-LoRA performance on CoLA dataset with
varying LoRA ranks

Figure 2: Performance of I-LoRA with different LoRA
ranks on CoLA dataset
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Figure 3: Parameter distribution visualization: Layer-wise rank allocation heatmaps. Each row demonstrates the
heatmap of rank allocations across layers (left) and the heatmap of importance scores of each module (right). From
top to bottom: heatmaps of fine-tuning DeBERTaV3-base with I-LoRA on CoLA, RTE, and MRPC tasks.

5.7 Parameter distribution and structural506

analysis507

Heatmap visualization (Figure 3) shows differ-508

ent parameter allocation patterns in I-LoRA, link-509

ing rank allocation to parameter importance. For510

DeBERTaV3-base: (a) Higher layers’ average rank511

(8-12) is 3.9, 2.2 times higher than 1.8 of lower512

layers (1-3), thus consistent with the semantic in-513

tegration of higher layers. (b) Wi of FFN achieves514

highest average rank, highlighting its importance.515

6 Conclusion516

We propose I-LoRA, an interpretable low-rank517

adaptation framework, which addresses the key lim-518

itations of existing LoRA methods through adap- 519

tive rank assignment and gradient-based impor- 520

tance scoring. Our two-stage training strategy 521

decouples parameter importance calibration from 522

task-specific tuning, thus alleviating overfitting and 523

enhancing generalization. Integrated gradient is 524

incorporated into the importance score to solve the 525

gradient saturation problem, thus achieving more 526

reliability and interpretability. Extensive experi- 527

mental results on natural language understanding 528

and text generation tasks show better generaliza- 529

tion performance for models fine-tuned using the I- 530

LoRA. In addition, systematic ablation studies pro- 531

vide evidence for the effectiveness of our method. 532
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Limitations533

Despite the promising results achieved by I-LoRA,534

our study has several limitations that warrant dis-535

cussion. Firstly, due to computational constraints536

and time limitations, we were unable to leverage537

the latest state-of-the-art models for our experi-538

ments. This omission may restrict the generalizabil-539

ity of our findings to more advanced architectures.540

Secondly, our evaluation on the XSum dataset was541

conducted on only one-fifth of the total data due542

to the high computational demands. This partial543

evaluation may not fully capture the performance544

of I-LoRA on larger datasets, potentially limiting545

the robustness of our conclusions. Future work546

should address these constraints by incorporating547

more recent models and conducting comprehensive548

evaluations on full datasets.549
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volve the deployment of models in real-world sce-561
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Dataset Name Task #Train #Dev #Test #Label Metrics
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST2 Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 5: Summary of the GLUE benchmark, #Train, #Dev, #Test, and #Label represents the number of samples in
each dataset.

B.1.1 GLUE training detail741

In our experiment, we tune the learning rate from742

4 × 10−4 to 2.2 × 10−3, and try to find the best743

learning rate for every method. The batch size for744

each dataset and each method is all set to 32.745

B.1.2 GLUE Extra Parameter Distribution746

Figures747

B.2 Text Generation748

Following is the training detail of NLG tasks.749

B.2.1 XSum training detail750
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Dataset Name learning rate batch size #epochs learning rate batch size #epochs
Rank Setup Model Finetune

CoLA 4× 10−4 32 50 6.9× 10−4 32 25
SST2 4× 10−4 32 48 4× 10−4 32 10
MNLI 4× 10−4 32 50 5.1× 10−4 32 25
RTE 1.2× 10−3 32 55 1.2× 10−3 32 50
QQP 4× 10−4 32 5 8× 10−4 32 15
MRPC 1× 10−3 32 30 1× 10−3 32 35
QNLI 5× 10−4 32 7 5× 10−4 32 40
STS-B 2.2× 10−3 32 25 2× 10−3 32 25

Table 6: Summary of the GLUE training parameters.

Dataset Name learning rate batch size #epochs learning rate batch size #epochs
Rank Setup Model Finetune

XSum 2× 10−4 24 50 4× 10−4 24 50

Table 7: Summary of the XSum training parameters.
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Figure 4: Parameter distribution visualization: Layer-wise rank allocation heatmaps. Each row demonstrates the
heatmap of rank allocations across layers (left) and the heatmap of importance scores of each module (right). From
top to bottom: heatmaps of fine-tuning DeBERTaV3-base with I-LoRA on qqp, qnli, sst2, stsb tasks.
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